Quentin Lhoest
commited on
Commit
·
1864061
1
Parent(s):
5a1ff12
Release: 1.18.1
Browse filesCommit from https://github.com/huggingface/datasets/commit/218e496519ff14b4bc69ea559616af6f2ef89e57
pec.py
CHANGED
|
@@ -1,175 +1,175 @@
|
|
| 1 |
-
"""TODO: Add a description here."""
|
| 2 |
-
|
| 3 |
-
import os
|
| 4 |
-
|
| 5 |
-
import datasets
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
# TODO: Add BibTeX citation
|
| 9 |
-
_CITATION = """\
|
| 10 |
-
@inproceedings{zhong2020towards,
|
| 11 |
-
title = "Towards Persona-Based Empathetic Conversational Models",
|
| 12 |
-
author = "Zhong, Peixiang and
|
| 13 |
-
Zhang, Chen and
|
| 14 |
-
Wang, Hao and
|
| 15 |
-
Liu, Yong and
|
| 16 |
-
Miao, Chunyan",
|
| 17 |
-
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
|
| 18 |
-
year = "2020",
|
| 19 |
-
publisher = "Association for Computational Linguistics",
|
| 20 |
-
url = "https://www.aclweb.org/anthology/2020.emnlp-main.531",
|
| 21 |
-
pages = "6556--6566"}
|
| 22 |
-
"""
|
| 23 |
-
|
| 24 |
-
# TODO: Add description of the dataset here
|
| 25 |
-
_DESCRIPTION = """\
|
| 26 |
-
A dataset of around 350K persona-based empathetic conversations. Each speaker is associated with a persona, which comprises multiple persona sentences. The response of each conversation is empathetic.
|
| 27 |
-
"""
|
| 28 |
-
|
| 29 |
-
_URL = "https://dl.dropboxusercontent.com/s/u04fzuhsnxd0uvw/hf_pec.zip"
|
| 30 |
-
|
| 31 |
-
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
| 32 |
-
# Using a specific configuration class is optional, you can also use the base class if you don't need
|
| 33 |
-
# to add specific attributes.
|
| 34 |
-
# here we give an example for three sub-set of the dataset with difference sizes.
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
class PECConfig(datasets.BuilderConfig):
|
| 38 |
-
"""BuilderConfig for PEC"""
|
| 39 |
-
|
| 40 |
-
def __init__(self, domain="all", **kwargs):
|
| 41 |
-
"""
|
| 42 |
-
Args:
|
| 43 |
-
domain: the domain of our dataset: happy or offmychest
|
| 44 |
-
**kwargs: keyword arguments forwarded to super.
|
| 45 |
-
"""
|
| 46 |
-
super(PECConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
|
| 47 |
-
self.domain = domain
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
class PEC(datasets.GeneratorBasedBuilder):
|
| 51 |
-
"""TODO: Short description of my dataset."""
|
| 52 |
-
|
| 53 |
-
VERSION = datasets.Version("1.0.0")
|
| 54 |
-
# This is an example of a dataset with multiple configurations.
|
| 55 |
-
# If you don't want/need to define several sub-sets in your dataset,
|
| 56 |
-
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
| 57 |
-
BUILDER_CONFIG_CLASS = PECConfig
|
| 58 |
-
BUILDER_CONFIGS = [
|
| 59 |
-
PECConfig(name=domain, description=f"A subset of PEC dataset: {domain}", domain=domain)
|
| 60 |
-
for domain in ["happy", "offmychest", "all"]
|
| 61 |
-
]
|
| 62 |
-
|
| 63 |
-
def _info(self):
|
| 64 |
-
# TODO: Specifies the datasets.DatasetInfo object
|
| 65 |
-
return datasets.DatasetInfo(
|
| 66 |
-
# This is the description that will appear on the datasets page.
|
| 67 |
-
description=_DESCRIPTION,
|
| 68 |
-
# This defines the different columns of the dataset and their types
|
| 69 |
-
features=datasets.Features(
|
| 70 |
-
{
|
| 71 |
-
"personas": datasets.features.Sequence(datasets.Value("string")),
|
| 72 |
-
"context": datasets.features.Sequence(datasets.Value("string")),
|
| 73 |
-
"context_speakers": datasets.features.Sequence(datasets.Value("string")),
|
| 74 |
-
"response": datasets.Value("string"),
|
| 75 |
-
"response_speaker": datasets.Value("string"),
|
| 76 |
-
}
|
| 77 |
-
),
|
| 78 |
-
# If there's a common (input, target) tuple from the features,
|
| 79 |
-
# specify them here. They'll be used if as_supervised=True in
|
| 80 |
-
# builder.as_dataset.
|
| 81 |
-
supervised_keys=None,
|
| 82 |
-
# Homepage of the dataset for documentation
|
| 83 |
-
homepage="https://github.com/zhongpeixiang/PEC",
|
| 84 |
-
citation=_CITATION,
|
| 85 |
-
)
|
| 86 |
-
|
| 87 |
-
def _load_persona(self, paths):
|
| 88 |
-
persona = {}
|
| 89 |
-
is_speaker = True
|
| 90 |
-
sentences = []
|
| 91 |
-
for path in paths:
|
| 92 |
-
with open(path, encoding="utf-8") as f:
|
| 93 |
-
for row in f:
|
| 94 |
-
if "********************" not in row:
|
| 95 |
-
if is_speaker:
|
| 96 |
-
speaker = row.strip()
|
| 97 |
-
is_speaker = False
|
| 98 |
-
else:
|
| 99 |
-
sentences.append(row.strip())
|
| 100 |
-
else:
|
| 101 |
-
persona[speaker] = sentences
|
| 102 |
-
is_speaker = True
|
| 103 |
-
sentences = []
|
| 104 |
-
return persona
|
| 105 |
-
|
| 106 |
-
def _split_generators(self, dl_manager):
|
| 107 |
-
"""Returns SplitGenerators."""
|
| 108 |
-
# TODO: Downloads the data and defines the splits
|
| 109 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
| 110 |
-
# download and extract URLs
|
| 111 |
-
dl_dir = dl_manager.download_and_extract(_URL)
|
| 112 |
-
data_dir = os.path.join(dl_dir, "hf_pec")
|
| 113 |
-
domains = ["happy", "offmychest"] if self.config.domain == "all" else [self.config.domain] # multiple domains
|
| 114 |
-
persona_paths = [os.path.join(data_dir, domain, "persona.txt") for domain in domains]
|
| 115 |
-
persona = self._load_persona(persona_paths)
|
| 116 |
-
|
| 117 |
-
return [
|
| 118 |
-
datasets.SplitGenerator(
|
| 119 |
-
name=datasets.Split.TRAIN,
|
| 120 |
-
gen_kwargs={
|
| 121 |
-
"filepath": [os.path.join(data_dir, domain, "train.txt") for domain in domains],
|
| 122 |
-
"split": "train",
|
| 123 |
-
"persona": persona,
|
| 124 |
-
},
|
| 125 |
-
),
|
| 126 |
-
datasets.SplitGenerator(
|
| 127 |
-
name=datasets.Split.TEST,
|
| 128 |
-
gen_kwargs={
|
| 129 |
-
"filepath": [os.path.join(data_dir, domain, "test.txt") for domain in domains],
|
| 130 |
-
"split": "test",
|
| 131 |
-
"persona": persona,
|
| 132 |
-
},
|
| 133 |
-
),
|
| 134 |
-
datasets.SplitGenerator(
|
| 135 |
-
name=datasets.Split.VALIDATION,
|
| 136 |
-
gen_kwargs={
|
| 137 |
-
"filepath": [os.path.join(data_dir, domain, "valid.txt") for domain in domains],
|
| 138 |
-
"split": "dev",
|
| 139 |
-
"persona": persona,
|
| 140 |
-
},
|
| 141 |
-
),
|
| 142 |
-
]
|
| 143 |
-
|
| 144 |
-
def _generate_examples(self, filepath, split, persona):
|
| 145 |
-
"""Yields examples."""
|
| 146 |
-
# TODO: Yields (key, example) tuples from the dataset
|
| 147 |
-
context_speakers = []
|
| 148 |
-
context = []
|
| 149 |
-
example_id = 0
|
| 150 |
-
for fpath in filepath:
|
| 151 |
-
with open(fpath, encoding="utf-8") as f:
|
| 152 |
-
for id_, row in enumerate(f):
|
| 153 |
-
if row.strip() == "":
|
| 154 |
-
continue
|
| 155 |
-
if "********************" not in row:
|
| 156 |
-
if "---+---" in row:
|
| 157 |
-
speaker, utterance = row.split("---+---")
|
| 158 |
-
context_speakers.append(speaker.strip())
|
| 159 |
-
context.append(utterance.strip())
|
| 160 |
-
else:
|
| 161 |
-
# contains inline \n
|
| 162 |
-
context[-1] = context[-1] + " " + row.strip()
|
| 163 |
-
else:
|
| 164 |
-
response_speaker = context_speakers.pop()
|
| 165 |
-
response = context.pop()
|
| 166 |
-
yield example_id, {
|
| 167 |
-
"personas": persona[response_speaker],
|
| 168 |
-
"context_speakers": context_speakers,
|
| 169 |
-
"context": context,
|
| 170 |
-
"response_speaker": response_speaker,
|
| 171 |
-
"response": response,
|
| 172 |
-
}
|
| 173 |
-
context_speakers = []
|
| 174 |
-
context = []
|
| 175 |
-
example_id += 1
|
|
|
|
| 1 |
+
"""TODO: Add a description here."""
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
import datasets
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# TODO: Add BibTeX citation
|
| 9 |
+
_CITATION = """\
|
| 10 |
+
@inproceedings{zhong2020towards,
|
| 11 |
+
title = "Towards Persona-Based Empathetic Conversational Models",
|
| 12 |
+
author = "Zhong, Peixiang and
|
| 13 |
+
Zhang, Chen and
|
| 14 |
+
Wang, Hao and
|
| 15 |
+
Liu, Yong and
|
| 16 |
+
Miao, Chunyan",
|
| 17 |
+
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
|
| 18 |
+
year = "2020",
|
| 19 |
+
publisher = "Association for Computational Linguistics",
|
| 20 |
+
url = "https://www.aclweb.org/anthology/2020.emnlp-main.531",
|
| 21 |
+
pages = "6556--6566"}
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
# TODO: Add description of the dataset here
|
| 25 |
+
_DESCRIPTION = """\
|
| 26 |
+
A dataset of around 350K persona-based empathetic conversations. Each speaker is associated with a persona, which comprises multiple persona sentences. The response of each conversation is empathetic.
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
+
_URL = "https://dl.dropboxusercontent.com/s/u04fzuhsnxd0uvw/hf_pec.zip"
|
| 30 |
+
|
| 31 |
+
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
| 32 |
+
# Using a specific configuration class is optional, you can also use the base class if you don't need
|
| 33 |
+
# to add specific attributes.
|
| 34 |
+
# here we give an example for three sub-set of the dataset with difference sizes.
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class PECConfig(datasets.BuilderConfig):
|
| 38 |
+
"""BuilderConfig for PEC"""
|
| 39 |
+
|
| 40 |
+
def __init__(self, domain="all", **kwargs):
|
| 41 |
+
"""
|
| 42 |
+
Args:
|
| 43 |
+
domain: the domain of our dataset: happy or offmychest
|
| 44 |
+
**kwargs: keyword arguments forwarded to super.
|
| 45 |
+
"""
|
| 46 |
+
super(PECConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
|
| 47 |
+
self.domain = domain
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class PEC(datasets.GeneratorBasedBuilder):
|
| 51 |
+
"""TODO: Short description of my dataset."""
|
| 52 |
+
|
| 53 |
+
VERSION = datasets.Version("1.0.0")
|
| 54 |
+
# This is an example of a dataset with multiple configurations.
|
| 55 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
| 56 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
| 57 |
+
BUILDER_CONFIG_CLASS = PECConfig
|
| 58 |
+
BUILDER_CONFIGS = [
|
| 59 |
+
PECConfig(name=domain, description=f"A subset of PEC dataset: {domain}", domain=domain)
|
| 60 |
+
for domain in ["happy", "offmychest", "all"]
|
| 61 |
+
]
|
| 62 |
+
|
| 63 |
+
def _info(self):
|
| 64 |
+
# TODO: Specifies the datasets.DatasetInfo object
|
| 65 |
+
return datasets.DatasetInfo(
|
| 66 |
+
# This is the description that will appear on the datasets page.
|
| 67 |
+
description=_DESCRIPTION,
|
| 68 |
+
# This defines the different columns of the dataset and their types
|
| 69 |
+
features=datasets.Features(
|
| 70 |
+
{
|
| 71 |
+
"personas": datasets.features.Sequence(datasets.Value("string")),
|
| 72 |
+
"context": datasets.features.Sequence(datasets.Value("string")),
|
| 73 |
+
"context_speakers": datasets.features.Sequence(datasets.Value("string")),
|
| 74 |
+
"response": datasets.Value("string"),
|
| 75 |
+
"response_speaker": datasets.Value("string"),
|
| 76 |
+
}
|
| 77 |
+
),
|
| 78 |
+
# If there's a common (input, target) tuple from the features,
|
| 79 |
+
# specify them here. They'll be used if as_supervised=True in
|
| 80 |
+
# builder.as_dataset.
|
| 81 |
+
supervised_keys=None,
|
| 82 |
+
# Homepage of the dataset for documentation
|
| 83 |
+
homepage="https://github.com/zhongpeixiang/PEC",
|
| 84 |
+
citation=_CITATION,
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
def _load_persona(self, paths):
|
| 88 |
+
persona = {}
|
| 89 |
+
is_speaker = True
|
| 90 |
+
sentences = []
|
| 91 |
+
for path in paths:
|
| 92 |
+
with open(path, encoding="utf-8") as f:
|
| 93 |
+
for row in f:
|
| 94 |
+
if "********************" not in row:
|
| 95 |
+
if is_speaker:
|
| 96 |
+
speaker = row.strip()
|
| 97 |
+
is_speaker = False
|
| 98 |
+
else:
|
| 99 |
+
sentences.append(row.strip())
|
| 100 |
+
else:
|
| 101 |
+
persona[speaker] = sentences
|
| 102 |
+
is_speaker = True
|
| 103 |
+
sentences = []
|
| 104 |
+
return persona
|
| 105 |
+
|
| 106 |
+
def _split_generators(self, dl_manager):
|
| 107 |
+
"""Returns SplitGenerators."""
|
| 108 |
+
# TODO: Downloads the data and defines the splits
|
| 109 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to
|
| 110 |
+
# download and extract URLs
|
| 111 |
+
dl_dir = dl_manager.download_and_extract(_URL)
|
| 112 |
+
data_dir = os.path.join(dl_dir, "hf_pec")
|
| 113 |
+
domains = ["happy", "offmychest"] if self.config.domain == "all" else [self.config.domain] # multiple domains
|
| 114 |
+
persona_paths = [os.path.join(data_dir, domain, "persona.txt") for domain in domains]
|
| 115 |
+
persona = self._load_persona(persona_paths)
|
| 116 |
+
|
| 117 |
+
return [
|
| 118 |
+
datasets.SplitGenerator(
|
| 119 |
+
name=datasets.Split.TRAIN,
|
| 120 |
+
gen_kwargs={
|
| 121 |
+
"filepath": [os.path.join(data_dir, domain, "train.txt") for domain in domains],
|
| 122 |
+
"split": "train",
|
| 123 |
+
"persona": persona,
|
| 124 |
+
},
|
| 125 |
+
),
|
| 126 |
+
datasets.SplitGenerator(
|
| 127 |
+
name=datasets.Split.TEST,
|
| 128 |
+
gen_kwargs={
|
| 129 |
+
"filepath": [os.path.join(data_dir, domain, "test.txt") for domain in domains],
|
| 130 |
+
"split": "test",
|
| 131 |
+
"persona": persona,
|
| 132 |
+
},
|
| 133 |
+
),
|
| 134 |
+
datasets.SplitGenerator(
|
| 135 |
+
name=datasets.Split.VALIDATION,
|
| 136 |
+
gen_kwargs={
|
| 137 |
+
"filepath": [os.path.join(data_dir, domain, "valid.txt") for domain in domains],
|
| 138 |
+
"split": "dev",
|
| 139 |
+
"persona": persona,
|
| 140 |
+
},
|
| 141 |
+
),
|
| 142 |
+
]
|
| 143 |
+
|
| 144 |
+
def _generate_examples(self, filepath, split, persona):
|
| 145 |
+
"""Yields examples."""
|
| 146 |
+
# TODO: Yields (key, example) tuples from the dataset
|
| 147 |
+
context_speakers = []
|
| 148 |
+
context = []
|
| 149 |
+
example_id = 0
|
| 150 |
+
for fpath in filepath:
|
| 151 |
+
with open(fpath, encoding="utf-8") as f:
|
| 152 |
+
for id_, row in enumerate(f):
|
| 153 |
+
if row.strip() == "":
|
| 154 |
+
continue
|
| 155 |
+
if "********************" not in row:
|
| 156 |
+
if "---+---" in row:
|
| 157 |
+
speaker, utterance = row.split("---+---")
|
| 158 |
+
context_speakers.append(speaker.strip())
|
| 159 |
+
context.append(utterance.strip())
|
| 160 |
+
else:
|
| 161 |
+
# contains inline \n
|
| 162 |
+
context[-1] = context[-1] + " " + row.strip()
|
| 163 |
+
else:
|
| 164 |
+
response_speaker = context_speakers.pop()
|
| 165 |
+
response = context.pop()
|
| 166 |
+
yield example_id, {
|
| 167 |
+
"personas": persona[response_speaker],
|
| 168 |
+
"context_speakers": context_speakers,
|
| 169 |
+
"context": context,
|
| 170 |
+
"response_speaker": response_speaker,
|
| 171 |
+
"response": response,
|
| 172 |
+
}
|
| 173 |
+
context_speakers = []
|
| 174 |
+
context = []
|
| 175 |
+
example_id += 1
|