gbaydin commited on
Commit
6bab11e
·
verified ·
1 Parent(s): 9a363f7

Delete loading script

Browse files
Files changed (1) hide show
  1. sagan-mc.py +0 -117
sagan-mc.py DELETED
@@ -1,117 +0,0 @@
1
- import csv
2
- import json
3
- import os
4
- import datasets
5
-
6
- _CITATION = """
7
- @inproceedings{gebhard2022inferring,
8
- title={Inferring molecular complexity from mass spectrometry data using machine learning},
9
- author={Gebhard, Timothy D and Bell, Aaron C and Gong, Jian and Hastings, Jaden J. A. and Fricke, G. Matthew and Cabrol, Nathalie and Sandford, Scott and Phillips, Michael and Warren-Rhodes, Kimberley and Baydin, Atilim Gunes},
10
- booktitle={NeurIPS Workshop on Machine Learning and the Physical Sciences},
11
- year={2022}
12
- }
13
- """
14
-
15
- _DESCRIPTION = """
16
- SaganMC is a molecular dataset designed to support machine learning research in molecular complexity inference. It includes over 400,000 molecules with computed structural, physico-chemical, and complexity descriptors, and a subset of ~16k molecules that additionally include experimental mass spectra.
17
- """
18
-
19
- _HOMEPAGE = "https://huggingface.co/datasets/oxai4science/sagan-mc"
20
- _LICENSE = "CC-BY-4.0"
21
-
22
- _URLS = {
23
- "sagan-mc-400k": "https://huggingface.co/datasets/oxai4science/sagan-mc/resolve/main/sagan-mc-400k.csv",
24
- "sagan-mc-spectra-16k": "https://huggingface.co/datasets/oxai4science/sagan-mc/resolve/main/sagan-mc-spectra-16k.csv",
25
- }
26
-
27
- class SaganMC(datasets.GeneratorBasedBuilder):
28
- VERSION = datasets.Version("1.0.0")
29
-
30
- BUILDER_CONFIGS = [
31
- datasets.BuilderConfig(name="sagan-mc-400k", version=VERSION, description="Full dataset with ~400k molecules"),
32
- datasets.BuilderConfig(name="sagan-mc-spectra-16k", version=VERSION, description="Subset with mass spectra (~16k molecules)"),
33
- ]
34
-
35
- DEFAULT_CONFIG_NAME = "sagan-mc-400k"
36
-
37
- def _info(self):
38
- features = datasets.Features({
39
- "inchi": datasets.Value("string"),
40
- "inchikey": datasets.Value("string"),
41
- "selfies": datasets.Value("string"),
42
- "smiles": datasets.Value("string"),
43
- "smiles_scaffold": datasets.Value("string"),
44
- "formula": datasets.Value("string"),
45
- "fingerprint_morgan": datasets.Value("string"),
46
- "num_atoms": datasets.Value("int32"),
47
- "num_atoms_all": datasets.Value("int32"),
48
- "num_bonds": datasets.Value("int32"),
49
- "num_bonds_all": datasets.Value("int32"),
50
- "num_rings": datasets.Value("int32"),
51
- "num_aromatic_rings": datasets.Value("int32"),
52
- "physchem_mol_weight": datasets.Value("float"),
53
- "physchem_logp": datasets.Value("float"),
54
- "physchem_tpsa": datasets.Value("float"),
55
- "physchem_qed": datasets.Value("float"),
56
- "physchem_h_acceptors": datasets.Value("int32"),
57
- "physchem_h_donors": datasets.Value("int32"),
58
- "physchem_rotatable_bonds": datasets.Value("int32"),
59
- "physchem_fraction_csp3": datasets.Value("float"),
60
- "mass_spectrum_nist": datasets.Value("string"),
61
- "complex_ma_score": datasets.Value("int32"),
62
- "complex_ma_runtime": datasets.Value("float"),
63
- "complex_bertz_score": datasets.Value("float"),
64
- "complex_bertz_runtime": datasets.Value("float"),
65
- "complex_boettcher_score": datasets.Value("float"),
66
- "complex_boettcher_runtime": datasets.Value("float"),
67
- "synth_sa_score": datasets.Value("float"),
68
- "meta_cas_number": datasets.Value("string"),
69
- "meta_names": datasets.Value("string"),
70
- "meta_iupac_name": datasets.Value("string"),
71
- "meta_comment": datasets.Value("string"),
72
- "meta_origin": datasets.Value("string"),
73
- "meta_reference": datasets.Value("string"),
74
- "split": datasets.ClassLabel(names=["train", "val", "test"])
75
- })
76
- return datasets.DatasetInfo(
77
- description=_DESCRIPTION,
78
- features=features,
79
- homepage=_HOMEPAGE,
80
- license=_LICENSE,
81
- citation=_CITATION,
82
- )
83
-
84
- def _split_generators(self, dl_manager):
85
- url = _URLS[self.config.name]
86
- data_path = dl_manager.download_and_extract(url)
87
- return [
88
- datasets.SplitGenerator(
89
- name=datasets.Split.TRAIN,
90
- gen_kwargs={"filepath": data_path, "split_name": "train"},
91
- ),
92
- datasets.SplitGenerator(
93
- name=datasets.Split.VALIDATION,
94
- gen_kwargs={"filepath": data_path, "split_name": "val"},
95
- ),
96
- datasets.SplitGenerator(
97
- name=datasets.Split.TEST,
98
- gen_kwargs={"filepath": data_path, "split_name": "test"},
99
- ),
100
- ]
101
-
102
- def _generate_examples(self, filepath, split_name):
103
- numeric_fields = [
104
- "num_atoms", "num_atoms_all", "num_bonds", "num_bonds_all", "num_rings", "num_aromatic_rings",
105
- "physchem_mol_weight", "physchem_logp", "physchem_tpsa", "physchem_qed",
106
- "physchem_h_acceptors", "physchem_h_donors", "physchem_rotatable_bonds", "physchem_fraction_csp3",
107
- "complex_ma_score", "complex_ma_runtime", "complex_bertz_score", "complex_bertz_runtime",
108
- "complex_boettcher_score", "complex_boettcher_runtime", "synth_sa_score"
109
- ]
110
- with open(filepath, encoding="utf-8") as f:
111
- reader = csv.DictReader(f)
112
- for idx, row in enumerate(reader):
113
- if row["split"] == split_name:
114
- for field in numeric_fields:
115
- if field in row and row[field] == "":
116
- row[field] = None
117
- yield idx, row