Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -91,7 +91,7 @@ dataset = load_dataset("oxai4science/sdoml-lite", streaming=True)
|
|
91 |
channels = ['hmi_m', 'aia_0131', 'aia_0171', 'aia_0193', 'aia_0211', 'aia_1600']
|
92 |
|
93 |
def process(data):
|
94 |
-
timestamp =
|
95 |
d = []
|
96 |
for c in map(lambda x: x+'.npy', channels):
|
97 |
d.append(np.array(data[c]) if c in data else np.zeros((512, 512)))
|
@@ -119,6 +119,44 @@ plot(timestamp, data)
|
|
119 |
<img src="https://huggingface.co/datasets/oxai4science/sdoml-lite/resolve/main/assets/usage_example_1.png">
|
120 |
</div>
|
121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
## Data Generation and Processing
|
123 |
|
124 |
The SDOML-lite dataset is generated using the pipeline detailed in the [sdoml-lite GitHub repository](https://github.com/oxai4science/sdoml-lite). The download and processing scripts were run in July 2024 using distributed computing resources provided by Google Cloud for FDL-X Heliolab 2024, which is a public-private partnership AI research initiative with NASA, Google Cloud and Nvidia and other leading research organizations.
|
|
|
91 |
channels = ['hmi_m', 'aia_0131', 'aia_0171', 'aia_0193', 'aia_0211', 'aia_1600']
|
92 |
|
93 |
def process(data):
|
94 |
+
timestamp = data['__key__']
|
95 |
d = []
|
96 |
for c in map(lambda x: x+'.npy', channels):
|
97 |
d.append(np.array(data[c]) if c in data else np.zeros((512, 512)))
|
|
|
119 |
<img src="https://huggingface.co/datasets/oxai4science/sdoml-lite/resolve/main/assets/usage_example_1.png">
|
120 |
</div>
|
121 |
|
122 |
+
Here is another example showing how to put together a minimal PyTorch dataset and dataloader to train with SDOML-lite.
|
123 |
+
|
124 |
+
```python
|
125 |
+
import torch
|
126 |
+
from torch.utils.data import IterableDataset, DataLoader
|
127 |
+
|
128 |
+
# PyTorch dataset
|
129 |
+
class SDOMLlite(IterableDataset):
|
130 |
+
def __init__(self, dataset_iter):
|
131 |
+
self.dataset_iter = dataset_iter
|
132 |
+
|
133 |
+
def __iter__(self):
|
134 |
+
for sample in self.dataset_iter:
|
135 |
+
t, d = process(sample)
|
136 |
+
yield t, torch.tensor(d, dtype=torch.float32)
|
137 |
+
|
138 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
139 |
+
batch_size = 8
|
140 |
+
|
141 |
+
# Create DataLoader
|
142 |
+
dataset_iter = iter(dataset['train'])
|
143 |
+
torch_dataset = SDOMLlite(dataset_iter)
|
144 |
+
loader = DataLoader(torch_dataset, batch_size=batch_size)
|
145 |
+
|
146 |
+
# Training loop
|
147 |
+
num_epochs = 1
|
148 |
+
for epoch in range(num_epochs):
|
149 |
+
for batch in loader:
|
150 |
+
times = batch[0] # Timestamps
|
151 |
+
images = batch[1].to(device) # Images with shape (batch_size, 6, 512, 512)
|
152 |
+
print(f"Batch with shape: {images.shape}")
|
153 |
+
# ...
|
154 |
+
# training code
|
155 |
+
# ...
|
156 |
+
break
|
157 |
+
break
|
158 |
+
```
|
159 |
+
|
160 |
## Data Generation and Processing
|
161 |
|
162 |
The SDOML-lite dataset is generated using the pipeline detailed in the [sdoml-lite GitHub repository](https://github.com/oxai4science/sdoml-lite). The download and processing scripts were run in July 2024 using distributed computing resources provided by Google Cloud for FDL-X Heliolab 2024, which is a public-private partnership AI research initiative with NASA, Google Cloud and Nvidia and other leading research organizations.
|