gbaydin commited on
Commit
b026c7c
·
unverified ·
1 Parent(s): 29d0ecd

dataset script

Browse files
Files changed (1) hide show
  1. sagan-mc.py +107 -0
sagan-mc.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import csv
2
+ import json
3
+ import os
4
+ import datasets
5
+
6
+ _CITATION = """
7
+ @inproceedings{gebhard2022inferring,
8
+ title={Inferring molecular complexity from mass spectrometry data using machine learning},
9
+ author={Gebhard, Timothy D and Bell, Aaron C and Gong, Jian and Hastings, Jaden J. A. and Fricke, G. Matthew and Cabrol, Nathalie and Sandford, Scott and Phillips, Michael and Warren-Rhodes, Kimberley and Baydin, Atilim Gunes},
10
+ booktitle={NeurIPS Workshop on Machine Learning and the Physical Sciences},
11
+ year={2022}
12
+ }
13
+ """
14
+
15
+ _DESCRIPTION = """
16
+ SaganMC is a molecular dataset designed to support machine learning research in molecular complexity inference. It includes over 400,000 molecules with computed structural, physico-chemical, and complexity descriptors, and a subset of ~16k molecules that additionally include experimental mass spectra.
17
+ """
18
+
19
+ _HOMEPAGE = "https://huggingface.co/datasets/oxai4science/sagan-mc"
20
+ _LICENSE = "CC-BY-4.0"
21
+
22
+ _URLS = {
23
+ "sagan-mc-400k": "https://huggingface.co/datasets/oxai4science/sagan-mc/resolve/main/sagan-mc-400k.csv",
24
+ "sagan-mc-spectra-16k": "https://huggingface.co/datasets/oxai4science/sagan-mc/resolve/main/sagan-mc-spectra-16k.csv",
25
+ }
26
+
27
+ class SaganMC(datasets.GeneratorBasedBuilder):
28
+ VERSION = datasets.Version("1.0.0")
29
+
30
+ BUILDER_CONFIGS = [
31
+ datasets.BuilderConfig(name="sagan-mc-400k", version=VERSION, description="Full dataset with ~400k molecules"),
32
+ datasets.BuilderConfig(name="sagan-mc-spectra-16k", version=VERSION, description="Subset with mass spectra (~16k molecules)"),
33
+ ]
34
+
35
+ DEFAULT_CONFIG_NAME = "sagan-mc-400k"
36
+
37
+ def _info(self):
38
+ features = datasets.Features({
39
+ "inchi": datasets.Value("string"),
40
+ "inchikey": datasets.Value("string"),
41
+ "selfies": datasets.Value("string"),
42
+ "smiles": datasets.Value("string"),
43
+ "smiles_scaffold": datasets.Value("string"),
44
+ "formula": datasets.Value("string"),
45
+ "fingerprint_morgan": datasets.Value("string"),
46
+ "num_atoms": datasets.Value("int32"),
47
+ "num_atoms_all": datasets.Value("int32"),
48
+ "num_bonds": datasets.Value("int32"),
49
+ "num_bonds_all": datasets.Value("int32"),
50
+ "num_rings": datasets.Value("int32"),
51
+ "num_aromatic_rings": datasets.Value("int32"),
52
+ "physchem_mol_weight": datasets.Value("float"),
53
+ "physchem_logp": datasets.Value("float"),
54
+ "physchem_tpsa": datasets.Value("float"),
55
+ "physchem_qed": datasets.Value("float"),
56
+ "physchem_h_acceptors": datasets.Value("int32"),
57
+ "physchem_h_donors": datasets.Value("int32"),
58
+ "physchem_rotatable_bonds": datasets.Value("int32"),
59
+ "physchem_fraction_csp3": datasets.Value("float"),
60
+ "mass_spectrum_nist": datasets.Value("string"),
61
+ "complex_ma_score": datasets.Value("int32"),
62
+ "complex_ma_runtime": datasets.Value("float"),
63
+ "complex_bertz_score": datasets.Value("float"),
64
+ "complex_bertz_runtime": datasets.Value("float"),
65
+ "complex_boettcher_score": datasets.Value("float"),
66
+ "complex_boettcher_runtime": datasets.Value("float"),
67
+ "synth_sa_score": datasets.Value("float"),
68
+ "meta_cas_number": datasets.Value("string"),
69
+ "meta_names": datasets.Value("string"),
70
+ "meta_iupac_name": datasets.Value("string"),
71
+ "meta_comment": datasets.Value("string"),
72
+ "meta_origin": datasets.Value("string"),
73
+ "meta_reference": datasets.Value("string"),
74
+ "split": datasets.ClassLabel(names=["train", "val", "test"])
75
+ })
76
+ return datasets.DatasetInfo(
77
+ description=_DESCRIPTION,
78
+ features=features,
79
+ homepage=_HOMEPAGE,
80
+ license=_LICENSE,
81
+ citation=_CITATION,
82
+ )
83
+
84
+ def _split_generators(self, dl_manager):
85
+ url = _URLS[self.config.name]
86
+ data_path = dl_manager.download_and_extract(url)
87
+ return [
88
+ datasets.SplitGenerator(
89
+ name=datasets.Split.TRAIN,
90
+ gen_kwargs={"filepath": data_path, "split_name": "train"},
91
+ ),
92
+ datasets.SplitGenerator(
93
+ name=datasets.Split.VALIDATION,
94
+ gen_kwargs={"filepath": data_path, "split_name": "val"},
95
+ ),
96
+ datasets.SplitGenerator(
97
+ name=datasets.Split.TEST,
98
+ gen_kwargs={"filepath": data_path, "split_name": "test"},
99
+ ),
100
+ ]
101
+
102
+ def _generate_examples(self, filepath, split_name):
103
+ with open(filepath, encoding="utf-8") as f:
104
+ reader = csv.DictReader(f)
105
+ for idx, row in enumerate(reader):
106
+ if row["split"] == split_name:
107
+ yield idx, row