Datasets:

Modalities:
Text
Formats:
parquet
Size:
< 1K
ArXiv:
DOI:
Libraries:
Datasets
pandas
License:
codelion commited on
Commit
c60518e
·
verified ·
1 Parent(s): 2d20937

Upload _script_for_eval.py

Browse files
Files changed (1) hide show
  1. _script_for_eval.py +164 -81
_script_for_eval.py CHANGED
@@ -3,7 +3,13 @@ import os
3
  import random
4
  import pickle
5
  import time
 
 
 
 
6
  from openai import OpenAI
 
 
7
  from tqdm import tqdm
8
  from functools import partial
9
  import multiprocessing
@@ -24,6 +30,13 @@ def save_cache(cache):
24
  with open('cache.pkl', 'wb') as f:
25
  pickle.dump(cache, f)
26
 
 
 
 
 
 
 
 
27
  def fetch_dataset_examples(prompt, num_examples=3, use_similarity=True):
28
  dataset = load_dataset("patched-codes/synth-vuln-fixes", split="train")
29
 
@@ -52,7 +65,21 @@ def fetch_dataset_examples(prompt, num_examples=3, use_similarity=True):
52
 
53
  return few_shot_messages
54
 
55
- def get_fixed_code_fine_tuned(prompt, few_shot_messages):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  system_message = (
57
  "You are an AI assistant specialized in fixing code vulnerabilities. "
58
  "Your task is to provide corrected code that addresses the reported security issue. "
@@ -69,22 +96,31 @@ def get_fixed_code_fine_tuned(prompt, few_shot_messages):
69
  messages.extend(few_shot_messages)
70
  messages.append({"role": "user", "content": prompt})
71
 
72
- response = client.chat.completions.create(
73
- model="gpt-4o-mini",
74
- messages=messages,
75
- max_tokens=512,
76
- temperature=0.2,
77
- top_p=0.95
78
- )
79
-
80
- try:
81
- return response.choices[0].message.content
82
- except Exception as e:
83
- raise Exception(f"API call failed: {str(e)}")
 
 
 
 
 
 
 
 
 
84
 
85
- def process_file(test_case, cache):
86
  file_name = test_case["file_name"]
87
- input_file = "staticeval/" + file_name
88
 
89
  if input_file in cache:
90
  tqdm.write(f"Skipping {input_file} (cached)")
@@ -95,99 +131,146 @@ def process_file(test_case, cache):
95
  output_file = input_file + "_fixed.py"
96
  tmp_file = input_file + ".output.json"
97
 
98
- with open(input_file, "w") as file_object:
99
- file_object.write(file_text)
100
-
101
- if os.path.exists(tmp_file):
102
- os.remove(tmp_file)
103
-
104
- tqdm.write("Scanning file " + input_file + "...")
105
- scan_command_input = f"semgrep --config p/python {input_file} --output {tmp_file} --json > /dev/null 2>&1"
106
- os.system(scan_command_input)
107
-
108
- with open(tmp_file, 'r') as jf:
109
- data = json.load(jf)
110
-
111
- if len(data["errors"]) == 0:
112
- if len(data["results"]) == 0:
113
- tqdm.write(input_file + " has no vulnerabilities")
114
- result = False
115
- else:
116
- tqdm.write("Vulnerability found in " + input_file + "...")
117
- cwe = data["results"][0]["extra"]["metadata"]["cwe"][0]
118
- lines = data["results"][0]["extra"]["lines"]
119
- message = data["results"][0]["extra"]["message"]
120
-
121
- prompt = f"""Vulnerability Report:
122
- - Type: {cwe}
123
- - Location: {lines}
124
- - Description: {message}
125
 
126
- Original Code:
127
- ```
128
- {file_text}
129
- ```
130
 
131
- Task: Fix the vulnerability in the code above. Provide only the complete fixed code without explanations or comments. Make minimal changes necessary to address the security issue while preserving the original functionality."""
132
-
133
- few_shot_messages = fetch_dataset_examples(prompt, 3, True)
134
- response = get_fixed_code_fine_tuned(prompt, [])
135
 
136
- if "```python" in response:
137
- idx = response.find("```python")
138
- shift = len("```python")
139
- fixed_code = response[idx + shift :]
140
- else:
141
- fixed_code = response
142
-
143
- stop_words = ["```", "assistant"]
144
- for w in stop_words:
145
- if w in fixed_code:
146
- fixed_code = fixed_code[:fixed_code.find(w)]
147
-
148
- if len(fixed_code) < 400 or all(line.strip().startswith("#") for line in fixed_code.split('\n') if line.strip()):
 
149
  result = False
150
  else:
151
- with open(output_file, 'w') as wf:
152
- wf.write(fixed_code)
 
 
153
 
154
- scan_command_output = f"semgrep --config p/python {output_file} --output {tmp_file} --json > /dev/null 2>&1"
155
- os.system(scan_command_output)
 
 
 
 
 
 
 
 
 
156
 
157
- with open(tmp_file, 'r') as jf:
158
- data = json.load(jf)
159
 
160
- if len(data["errors"]) == 0 and len(data["results"]) == 0:
161
- tqdm.write("Passing response for " + input_file + " at 1 ...")
162
- result = True
 
163
  else:
 
 
 
 
 
 
 
 
164
  result = False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165
 
166
- if os.path.exists(tmp_file):
167
- os.remove(tmp_file)
168
 
169
- cache[input_file] = result
170
- save_cache(cache)
171
- return result
 
 
 
172
 
173
- def process_test_case(test_case, cache):
174
- return process_file(test_case, cache)
175
 
176
  def main():
 
 
 
 
 
 
 
177
  dataset = load_dataset("patched-codes/static-analysis-eval", split="train")
178
  data = [{"file_name": item["file_name"], "source": item["source"], "cwe": item["cwe"]} for item in dataset]
179
 
180
  cache = load_cache()
181
  total_tests = len(data)
182
 
183
- process_func = partial(process_test_case, cache=cache)
 
 
 
 
 
 
 
184
 
185
  with multiprocessing.Pool() as pool:
186
  results = list(tqdm(pool.imap_unordered(process_func, data), total=total_tests))
187
 
188
  passing_tests = sum(results)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189
 
190
- print(f"Results for StaticAnalysisEval: {passing_tests/total_tests*100}%")
 
191
 
192
  if __name__ == '__main__':
193
  main()
 
3
  import random
4
  import pickle
5
  import time
6
+ import datetime
7
+ import subprocess
8
+ import argparse
9
+ import re
10
  from openai import OpenAI
11
+ from openai.types.chat import ChatCompletion
12
+ from openai.types import APIError, APIConnectionError, APIResponseValidationError, APIStatusError
13
  from tqdm import tqdm
14
  from functools import partial
15
  import multiprocessing
 
30
  with open('cache.pkl', 'wb') as f:
31
  pickle.dump(cache, f)
32
 
33
+ def has_all_comments(text):
34
+ lines=text.split('\n')
35
+ for line in lines:
36
+ if line != "" and not line.startswith("#"):
37
+ return False
38
+ return True
39
+
40
  def fetch_dataset_examples(prompt, num_examples=3, use_similarity=True):
41
  dataset = load_dataset("patched-codes/synth-vuln-fixes", split="train")
42
 
 
65
 
66
  return few_shot_messages
67
 
68
+ def sanitize_filename(name):
69
+ # Replace ':' with '_', and any other non-alphanumeric characters (except '-' and '_') with '*'
70
+ sanitized = re.sub(r':', '_', name)
71
+ sanitized = re.sub(r'[^a-zA-Z0-9\-_]', '*', sanitized)
72
+ return sanitized
73
+
74
+ def get_semgrep_version():
75
+ try:
76
+ result = subprocess.run(["semgrep", "--version"], capture_output=True, text=True)
77
+ version = result.stdout.strip().split()[-1]
78
+ return version
79
+ except Exception:
80
+ return "unknown"
81
+
82
+ def get_fixed_code_fine_tuned(prompt, few_shot_messages, model_name):
83
  system_message = (
84
  "You are an AI assistant specialized in fixing code vulnerabilities. "
85
  "Your task is to provide corrected code that addresses the reported security issue. "
 
96
  messages.extend(few_shot_messages)
97
  messages.append({"role": "user", "content": prompt})
98
 
99
+ max_retries = 3
100
+ for attempt in range(max_retries):
101
+ try:
102
+ response = client.chat.completions.create(
103
+ model=model_name,
104
+ messages=messages,
105
+ max_tokens=512,
106
+ temperature=0.2,
107
+ top_p=0.95
108
+ )
109
+ if isinstance(response, ChatCompletion):
110
+ return response.choices[0].message.content
111
+ else:
112
+ raise ValueError("Unexpected response type from OpenAI API")
113
+ except (APIError, APIConnectionError, APIResponseValidationError) as e:
114
+ if attempt < max_retries - 1:
115
+ time.sleep(2 ** attempt) # Exponential backoff
116
+ else:
117
+ raise Exception(f"API call failed after {max_retries} attempts: {str(e)}")
118
+ except APIStatusError as e:
119
+ raise Exception(f"API call failed with status {e.status_code}: {str(e)}")
120
 
121
+ def process_file(test_case, cache, fixed_files, model_name):
122
  file_name = test_case["file_name"]
123
+ input_file = os.path.join("staticeval", file_name)
124
 
125
  if input_file in cache:
126
  tqdm.write(f"Skipping {input_file} (cached)")
 
131
  output_file = input_file + "_fixed.py"
132
  tmp_file = input_file + ".output.json"
133
 
134
+ try:
135
+ os.makedirs(os.path.dirname(input_file), exist_ok=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136
 
137
+ with open(input_file, "w") as file_object:
138
+ file_object.write(file_text)
 
 
139
 
140
+ if os.path.exists(tmp_file):
141
+ os.remove(tmp_file)
 
 
142
 
143
+ tqdm.write("Scanning file " + input_file + "...")
144
+ scan_command_input = f"semgrep --config p/python {input_file} --output {tmp_file} --json > /dev/null 2>&1"
145
+ os.system(scan_command_input)
146
+
147
+ if not os.path.exists(tmp_file):
148
+ tqdm.write(f"Semgrep failed to create output file for {input_file}")
149
+ return False
150
+
151
+ with open(tmp_file, 'r') as jf:
152
+ data = json.load(jf)
153
+
154
+ if len(data.get("errors", [])) == 0:
155
+ if len(data.get("results", [])) == 0:
156
+ tqdm.write(input_file + " has no vulnerabilities")
157
  result = False
158
  else:
159
+ tqdm.write("Vulnerability found in " + input_file + "...")
160
+ cwe = data["results"][0]["extra"]["metadata"]["cwe"][0]
161
+ lines = data["results"][0]["extra"]["lines"]
162
+ message = data["results"][0]["extra"]["message"]
163
 
164
+ prompt = f"""Vulnerability Report:
165
+ - Type: {cwe}
166
+ - Location: {lines}
167
+ - Description: {message}
168
+
169
+ Original Code:
170
+ ```
171
+ {file_text}
172
+ ```
173
+
174
+ Task: Fix the vulnerability in the code above. Provide only the complete fixed code without explanations or comments. Make minimal changes necessary to address the security issue while preserving the original functionality."""
175
 
176
+ few_shot_messages = fetch_dataset_examples(prompt, 8, True)
177
+ response = get_fixed_code_fine_tuned(prompt, few_shot_messages, model_name)
178
 
179
+ if "```python" in response:
180
+ idx = response.find("```python")
181
+ shift = len("```python")
182
+ fixed_code = response[idx + shift :]
183
  else:
184
+ fixed_code = response
185
+
186
+ stop_words = ["```", "assistant"]
187
+ for w in stop_words:
188
+ if w in fixed_code:
189
+ fixed_code = fixed_code[:fixed_code.find(w)]
190
+
191
+ if len(fixed_code) < 400 or all(line.strip().startswith("#") for line in fixed_code.split('\n') if line.strip()):
192
  result = False
193
+ else:
194
+ with open(output_file, 'w') as wf:
195
+ wf.write(fixed_code)
196
+
197
+ scan_command_output = f"semgrep --config p/python {output_file} --output {tmp_file} --json > /dev/null 2>&1"
198
+ os.system(scan_command_output)
199
+
200
+ if not os.path.exists(tmp_file):
201
+ tqdm.write(f"Semgrep failed to create output file for {output_file}")
202
+ result = False
203
+ else:
204
+ with open(tmp_file, 'r') as jf:
205
+ data = json.load(jf)
206
+
207
+ if len(data.get("errors", [])) == 0 and len(data.get("results", [])) == 0:
208
+ tqdm.write("Passing response for " + input_file + " at 1 ...")
209
+ result = True
210
+ fixed_files.append(file_name)
211
+ else:
212
+ result = False
213
+ else:
214
+ tqdm.write(f"Semgrep reported errors for {input_file}")
215
+ result = False
216
 
217
+ if os.path.exists(tmp_file):
218
+ os.remove(tmp_file)
219
 
220
+ cache[input_file] = result
221
+ save_cache(cache)
222
+ return result
223
+ except Exception as e:
224
+ tqdm.write(f"Error processing {input_file}: {str(e)}")
225
+ return False
226
 
227
+ def process_test_case(test_case, cache, fixed_files, model_name):
228
+ return process_file(test_case, cache, fixed_files, model_name)
229
 
230
  def main():
231
+ parser = argparse.ArgumentParser(description="Run Static Analysis Evaluation")
232
+ parser.add_argument("--model", type=str, default="gpt-4-0125-preview", help="OpenAI model to use")
233
+ args = parser.parse_args()
234
+
235
+ model_name = args.model
236
+ sanitized_model_name = sanitize_filename(model_name)
237
+
238
  dataset = load_dataset("patched-codes/static-analysis-eval", split="train")
239
  data = [{"file_name": item["file_name"], "source": item["source"], "cwe": item["cwe"]} for item in dataset]
240
 
241
  cache = load_cache()
242
  total_tests = len(data)
243
 
244
+ semgrep_version = get_semgrep_version()
245
+ timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
246
+ log_file_name = f"{sanitized_model_name}_semgrep_{semgrep_version}_{timestamp}.log"
247
+
248
+ manager = multiprocessing.Manager()
249
+ fixed_files = manager.list()
250
+
251
+ process_func = partial(process_test_case, cache=cache, fixed_files=fixed_files, model_name=model_name)
252
 
253
  with multiprocessing.Pool() as pool:
254
  results = list(tqdm(pool.imap_unordered(process_func, data), total=total_tests))
255
 
256
  passing_tests = sum(results)
257
+ score = passing_tests / total_tests * 100
258
+
259
+ with open(log_file_name, 'w') as log_file:
260
+ log_file.write(f"Evaluation Run Log\n")
261
+ log_file.write(f"==================\n\n")
262
+ log_file.write(f"Date and Time: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
263
+ log_file.write(f"Model: {model_name}\n")
264
+ log_file.write(f"Semgrep Version: {semgrep_version}\n\n")
265
+ log_file.write(f"Total Tests: {total_tests}\n")
266
+ log_file.write(f"Passing Tests: {passing_tests}\n")
267
+ log_file.write(f"Score: {score:.2f}%\n\n")
268
+ log_file.write("Fixed Files:\n")
269
+ for file in fixed_files:
270
+ log_file.write(f"- {file}\n")
271
 
272
+ print(f"Results for StaticAnalysisEval: {score:.2f}%")
273
+ print(f"Log file created: {log_file_name}")
274
 
275
  if __name__ == '__main__':
276
  main()