import csv import json import os import datasets _CITATION = """ @inproceedings{gebhard2022inferring, title={Inferring molecular complexity from mass spectrometry data using machine learning}, author={Gebhard, Timothy D and Bell, Aaron C and Gong, Jian and Hastings, Jaden J. A. and Fricke, G. Matthew and Cabrol, Nathalie and Sandford, Scott and Phillips, Michael and Warren-Rhodes, Kimberley and Baydin, Atilim Gunes}, booktitle={NeurIPS Workshop on Machine Learning and the Physical Sciences}, year={2022} } """ _DESCRIPTION = """ SaganMC is a molecular dataset designed to support machine learning research in molecular complexity inference. It includes over 400,000 molecules with computed structural, physico-chemical, and complexity descriptors, and a subset of ~16k molecules that additionally include experimental mass spectra. """ _HOMEPAGE = "https://huggingface.co/datasets/oxai4science/sagan-mc" _LICENSE = "CC-BY-4.0" _URLS = { "sagan-mc-400k": "https://huggingface.co/datasets/oxai4science/sagan-mc/resolve/main/sagan-mc-400k.csv", "sagan-mc-spectra-16k": "https://huggingface.co/datasets/oxai4science/sagan-mc/resolve/main/sagan-mc-spectra-16k.csv", } class SaganMC(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="sagan-mc-400k", version=VERSION, description="Full dataset with ~400k molecules"), datasets.BuilderConfig(name="sagan-mc-spectra-16k", version=VERSION, description="Subset with mass spectra (~16k molecules)"), ] DEFAULT_CONFIG_NAME = "sagan-mc-400k" def _info(self): features = datasets.Features({ "inchi": datasets.Value("string"), "inchikey": datasets.Value("string"), "selfies": datasets.Value("string"), "smiles": datasets.Value("string"), "smiles_scaffold": datasets.Value("string"), "formula": datasets.Value("string"), "fingerprint_morgan": datasets.Value("string"), "num_atoms": datasets.Value("int32"), "num_atoms_all": datasets.Value("int32"), "num_bonds": datasets.Value("int32"), "num_bonds_all": datasets.Value("int32"), "num_rings": datasets.Value("int32"), "num_aromatic_rings": datasets.Value("int32"), "physchem_mol_weight": datasets.Value("float"), "physchem_logp": datasets.Value("float"), "physchem_tpsa": datasets.Value("float"), "physchem_qed": datasets.Value("float"), "physchem_h_acceptors": datasets.Value("int32"), "physchem_h_donors": datasets.Value("int32"), "physchem_rotatable_bonds": datasets.Value("int32"), "physchem_fraction_csp3": datasets.Value("float"), "mass_spectrum_nist": datasets.Value("string"), "complex_ma_score": datasets.Value("int32"), "complex_ma_runtime": datasets.Value("float"), "complex_bertz_score": datasets.Value("float"), "complex_bertz_runtime": datasets.Value("float"), "complex_boettcher_score": datasets.Value("float"), "complex_boettcher_runtime": datasets.Value("float"), "synth_sa_score": datasets.Value("float"), "meta_cas_number": datasets.Value("string"), "meta_names": datasets.Value("string"), "meta_iupac_name": datasets.Value("string"), "meta_comment": datasets.Value("string"), "meta_origin": datasets.Value("string"), "meta_reference": datasets.Value("string"), "split": datasets.ClassLabel(names=["train", "val", "test"]) }) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): url = _URLS[self.config.name] data_path = dl_manager.download_and_extract(url) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_path, "split_name": "train"}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_path, "split_name": "val"}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": data_path, "split_name": "test"}, ), ] def _generate_examples(self, filepath, split_name): numeric_fields = [ "num_atoms", "num_atoms_all", "num_bonds", "num_bonds_all", "num_rings", "num_aromatic_rings", "physchem_mol_weight", "physchem_logp", "physchem_tpsa", "physchem_qed", "physchem_h_acceptors", "physchem_h_donors", "physchem_rotatable_bonds", "physchem_fraction_csp3", "complex_ma_score", "complex_ma_runtime", "complex_bertz_score", "complex_bertz_runtime", "complex_boettcher_score", "complex_boettcher_runtime", "synth_sa_score" ] with open(filepath, encoding="utf-8") as f: reader = csv.DictReader(f) for idx, row in enumerate(reader): if row["split"] == split_name: for field in numeric_fields: if field in row and row[field] == "": row[field] = None yield idx, row