File size: 12,285 Bytes
d8ab1df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456


GeomUtil module β€” pxr-usd-api 105.1 documentation

pxr-usd-api

 Β»
Modules Β»
GeomUtil module

Β 

# GeomUtil module

Summary: The GeomUtil module contains utilities to help image common geometry.

Utilities to help image common geometry.
Classes:

CapsuleMeshGenerator
This class provides an implementation for generating topology and point positions on a capsule.

ConeMeshGenerator
This class provides an implementation for generating topology and point positions on a cone of a given radius and height.

CuboidMeshGenerator
This class provides an implementation for generating topology and point positions on a rectangular cuboid given the dimensions along the X, Y and Z axes.

CylinderMeshGenerator
This class provides an implementation for generating topology and point positions on a cylinder with a given radius and height.

SphereMeshGenerator
This class provides an implementation for generating topology and point positions on a sphere with a given radius.

class pxr.GeomUtil.CapsuleMeshGenerator
This class provides an implementation for generating topology and
point positions on a capsule.
The simplest form takes a radius and height and is a cylinder capped
by two hemispheres that is centered at the origin. The generated
capsule is made up of circular cross-sections in the XY plane. Each
cross-section has numRadial segments. Successive cross-sections for
each of the hemispheres are generated at numCapAxial locations along
the Z and -Z axes respectively. The height is aligned with the Z axis
and represents the height of just the cylindrical portion.
An optional transform may be provided to GeneratePoints to orient the
capsule as necessary (e.g., whose height is along the Y axis).
An additional overload of GeneratePoints is provided to specify
different radii and heights for the bottom and top caps, as well as
the sweep angle for the capsule about the +Z axis. When the sweep is
less than 360 degrees, the generated geometry is not closed.
Usage:
const size_t numRadial = 4, numCapAxial = 4;
const size_t numPoints =
    GeomUtilCapsuleMeshGenerator::ComputeNumPoints(numRadial, numCapAxial);
const float radius = 1, height = 2;

MyPointContainer<GfVec3f> points(numPoints);

GeomUtilCapsuleMeshGenerator::GeneratePoints(
    points.begin(), numRadial, numCapAxial, radius, height);

Methods:

ComputeNumPoints
classmethod ComputeNumPoints(numRadial, numCapAxial, closedSweep) -> int

GeneratePoints
classmethod GeneratePoints(iter, numRadial, numCapAxial, radius, height, framePtr) -> None

GenerateTopology
classmethod GenerateTopology(numRadial, numCapAxial, closedSweep) -> MeshTopology

Attributes:

minNumCapAxial

minNumRadial

static ComputeNumPoints()
classmethod ComputeNumPoints(numRadial, numCapAxial, closedSweep) -> int

Parameters

numRadial (int) – 
numCapAxial (int) – 
closedSweep (bool) – 

static GeneratePoints()
classmethod GeneratePoints(iter, numRadial, numCapAxial, radius, height, framePtr) -> None

Parameters

iter (PointIterType) – 
numRadial (int) – 
numCapAxial (int) – 
radius (ScalarType) – 
height (ScalarType) – 
framePtr (Matrix4d) – 

GeneratePoints(iter, numRadial, numCapAxial, bottomRadius, topRadius, height, bottomCapHeight, topCapHeight, sweepDegrees, framePtr) -> None

Parameters

iter (PointIterType) – 
numRadial (int) – 
numCapAxial (int) – 
bottomRadius (ScalarType) – 
topRadius (ScalarType) – 
height (ScalarType) – 
bottomCapHeight (ScalarType) – 
topCapHeight (ScalarType) – 
sweepDegrees (ScalarType) – 
framePtr (Matrix4d) – 

GeneratePoints(iter, arg2) -> None

Parameters

iter (PointIterType) – 
arg2 – 

static GenerateTopology()
classmethod GenerateTopology(numRadial, numCapAxial, closedSweep) -> MeshTopology

Parameters

numRadial (int) – 
numCapAxial (int) – 
closedSweep (bool) – 

minNumCapAxial = 1

minNumRadial = 3

class pxr.GeomUtil.ConeMeshGenerator
This class provides an implementation for generating topology and
point positions on a cone of a given radius and height.
The cone is made up of circular cross-sections in the XY plane and is
centered at the origin. Each cross-section has numRadial segments. The
height is aligned with the Z axis, with the base of the object at Z =
-h/2 and apex at Z = h/2.
An optional transform may be provided to GeneratePoints to orient the
cone as necessary (e.g., whose height is along the Y axis).
An additional overload of GeneratePoints is provided to specify the
sweep angle for the cone about the +Z axis. When the sweep is less
than 360 degrees, the generated geometry is not closed.
Usage:
const size_t numRadial = 8;
const size_t numPoints =
    GeomUtilConeMeshGenerator::ComputeNumPoints(numRadial);
const float radius = 1, height = 2;

MyPointContainer<GfVec3f> points(numPoints);

GeomUtilConeMeshGenerator::GeneratePoints(
    points.begin(), numRadial, radius, height);

Methods:

ComputeNumPoints
classmethod ComputeNumPoints(numRadial, closedSweep) -> int

GeneratePoints
classmethod GeneratePoints(iter, numRadial, radius, height, framePtr) -> None

GenerateTopology
classmethod GenerateTopology(numRadial, closedSweep) -> MeshTopology

Attributes:

minNumRadial

static ComputeNumPoints()
classmethod ComputeNumPoints(numRadial, closedSweep) -> int

Parameters

numRadial (int) – 
closedSweep (bool) – 

static GeneratePoints()
classmethod GeneratePoints(iter, numRadial, radius, height, framePtr) -> None

Parameters

iter (PointIterType) – 
numRadial (int) – 
radius (ScalarType) – 
height (ScalarType) – 
framePtr (Matrix4d) – 

GeneratePoints(iter, numRadial, radius, height, sweepDegrees, framePtr) -> None

Parameters

iter (PointIterType) – 
numRadial (int) – 
radius (ScalarType) – 
height (ScalarType) – 
sweepDegrees (ScalarType) – 
framePtr (Matrix4d) – 

GeneratePoints(iter, arg2) -> None

Parameters

iter (PointIterType) – 
arg2 – 

static GenerateTopology()
classmethod GenerateTopology(numRadial, closedSweep) -> MeshTopology

Parameters

numRadial (int) – 
closedSweep (bool) – 

minNumRadial = 3

class pxr.GeomUtil.CuboidMeshGenerator
This class provides an implementation for generating topology and
point positions on a rectangular cuboid given the dimensions along the
X, Y and Z axes.
The generated cuboid is centered at the origin.
An optional transform may be provided to GeneratePoints to orient the
cuboid as necessary.
Usage:
const size_t numPoints =
    GeomUtilCuboidMeshGenerator::ComputeNumPoints();
const float l = 5, b = 4, h = 3;

MyPointContainer<GfVec3f> points(numPoints);

GeomUtilCuboidMeshGenerator::GeneratePoints(
    points.begin(), l, b, h);

Methods:

ComputeNumPoints
classmethod ComputeNumPoints() -> int

GeneratePoints
classmethod GeneratePoints(iter, xLength, yLength, zLength, framePtr) -> None

GenerateTopology
classmethod GenerateTopology() -> MeshTopology

static ComputeNumPoints()
classmethod ComputeNumPoints() -> int

static GeneratePoints()
classmethod GeneratePoints(iter, xLength, yLength, zLength, framePtr) -> None

Parameters

iter (PointIterType) – 
xLength (ScalarType) – 
yLength (ScalarType) – 
zLength (ScalarType) – 
framePtr (Matrix4d) – 

GeneratePoints(iter, arg2) -> None

Parameters

iter (PointIterType) – 
arg2 – 

static GenerateTopology()
classmethod GenerateTopology() -> MeshTopology

class pxr.GeomUtil.CylinderMeshGenerator
This class provides an implementation for generating topology and
point positions on a cylinder with a given radius and height.
The cylinder is made up of circular cross-sections in the XY plane and
is centered at the origin. Each cross-section has numRadial segments.
The height is aligned with the Z axis, with the base at Z = -h/2.
An optional transform may be provided to GeneratePoints to orient the
cone as necessary (e.g., whose height is along the Y axis).
An additional overload of GeneratePoints is provided to specify
different radii for the bottom and top discs of the cylinder and a
sweep angle for cylinder about the +Z axis. When the sweep is less
than 360 degrees, the generated geometry is not closed.
Setting one radius to 0 in order to get a cone is inefficient and
could result in artifacts. Clients should use
GeomUtilConeMeshGenerator instead. Usage:
const size_t numRadial = 8;
const size_t numPoints =
    GeomUtilCylinderMeshGenerator::ComputeNumPoints(numRadial);
const float radius = 1, height = 2;

MyPointContainer<GfVec3f> points(numPoints);

GeomUtilCylinderMeshGenerator::GeneratePoints(
    points.begin(), numRadial, radius, height);

Methods:

ComputeNumPoints
classmethod ComputeNumPoints(numRadial, closedSweep) -> int

GeneratePoints
classmethod GeneratePoints(iter, numRadial, radius, height, framePtr) -> None

GenerateTopology
classmethod GenerateTopology(numRadial, closedSweep) -> MeshTopology

Attributes:

minNumRadial

static ComputeNumPoints()
classmethod ComputeNumPoints(numRadial, closedSweep) -> int

Parameters

numRadial (int) – 
closedSweep (bool) – 

static GeneratePoints()
classmethod GeneratePoints(iter, numRadial, radius, height, framePtr) -> None

Parameters

iter (PointIterType) – 
numRadial (int) – 
radius (ScalarType) – 
height (ScalarType) – 
framePtr (Matrix4d) – 

GeneratePoints(iter, numRadial, bottomRadius, topRadius, height, sweepDegrees, framePtr) -> None

Parameters

iter (PointIterType) – 
numRadial (int) – 
bottomRadius (ScalarType) – 
topRadius (ScalarType) – 
height (ScalarType) – 
sweepDegrees (ScalarType) – 
framePtr (Matrix4d) – 

GeneratePoints(iter, arg2) -> None

Parameters

iter (PointIterType) – 
arg2 – 

static GenerateTopology()
classmethod GenerateTopology(numRadial, closedSweep) -> MeshTopology

Parameters

numRadial (int) – 
closedSweep (bool) – 

minNumRadial = 3

class pxr.GeomUtil.SphereMeshGenerator
This class provides an implementation for generating topology and
point positions on a sphere with a given radius.
The sphere is made up of circular cross-sections in the XY plane and
is centered at the origin. Each cross-section has numRadial segments.
Successive cross-sections are generated at numAxial locations along
the Z axis, with the bottom of the sphere at Z = -r and top at Z = r.
An optional transform may be provided to GeneratePoints to orient the
sphere as necessary (e.g., cross-sections in the YZ plane).
An additional overload of GeneratePoints is provided to specify a
sweep angle for the sphere about the +Z axis. When the sweep is less
than 360 degrees, the generated geometry is not closed.
Usage:
const size_t numRadial = 4, numAxial = 4;
const size_t numPoints =
    GeomUtilSphereMeshGenerator::ComputeNumPoints(numRadial, numAxial);
const float radius = 5;

MyPointContainer<GfVec3f> points(numPoints);

GeomUtilSphereMeshGenerator::GeneratePoints(
    points.begin(), numRadial, numAxial, radius);

Methods:

ComputeNumPoints
classmethod ComputeNumPoints(numRadial, numAxial, closedSweep) -> int

GeneratePoints
classmethod GeneratePoints(iter, numRadial, numAxial, radius, framePtr) -> None

GenerateTopology
classmethod GenerateTopology(numRadial, numAxial, closedSweep) -> MeshTopology

Attributes:

minNumAxial

minNumRadial

static ComputeNumPoints()
classmethod ComputeNumPoints(numRadial, numAxial, closedSweep) -> int

Parameters

numRadial (int) – 
numAxial (int) – 
closedSweep (bool) – 

static GeneratePoints()
classmethod GeneratePoints(iter, numRadial, numAxial, radius, framePtr) -> None

Parameters

iter (PointIterType) – 
numRadial (int) – 
numAxial (int) – 
radius (ScalarType) – 
framePtr (Matrix4d) – 

GeneratePoints(iter, numRadial, numAxial, radius, sweepDegrees, framePtr) -> None

Parameters

iter (PointIterType) – 
numRadial (int) – 
numAxial (int) – 
radius (ScalarType) – 
sweepDegrees (ScalarType) – 
framePtr (Matrix4d) – 

GeneratePoints(iter, arg2) -> None

Parameters

iter (PointIterType) – 
arg2 – 

static GenerateTopology()
classmethod GenerateTopology(numRadial, numAxial, closedSweep) -> MeshTopology

Parameters

numRadial (int) – 
numAxial (int) – 
closedSweep (bool) – 

minNumAxial = 2

minNumRadial = 3

Β© Copyright 2019-2023, NVIDIA.
      Last updated on Nov 14, 2023.