config.name,config.backend.name,config.backend.version,config.backend._target_,config.backend.task,config.backend.library,config.backend.model,config.backend.processor,config.backend.device,config.backend.device_ids,config.backend.seed,config.backend.inter_op_num_threads,config.backend.intra_op_num_threads,config.backend.model_kwargs.trust_remote_code,config.backend.processor_kwargs.trust_remote_code,config.backend.hub_kwargs.trust_remote_code,config.backend.no_weights,config.backend.device_map,config.backend.torch_dtype,config.backend.eval_mode,config.backend.to_bettertransformer,config.backend.low_cpu_mem_usage,config.backend.attn_implementation,config.backend.cache_implementation,config.backend.autocast_enabled,config.backend.autocast_dtype,config.backend.torch_compile,config.backend.torch_compile_target,config.backend.quantization_scheme,config.backend.quantization_config.bits,config.backend.quantization_config.version,config.backend.deepspeed_inference,config.backend.peft_type,config.scenario.name,config.scenario._target_,config.scenario.iterations,config.scenario.duration,config.scenario.warmup_runs,config.scenario.input_shapes.batch_size,config.scenario.input_shapes.num_choices,config.scenario.input_shapes.sequence_length,config.scenario.new_tokens,config.scenario.latency,config.scenario.memory,config.scenario.energy,config.scenario.generate_kwargs.max_new_tokens,config.scenario.generate_kwargs.min_new_tokens,config.launcher.name,config.launcher._target_,config.launcher.device_isolation,config.launcher.device_isolation_action,config.launcher.start_method,config.environment.cpu,config.environment.cpu_count,config.environment.cpu_ram_mb,config.environment.system,config.environment.machine,config.environment.platform,config.environment.processor,config.environment.python_version,config.environment.gpu,config.environment.gpu_count,config.environment.gpu_vram_mb,config.environment.optimum_benchmark_version,config.environment.optimum_benchmark_commit,config.environment.transformers_version,config.environment.transformers_commit,config.environment.accelerate_version,config.environment.accelerate_commit,config.environment.diffusers_version,config.environment.diffusers_commit,config.environment.optimum_version,config.environment.optimum_commit,config.environment.timm_version,config.environment.timm_commit,config.environment.peft_version,config.environment.peft_commit,report.traceback,config.backend.hub_kwargs.revision,config.backend.hub_kwargs.force_download,config.backend.hub_kwargs.local_files_only,report.prefill.memory.unit,report.prefill.memory.max_ram,report.prefill.memory.max_global_vram,report.prefill.memory.max_process_vram,report.prefill.memory.max_reserved,report.prefill.memory.max_allocated,report.prefill.latency.unit,report.prefill.latency.count,report.prefill.latency.total,report.prefill.latency.mean,report.prefill.latency.stdev,report.prefill.latency.p50,report.prefill.latency.p90,report.prefill.latency.p95,report.prefill.latency.p99,report.prefill.latency.values,report.prefill.throughput.unit,report.prefill.throughput.value,report.prefill.energy.unit,report.prefill.energy.cpu,report.prefill.energy.ram,report.prefill.energy.gpu,report.prefill.energy.total,report.prefill.efficiency.unit,report.prefill.efficiency.value,report.decode.memory.unit,report.decode.memory.max_ram,report.decode.memory.max_global_vram,report.decode.memory.max_process_vram,report.decode.memory.max_reserved,report.decode.memory.max_allocated,report.decode.latency.unit,report.decode.latency.count,report.decode.latency.total,report.decode.latency.mean,report.decode.latency.stdev,report.decode.latency.p50,report.decode.latency.p90,report.decode.latency.p95,report.decode.latency.p99,report.decode.latency.values,report.decode.throughput.unit,report.decode.throughput.value,report.decode.energy.unit,report.decode.energy.cpu,report.decode.energy.ram,report.decode.energy.gpu,report.decode.energy.total,report.decode.efficiency.unit,report.decode.efficiency.value,report.per_token.memory,report.per_token.latency.unit,report.per_token.latency.count,report.per_token.latency.total,report.per_token.latency.mean,report.per_token.latency.stdev,report.per_token.latency.p50,report.per_token.latency.p90,report.per_token.latency.p95,report.per_token.latency.p99,report.per_token.latency.values,report.per_token.throughput.unit,report.per_token.throughput.value,report.per_token.energy,report.per_token.efficiency,config.backend.quantization_config.exllama_config.version,config.backend.quantization_config.exllama_config.max_input_len,config.backend.quantization_config.exllama_config.max_batch_size 4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 64, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 117, in run _ = backend.generate(self.inputs, self.config.generate_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 369, in generate return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1576, in generate result = self._greedy_search( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2494, in _greedy_search outputs = self( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1211, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1018, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 741, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) TypeError: DeciCoderAttention.forward() got an unexpected keyword argument 'cache_position' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 558, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3544, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1463, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1619, in _check_and_enable_sdpa raise ValueError( ValueError: DeciLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3544, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1463, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1619, in _check_and_enable_sdpa raise ValueError( ValueError: GPTJForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3544, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1463, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1619, in _check_and_enable_sdpa raise ValueError( ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3544, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1463, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1619, in _check_and_enable_sdpa raise ValueError( ValueError: GPTNeoXForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,,cuda,0,42,,,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,main,False,False,MB,1721.061376,22129.672192,0.0,21483.225088,20799.036928,s,10,27.921223388671876,2.7921223388671876,0.002873024218980136,2.791891357421875,2.7956688476562497,2.7963155029296876,2.7968328271484375,"[2.793120361328125, 2.796962158203125, 2.790662353515625, 2.790180419921875, 2.7901220703125, 2.787002685546875, 2.79004345703125, 2.793321533203125, 2.795525146484375, 2.794283203125]",tokens/s,91.68652692484228,kWh,3.2928969429598913e-05,1.8046407099463975e-05,0.00015823184880759956,0.00020920722533666246,tokens/kWh,1223667.1060860218,MB,1726.52544,22129.672192,0.0,21483.225088,20902.142976,s,10,1662.0463125,166.20463124999998,0.013890741352160448,166.199171875,166.2239140625,166.22626953125,166.22815390625,"[166.211921875, 166.223390625, 166.191390625, 166.191359375, 166.191640625, 166.203515625, 166.194828125, 166.2176875, 166.191953125, 166.228625]",tokens/s,0.3790508093919315,kWh,0.0019620591764814327,0.001075380349219922,0.009375421333664404,0.012412860859365755,tokens/kWh,5075.381148131151,,s,629,1684.5351452636726,2.678116288177539,0.33164961442268687,2.637888427734375,2.63990244140625,2.640667578125,5.42840712890625,"[2.638138427734375, 2.638636962890625, 2.638865478515625, 2.6390283203125, 2.6389248046875, 2.63697509765625, 2.6374482421875, 2.637588623046875, 2.6383994140625, 2.637781982421875, 2.63811181640625, 2.639296630859375, 2.6380380859375, 2.637068359375, 2.638099365234375, 2.637255615234375, 2.637476806640625, 2.63743798828125, 2.637467529296875, 2.63781787109375, 2.637115478515625, 2.637315185546875, 2.63943896484375, 2.639993896484375, 2.6398291015625, 2.63933349609375, 2.63897802734375, 2.639859619140625, 2.63980126953125, 2.639171630859375, 2.637111328125, 2.63720556640625, 2.636434326171875, 2.63687158203125, 2.63707958984375, 2.639266845703125, 2.63845263671875, 2.637464599609375, 2.638060546875, 2.64020263671875, 2.638950439453125, 2.63784033203125, 2.63769091796875, 2.6381884765625, 2.639057861328125, 2.637621337890625, 2.638141357421875, 2.63823876953125, 2.639244384765625, 2.63790283203125, 2.6387138671875, 2.6390537109375, 2.638361572265625, 2.637244384765625, 2.639206298828125, 2.638740478515625, 2.639088623046875, 2.638509033203125, 2.637013916015625, 2.637980712890625, 2.637846435546875, 2.638864501953125, 5.43535302734375, 2.63853662109375, 2.63802978515625, 2.63697607421875, 2.637854736328125, 2.638664794921875, 2.63739794921875, 2.637233154296875, 2.637539306640625, 2.637358154296875, 2.637158447265625, 2.637360107421875, 2.63921875, 2.63846923828125, 2.638044189453125, 2.639015869140625, 2.636918701171875, 2.637613037109375, 2.637201416015625, 2.63785888671875, 2.6367763671875, 2.637592529296875, 2.63693310546875, 2.6386318359375, 2.63771337890625, 2.638298095703125, 2.637001708984375, 2.6378701171875, 2.6421064453125, 2.6414111328125, 2.641197021484375, 2.64100146484375, 2.63889111328125, 2.6406533203125, 2.6406552734375, 2.637020263671875, 2.637322265625, 2.63722900390625, 2.63769091796875, 2.6369853515625, 2.63765185546875, 2.63745751953125, 2.638650390625, 2.638825439453125, 2.637306884765625, 2.64330859375, 2.641152099609375, 2.6409931640625, 2.63775244140625, 2.639099853515625, 2.638685302734375, 2.6388388671875, 2.637993896484375, 2.639129638671875, 2.638023681640625, 2.638602294921875, 2.63790283203125, 2.63815380859375, 2.637550537109375, 2.63849169921875, 2.639201171875, 2.6400400390625, 2.638790771484375, 5.4299453125, 2.63796826171875, 2.638594970703125, 2.637592529296875, 2.6385439453125, 2.637388916015625, 2.638464111328125, 2.637737060546875, 2.63819775390625, 2.63681005859375, 2.637154296875, 2.63805224609375, 2.638739501953125, 2.63828173828125, 2.638024658203125, 2.637736083984375, 2.637816650390625, 2.63781884765625, 2.63653466796875, 2.637263916015625, 2.637474853515625, 2.63747998046875, 2.636569580078125, 2.64140478515625, 2.637125732421875, 2.638499755859375, 2.6369833984375, 2.637737060546875, 2.636338134765625, 2.63744921875, 2.637201416015625, 2.638740478515625, 2.638299072265625, 2.63929150390625, 2.637087646484375, 2.637667236328125, 2.6377021484375, 2.636683349609375, 2.637559814453125, 2.637581298828125, 2.6383564453125, 2.636505126953125, 2.63706005859375, 2.636032958984375, 2.6379765625, 2.637094970703125, 2.63819775390625, 2.64007568359375, 2.6376611328125, 2.6375966796875, 2.6389228515625, 2.63778515625, 2.639754150390625, 2.6381884765625, 2.63853466796875, 2.63933642578125, 2.639509521484375, 2.639793212890625, 2.640154541015625, 2.63959033203125, 2.636541015625, 2.6371533203125, 2.63670068359375, 5.43085791015625, 2.64038818359375, 2.640405517578125, 2.63921875, 2.638604248046875, 2.638392333984375, 2.63703857421875, 2.638612548828125, 2.638138427734375, 2.637631591796875, 2.637518798828125, 2.636412841796875, 2.639814697265625, 2.63709912109375, 2.638194580078125, 2.636851318359375, 2.637906982421875, 2.636904541015625, 2.63757421875, 2.637557861328125, 2.637801513671875, 2.637253662109375, 2.638193603515625, 2.63731396484375, 2.63754345703125, 2.637656005859375, 2.638063720703125, 2.6375537109375, 2.63655517578125, 2.636990478515625, 2.6373427734375, 2.638109619140625, 2.637427734375, 2.637330322265625, 2.63708154296875, 2.63813232421875, 2.636632080078125, 2.638185546875, 2.636789794921875, 2.6382294921875, 2.636559326171875, 2.63756494140625, 2.6364814453125, 2.637990966796875, 2.64270947265625, 2.63874755859375, 2.640064453125, 2.638127197265625, 2.637509521484375, 2.637388916015625, 2.637737060546875, 2.63737353515625, 2.639585205078125, 2.637530029296875, 2.638297119140625, 2.63809423828125, 2.637974609375, 2.63773583984375, 2.637834228515625, 2.63741552734375, 2.637762451171875, 2.637958251953125, 2.63785791015625, 5.428443359375, 2.63807275390625, 2.6370693359375, 2.638107666015625, 2.637665283203125, 2.63819677734375, 2.6379326171875, 2.63821923828125, 2.6370078125, 2.63802685546875, 2.638180419921875, 2.63954443359375, 2.6387373046875, 2.638023681640625, 2.636853271484375, 2.637129638671875, 2.637197265625, 2.636950439453125, 2.63758544921875, 2.638212158203125, 2.63828076171875, 2.6365849609375, 2.6370908203125, 2.638017578125, 2.63769384765625, 2.636833740234375, 2.638193603515625, 2.638341064453125, 2.640734130859375, 2.63990576171875, 2.639550537109375, 2.638340087890625, 2.63885107421875, 2.63923095703125, 2.6383955078125, 2.636854248046875, 2.636768310546875, 2.6369443359375, 2.637570068359375, 2.637836181640625, 2.63730078125, 2.63779541015625, 2.63750244140625, 2.637592529296875, 2.6366474609375, 2.638162841796875, 2.636866455078125, 2.6375146484375, 2.636231689453125, 2.6370693359375, 2.637305908203125, 2.63849169921875, 2.636894287109375, 2.636900390625, 2.637894775390625, 2.637490234375, 2.6377666015625, 2.64785107421875, 2.6376591796875, 2.637158447265625, 2.637832275390625, 2.63720849609375, 2.639467529296875, 5.425724609375, 2.637199462890625, 2.63809130859375, 2.638032958984375, 2.637854736328125, 2.638718017578125, 2.63857861328125, 2.637035400390625, 2.63773583984375, 2.638855224609375, 2.63739892578125, 2.638341064453125, 2.63885205078125, 2.639034423828125, 2.63807177734375, 2.637761474609375, 2.639326171875, 2.639801513671875, 2.639014892578125, 2.639296630859375, 2.637675537109375, 2.63769287109375, 2.637137939453125, 2.637119384765625, 2.6383955078125, 2.63736328125, 2.637094970703125, 2.637177734375, 2.6371953125, 2.637066162109375, 2.637592529296875, 2.639177734375, 2.637533203125, 2.6364169921875, 2.636937255859375, 2.6390283203125, 2.63927294921875, 2.63655126953125, 2.64357373046875, 2.637197265625, 2.637576171875, 2.638668701171875, 2.639214599609375, 2.639289306640625, 2.639532958984375, 2.638011474609375, 2.63690234375, 2.63817626953125, 2.636898193359375, 2.637287353515625, 2.637656982421875, 2.637981689453125, 2.636938232421875, 2.63751171875, 2.6373232421875, 2.63774609375, 2.637768798828125, 2.63883056640625, 2.639134765625, 2.641203125, 2.639278076171875, 2.638201904296875, 2.637488037109375, 5.42831396484375, 2.637304931640625, 2.638138427734375, 2.636865478515625, 2.639958984375, 2.63714404296875, 2.638241943359375, 2.63680810546875, 2.638630859375, 2.638310302734375, 2.640628662109375, 2.639406982421875, 2.63910302734375, 2.6390712890625, 2.640678955078125, 2.640310302734375, 2.63718701171875, 2.637646728515625, 2.637350830078125, 2.638884765625, 2.6375947265625, 2.637400146484375, 2.6368818359375, 2.642212890625, 2.637052978515625, 2.637252685546875, 2.636802001953125, 2.64029296875, 2.6377216796875, 2.6375556640625, 2.6366923828125, 2.63757421875, 2.638635009765625, 2.637696044921875, 2.637308837890625, 2.637477783203125, 2.637402099609375, 2.6365869140625, 2.637488037109375, 2.638253173828125, 2.6386328125, 2.637402099609375, 2.63834716796875, 2.6377451171875, 2.637392822265625, 2.636634033203125, 2.637593505859375, 2.637182861328125, 2.637476806640625, 2.6378896484375, 2.637464599609375, 2.639731689453125, 2.637717529296875, 2.63756591796875, 2.638674072265625, 2.63798974609375, 2.638200927734375, 2.63733251953125, 2.63752197265625, 2.63793359375, 2.636739501953125, 2.63832470703125, 2.637581298828125, 5.43222705078125, 2.638201904296875, 2.63801025390625, 2.639353759765625, 2.63851513671875, 2.637308837890625, 2.637641845703125, 2.6370263671875, 2.636823486328125, 2.638310302734375, 2.637739990234375, 2.636812255859375, 2.637005859375, 2.63739794921875, 2.637341796875, 2.636630126953125, 2.64057861328125, 2.638487548828125, 2.6377880859375, 2.63784033203125, 2.637433837890625, 2.638781494140625, 2.638268310546875, 2.63773486328125, 2.63734375, 2.64085302734375, 2.637772705078125, 2.63678369140625, 2.636781494140625, 2.637518798828125, 2.637106201171875, 2.636708984375, 2.63695166015625, 2.63906103515625, 2.6390087890625, 2.639414306640625, 2.63884912109375, 2.638530517578125, 2.639602783203125, 2.639301513671875, 2.638671875, 2.6394306640625, 2.640407470703125, 2.63750244140625, 2.640359375, 2.640257080078125, 2.641056884765625, 2.639901611328125, 2.64020263671875, 2.640825439453125, 2.637892578125, 2.63866357421875, 2.63870166015625, 2.638103515625, 2.641052734375, 2.639697998046875, 2.639138916015625, 2.63690234375, 2.63733447265625, 2.637642822265625, 2.63709912109375, 2.6370068359375, 2.638327880859375, 5.4337607421875, 2.63835546875, 2.638138427734375, 2.637888427734375, 2.63785986328125, 2.63816796875, 2.637724609375, 2.63817431640625, 2.63734375, 2.637358154296875, 2.637413330078125, 2.63850390625, 2.63788134765625, 2.638455810546875, 2.63848046875, 2.637498291015625, 2.637077392578125, 2.640005126953125, 2.638171142578125, 2.63721875, 2.638088134765625, 2.637340576171875, 2.637073486328125, 2.637824951171875, 2.63834619140625, 2.63819580078125, 2.63836474609375, 2.63822021484375, 2.637216796875, 2.63757421875, 2.63648046875, 2.6365439453125, 2.63712255859375, 2.63768994140625, 2.636919921875, 2.637600830078125, 2.637790283203125, 2.63785986328125, 2.636936279296875, 2.637821044921875, 2.637937744140625, 2.638752685546875, 2.63861767578125, 2.637978515625, 2.63923291015625, 2.639403076171875, 2.63928515625, 2.63895751953125, 2.63758447265625, 2.637350830078125, 2.63724853515625, 2.6378095703125, 2.638350341796875, 2.637401123046875, 2.636908447265625, 2.63790478515625, 2.638477294921875, 2.638087158203125, 2.639475830078125, 2.639469482421875, 2.640037841796875, 2.637907958984375, 2.636857421875, 5.4322666015625, 2.640575439453125, 2.641816650390625, 2.640384033203125, 2.639365234375, 2.639097900390625, 2.6402724609375, 2.638215087890625, 2.638160888671875, 2.637603759765625, 2.637083740234375, 2.6377421875, 2.637223876953125, 2.6389013671875, 2.638928955078125, 2.637473876953125, 2.637214599609375, 2.636859375, 2.637595703125, 2.63667822265625, 2.6370498046875, 2.638342041015625, 2.63901904296875, 2.637927490234375, 2.63882958984375, 2.640554931640625, 2.64306884765625, 2.639297607421875, 2.6393896484375, 2.64045166015625, 2.63986376953125, 2.639677490234375, 2.64067578125, 2.64060009765625, 2.640331787109375, 2.640183349609375, 2.639626220703125, 2.640194580078125, 2.63760498046875, 2.639280029296875, 2.6397255859375, 2.641039306640625, 2.6397880859375, 2.6377646484375, 2.639326171875, 2.63863916015625, 2.636462158203125, 2.637134765625, 2.6374892578125, 2.637487060546875, 2.63678466796875, 2.63695361328125, 2.636927978515625, 2.636856201171875, 2.63660546875, 2.637761474609375, 2.637675537109375, 2.6367119140625, 2.637622314453125, 2.6384404296875, 2.637370361328125, 2.63602880859375, 2.636900390625]",tokens/s,0.37339678057090686,,,,, 4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3544, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1463, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1619, in _check_and_enable_sdpa raise ValueError( ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,,cuda,0,42,,,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,main,False,False,MB,1571.749888,5448.925184,0.0,4802.47808,4489.12128,s,10,5.0903373718261715,0.5090337371826171,0.0024963690031113454,0.5090882415771485,0.5114007537841796,0.5133009628295898,0.514821130065918,"[0.515201171875, 0.5058653564453125, 0.5075380249023438, 0.5109784851074218, 0.5074734191894531, 0.5066469421386719, 0.5090344543457032, 0.5092752685546875, 0.5091822204589844, 0.5091420288085937]",tokens/s,502.91362104386286,kWh,5.98198832737075e-06,3.277856253707796e-06,2.697877158300277e-05,3.623861616408132e-05,tokens/kWh,7064287.412104325,MB,1571.749888,5448.925184,0.0,4802.47808,4557.793792,s,10,299.8803828125,29.98803828125,0.03808075694133287,29.9707392578125,30.046216015625,30.058939062500002,30.0691175,"[29.972552734375, 30.043388671875, 30.071662109375, 30.010330078125, 29.96, 29.95865625, 29.96925, 29.972228515625, 29.963451171875, 29.95886328125]",tokens/s,2.1008376543053404,kWh,0.00035374844759702685,0.00019388459414373753,0.001556149911585597,0.0021037829533263617,tokens/kWh,29946.05498651303,,s,629,303.97862612915014,0.48327285553124066,0.06045359810307915,0.47556915283203127,0.47775867309570313,0.47801220703124997,0.9833881201171876,"[0.4750715026855469, 0.4762265625, 0.4773417053222656, 0.47625729370117187, 0.47571148681640624, 0.47557223510742186, 0.47629312133789065, 0.47471615600585937, 0.475789306640625, 0.47461376953125, 0.4746967163085937, 0.474913818359375, 0.47592657470703126, 0.47551071166992187, 0.47595623779296875, 0.47574118041992186, 0.4750817260742187, 0.47586611938476564, 0.4771154479980469, 0.47594082641601565, 0.4757462768554688, 0.47569818115234375, 0.4764293212890625, 0.475978759765625, 0.47632794189453126, 0.47545343017578123, 0.47498138427734377, 0.47522305297851564, 0.47550360107421874, 0.47533575439453124, 0.4750652770996094, 0.4751790161132812, 0.47525888061523436, 0.4754544677734375, 0.4752803955078125, 0.4756971435546875, 0.4763504638671875, 0.4758845520019531, 0.47809332275390626, 0.475462646484375, 0.47741644287109375, 0.47680307006835937, 0.47630642700195314, 0.47653070068359377, 0.47590911865234375, 0.4751380615234375, 0.47556710815429687, 0.475146240234375, 0.47564901733398435, 0.4757647399902344, 0.47530291748046877, 0.4750807189941406, 0.47518719482421873, 0.47629925537109374, 0.4754646911621094, 0.4754155578613281, 0.4753121337890625, 0.4750469055175781, 0.47505612182617185, 0.4759122009277344, 0.47506842041015623, 0.4758763427734375, 0.9829324951171875, 0.4772618103027344, 0.47679385375976563, 0.4752302551269531, 0.47515850830078127, 0.4750141296386719, 0.4753879089355469, 0.47504486083984376, 0.47488204956054686, 0.47477862548828126, 0.4748114013671875, 0.47600946044921877, 0.4750940246582031, 0.4750837707519531, 0.4750745544433594, 0.4750592041015625, 0.47484109497070315, 0.4761292724609375, 0.4751933288574219, 0.4750182495117187, 0.475357177734375, 0.47510528564453125, 0.4762142639160156, 0.47762432861328125, 0.4771512451171875, 0.478097412109375, 0.47743179321289064, 0.4781097106933594, 0.4774246520996094, 0.47769497680664064, 0.4778270568847656, 0.4778741760253906, 0.47795404052734375, 0.47758233642578124, 0.47754238891601564, 0.47758438110351564, 0.4775854187011719, 0.4776581115722656, 0.4781363220214844, 0.47784140014648435, 0.4785827941894531, 0.4778670043945312, 0.478013427734375, 0.4813271179199219, 0.4787435607910156, 0.4778823547363281, 0.4775577697753906, 0.47766937255859376, 0.4776509399414062, 0.47802163696289063, 0.4775925903320313, 0.4771829833984375, 0.47707955932617185, 0.4779130859375, 0.47752191162109375, 0.4774225769042969, 0.47764581298828124, 0.47809228515625, 0.47725054931640626, 0.47956683349609375, 0.47532647705078124, 0.47634738159179685, 0.4757237854003906, 0.9846497192382813, 0.4779151306152344, 0.47775845336914063, 0.4778516540527344, 0.4773468017578125, 0.47776461791992186, 0.47770932006835937, 0.4769669189453125, 0.4777676696777344, 0.4777635803222656, 0.47618765258789064, 0.4749752197265625, 0.4755538024902344, 0.4747980651855469, 0.4747796630859375, 0.4748114013671875, 0.47680514526367185, 0.4753622741699219, 0.47532440185546876, 0.4750438537597656, 0.4750325622558594, 0.47742669677734373, 0.4790394897460937, 0.47991500854492186, 0.4776028137207031, 0.4770672607421875, 0.47781991577148436, 0.4773304443359375, 0.4778946533203125, 0.4778496398925781, 0.4774788818359375, 0.4779632568359375, 0.47771136474609377, 0.47775640869140623, 0.47768267822265625, 0.47796121215820314, 0.4775454711914062, 0.4780103759765625, 0.4779438171386719, 0.4773253173828125, 0.4780001220703125, 0.47749530029296877, 0.478482421875, 0.4767160339355469, 0.47870156860351565, 0.47761203002929686, 0.47860427856445314, 0.47783221435546874, 0.4779366149902344, 0.4776212463378906, 0.4775301208496094, 0.477328369140625, 0.478376953125, 0.4772362365722656, 0.47751168823242185, 0.47775955200195314, 0.47782699584960936, 0.47732632446289064, 0.47806362915039063, 0.4772454528808594, 0.4775782775878906, 0.47722698974609373, 0.477765625, 0.9892290649414063, 0.47758950805664063, 0.47766937255859376, 0.47711026000976564, 0.4785479736328125, 0.4779674072265625, 0.47848751831054687, 0.4773918762207031, 0.47714407348632815, 0.475968505859375, 0.47733248901367187, 0.4777830505371094, 0.4774912109375, 0.4774410095214844, 0.4776990661621094, 0.47711026000976564, 0.47647540283203127, 0.4762900390625, 0.47571044921875, 0.47531622314453126, 0.47745126342773436, 0.4778526611328125, 0.4754595947265625, 0.4753295593261719, 0.47519024658203124, 0.47728536987304687, 0.4776847229003906, 0.47796734619140624, 0.47679693603515627, 0.4769525756835937, 0.47623678588867185, 0.47598489379882813, 0.47588760375976563, 0.47573504638671876, 0.4752127990722656, 0.47496600341796874, 0.4763709411621094, 0.47549542236328124, 0.4751493225097656, 0.4747591552734375, 0.47531109619140627, 0.47625933837890627, 0.47604122924804687, 0.4752691345214844, 0.478866455078125, 0.4751441650390625, 0.4752322692871094, 0.47499981689453125, 0.47643954467773436, 0.4755630187988281, 0.4757166137695312, 0.47565005493164064, 0.476015625, 0.4754155578613281, 0.4754124755859375, 0.47525070190429686, 0.47504281616210936, 0.4759347229003906, 0.47554763793945315, 0.47518923950195313, 0.47525274658203126, 0.475404296875, 0.47679489135742187, 0.9835653076171875, 0.4750100708007812, 0.47497518920898435, 0.47521792602539065, 0.47529168701171876, 0.47549435424804687, 0.47515341186523435, 0.47609548950195313, 0.47539712524414063, 0.47541351318359376, 0.47511859130859374, 0.47484622192382814, 0.47537664794921874, 0.475104248046875, 0.47634738159179685, 0.4752896118164063, 0.47548724365234374, 0.4761077880859375, 0.4751452026367188, 0.4771768188476562, 0.4755333251953125, 0.4755230712890625, 0.4750796813964844, 0.4751923217773438, 0.4752496643066406, 0.4748308410644531, 0.47501516723632814, 0.47498751831054686, 0.4759531555175781, 0.4754883117675781, 0.47538067626953123, 0.4753909912109375, 0.47539712524414063, 0.4753735656738281, 0.475494384765625, 0.47589376831054686, 0.4761006164550781, 0.47518206787109374, 0.4750602111816406, 0.47489434814453124, 0.47634228515625, 0.47604940795898437, 0.47567974853515627, 0.47519744873046876, 0.4751749267578125, 0.47551077270507813, 0.4754002685546875, 0.47505914306640623, 0.47493426513671877, 0.475788330078125, 0.4752465515136719, 0.47501516723632814, 0.47556915283203127, 0.4761507873535156, 0.47565823364257814, 0.47601458740234376, 0.47671194458007815, 0.478308349609375, 0.4755906677246094, 0.47542578125, 0.4754708557128906, 0.4771061706542969, 0.4754810791015625, 0.9827368774414063, 0.47548416137695315, 0.4752916564941406, 0.4750274658203125, 0.4750274658203125, 0.47477658081054686, 0.4755199890136719, 0.47510833740234376, 0.4752332763671875, 0.47511962890625, 0.4750837707519531, 0.47506329345703124, 0.4751718444824219, 0.477048828125, 0.4756756591796875, 0.475315185546875, 0.47508685302734377, 0.474925048828125, 0.476084228515625, 0.4754022521972656, 0.47531417846679686, 0.47490765380859373, 0.47505612182617185, 0.4752547912597656, 0.47493939208984376, 0.4751216735839844, 0.4752363586425781, 0.47553741455078125, 0.47550872802734373, 0.4752025451660156, 0.47503768920898437, 0.47521588134765624, 0.47512063598632814, 0.4751523742675781, 0.4767621154785156, 0.4764487609863281, 0.47532235717773436, 0.4752414855957031, 0.47862374877929686, 0.47638223266601565, 0.47562542724609375, 0.47544525146484373, 0.47627877807617186, 0.47506329345703124, 0.47538995361328124, 0.4754227294921875, 0.47551693725585936, 0.4754288635253906, 0.47596337890625, 0.4758896789550781, 0.4756899719238281, 0.4755988464355469, 0.4755916748046875, 0.4752066650390625, 0.4755640258789062, 0.47575653076171875, 0.47548416137695315, 0.4752998962402344, 0.4755332336425781, 0.4752363586425781, 0.4765552673339844, 0.4758056945800781, 0.47643853759765625, 0.9858508911132813, 0.4760975341796875, 0.4763627624511719, 0.47618048095703125, 0.47583026123046873, 0.4758814697265625, 0.47627365112304687, 0.47550360107421874, 0.4748226623535156, 0.4754380798339844, 0.4754176025390625, 0.47634841918945314, 0.47666278076171875, 0.4759449462890625, 0.47538177490234373, 0.475430908203125, 0.4754606018066406, 0.4765736999511719, 0.47562957763671876, 0.47619277954101563, 0.4762623901367187, 0.47586407470703124, 0.4763156433105469, 0.47800421142578126, 0.47563058471679687, 0.47566949462890623, 0.4764661865234375, 0.47568487548828126, 0.4763525085449219, 0.47546881103515626, 0.4754503784179688, 0.47535821533203126, 0.4751155090332031, 0.476685302734375, 0.4755333251953125, 0.4750540771484375, 0.4750325622558594, 0.4753387451171875, 0.47632281494140627, 0.47543603515625, 0.47514727783203126, 0.47536947631835935, 0.4750110778808594, 0.4750960693359375, 0.47505816650390625, 0.47526605224609375, 0.47514215087890627, 0.47597158813476564, 0.47550054931640623, 0.47509503173828127, 0.47519845581054687, 0.4751452026367188, 0.4753704833984375, 0.474967041015625, 0.47536639404296877, 0.47516876220703125, 0.47490457153320315, 0.4751523742675781, 0.47530905151367187, 0.4764610595703125, 0.47634228515625, 0.47607601928710935, 0.4758845520019531, 0.9857208251953125, 0.4755548095703125, 0.47583026123046873, 0.4755302734375, 0.4761640625, 0.4756316223144531, 0.475904052734375, 0.4751758728027344, 0.47539813232421874, 0.475536376953125, 0.4755210266113281, 0.475514892578125, 0.4755937805175781, 0.47548818969726564, 0.47541656494140627, 0.47544216918945315, 0.477454345703125, 0.4756387939453125, 0.4758138732910156, 0.47603302001953124, 0.47580465698242186, 0.47644158935546876, 0.4751994934082031, 0.47532339477539065, 0.4750745544433594, 0.47546981811523437, 0.4754565124511719, 0.47503768920898437, 0.47527935791015624, 0.4750858154296875, 0.4753018798828125, 0.4747683715820312, 0.4749916076660156, 0.47602789306640625, 0.4755906677246094, 0.4751790161132812, 0.47570123291015626, 0.477876220703125, 0.477338623046875, 0.4760637512207031, 0.4767999877929687, 0.47610983276367186, 0.47703347778320315, 0.47675802612304685, 0.47620712280273436, 0.4752158508300781, 0.47609036254882814, 0.4771328125, 0.4762552185058594, 0.4760504455566406, 0.47554458618164064, 0.475283447265625, 0.47543603515625, 0.4751523742675781, 0.475335693359375, 0.4752138366699219, 0.47528140258789064, 0.475109375, 0.47681332397460935, 0.47562240600585937, 0.47532339477539065, 0.47533465576171874, 0.47510833740234376, 0.984848388671875, 0.4750960693359375, 0.47506024169921873, 0.4759930419921875, 0.47555789184570313, 0.4750254211425781, 0.47533978271484373, 0.4758394775390625, 0.475610107421875, 0.47590911865234375, 0.4757596130371094, 0.4766791687011719, 0.4766371765136719, 0.4757176208496094, 0.4764549255371094, 0.4773990478515625, 0.4758917236328125, 0.476790771484375, 0.47595416259765627, 0.4752404479980469, 0.47515545654296876, 0.475030517578125, 0.4752916564941406, 0.4751278076171875, 0.4755138549804688, 0.47549234008789065, 0.47554150390625, 0.4758425598144531, 0.47556607055664063, 0.4752015380859375, 0.47505612182617185, 0.4750540771484375, 0.47509811401367186, 0.4751697998046875, 0.4750817260742187, 0.4752066650390625, 0.4769587097167969, 0.4757596130371094, 0.47552410888671875, 0.4753387451171875, 0.4751247253417969, 0.47600946044921877, 0.47491787719726564, 0.47531417846679686, 0.47513394165039063, 0.4757739562988281, 0.4750469055175781, 0.475030517578125, 0.4758507385253906, 0.4755599365234375, 0.47600741577148437, 0.4752414855957031, 0.4751247253417969, 0.47610470581054687, 0.4753530883789063, 0.475404296875, 0.4752005004882813, 0.476626953125, 0.4756654052734375, 0.47670578002929687, 0.4761466979980469, 0.4752547912597656, 0.4752209777832031, 0.9850972290039063, 0.47500698852539064, 0.47586099243164065, 0.475536376953125, 0.4751933288574219, 0.4753070068359375, 0.47523434448242186, 0.475157470703125, 0.4753039245605469, 0.4752762756347656, 0.4760606689453125, 0.47565216064453125, 0.4750796203613281, 0.47518106079101563, 0.4763607177734375, 0.47558758544921875, 0.47543499755859375, 0.47558349609375, 0.4752384033203125, 0.47536639404296877, 0.47527423095703125, 0.47547494506835936, 0.4750335998535156, 0.4753049621582031, 0.47516571044921874, 0.4754155578613281, 0.4772812805175781, 0.4751769714355469, 0.4758814697265625, 0.4761343994140625, 0.4757074279785156, 0.4766033630371094, 0.47504281616210936, 0.47508480834960937, 0.4752629699707031, 0.47697714233398436, 0.4764979248046875, 0.4756357421875, 0.4753837890625, 0.4751473083496094, 0.475273193359375, 0.475177978515625, 0.47527835083007813, 0.4753541259765625, 0.4753623046875, 0.4753930358886719, 0.4750796813964844, 0.47559576416015625, 0.47536334228515625, 0.4764241943359375, 0.47548724365234374, 0.47530087280273436, 0.47603302001953124, 0.4752906188964844, 0.47511962890625, 0.47501516723632814, 0.4768563232421875, 0.4758026123046875, 0.47588864135742187, 0.4753950805664062, 0.4752138366699219, 0.47535000610351563, 0.4750120849609375]",tokens/s,2.069224432025556,,,,, 4bit-awq-gemm-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3544, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1463, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1619, in _check_and_enable_sdpa raise ValueError( ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-exllama-v1-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 558, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 432, in post_init_awq_exllama_modules model = exllama_post_init(model) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init submodule.post_init() File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 558, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3544, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1463, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1619, in _check_and_enable_sdpa raise ValueError( ValueError: DeciLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3544, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1463, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1619, in _check_and_enable_sdpa raise ValueError( ValueError: GPTJForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3544, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1463, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1619, in _check_and_enable_sdpa raise ValueError( ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3544, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1463, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1619, in _check_and_enable_sdpa raise ValueError( ValueError: GPTNeoXForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 432, in post_init_awq_exllama_modules model = exllama_post_init(model) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init submodule.post_init() File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3544, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1463, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1619, in _check_and_enable_sdpa raise ValueError( ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 432, in post_init_awq_exllama_modules model = exllama_post_init(model) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init submodule.post_init() File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3544, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1463, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1619, in _check_and_enable_sdpa raise ValueError( ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 558, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 432, in post_init_awq_exllama_modules model = exllama_post_init(model) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init submodule.post_init() File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 558, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 432, in post_init_awq_exllama_modules model = exllama_post_init(model) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init submodule.post_init() File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 432, in post_init_awq_exllama_modules model = exllama_post_init(model) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init submodule.post_init() File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 432, in post_init_awq_exllama_modules model = exllama_post_init(model) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init submodule.post_init() File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 432, in post_init_awq_exllama_modules model = exllama_post_init(model) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init submodule.post_init() File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 432, in post_init_awq_exllama_modules model = exllama_post_init(model) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init submodule.post_init() File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 432, in post_init_awq_exllama_modules model = exllama_post_init(model) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init submodule.post_init() File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 432, in post_init_awq_exllama_modules model = exllama_post_init(model) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init submodule.post_init() File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 64, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 117, in run _ = backend.generate(self.inputs, self.config.generate_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 369, in generate return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1576, in generate result = self._greedy_search( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2494, in _greedy_search outputs = self( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1211, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1018, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 741, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) TypeError: DeciCoderAttention.forward() got an unexpected keyword argument 'cache_position' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,,cuda,0,42,,,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,main,False,False,MB,1674.596352,5516.034048,0.0,4869.586944,4743.593472,s,10,6.137113647460938,0.6137113647460938,0.0032895717697753717,0.6129547424316406,0.6153997436523437,0.6190885131835938,0.6220395288085938,"[0.6227772827148438, 0.6144583129882812, 0.61261669921875, 0.61060546875, 0.612577392578125, 0.6105811157226563, 0.6121093139648438, 0.6145800170898438, 0.6132927856445313, 0.6135152587890625]",tokens/s,417.13420136176387,kWh,7.2172448039054885e-06,3.954746732982612e-06,3.355963469082604e-05,4.473162622771414e-05,tokens/kWh,5723020.189268045,MB,1674.596352,5516.034048,0.0,4869.586944,4769.651712,s,10,361.12618359375006,36.112618359375006,0.009999043540991457,36.112980468749996,36.125964453125,36.127720507812505,36.1291253515625,"[36.1294765625, 36.0964296875, 36.12557421875, 36.1174140625, 36.11404296875, 36.1114296875, 36.11191796875, 36.09769140625, 36.10714453125, 36.1150625]",tokens/s,1.7445425688343892,kWh,0.00042614284929302004,0.0002335616249413365,0.0019425026683799653,0.0026022071426143214,tokens/kWh,24210.217153084406,,s,629,366.0647033081055,0.5819788605852233,0.07282065333686359,0.5730969848632812,0.5741784912109374,0.5745491943359375,1.1854891552734375,"[0.5736980590820312, 0.573138916015625, 0.5735465087890625, 0.574129150390625, 0.5737092895507813, 0.57447216796875, 0.5745264892578125, 0.5731635131835937, 0.5737205810546875, 0.5735956420898437, 0.5749248046875, 0.5725880126953125, 0.5736376342773437, 0.57371337890625, 0.573749267578125, 0.5733990478515625, 0.5727344360351563, 0.57394482421875, 0.57497705078125, 0.5740851440429687, 0.5741229858398438, 0.5742008056640625, 0.5734738159179688, 0.574509033203125, 0.5738157958984375, 0.573897705078125, 0.5732402954101562, 0.5745704956054688, 0.5727620849609375, 0.5734061889648437, 0.5746319580078125, 0.5745643310546875, 0.5739735107421875, 0.5731901245117188, 0.5725511474609375, 0.5742970581054687, 0.5729157104492187, 0.572837890625, 0.57303857421875, 0.5725552368164063, 0.5740175170898437, 0.5737943115234375, 0.57314404296875, 0.5743441772460938, 0.5747333374023438, 0.5747230834960938, 0.5726239013671875, 0.5742520141601563, 0.5729638671875, 0.5725716552734375, 0.572348388671875, 0.572031005859375, 0.5730672607421875, 0.5724190673828125, 0.572590087890625, 0.5723648071289062, 0.5724487915039063, 0.572526611328125, 0.5727549438476562, 0.57301708984375, 0.5722869873046875, 0.5721016235351563, 1.18763623046875, 0.5728788452148438, 0.5735679931640625, 0.5728031005859375, 0.5727078247070313, 0.5732781982421875, 0.5730969848632812, 0.5728460693359375, 0.57259521484375, 0.5722409057617187, 0.57280615234375, 0.57242724609375, 0.57225830078125, 0.5726760864257813, 0.572142578125, 0.5723013305664062, 0.5727958984375, 0.5730846557617187, 0.572316650390625, 0.5732341918945313, 0.57354443359375, 0.5724467163085938, 0.5723648071289062, 0.5720924072265625, 0.5729249267578125, 0.5723299560546875, 0.5724815063476563, 0.572590087890625, 0.5723525390625, 0.5726453857421875, 0.572458984375, 0.5725296630859374, 0.5720729370117188, 0.572706787109375, 0.5740257568359375, 0.572758056640625, 0.5724251708984375, 0.5737236328125, 0.57303857421875, 0.5752218017578125, 0.5730856323242187, 0.57284814453125, 0.5734194946289063, 0.5729658813476562, 0.5726095581054688, 0.5726730346679687, 0.5732310791015625, 0.5731287231445312, 0.5729985961914063, 0.572822509765625, 0.5728573608398437, 0.5731840209960938, 0.5744937133789062, 0.5729187622070312, 0.5740841064453125, 0.5739561157226563, 0.5734850463867187, 0.5729812622070313, 0.5727211303710937, 0.5733560180664062, 0.5732577514648437, 0.5737369384765625, 0.5736038208007812, 1.18655078125, 0.5729157104492187, 0.5731143798828126, 0.5728522338867188, 0.5734451293945313, 0.5739530029296875, 0.572958740234375, 0.572759033203125, 0.5748234252929687, 0.57375537109375, 0.573359130859375, 0.5733130493164063, 0.5738352661132813, 0.57318603515625, 0.5733314819335937, 0.5734747924804687, 0.5750180053710937, 0.5730693359375, 0.5736345825195313, 0.573718505859375, 0.57335498046875, 0.5729044189453125, 0.5738772583007813, 0.5738352661132813, 0.5730682983398437, 0.5731051635742187, 0.5734297485351563, 0.5730928344726562, 0.5731317749023438, 0.5730283813476562, 0.573849609375, 0.57297509765625, 0.5731461181640625, 0.5727354736328125, 0.5730130004882813, 0.5731461181640625, 0.5728123168945313, 0.5729003295898437, 0.5728778076171875, 0.5738741455078125, 0.5740830688476563, 0.572737548828125, 0.5726536254882812, 0.5742734985351563, 0.5730897827148438, 0.5729822998046875, 0.5732136840820312, 0.5756242065429688, 0.5729976196289063, 0.5738700561523438, 0.573106201171875, 0.573149169921875, 0.5729013671875, 0.573991943359375, 0.573201416015625, 0.5733877563476563, 0.5732608032226563, 0.5743902587890625, 0.5742141723632812, 0.5728829345703125, 0.5743646850585937, 0.5734010620117187, 0.573259765625, 1.1840142822265625, 0.5737728271484375, 0.5731215209960937, 0.5732106323242188, 0.5732505493164063, 0.572969970703125, 0.573033447265625, 0.57314306640625, 0.5731942138671875, 0.5728460693359375, 0.5744957275390625, 0.5742643432617187, 0.5740144653320313, 0.5731768798828125, 0.5741864624023437, 0.5734174194335937, 0.573322265625, 0.5733375854492188, 0.5739192504882813, 0.5734788818359375, 0.5737677001953125, 0.5734850463867187, 0.5734430541992187, 0.5732044677734375, 0.5726986083984374, 0.572821533203125, 0.5730499267578125, 0.5735310668945313, 0.574656494140625, 0.5733201904296875, 0.5725225219726563, 0.5739570922851562, 0.5737728271484375, 0.57303857421875, 0.5733232421875, 0.5734522705078124, 0.5738311767578125, 0.575151123046875, 0.5733201904296875, 0.5735167846679687, 0.5731133422851562, 0.5729003295898437, 0.5728235473632812, 0.573318115234375, 0.5730816040039063, 0.5742418212890625, 0.573048828125, 0.5728880615234375, 0.572990478515625, 0.5729679565429687, 0.5725675659179688, 0.5726566162109376, 0.5728235473632812, 0.5745910034179688, 0.5722357788085938, 0.5722327270507812, 0.572821533203125, 0.5726668701171875, 0.5724385375976563, 0.5728890991210938, 0.5728051147460937, 0.5724405517578125, 0.5733775634765625, 1.1864791259765626, 0.5730631713867187, 0.5741793212890625, 0.574244873046875, 0.5729197998046875, 0.5730785522460937, 0.5742643432617187, 0.5736028442382812, 0.5729208374023438, 0.5731768188476563, 0.573612060546875, 0.5728307495117188, 0.5726996459960938, 0.57314306640625, 0.5741906127929688, 0.572669921875, 0.5738731689453125, 0.5743124389648437, 0.5728778076171875, 0.5729352416992187, 0.574119873046875, 0.5733079223632812, 0.5724866333007812, 0.572231689453125, 0.5732946166992188, 0.5724682006835937, 0.5730529174804687, 0.5733519287109375, 0.573106201171875, 0.5727999877929687, 0.57236376953125, 0.5724620971679687, 0.5725665893554688, 0.5737697143554688, 0.5733406372070312, 0.573254638671875, 0.5726945190429688, 0.5743114013671875, 0.5735679931640625, 0.5726617431640625, 0.5724610595703125, 0.57396533203125, 0.5732372436523437, 0.5741332397460938, 0.5733570556640625, 0.5733375854492188, 0.572717041015625, 0.572859375, 0.5731901245117188, 0.572558349609375, 0.5723750610351562, 0.5745213623046875, 0.573633544921875, 0.5729638671875, 0.573412353515625, 0.5735505981445312, 0.5726494750976563, 0.5753558959960937, 0.5728399658203125, 0.573432861328125, 0.5723391723632812, 0.5729290161132813, 0.572626953125, 1.1842232666015624, 0.5728092041015626, 0.572779541015625, 0.572632080078125, 0.5737963256835937, 0.5736775512695312, 0.5726033935546875, 0.572564453125, 0.5733416748046875, 0.5725654907226563, 0.5723832397460937, 0.5723812255859375, 0.5731624755859375, 0.5723832397460937, 0.5729197998046875, 0.572788818359375, 0.5723237915039062, 0.5723801879882813, 0.5726771850585938, 0.5727251586914063, 0.5726986083984374, 0.57333349609375, 0.5739939575195312, 0.5731481323242188, 0.5727344360351563, 0.5737195434570312, 0.5727918090820312, 0.5725234985351563, 0.5729740600585937, 0.5731522827148438, 0.5736734619140625, 0.5729310913085938, 0.5734471435546875, 0.573127685546875, 0.5729720458984375, 0.5730723876953125, 0.5730529174804687, 0.5730682983398437, 0.5760235595703125, 0.5742151489257813, 0.573750244140625, 0.5731143798828126, 0.573844482421875, 0.5748480224609375, 0.5746339721679687, 0.5739223022460938, 0.5732044677734375, 0.5739735107421875, 0.5730263061523437, 0.5728583984375, 0.5729924926757812, 0.5730785522460937, 0.5734502563476562, 0.5732157592773437, 0.573191162109375, 0.5728983154296875, 0.5738905639648437, 0.5733457641601563, 0.57269873046875, 0.572650390625, 0.5734747924804687, 0.5728338012695312, 0.5733191528320313, 1.1859814453125, 0.57253271484375, 0.5722654418945312, 0.5727242431640625, 0.5725839233398438, 0.5722265625, 0.572601318359375, 0.5729863891601562, 0.572706787109375, 0.5726239013671875, 0.5739888916015625, 0.5729249267578125, 0.573317138671875, 0.5733673095703125, 0.5743882446289063, 0.5732106323242188, 0.5734819946289063, 0.5727047729492187, 0.5730140380859375, 0.572675048828125, 0.5729136352539063, 0.5729924926757812, 0.5723709716796875, 0.5744793701171875, 0.57339599609375, 0.5728604125976563, 0.5722327270507812, 0.5737615356445313, 0.5753026733398438, 0.5738475341796875, 0.5734512939453125, 0.5752913818359375, 0.5733673095703125, 0.5729085693359375, 0.5732177734375, 0.573886474609375, 0.5727651977539062, 0.57282763671875, 0.57284814453125, 0.5731399536132813, 0.5727467651367187, 0.5733314819335937, 0.5736110229492187, 0.5734830322265625, 0.5729003295898437, 0.574867431640625, 0.5740697631835937, 0.572969970703125, 0.5728942260742188, 0.5735751342773437, 0.5731563720703124, 0.5731113891601562, 0.5729085083007812, 0.5745828247070313, 0.5727620849609375, 0.5729269409179687, 0.5724876708984376, 0.573665283203125, 0.5732260131835938, 0.5726268920898437, 0.57246923828125, 0.572621826171875, 0.5729013671875, 1.1888896484375, 0.57364990234375, 0.5738916015625, 0.5726515502929688, 0.5726239013671875, 0.5722838745117188, 0.5730723876953125, 0.573032470703125, 0.5727662353515625, 0.5732413330078125, 0.5728880615234375, 0.5727396240234375, 0.5731368408203125, 0.573233154296875, 0.5731963500976562, 0.5735249633789062, 0.5744219970703125, 0.5727999877929687, 0.5726064453125, 0.5729290771484375, 0.5737103271484375, 0.572811279296875, 0.5732679443359375, 0.5726730346679687, 0.5734287109375, 0.5722675170898438, 0.5725828857421875, 0.5725849609375, 0.5723627319335938, 0.5727416381835938, 0.5728348388671874, 0.5723678588867187, 0.5728604125976563, 0.573675537109375, 0.57333349609375, 0.5725634765625, 0.5726546020507812, 0.5731399536132813, 0.5728031005859375, 0.5724630737304688, 0.57310205078125, 0.5734573974609375, 0.5732689819335938, 0.5729290161132813, 0.5729782104492187, 0.5726064453125, 0.572527587890625, 0.5728818969726562, 0.5733007202148438, 0.5730426635742187, 0.5736365966796875, 0.5730549926757813, 0.573111328125, 0.5725552368164063, 0.5726505126953125, 0.5732802734375, 0.5726494750976563, 0.5724876708984376, 0.5733058471679687, 0.5727211303710937, 0.5725931396484375, 0.5726648559570312, 0.5728655395507812, 1.1863818359375, 0.5727938842773438, 0.5733508911132813, 0.5740676879882812, 0.574234619140625, 0.5727047729492187, 0.5733447875976563, 0.5732515869140625, 0.5743012084960938, 0.5728123168945313, 0.5730969848632812, 0.5729976196289063, 0.5739694213867188, 0.5728798828125, 0.5730140380859375, 0.5724334106445312, 0.5727744140625, 0.5740390625, 0.5736099853515625, 0.5726300048828125, 0.572969970703125, 0.5736683349609375, 0.572948486328125, 0.5725542602539062, 0.5725962524414062, 0.5727139892578125, 0.573559814453125, 0.572568603515625, 0.5725419311523438, 0.5730426635742187, 0.5727252197265625, 0.5726781616210938, 0.5734676513671875, 0.573179931640625, 0.5726351318359375, 0.573233154296875, 0.5737062377929687, 0.5729423217773437, 0.5729710083007813, 0.5735885009765626, 0.5732741088867187, 0.5730344848632812, 0.5727262573242188, 0.5732567138671875, 0.5732689819335938, 0.5727232055664062, 0.5727559814453125, 0.5730703125, 0.5724334716796875, 0.5731378784179687, 0.5730191650390625, 0.572896240234375, 0.5732177734375, 0.5728727416992188, 0.5729361572265625, 0.5730979614257813, 0.574118896484375, 0.573497314453125, 0.5732976684570312, 0.5737840576171875, 0.5730130004882813, 0.5730549926757813, 0.572958740234375, 1.187092529296875, 0.5724129028320313, 0.5726473999023437, 0.57280615234375, 0.572416015625, 0.5723361206054688, 0.572821533203125, 0.5732761840820313, 0.5727733764648437, 0.573095947265625, 0.5734052124023438, 0.573053955078125, 0.572674072265625, 0.5729341430664062, 0.5734830322265625, 0.573849609375, 0.5724999389648437, 0.5727334594726563, 0.5741107177734375, 0.5736663208007813, 0.57402978515625, 0.5733611450195313, 0.572958740234375, 0.5730099487304687, 0.5733345336914063, 0.5739038696289063, 0.575910888671875, 0.574392333984375, 0.5739898681640625, 0.5732730712890625, 0.5733109741210938, 0.5730928344726562, 0.5741782836914062, 0.5731993408203125, 0.57302734375, 0.5732771606445313, 0.572506103515625, 0.5729556274414063, 0.5733088989257813, 0.572968994140625, 0.5736283569335937, 0.5738291015625, 0.5733499145507812, 0.5729085693359375, 0.573539306640625, 0.5743226928710937, 0.5736959838867187, 0.5733365478515625, 0.57354443359375, 0.5733949584960938, 0.5731727294921874, 0.5731215209960937, 0.5734061889648437, 0.5725133056640626, 0.5726607055664062, 0.5729464111328125, 0.5725101928710937, 0.57212109375, 0.5734563598632813, 0.5726597290039063, 0.5727313842773437, 0.572416015625, 0.5735731201171875]",tokens/s,1.7182754696526694,,,,, 4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,,cuda,0,42,,,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,main,False,False,MB,2082.578432,5566.365696,0.0,4919.918592,4635.53792,s,10,5.0974686889648435,0.5097468688964844,0.002523113409812242,0.5091204681396484,0.5118887878417968,0.5140431793212891,0.5157666925048828,"[0.5161975708007812, 0.508827880859375, 0.5094269104003907, 0.508350830078125, 0.5081865539550782, 0.5073575439453125, 0.5094130554199219, 0.5110750427246094, 0.5072232666015625, 0.5114100341796874]",tokens/s,502.2100489880333,kWh,5.994651640454928e-06,3.28480666631549e-06,2.7987258500894452e-05,3.726671680766487e-05,tokens/kWh,6869400.417569034,MB,2082.578432,5566.365696,0.0,4919.918592,4794.464768,s,10,295.3985,29.53985,0.004666201106872227,29.538681640625,29.5469361328125,29.54772978515625,29.548364707031247,"[29.534837890625, 29.546759765625, 29.542654296875, 29.540826171875, 29.5363359375, 29.535224609375, 29.54083984375, 29.5359609375, 29.5485234375, 29.536537109375]",tokens/s,2.132712251416307,kWh,0.0003485870901164082,0.0001910528620806053,0.0016025825737317144,0.002142222525928728,tokens/kWh,29408.709523623045,,s,629,299.5096441345215,0.47616795569876236,0.06052059742525611,0.46878207397460936,0.46948126220703124,0.4697759826660156,0.977483603515625,"[0.4688783264160156, 0.46847384643554685, 0.46878515625, 0.4694343566894531, 0.4695541687011719, 0.46879034423828125, 0.4688465270996094, 0.46848306274414064, 0.46828851318359377, 0.4686806945800781, 0.46836428833007815, 0.4685475769042969, 0.4686540832519531, 0.46948455810546874, 0.4689162292480469, 0.46845745849609377, 0.4684011535644531, 0.4683714599609375, 0.4684134521484375, 0.46870220947265623, 0.468790283203125, 0.4682076110839844, 0.4684062805175781, 0.46837042236328125, 0.469607421875, 0.46908721923828123, 0.4688885803222656, 0.4687656860351562, 0.4693012390136719, 0.4686929931640625, 0.46864382934570314, 0.468430908203125, 0.4682413330078125, 0.4685291442871094, 0.46904525756835935, 0.4706498413085938, 0.46837042236328125, 0.4685875244140625, 0.4687718505859375, 0.4685537414550781, 0.46882406616210937, 0.46856805419921876, 0.4686806945800781, 0.46866943359375, 0.4686581726074219, 0.4682403869628906, 0.4695777893066406, 0.4685884704589844, 0.4686663818359375, 0.4685537414550781, 0.46855987548828126, 0.4685066223144531, 0.4687831115722656, 0.46864794921875, 0.4684666748046875, 0.4691046447753906, 0.46919476318359377, 0.4684984436035156, 0.4691128234863281, 0.4691221008300781, 0.46927557373046874, 0.46959002685546875, 0.977623046875, 0.46814208984375, 0.4683407287597656, 0.46863873291015623, 0.46877490234375, 0.46880459594726565, 0.4687513732910156, 0.46857113647460935, 0.468421630859375, 0.46894284057617186, 0.4688281555175781, 0.46850765991210935, 0.4687431640625, 0.4691404724121094, 0.4699504699707031, 0.46978561401367186, 0.46937701416015626, 0.4690975341796875, 0.4691311950683594, 0.47030169677734374, 0.4690933837890625, 0.4689039306640625, 0.4690298767089844, 0.46860595703125, 0.4687359924316406, 0.4692275085449219, 0.46936166381835936, 0.46901248168945314, 0.46843902587890623, 0.46878106689453125, 0.46938113403320314, 0.46973849487304686, 0.46935861206054685, 0.4687390441894531, 0.4685845031738281, 0.46890591430664064, 0.46899813842773436, 0.4688281555175781, 0.4687083435058594, 0.4687564697265625, 0.4687308654785156, 0.4687615966796875, 0.4689858703613281, 0.4688762817382813, 0.46893264770507814, 0.46929302978515625, 0.46915994262695315, 0.4696995849609375, 0.4688701477050781, 0.4687912902832031, 0.4691885986328125, 0.46969558715820314, 0.4696114196777344, 0.4692490234375, 0.46899301147460937, 0.46896435546875, 0.4694558715820312, 0.46925927734375, 0.4685393981933594, 0.4686530456542969, 0.46877902221679685, 0.4687155151367188, 0.46934527587890623, 0.9787330322265625, 0.468917236328125, 0.46886502075195313, 0.46889984130859375, 0.4691875915527344, 0.4684267578125, 0.46861004638671877, 0.46856500244140625, 0.46833560180664063, 0.4684933166503906, 0.4683735046386719, 0.4683263854980469, 0.4683735046386719, 0.468236328125, 0.46872265625, 0.4684236755371094, 0.46842572021484374, 0.46854452514648437, 0.46859982299804687, 0.4687155151367188, 0.46844732666015626, 0.4685188293457031, 0.4686991577148438, 0.46980194091796873, 0.46855987548828126, 0.4690032653808594, 0.46884454345703125, 0.4687575073242187, 0.4688609313964844, 0.4688558044433594, 0.4689459228515625, 0.46866329956054686, 0.4685557861328125, 0.46875238037109374, 0.4686827392578125, 0.46909747314453126, 0.46889984130859375, 0.4689756164550781, 0.46924798583984373, 0.46901144409179685, 0.4689469299316406, 0.46897048950195314, 0.46984909057617186, 0.4700190734863281, 0.4696781005859375, 0.469550048828125, 0.4697763977050781, 0.47159500122070314, 0.46917837524414063, 0.4684482421875, 0.4692193298339844, 0.46906060791015625, 0.4689141845703125, 0.46894284057617186, 0.468885498046875, 0.469064697265625, 0.46948043823242186, 0.4687861633300781, 0.4690513916015625, 0.46873907470703124, 0.46875341796875, 0.4690708618164062, 0.46917938232421874, 0.9775615844726563, 0.46874624633789064, 0.46858853149414065, 0.4686796875, 0.46987161254882814, 0.46889370727539065, 0.4687656860351562, 0.468790283203125, 0.4687278137207031, 0.46867864990234376, 0.4685322265625, 0.46837454223632813, 0.4686530456542969, 0.46875955200195313, 0.46893466186523436, 0.468706298828125, 0.4689858703613281, 0.46853018188476564, 0.46881585693359373, 0.46894796752929685, 0.4691353454589844, 0.46871038818359373, 0.46851071166992186, 0.468632568359375, 0.46843902587890623, 0.46874725341796875, 0.468890625, 0.4688670654296875, 0.46844723510742187, 0.468490234375, 0.4689090576171875, 0.46941900634765626, 0.46909030151367187, 0.4689100952148437, 0.4687175598144531, 0.46938113403320314, 0.4690616455078125, 0.4687718505859375, 0.46904730224609376, 0.4689336242675781, 0.4687933349609375, 0.46920501708984375, 0.46855471801757814, 0.4687718505859375, 0.47131646728515625, 0.4688424987792969, 0.46912005615234376, 0.4692090148925781, 0.4688189392089844, 0.4685926513671875, 0.4688619384765625, 0.46930743408203124, 0.4693247680664063, 0.4690636901855469, 0.46892135620117187, 0.4687145690917969, 0.4691373291015625, 0.4687145080566406, 0.4686673889160156, 0.46867352294921877, 0.46872677612304686, 0.4689254455566406, 0.46927871704101565, 0.9772830810546875, 0.46864077758789063, 0.4684922790527344, 0.46857421875, 0.46906878662109375, 0.4690033264160156, 0.46841543579101563, 0.4685895690917969, 0.46849639892578127, 0.468279296875, 0.46869912719726564, 0.4685619201660156, 0.4687575073242187, 0.46905242919921875, 0.46849432373046873, 0.46846875, 0.46872576904296875, 0.46877490234375, 0.4686592102050781, 0.4684892272949219, 0.4687974548339844, 0.46863565063476564, 0.4685844421386719, 0.46846157836914065, 0.46825778198242185, 0.4684994506835938, 0.4686448669433594, 0.46830081176757815, 0.46856805419921876, 0.4685209655761719, 0.46874929809570315, 0.4689264526367187, 0.46845541381835937, 0.4686520385742188, 0.46867770385742186, 0.46937490844726565, 0.46933709716796873, 0.4687554626464844, 0.4690616455078125, 0.46915789794921875, 0.46891213989257813, 0.46888754272460936, 0.4687278137207031, 0.46915277099609376, 0.4688332824707031, 0.4693790588378906, 0.46926437377929686, 0.46878515625, 0.4690831298828125, 0.46895718383789065, 0.4689776611328125, 0.4690616455078125, 0.46907391357421874, 0.46851788330078126, 0.46869195556640625, 0.4686376953125, 0.46900634765625, 0.4722012023925781, 0.4687718505859375, 0.4688670654296875, 0.46880459594726565, 0.468642822265625, 0.4693155822753906, 0.9763594360351563, 0.46846771240234375, 0.46886502075195313, 0.4687083740234375, 0.4689837646484375, 0.4684646301269531, 0.4687247314453125, 0.46836224365234375, 0.4683929748535156, 0.4685619201660156, 0.46836737060546874, 0.4687503356933594, 0.46857830810546874, 0.46878411865234376, 0.4683345947265625, 0.468358154296875, 0.46845849609375, 0.4687032470703125, 0.4686520385742188, 0.4686458740234375, 0.46885784912109374, 0.46872677612304686, 0.4685823974609375, 0.46873095703125, 0.4685475158691406, 0.468790283203125, 0.46927053833007815, 0.46861822509765627, 0.46847589111328125, 0.46836224365234375, 0.470181884765625, 0.4690575256347656, 0.4688353271484375, 0.4692449340820313, 0.4685137939453125, 0.46857217407226565, 0.46875238037109374, 0.46873190307617185, 0.4689664001464844, 0.4691271667480469, 0.4686090087890625, 0.4692101135253906, 0.4687974548339844, 0.469317626953125, 0.4686315612792969, 0.46899917602539065, 0.4692490234375, 0.4690309143066406, 0.4687646789550781, 0.46850253295898436, 0.4687083435058594, 0.46883941650390626, 0.46927871704101565, 0.4686152038574219, 0.4694292297363281, 0.4691435546875, 0.46974566650390626, 0.4686940307617187, 0.468969482421875, 0.46890188598632815, 0.46895001220703125, 0.4687564697265625, 0.46904730224609376, 0.9786060791015625, 0.46841650390625, 0.4683786315917969, 0.46915994262695315, 0.46917938232421874, 0.4692777099609375, 0.46883636474609375, 0.468716552734375, 0.46857318115234375, 0.4691128234863281, 0.468600830078125, 0.4694783935546875, 0.46952960205078126, 0.4696739807128906, 0.4687196044921875, 0.46852505493164065, 0.46841854858398435, 0.4683591613769531, 0.4683100280761719, 0.4684431457519531, 0.4690411376953125, 0.4687923278808594, 0.4687216491699219, 0.46836224365234375, 0.4686090087890625, 0.4691363830566406, 0.46857113647460935, 0.46862335205078126, 0.46869094848632814, 0.4686581726074219, 0.4694435729980469, 0.4694640502929687, 0.46918450927734373, 0.46924288940429687, 0.4694343566894531, 0.4690462646484375, 0.469317626953125, 0.46890188598632815, 0.46938323974609375, 0.4693267822265625, 0.46866329956054686, 0.4690370483398438, 0.468864013671875, 0.4687575073242187, 0.4686438598632813, 0.46876776123046876, 0.46984698486328125, 0.4690380859375, 0.46935552978515627, 0.46853836059570314, 0.46839910888671876, 0.46874008178710935, 0.46875955200195313, 0.4687667236328125, 0.4688209838867187, 0.4691302490234375, 0.46921624755859376, 0.4689674377441406, 0.46906777954101564, 0.46867864990234376, 0.46859161376953123, 0.46864794921875, 0.4688332824707031, 0.980326416015625, 0.468701171875, 0.46863360595703124, 0.468738037109375, 0.46885989379882814, 0.4684267578125, 0.468389892578125, 0.46853839111328127, 0.46828131103515624, 0.4683601989746094, 0.46820352172851565, 0.467962890625, 0.4681553955078125, 0.4686499938964844, 0.4686612548828125, 0.4687503356933594, 0.46850253295898436, 0.4680570983886719, 0.4683458557128906, 0.46834994506835936, 0.46889471435546876, 0.46862130737304686, 0.4687196044921875, 0.46831512451171875, 0.4685035400390625, 0.4694077453613281, 0.4687421569824219, 0.4688087158203125, 0.4701829528808594, 0.4684830322265625, 0.4688619384765625, 0.4692244567871094, 0.46869094848632814, 0.4689715270996094, 0.46905548095703126, 0.4686315612792969, 0.468864013671875, 0.4689029235839844, 0.46895001220703125, 0.46892340087890627, 0.46898687744140627, 0.469212158203125, 0.46885272216796875, 0.4688230285644531, 0.46921624755859376, 0.46866943359375, 0.46926849365234374, 0.46906777954101564, 0.469248046875, 0.4691763000488281, 0.46952960205078126, 0.4694057006835938, 0.46893157958984377, 0.4688035888671875, 0.4690667419433594, 0.4687615966796875, 0.4690288696289063, 0.46915890502929686, 0.46848818969726563, 0.4687585144042969, 0.4686315612792969, 0.4686049194335937, 0.46867352294921877, 0.9793843383789063, 0.4697733154296875, 0.46955825805664064, 0.46915890502929686, 0.46897869873046877, 0.4683345947265625, 0.46859982299804687, 0.468316162109375, 0.46864694213867186, 0.4686110534667969, 0.46845745849609377, 0.46816357421875, 0.4684892272949219, 0.46949169921875, 0.46866842651367185, 0.46861312866210936, 0.4686090087890625, 0.4685424499511719, 0.46886605834960937, 0.4688752746582031, 0.46871353149414063, 0.4691127624511719, 0.46852615356445315, 0.46842361450195313, 0.46897665405273437, 0.4689141845703125, 0.4685926513671875, 0.46885989379882814, 0.468421630859375, 0.4683888549804687, 0.46856600952148436, 0.4689182739257812, 0.46858547973632814, 0.46870220947265623, 0.4691896362304688, 0.46975283813476565, 0.46981631469726565, 0.4697753601074219, 0.470096923828125, 0.469834716796875, 0.46959820556640625, 0.4698542175292969, 0.46952243041992187, 0.4697272338867188, 0.4697907104492188, 0.4687656860351562, 0.4691937255859375, 0.46966680908203123, 0.46944461059570314, 0.46914764404296877, 0.469760009765625, 0.4693544921875, 0.46949993896484377, 0.4696063537597656, 0.46877694702148437, 0.4688281555175781, 0.4692244567871094, 0.468706298828125, 0.4684646301269531, 0.46868582153320315, 0.4686725158691406, 0.46858547973632814, 0.4686612548828125, 0.9803509521484375, 0.46829159545898436, 0.4681697387695313, 0.4690083923339844, 0.46880972290039064, 0.46866329956054686, 0.4685547485351563, 0.46837042236328125, 0.468105224609375, 0.4683243713378906, 0.46842364501953127, 0.4681779174804688, 0.4683816833496094, 0.4685599365234375, 0.4682454528808594, 0.46819635009765626, 0.46841036987304685, 0.46834994506835936, 0.468537353515625, 0.46845849609375, 0.46887115478515623, 0.46867352294921877, 0.46852197265625, 0.46868377685546875, 0.46900018310546876, 0.46878207397460936, 0.4686499938964844, 0.4685537414550781, 0.46879437255859374, 0.4684031982421875, 0.4687779846191406, 0.4690032653808594, 0.4684912719726563, 0.46856298828125, 0.46899917602539065, 0.4696033020019531, 0.4696708984375, 0.469855224609375, 0.4690411376953125, 0.468674560546875, 0.46875442504882814, 0.469359619140625, 0.4701552734375, 0.469064697265625, 0.46861312866210936, 0.4686315612792969, 0.4697047119140625, 0.4690083923339844, 0.46888754272460936, 0.46868582153320315, 0.469073974609375, 0.4693411254882813, 0.4695132141113281, 0.46920089721679686, 0.46941696166992186, 0.46919271850585936, 0.46985626220703125, 0.46913946533203127, 0.46915789794921875, 0.4686253967285156, 0.46875955200195313, 0.468642822265625, 0.4691517333984375]",tokens/s,2.1000993200656053,,,,, 4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,,cuda,0,42,,,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,main,False,False,MB,1562.181632,1957.167104,0.0,1310.72,1163.955712,s,10,1.3245970916748049,0.13245970916748048,0.001266998397567483,0.13200260162353517,0.1341699493408203,0.13443305816650392,0.1346435452270508,"[0.1346961669921875, 0.1341114807128906, 0.1312022705078125, 0.13115029907226564, 0.13112367248535156, 0.1315875244140625, 0.13163551330566406, 0.13236968994140624, 0.13365353393554688, 0.13306694030761718]",tokens/s,1932.6631593031557,kWh,1.5487117942793545e-06,8.486256414471426e-07,6.508118482104666e-06,8.905455917831163e-06,tokens/kWh,28746422.683134936,MB,1562.181632,1959.264256,0.0,1312.817152,1232.77568,s,10,76.92137255859376,7.692137255859374,0.017487914910414803,7.693824951171875,7.702772509765625,7.711682641601563,7.718810747070313,"[7.69504345703125, 7.69082470703125, 7.6926064453125, 7.6866689453125, 7.7205927734375, 7.69639892578125, 7.6467568359375, 7.70079248046875, 7.69208056640625, 7.699607421875]",tokens/s,8.190181467707257,kWh,9.084797721340027e-05,4.979003748630931e-05,0.0003722497123017,0.0005128877270014096,tokens/kWh,122833.9004489902,,s,629,77.98684770965575,0.12398544945891218,0.01575529620495015,0.121744384765625,0.12330782623291016,0.12368689422607422,0.2534359008789062,"[0.12507750701904297, 0.12424604797363281, 0.1234441909790039, 0.12341862487792969, 0.12180786895751954, 0.1224120330810547, 0.12155903625488282, 0.12088832092285157, 0.12079001617431641, 0.12080332946777343, 0.1209518051147461, 0.12134912109375, 0.12099378967285156, 0.12220416259765625, 0.12147408294677735, 0.12154876708984375, 0.12117708587646485, 0.12111360168457032, 0.12086067199707032, 0.12105318450927735, 0.12099174499511718, 0.12216934204101562, 0.12297727966308594, 0.12166143798828125, 0.12153446197509765, 0.12155801391601563, 0.12161023712158203, 0.12131839752197265, 0.12115455627441406, 0.12147609710693359, 0.12320972442626953, 0.12328857421875, 0.12294041442871094, 0.1213460464477539, 0.12115360260009765, 0.12151289367675781, 0.12153343963623046, 0.12244172668457032, 0.12324454498291015, 0.12321791839599609, 0.1221396484375, 0.123504638671875, 0.12190930938720704, 0.12093536376953125, 0.12353228759765625, 0.1231247329711914, 0.12405248260498047, 0.12286566162109375, 0.12216831970214843, 0.1221580810546875, 0.12220928192138672, 0.12256153869628907, 0.12320460510253907, 0.12468940734863282, 0.12308889770507812, 0.1220997085571289, 0.12128972625732422, 0.12146380615234376, 0.12163587188720704, 0.12112380981445313, 0.12155289459228516, 0.12149759674072266, 0.2558975982666016, 0.12277452850341797, 0.12251545715332031, 0.12256665802001954, 0.12305101013183593, 0.12229837036132812, 0.1212968978881836, 0.1239582748413086, 0.12347596740722656, 0.12176076507568359, 0.12155289459228516, 0.12141977691650391, 0.1213685760498047, 0.1208463363647461, 0.12073062133789063, 0.1210040283203125, 0.12351385498046875, 0.12159487915039062, 0.12144640350341797, 0.12170649719238281, 0.12249292755126953, 0.12232396697998046, 0.12123442840576172, 0.12141567993164062, 0.12308889770507812, 0.12184268951416016, 0.1215098876953125, 0.12254208374023437, 0.12142387390136719, 0.12173619079589844, 0.12151910400390625, 0.12153446197509765, 0.12306739044189453, 0.12236492919921875, 0.12201881408691406, 0.12173824310302735, 0.12155699157714844, 0.12209356689453126, 0.12139315032958985, 0.12139520263671875, 0.12346572875976562, 0.12301107025146485, 0.12293836975097656, 0.12192870330810547, 0.12156313323974609, 0.12141056060791015, 0.12382415771484374, 0.12120060729980468, 0.12172902679443359, 0.12317593383789062, 0.12274995422363282, 0.12246323394775391, 0.12149657440185548, 0.12139110565185547, 0.12291788482666016, 0.12123340606689453, 0.12196150207519531, 0.12387631988525391, 0.12276838684082031, 0.12148223876953125, 0.12265267181396484, 0.1214044189453125, 0.12125389099121094, 0.25443635559082034, 0.12313497924804688, 0.12153446197509765, 0.12169830322265625, 0.12147097778320312, 0.12127334594726563, 0.12249088287353516, 0.1221396484375, 0.12196044921875, 0.12192460632324219, 0.12144742584228516, 0.1228226547241211, 0.12275917053222657, 0.12112697601318359, 0.12176787567138672, 0.1217228775024414, 0.12139424133300782, 0.12269356536865235, 0.1223720932006836, 0.12153343963623046, 0.1215478057861328, 0.12162351989746094, 0.12261682891845703, 0.12271308898925781, 0.1215098876953125, 0.12233932495117188, 0.12170342254638672, 0.121238525390625, 0.12113817596435547, 0.12111769866943359, 0.12136653137207032, 0.12165529632568359, 0.1218897933959961, 0.121744384765625, 0.12428594970703125, 0.12338790130615235, 0.12270489501953125, 0.1215129623413086, 0.12190310668945313, 0.12194918060302734, 0.12152114868164063, 0.12212838745117187, 0.12310630035400391, 0.12293427276611328, 0.12179046630859375, 0.12117298889160157, 0.12185906982421875, 0.12301107025146485, 0.1216522216796875, 0.120953857421875, 0.12247654724121093, 0.12268236541748047, 0.12308684539794922, 0.12277657318115234, 0.12169420623779297, 0.12158668518066407, 0.12113510131835938, 0.1211361312866211, 0.1227540512084961, 0.12328550720214844, 0.12320972442626953, 0.12324147033691406, 0.12298242950439453, 0.25302217102050784, 0.1215467529296875, 0.12238642883300781, 0.12331622314453125, 0.12284416198730469, 0.12259225463867188, 0.1225902099609375, 0.12293222045898437, 0.12212531280517579, 0.12088832092285157, 0.12144127655029296, 0.12321894073486328, 0.12279398345947265, 0.12161740875244141, 0.12199628448486328, 0.12130611419677734, 0.12155699157714844, 0.12218367767333985, 0.12152627563476562, 0.12282061004638672, 0.12332236480712891, 0.12172697448730468, 0.1214730224609375, 0.12131743621826171, 0.12206380462646485, 0.12272434997558594, 0.12205158233642578, 0.12277043151855468, 0.12318822479248047, 0.12324352264404297, 0.12150886535644531, 0.12119551849365234, 0.12129280090332031, 0.12111567687988281, 0.1214658203125, 0.12191129302978515, 0.12111974334716796, 0.1216358413696289, 0.12116377258300781, 0.12117708587646485, 0.12161539459228515, 0.1231072998046875, 0.12339097595214844, 0.12407295989990234, 0.12407295989990234, 0.12135116577148437, 0.12155903625488282, 0.12125183868408203, 0.12111154937744141, 0.1215272979736328, 0.12139315032958985, 0.12157440185546875, 0.12285030364990235, 0.12157644653320313, 0.1217976303100586, 0.12137881469726562, 0.12175360107421875, 0.12123750305175782, 0.12148838043212891, 0.12119859313964844, 0.12210585784912109, 0.12211199951171875, 0.12212940979003906, 0.2530303955078125, 0.12125593566894531, 0.12254003143310546, 0.1212252197265625, 0.12286156463623046, 0.12248985290527344, 0.12266598510742187, 0.12236185455322265, 0.12159385681152343, 0.1212590103149414, 0.12165631866455077, 0.12115660858154297, 0.12235878753662109, 0.12386713409423829, 0.1217802276611328, 0.12304691314697265, 0.12239974212646484, 0.12245503997802734, 0.12413849639892578, 0.12299366760253906, 0.12299263763427734, 0.12301107025146485, 0.12142489624023438, 0.12230963134765625, 0.12332236480712891, 0.12175052642822265, 0.12143718719482421, 0.12149247741699219, 0.1212938232421875, 0.12226150512695312, 0.12151193237304687, 0.12162457275390624, 0.12326092529296875, 0.12302438354492187, 0.12452352142333985, 0.12339405059814453, 0.12212735748291016, 0.12276131439208984, 0.12299766540527343, 0.1216911392211914, 0.12096409606933593, 0.12123033905029297, 0.12140953826904297, 0.12123238372802735, 0.12380467224121093, 0.12290969848632813, 0.12300806427001953, 0.12272940826416015, 0.12320665740966796, 0.12299878692626953, 0.12275917053222657, 0.12293119812011719, 0.12306432342529297, 0.12317798614501953, 0.12322406768798828, 0.12217958068847656, 0.1228267822265625, 0.12593353271484375, 0.1234872283935547, 0.12296601867675781, 0.12340940856933594, 0.12347187042236328, 0.12346470642089843, 0.25439436340332033, 0.12301414489746093, 0.1228062744140625, 0.1231431655883789, 0.12312268829345703, 0.12464742279052735, 0.12372991943359375, 0.1234708480834961, 0.12335411071777344, 0.12233523559570313, 0.12217958068847656, 0.12264959716796875, 0.12329881286621094, 0.12281549072265625, 0.12341248321533203, 0.123109375, 0.12312268829345703, 0.12331110382080078, 0.12178943634033203, 0.12153343963623046, 0.12128153228759765, 0.12127027130126954, 0.12139008331298828, 0.12159487915039062, 0.12141875457763672, 0.12109516906738281, 0.12095590209960938, 0.12107469177246094, 0.12224205017089844, 0.1224263687133789, 0.12177005004882813, 0.12150163269042968, 0.12146585845947265, 0.12140953826904297, 0.12113005065917969, 0.12179347229003906, 0.12241817474365234, 0.12146585845947265, 0.1236316146850586, 0.12164096069335938, 0.12152934265136718, 0.12139622497558594, 0.12146688079833984, 0.12121600341796875, 0.12141567993164062, 0.12133478546142579, 0.12168498992919922, 0.1214167709350586, 0.12150675201416015, 0.12333977508544922, 0.12334899139404297, 0.12139826965332032, 0.12266291046142579, 0.12162457275390624, 0.1213675537109375, 0.12148838043212891, 0.123219970703125, 0.12320358276367188, 0.12155494689941407, 0.12110848236083985, 0.12138294219970704, 0.12153238677978516, 0.12358963012695312, 0.25359359741210935, 0.12145458984375, 0.12112588500976562, 0.12119039916992187, 0.12124671936035156, 0.12149964904785156, 0.12119961547851563, 0.12119245147705078, 0.12146688079833984, 0.12120269012451172, 0.12097740936279297, 0.1208616943359375, 0.12124671936035156, 0.12146176147460938, 0.12102349090576171, 0.1214505615234375, 0.12145657348632813, 0.12126924896240235, 0.12115869140625, 0.12115657806396485, 0.12137574768066406, 0.12156928253173828, 0.12129894256591797, 0.1242234878540039, 0.12195740509033202, 0.12128765106201173, 0.12127436828613282, 0.12119142150878906, 0.12085968017578125, 0.12119548797607421, 0.12113203430175781, 0.12153139495849609, 0.12129587554931641, 0.12157234954833984, 0.12127641296386718, 0.12110438537597656, 0.12128870391845703, 0.12145970916748047, 0.12127846527099609, 0.12160921478271484, 0.12154879760742188, 0.1213306884765625, 0.12123238372802735, 0.12116070556640625, 0.12110643005371094, 0.12110031890869141, 0.12115042877197266, 0.12125593566894531, 0.12130406188964844, 0.12108185577392579, 0.12092108917236329, 0.12128562927246093, 0.12140748596191406, 0.12148838043212891, 0.12150784301757812, 0.12131737518310547, 0.12162969970703125, 0.12153958129882812, 0.122281982421875, 0.12196249389648438, 0.12154879760742188, 0.1211883544921875, 0.12114022064208985, 0.25422848510742185, 0.12144435119628906, 0.12121600341796875, 0.12331622314453125, 0.12173926544189453, 0.12114329528808594, 0.1231800308227539, 0.1233438720703125, 0.1232721939086914, 0.12304691314697265, 0.12367155456542969, 0.12309913635253907, 0.12304998779296875, 0.12310630035400391, 0.12295680236816406, 0.12294348907470704, 0.12386918640136718, 0.12152320098876954, 0.12160205078125, 0.121059326171875, 0.12094258880615234, 0.12096717071533203, 0.12145868682861329, 0.12323331451416016, 0.12289020538330078, 0.12314832305908203, 0.1236971206665039, 0.12315955352783203, 0.12311039733886718, 0.12137471771240234, 0.12235366058349609, 0.1222451171875, 0.1222973403930664, 0.12167884826660157, 0.12279296112060546, 0.12148735809326172, 0.12146995544433593, 0.12277760314941406, 0.12156723022460937, 0.1216358413696289, 0.12169728088378906, 0.12312166595458984, 0.12145664215087891, 0.12275507354736329, 0.1232353286743164, 0.12311347198486328, 0.123072509765625, 0.1227171859741211, 0.12111154937744141, 0.12276019287109376, 0.12255232238769531, 0.12235059356689452, 0.12264141082763672, 0.1211514892578125, 0.12123545837402344, 0.12166246032714843, 0.12119347381591797, 0.12130201721191407, 0.12149964904785156, 0.12166246032714843, 0.12141875457763672, 0.12106034851074218, 0.12132147216796875, 0.25745306396484374, 0.12312064361572266, 0.12307865905761718, 0.12312166595458984, 0.12121913909912109, 0.12116063690185547, 0.1212774429321289, 0.12236185455322265, 0.1215498275756836, 0.12132454681396485, 0.12093132781982421, 0.12260454559326171, 0.12201676940917969, 0.12116480255126953, 0.12119449615478516, 0.121206787109375, 0.12122112274169922, 0.12207103729248046, 0.12143001556396485, 0.12134400177001953, 0.12148531341552735, 0.12378009796142578, 0.12321279907226562, 0.12303257751464844, 0.12391117095947266, 0.12308889770507812, 0.12307762908935548, 0.12230758666992188, 0.12212636566162109, 0.12145769500732422, 0.12122207641601562, 0.12131123352050781, 0.12108799743652343, 0.1211156463623047, 0.12251033782958984, 0.12306432342529297, 0.12318310546875, 0.12159795379638672, 0.12140850830078125, 0.12139520263671875, 0.12131839752197265, 0.12117196655273438, 0.12120371246337891, 0.12156723022460937, 0.12148941040039063, 0.12145664215087891, 0.12146892547607421, 0.1215447006225586, 0.12250316619873047, 0.12295782470703125, 0.12217036437988281, 0.12270387268066406, 0.12305919647216797, 0.12331520080566406, 0.12305203247070312, 0.12250521850585938, 0.12303667449951172, 0.12276838684082031, 0.12293427276611328, 0.12293427276611328, 0.12159283447265624, 0.12137062072753907, 0.12141670227050781, 0.2548654022216797, 0.1212416000366211, 0.12151193237304687, 0.12308480072021484, 0.12140338897705077, 0.12150377655029297, 0.12124156951904297, 0.121275390625, 0.12150374603271484, 0.12148838043212891, 0.12146482849121094, 0.12227788543701172, 0.12289740753173828, 0.12292819213867187, 0.12136339569091797, 0.1211822052001953, 0.12195027160644531, 0.12174432373046876, 0.12153241729736328, 0.12099174499511718, 0.12128463745117188, 0.12138390350341798, 0.121385986328125, 0.12258918762207031, 0.1230161895751953, 0.12225638580322265, 0.12275917053222657, 0.12151602935791016, 0.12140850830078125, 0.12134809875488281, 0.12176076507568359, 0.1217791976928711, 0.12272946929931641, 0.12169420623779297, 0.12219187164306641, 0.12145561981201172, 0.12164096069335938, 0.12145254516601563, 0.12175360107421875, 0.12436787414550782, 0.1233602523803711, 0.12332339477539063, 0.1232701416015625, 0.12218675231933594, 0.1233039321899414, 0.12280217742919922, 0.12283596801757812, 0.1221048355102539, 0.12304793548583984, 0.1227509765625, 0.12293023681640625, 0.12202182769775391, 0.12274483489990234, 0.1233070068359375, 0.12290560150146485, 0.12302130889892578, 0.1229496307373047, 0.12324864196777344, 0.12319129943847656, 0.12199935913085938, 0.12175363159179688, 0.12325577545166015, 0.12313600158691407]",tokens/s,8.06546255519598,,,,, 4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,,cuda,0,42,,,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,main,False,False,MB,1888.280576,15194.390528,0.0,14547.943424,13898.252288,s,10,16.972713500976564,1.6972713500976564,0.0011802396473078822,1.6969771728515626,1.6988580200195311,1.699245782470703,1.6995559924316406,"[1.6969825439453126, 1.6969718017578126, 1.6960919189453125, 1.6958106689453125, 1.6964619140625, 1.69635986328125, 1.6974122314453124, 1.6982171630859375, 1.699633544921875, 1.6987718505859375]",tokens/s,150.83033127570937,kWh,2.0026979611979592e-05,1.097496669508473e-05,9.603446571639917e-05,0.0001270364120234635,tokens/kWh,2015170.2643547354,MB,1888.280576,15194.390528,0.0,14547.943424,14315.97312,s,10,986.8612499999999,98.68612499999999,0.014850841233799409,98.68501953125,98.70599609374999,98.707103515625,98.707989453125,"[98.6797109375, 98.687671875, 98.6747890625, 98.6555546875, 98.6919140625, 98.6783203125, 98.6969609375, 98.7082109375, 98.70575, 98.6823671875]",tokens/s,0.6383876152802637,kWh,0.0011649224273860455,0.0006384806384544572,0.00558826860950019,0.007391671675340693,tokens/kWh,8523.105836826315,,s,629,1000.5712542724599,1.5907333136287136,0.2015788363996436,1.5663739013671876,1.5674868164062499,1.5676927978515625,3.262457841796875,"[1.5671644287109374, 1.5661424560546875, 1.56664013671875, 1.5672913818359375, 1.566525390625, 1.5666636962890625, 1.56687158203125, 1.566798828125, 1.565517822265625, 1.56556494140625, 1.56592333984375, 1.56533251953125, 1.5655465087890625, 1.5658004150390625, 1.565998046875, 1.5670538330078125, 1.5664508056640625, 1.56584033203125, 1.5667855224609375, 1.5674542236328124, 1.567055908203125, 1.5672022705078126, 1.5673907470703126, 1.56657666015625, 1.5663001708984374, 1.566665771484375, 1.5659376220703125, 1.5659520263671876, 1.5661055908203125, 1.566899169921875, 1.5660892333984375, 1.566604248046875, 1.5656611328125, 1.5667138671875, 1.565654052734375, 1.566857177734375, 1.5661802978515624, 1.5664854736328124, 1.5667210693359375, 1.5670538330078125, 1.56666162109375, 1.566857177734375, 1.5659581298828125, 1.565955078125, 1.5662294921875, 1.5661065673828125, 1.566191650390625, 1.5659642333984376, 1.5664527587890624, 1.5659898681640625, 1.5656510009765625, 1.5664803466796875, 1.566614501953125, 1.566317626953125, 1.5665059814453124, 1.565919189453125, 1.5657093505859374, 1.5657308349609376, 1.5665244140625, 1.565981689453125, 1.5660799560546874, 1.56632373046875, 3.263318115234375, 1.5650416259765625, 1.5667425537109374, 1.5671868896484376, 1.5674766845703125, 1.566899169921875, 1.5670477294921874, 1.567247314453125, 1.5669462890625, 1.566482421875, 1.56721044921875, 1.567352783203125, 1.56718603515625, 1.5668541259765625, 1.565632568359375, 1.5655035400390624, 1.565454345703125, 1.566171142578125, 1.5655423583984376, 1.5656632080078126, 1.565739013671875, 1.5655546875, 1.56594384765625, 1.565739990234375, 1.5656090087890624, 1.5654093017578126, 1.5656141357421876, 1.5657379150390625, 1.565550537109375, 1.5656468505859376, 1.566182373046875, 1.56573388671875, 1.5660994873046874, 1.566614501953125, 1.5671705322265626, 1.5668858642578125, 1.5673907470703126, 1.5655372314453124, 1.5656827392578125, 1.567224853515625, 1.5674173583984374, 1.567141845703125, 1.567562744140625, 1.56704150390625, 1.566593994140625, 1.5660902099609375, 1.56824267578125, 1.56689404296875, 1.5673763427734375, 1.5663564453125, 1.566992431640625, 1.567836181640625, 1.5679334716796876, 1.5667803955078126, 1.5659478759765626, 1.566908447265625, 1.566277587890625, 1.5658690185546875, 1.5664803466796875, 1.5664271240234375, 1.5662049560546876, 1.5662171630859374, 1.5660595703125, 3.26247021484375, 1.5656990966796875, 1.5657799072265626, 1.566017578125, 1.5667598876953126, 1.565744140625, 1.566393310546875, 1.56580859375, 1.56586083984375, 1.5654072265625, 1.56617529296875, 1.5659202880859375, 1.5659725341796875, 1.5665029296875, 1.5664486083984375, 1.5655260009765626, 1.5660780029296875, 1.5663062744140626, 1.5667117919921876, 1.566983154296875, 1.5657728271484375, 1.565895751953125, 1.566373779296875, 1.5677890625, 1.566457763671875, 1.5663277587890625, 1.566962646484375, 1.566697509765625, 1.5665489501953125, 1.566899169921875, 1.56623046875, 1.566688232421875, 1.5666124267578125, 1.5657093505859374, 1.566341064453125, 1.5660462646484374, 1.5663482666015625, 1.566123046875, 1.5662838134765624, 1.5664619140625, 1.56621826171875, 1.566017578125, 1.5659622802734374, 1.565760498046875, 1.5661669921875, 1.566396484375, 1.5663912353515625, 1.5682620849609374, 1.5664476318359375, 1.5661475830078124, 1.56608203125, 1.56626123046875, 1.5659765625, 1.5659632568359374, 1.565811767578125, 1.56657763671875, 1.5658956298828124, 1.5657799072265626, 1.5660042724609375, 1.566275634765625, 1.5663533935546874, 1.56682958984375, 1.566255126953125, 3.26236865234375, 1.5657420654296874, 1.5653990478515625, 1.5662427978515625, 1.565697021484375, 1.5651962890625, 1.56592333984375, 1.5652525634765626, 1.5654676513671875, 1.5651666259765624, 1.56598583984375, 1.5653150634765625, 1.5663011474609374, 1.5655894775390624, 1.5655516357421875, 1.565338623046875, 1.5655577392578126, 1.5656806640625, 1.56554345703125, 1.56598779296875, 1.5655843505859375, 1.5654718017578124, 1.5656263427734376, 1.5660400390625, 1.5658824462890626, 1.5657850341796875, 1.5657625732421876, 1.5657196044921875, 1.56554443359375, 1.566350341796875, 1.5656375732421874, 1.5655997314453125, 1.566192626953125, 1.565496337890625, 1.5660390625, 1.566271484375, 1.5658936767578124, 1.565685791015625, 1.5660216064453125, 1.5656141357421876, 1.565828125, 1.566434326171875, 1.5664906005859376, 1.5654307861328125, 1.56860107421875, 1.56617529296875, 1.566096435546875, 1.5658311767578126, 1.5665806884765625, 1.5662591552734375, 1.5666104736328126, 1.56617724609375, 1.566076904296875, 1.5665244140625, 1.566587890625, 1.56634521484375, 1.5658741455078125, 1.5661434326171875, 1.566371826171875, 1.5663533935546874, 1.566328857421875, 1.5666011962890625, 1.5661240234375, 3.263153076171875, 1.56556494140625, 1.565706298828125, 1.5666165771484375, 1.566034912109375, 1.566002197265625, 1.5660831298828124, 1.565319091796875, 1.5665797119140625, 1.5655751953125, 1.5664332275390624, 1.5658896484375, 1.5659744873046875, 1.5658916015625, 1.566130126953125, 1.5668695068359375, 1.5666226806640624, 1.5660933837890625, 1.566509033203125, 1.5661363525390626, 1.5657738037109374, 1.5658199462890625, 1.5663206787109376, 1.5657840576171875, 1.566213134765625, 1.5667742919921874, 1.5661240234375, 1.5659315185546876, 1.565498291015625, 1.5660472412109374, 1.5656407470703124, 1.56573486328125, 1.566254150390625, 1.56568359375, 1.5663575439453126, 1.566123046875, 1.5667579345703124, 1.5663963623046875, 1.5667947998046876, 1.5661865234375, 1.5662919921875, 1.5661158447265624, 1.5670897216796875, 1.56710302734375, 1.567573974609375, 1.5670128173828124, 1.5670006103515626, 1.5675535888671874, 1.568489501953125, 1.5677030029296875, 1.5673804931640625, 1.5675074462890626, 1.5675924072265626, 1.56819970703125, 1.56786181640625, 1.5679241943359374, 1.5680113525390624, 1.5678955078125, 1.56760888671875, 1.5664681396484375, 1.5662049560546876, 1.5662213134765626, 1.5661905517578125, 3.262426025390625, 1.5655628662109375, 1.56493212890625, 1.5661669921875, 1.5657431640625, 1.5655537109375, 1.5660482177734374, 1.5657359619140625, 1.5666063232421874, 1.5661004638671876, 1.5656785888671876, 1.5670230712890625, 1.5668284912109376, 1.5666944580078126, 1.566755859375, 1.566581787109375, 1.5667763671875, 1.5658946533203124, 1.5655372314453124, 1.5659530029296875, 1.565708251953125, 1.5669320068359376, 1.56744091796875, 1.566341064453125, 1.5660360107421876, 1.5659837646484376, 1.5658629150390626, 1.5660892333984375, 1.565887451171875, 1.56593359375, 1.5656898193359374, 1.5661455078125, 1.566086181640625, 1.5658076171875, 1.5659263916015624, 1.5658218994140625, 1.56609033203125, 1.56613525390625, 1.5673641357421875, 1.5665848388671875, 1.5666175537109375, 1.5664681396484375, 1.5664619140625, 1.566224365234375, 1.5664588623046876, 1.5661363525390626, 1.5667579345703124, 1.5667978515625, 1.5667178955078125, 1.5658916015625, 1.5658680419921875, 1.5657728271484375, 1.5670528564453126, 1.567161376953125, 1.5674490966796875, 1.567394775390625, 1.567477783203125, 1.56653369140625, 1.5658792724609376, 1.56665966796875, 1.5675699462890624, 1.56628076171875, 1.5665899658203124, 3.26359765625, 1.5656744384765624, 1.565328369140625, 1.566392333984375, 1.565917236328125, 1.566066650390625, 1.567247314453125, 1.56674560546875, 1.567057861328125, 1.566623779296875, 1.5667916259765624, 1.5669647216796876, 1.56680810546875, 1.5664117431640625, 1.566813232421875, 1.5673231201171876, 1.566376953125, 1.5661844482421876, 1.567056884765625, 1.567025146484375, 1.566773193359375, 1.5668214111328125, 1.5673548583984376, 1.568668701171875, 1.567552490234375, 1.566614501953125, 1.566899169921875, 1.567447021484375, 1.5675135498046875, 1.5669381103515625, 1.5667794189453126, 1.567139892578125, 1.5667916259765624, 1.566656494140625, 1.566287841796875, 1.5665806884765625, 1.5664046630859374, 1.5664854736328124, 1.56649169921875, 1.56577587890625, 1.5662652587890624, 1.5666688232421875, 1.5665521240234375, 1.56607080078125, 1.5668214111328125, 1.5663809814453125, 1.5665684814453125, 1.5666226806640624, 1.566630859375, 1.5663360595703124, 1.566734375, 1.5659100341796874, 1.566339111328125, 1.5664271240234375, 1.5667056884765624, 1.5661854248046876, 1.5660308837890624, 1.56668310546875, 1.5665264892578126, 1.5664742431640626, 1.5667752685546874, 1.5658568115234375, 1.566477294921875, 3.26474853515625, 1.5660062255859375, 1.5659560546875, 1.5659263916015624, 1.5657471923828126, 1.5661905517578125, 1.5662623291015625, 1.5657779541015624, 1.5659345703125, 1.5662991943359375, 1.5659427490234374, 1.565487060546875, 1.566613525390625, 1.56559765625, 1.56596533203125, 1.566318603515625, 1.566983154296875, 1.5657728271484375, 1.5661322021484374, 1.566572509765625, 1.5666114501953126, 1.5659100341796874, 1.56704150390625, 1.56611376953125, 1.5677716064453124, 1.5673876953125, 1.5676068115234374, 1.5671654052734374, 1.5670262451171875, 1.5657738037109374, 1.5667547607421874, 1.5669217529296875, 1.5676558837890624, 1.56761083984375, 1.567972412109375, 1.567614990234375, 1.5675115966796875, 1.5676702880859374, 1.56752587890625, 1.567363037109375, 1.567826904296875, 1.567635498046875, 1.5676488037109375, 1.5662724609375, 1.5680296630859376, 1.567309814453125, 1.567677490234375, 1.567458251953125, 1.5668489990234375, 1.565865966796875, 1.566993408203125, 1.5673487548828124, 1.567581298828125, 1.566005126953125, 1.5679825439453126, 1.567009765625, 1.566161865234375, 1.5676138916015625, 1.56758935546875, 1.5667568359375, 1.5663258056640625, 1.566224365234375, 1.5670302734375, 3.26736279296875, 1.5667579345703124, 1.5664261474609376, 1.5665531005859374, 1.5668193359375, 1.566329833984375, 1.5663739013671876, 1.566214111328125, 1.5671173095703126, 1.565612060546875, 1.5653099365234375, 1.565854736328125, 1.5658486328125, 1.5660902099609375, 1.566256103515625, 1.5667547607421874, 1.5674736328125, 1.56900244140625, 1.5678065185546874, 1.567677490234375, 1.5673057861328126, 1.5676702880859374, 1.5678648681640626, 1.566625732421875, 1.566234619140625, 1.5665244140625, 1.565811767578125, 1.566467041015625, 1.5663380126953126, 1.5663995361328125, 1.56670458984375, 1.566562255859375, 1.56580859375, 1.5658076171875, 1.567499267578125, 1.566665771484375, 1.5675023193359374, 1.5676190185546874, 1.5666585693359374, 1.5654676513671875, 1.5674849853515624, 1.5671900634765625, 1.567220703125, 1.5676558837890624, 1.5666514892578125, 1.5663369140625, 1.5666441650390626, 1.566841796875, 1.566866455078125, 1.56685107421875, 1.567130615234375, 1.5664896240234376, 1.5665152587890625, 1.5667691650390625, 1.56735693359375, 1.5668797607421876, 1.5669544677734375, 1.565843505859375, 1.5657564697265625, 1.5662509765625, 1.5679661865234376, 1.567494140625, 1.5670753173828125, 3.26488671875, 1.56588232421875, 1.5666165771484375, 1.56659912109375, 1.5660400390625, 1.565919189453125, 1.5653775634765625, 1.5651685791015626, 1.5665255126953126, 1.5655526123046875, 1.56554443359375, 1.565875244140625, 1.565812744140625, 1.56569091796875, 1.56594384765625, 1.566340087890625, 1.565750244140625, 1.5661793212890625, 1.5670374755859375, 1.5664691162109374, 1.5666708984375, 1.5669124755859376, 1.5670743408203125, 1.565885498046875, 1.567392822265625, 1.56645068359375, 1.567561767578125, 1.5667598876953126, 1.566843994140625, 1.566246826171875, 1.56635546875, 1.5664219970703126, 1.565961181640625, 1.5663524169921874, 1.5675914306640626, 1.56609326171875, 1.5661405029296875, 1.5667711181640624, 1.566587890625, 1.5662694091796876, 1.566982177734375, 1.566482421875, 1.566496826171875, 1.5665531005859374, 1.5663370361328126, 1.5661158447265624, 1.566561279296875, 1.566202880859375, 1.566286865234375, 1.5659674072265626, 1.5661629638671875, 1.5660155029296876, 1.566634033203125, 1.5668284912109376, 1.5664476318359375, 1.5665438232421875, 1.5667864990234375, 1.5668736572265625, 1.56661865234375, 1.5671204833984376, 1.566720947265625, 1.5667332763671875, 1.566159912109375]",tokens/s,0.6286408862079101,,,,, 4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,,,,,MB,1767.067648,22129.672192,0.0,21483.225088,20799.168,s,10,28.05056616210938,2.805056616210938,0.0027095714336187707,2.804907958984375,2.8082408447265625,2.808313903808594,2.808372351074219,"[2.805282470703125, 2.808224609375, 2.803196533203125, 2.80234619140625, 2.80277294921875, 2.800419677734375, 2.804533447265625, 2.80722705078125, 2.80817626953125, 2.808386962890625]",tokens/s,91.26375507735885,kWh,3.3081144508388305e-05,1.8129723654910774e-05,0.00015725384802519894,0.000208464716188498,tokens/kWh,1228025.5607789264,MB,1772.261376,22129.672192,0.0,21483.225088,20902.144,s,10,1667.162484375,166.71624843749996,0.015085835868376713,166.71732031250002,166.73279531249997,166.73349140624998,166.73404828124998,"[166.730125, 166.715734375, 166.68440625, 166.724703125, 166.7341875, 166.71721875, 166.708265625, 166.717421875, 166.69778125, 166.732640625]",tokens/s,0.377887581987055,kWh,0.0019678901955319777,0.0010785770549249355,0.009270038554913802,0.012316505805370715,tokens/kWh,5115.087103074991,,s,629,1689.7617126464822,2.686425616290118,0.33327430639158717,2.64620947265625,2.6474256835937497,2.647894970703125,5.4507228125000005,"[2.646453369140625, 2.646373291015625, 2.64631591796875, 2.6454580078125, 2.646531982421875, 2.647617431640625, 2.64826171875, 2.647658447265625, 2.647793701171875, 2.64637646484375, 2.64711376953125, 2.64620947265625, 2.646602783203125, 2.646426513671875, 2.64635498046875, 2.64557568359375, 2.644958251953125, 2.647402587890625, 2.64601904296875, 2.646287353515625, 2.647202880859375, 2.64688525390625, 2.646246337890625, 2.646867919921875, 2.64715478515625, 2.647743408203125, 2.646212646484375, 2.647287841796875, 2.648404052734375, 2.64638671875, 2.64559912109375, 2.647835693359375, 2.648161376953125, 2.6474189453125, 2.647456787109375, 2.6468076171875, 2.646687744140625, 2.64502880859375, 2.646285400390625, 2.646274169921875, 2.64652490234375, 2.64616455078125, 2.64710546875, 2.6460908203125, 2.646740966796875, 2.645139404296875, 2.646036376953125, 2.646411376953125, 2.64627099609375, 2.64452197265625, 2.64525830078125, 2.647901123046875, 2.64601806640625, 2.645980224609375, 2.64719677734375, 2.64639990234375, 2.64538720703125, 2.645042236328125, 2.64540576171875, 2.646120361328125, 2.646118408203125, 2.64612353515625, 5.45506494140625, 2.64526025390625, 2.6462626953125, 2.64690576171875, 2.646042724609375, 2.64546826171875, 2.646393798828125, 2.647192626953125, 2.644919189453125, 2.644935791015625, 2.645579833984375, 2.647086181640625, 2.646035400390625, 2.644955078125, 2.645644287109375, 2.645537841796875, 2.644991943359375, 2.645560302734375, 2.646414306640625, 2.645199951171875, 2.646506591796875, 2.646548583984375, 2.64702880859375, 2.64570166015625, 2.644788330078125, 2.64700732421875, 2.646330322265625, 2.64543017578125, 2.645243896484375, 2.646043701171875, 2.645831787109375, 2.6459453125, 2.64614697265625, 2.64631494140625, 2.64669091796875, 2.646116455078125, 2.647741455078125, 2.6478857421875, 2.645671875, 2.647362548828125, 2.646822998046875, 2.648393798828125, 2.647374755859375, 2.64627294921875, 2.646519775390625, 2.645937255859375, 2.6523720703125, 2.647458740234375, 2.646916015625, 2.6467646484375, 2.644612060546875, 2.645245849609375, 2.64698779296875, 2.646232177734375, 2.645567626953125, 2.645909423828125, 2.64679541015625, 2.64620947265625, 2.645465087890625, 2.646067138671875, 2.6467060546875, 2.6458798828125, 2.6457109375, 5.4513837890625, 2.647235595703125, 2.645803955078125, 2.64654443359375, 2.64496533203125, 2.64464892578125, 2.645158935546875, 2.646266845703125, 2.64560546875, 2.646096923828125, 2.64475537109375, 2.64629052734375, 2.644760498046875, 2.64480859375, 2.6463427734375, 2.64760009765625, 2.645761962890625, 2.645760986328125, 2.646381591796875, 2.646036376953125, 2.64513134765625, 2.646679443359375, 2.6458369140625, 2.6495498046875, 2.646917236328125, 2.644770751953125, 2.645843017578125, 2.644592529296875, 2.6452919921875, 2.6457333984375, 2.64617578125, 2.64542822265625, 2.645474365234375, 2.644977783203125, 2.6475703125, 2.645327880859375, 2.64601611328125, 2.64604052734375, 2.644948974609375, 2.645347412109375, 2.64539453125, 2.64572314453125, 2.645024658203125, 2.64540771484375, 2.64523681640625, 2.64541796875, 2.644529052734375, 2.649079833984375, 2.645666748046875, 2.646816650390625, 2.645528564453125, 2.645729248046875, 2.6472724609375, 2.646464599609375, 2.644356201171875, 2.644589599609375, 2.64574267578125, 2.645088134765625, 2.6443017578125, 2.644094970703125, 2.64595556640625, 2.645572509765625, 2.644812744140625, 5.4503955078125, 2.645255126953125, 2.645544921875, 2.64656884765625, 2.648037353515625, 2.645263427734375, 2.64638671875, 2.6460732421875, 2.6460478515625, 2.645971923828125, 2.645147705078125, 2.646581298828125, 2.6468291015625, 2.64502880859375, 2.645927978515625, 2.64683935546875, 2.64574365234375, 2.645297119140625, 2.64578662109375, 2.645689453125, 2.64529296875, 2.645930908203125, 2.64618798828125, 2.64557373046875, 2.645583984375, 2.64784375, 2.6465341796875, 2.645923828125, 2.648280029296875, 2.647232421875, 2.64726220703125, 2.646688720703125, 2.646456298828125, 2.647128173828125, 2.64785009765625, 2.6451201171875, 2.645867431640625, 2.645412841796875, 2.647185302734375, 2.644790283203125, 2.645506103515625, 2.64781005859375, 2.6459228515625, 2.64651171875, 2.6510693359375, 2.647773193359375, 2.6475908203125, 2.648330322265625, 2.646329345703125, 2.64608349609375, 2.64578759765625, 2.64604150390625, 2.646233154296875, 2.647012451171875, 2.644991943359375, 2.6461533203125, 2.646445068359375, 2.6459423828125, 2.646255615234375, 2.647103515625, 2.64721826171875, 2.6459013671875, 2.646496337890625, 5.45085009765625, 2.646131591796875, 2.647123046875, 2.64625244140625, 2.6469755859375, 2.645900146484375, 2.64694384765625, 2.6482001953125, 2.647193603515625, 2.646340576171875, 2.646576171875, 2.647742431640625, 2.645885986328125, 2.64563916015625, 2.645662841796875, 2.646833251953125, 2.64673291015625, 2.648217529296875, 2.645130126953125, 2.648642578125, 2.64700732421875, 2.6464482421875, 2.645592041015625, 2.646584228515625, 2.64501953125, 2.64555224609375, 2.64648388671875, 2.6452490234375, 2.646088623046875, 2.64539453125, 2.646591552734375, 2.645818359375, 2.6455, 2.645107666015625, 2.647025634765625, 2.64500830078125, 2.647201904296875, 2.6471865234375, 2.647762939453125, 2.6468916015625, 2.646411376953125, 2.645792724609375, 2.647160888671875, 2.64576611328125, 2.645645263671875, 2.646044677734375, 2.647015380859375, 2.64671435546875, 2.645159912109375, 2.646703125, 2.646371337890625, 2.646978515625, 2.6460908203125, 2.648290283203125, 2.646096923828125, 2.646834228515625, 2.6468515625, 2.654116943359375, 2.646571044921875, 2.646265869140625, 2.647033935546875, 2.645507080078125, 2.64506884765625, 5.44818896484375, 2.646950927734375, 2.64728466796875, 2.64570068359375, 2.647045166015625, 2.645780517578125, 2.64650341796875, 2.647185302734375, 2.647396240234375, 2.64726416015625, 2.645887939453125, 2.646220947265625, 2.646308837890625, 2.6452724609375, 2.645916748046875, 2.6456513671875, 2.64530029296875, 2.645833740234375, 2.64532275390625, 2.646921142578125, 2.645572509765625, 2.646182861328125, 2.646026123046875, 2.646593505859375, 2.646531005859375, 2.646508544921875, 2.646131591796875, 2.647275634765625, 2.646612060546875, 2.646274169921875, 2.645583984375, 2.646960205078125, 2.647244873046875, 2.6451845703125, 2.6467060546875, 2.646052001953125, 2.64616650390625, 2.645667724609375, 2.652001220703125, 2.64635693359375, 2.645919677734375, 2.646162353515625, 2.64641845703125, 2.645307373046875, 2.644989013671875, 2.646035400390625, 2.645531494140625, 2.645157958984375, 2.645906494140625, 2.645951416015625, 2.646036376953125, 2.645796875, 2.64467041015625, 2.645960693359375, 2.64549267578125, 2.64652294921875, 2.64587255859375, 2.647626708984375, 2.646477783203125, 2.646447021484375, 2.646128662109375, 2.64745263671875, 2.646246337890625, 5.45296484375, 2.646928466796875, 2.647333984375, 2.646259765625, 2.64629443359375, 2.64618701171875, 2.6448466796875, 2.646443115234375, 2.646686767578125, 2.6447626953125, 2.64540576171875, 2.64494287109375, 2.645835693359375, 2.645675048828125, 2.64589404296875, 2.64648095703125, 2.64646044921875, 2.646432861328125, 2.646467529296875, 2.645669921875, 2.64584814453125, 2.6454580078125, 2.64523486328125, 2.650271728515625, 2.647341064453125, 2.64589306640625, 2.64591064453125, 2.64768505859375, 2.64700830078125, 2.64631201171875, 2.645865478515625, 2.647047119140625, 2.646507568359375, 2.64665087890625, 2.647560302734375, 2.645760986328125, 2.645769287109375, 2.645876708984375, 2.645303466796875, 2.646839111328125, 2.646023193359375, 2.645792724609375, 2.64610400390625, 2.646148193359375, 2.646067138671875, 2.64551416015625, 2.645665771484375, 2.64494482421875, 2.645905517578125, 2.645917724609375, 2.645688232421875, 2.64422705078125, 2.64477587890625, 2.64602001953125, 2.646118408203125, 2.645832763671875, 2.64635888671875, 2.646981689453125, 2.645694580078125, 2.6462197265625, 2.6456484375, 2.647057373046875, 2.646053955078125, 5.45440771484375, 2.64606103515625, 2.64624853515625, 2.645525390625, 2.6462197265625, 2.646288330078125, 2.64601806640625, 2.6458369140625, 2.6465341796875, 2.64682080078125, 2.6460498046875, 2.645517333984375, 2.646379638671875, 2.645887939453125, 2.645572509765625, 2.645886962890625, 2.6497626953125, 2.645772216796875, 2.64593603515625, 2.64641748046875, 2.64673681640625, 2.645414794921875, 2.644895751953125, 2.6456689453125, 2.646624267578125, 2.64646142578125, 2.645294921875, 2.646984619140625, 2.646635498046875, 2.64559619140625, 2.644748291015625, 2.64690576171875, 2.64658642578125, 2.645821533203125, 2.6462392578125, 2.647307373046875, 2.64610205078125, 2.647371826171875, 2.64780078125, 2.64745263671875, 2.646867919921875, 2.64559814453125, 2.646322265625, 2.6461328125, 2.6461328125, 2.6467666015625, 2.64734619140625, 2.647150634765625, 2.6465341796875, 2.646138916015625, 2.645937255859375, 2.64439697265625, 2.645222412109375, 2.646958984375, 2.646992919921875, 2.647083984375, 2.64567822265625, 2.646795166015625, 2.645927978515625, 2.646295654296875, 2.64530224609375, 2.646948974609375, 2.646352783203125, 5.45413623046875, 2.646625244140625, 2.6464501953125, 2.647415771484375, 2.64749462890625, 2.64658837890625, 2.645314453125, 2.647509033203125, 2.647132080078125, 2.64675537109375, 2.646547607421875, 2.646182861328125, 2.64610302734375, 2.6463896484375, 2.646077392578125, 2.64599853515625, 2.646762451171875, 2.64707080078125, 2.646077392578125, 2.64540576171875, 2.646277099609375, 2.64477392578125, 2.645159912109375, 2.6459638671875, 2.64671240234375, 2.646478759765625, 2.645445556640625, 2.646115234375, 2.646445068359375, 2.645536865234375, 2.64454443359375, 2.646118408203125, 2.645505126953125, 2.644704345703125, 2.6460517578125, 2.64701953125, 2.645275634765625, 2.64492431640625, 2.645380126953125, 2.645751708984375, 2.64485888671875, 2.64445654296875, 2.645286865234375, 2.646550537109375, 2.646221923828125, 2.645315673828125, 2.6454169921875, 2.64634375, 2.645382080078125, 2.6473984375, 2.646042724609375, 2.64547119140625, 2.644828125, 2.64538720703125, 2.646898681640625, 2.646388671875, 2.64596484375, 2.6477158203125, 2.64626171875, 2.6452685546875, 2.645350341796875, 2.6460498046875, 2.644905029296875, 5.4557060546875, 2.64730419921875, 2.64740966796875, 2.646350830078125, 2.645677978515625, 2.6465546875, 2.64831689453125, 2.64722119140625, 2.646279052734375, 2.645445556640625, 2.646408203125, 2.646245361328125, 2.646921142578125, 2.64698974609375, 2.646667236328125, 2.646288330078125, 2.64876953125, 2.647458740234375, 2.645729248046875, 2.645494873046875, 2.646150146484375, 2.6453955078125, 2.6452890625, 2.6467861328125, 2.647785400390625, 2.646699951171875, 2.65012744140625, 2.64613671875, 2.646697998046875, 2.6466845703125, 2.646642578125, 2.6476943359375, 2.64681787109375, 2.645788818359375, 2.646158203125, 2.647160888671875, 2.645675048828125, 2.64652490234375, 2.64439306640625, 2.64669189453125, 2.646427734375, 2.64625146484375, 2.646435791015625, 2.645409912109375, 2.646538330078125, 2.64618505859375, 2.6468310546875, 2.647814208984375, 2.645505126953125, 2.645622802734375, 2.6466826171875, 2.646696044921875, 2.6457548828125, 2.6469130859375, 2.6469990234375, 2.64591259765625, 2.64690185546875, 2.64622705078125, 2.64720703125, 2.646657958984375, 2.645370849609375, 2.645916748046875, 2.646266845703125]",tokens/s,0.3722418346281902,,,,, 4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,,cuda,0,42,,,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,main,False,False,MB,1310.69952,921.174016,0.0,274.726912,220.646912,s,10,0.36048070526123044,0.03604807052612304,0.0010977874344766398,0.03588955307006836,0.036477619552612306,0.03779876155853271,0.03885567516326904,"[0.03911990356445313, 0.03553478240966797, 0.03469347381591797, 0.035817951202392576, 0.036184032440185546, 0.035873409271240234, 0.03543529510498047, 0.03591993713378906, 0.03590569686889648, 0.03599622344970703]",tokens/s,7101.628360787961,kWh,4.1762897090252873e-07,2.2884077887720709e-07,9.141624902616015e-07,1.5606322400413373e-06,tokens/kWh,164036083.2179266,MB,1311.0272,921.174016,0.0,274.726912,250.723328,s,10,21.866080322265628,2.186608032226563,0.01854961703991556,2.191078857421875,2.2041080810546876,2.2073608032226564,2.2099629809570316,"[2.1803974609375, 2.17111474609375, 2.154228759765625, 2.200171142578125, 2.210613525390625, 2.181986572265625, 2.161680419921875, 2.20071923828125, 2.20338525390625, 2.201783203125]",tokens/s,28.81174818325753,kWh,2.578141039891902e-05,1.4128932798644376e-05,5.28597971955373e-05,9.27701403931007e-05,tokens/kWh,679097.8188999841,,s,629,22.151173107147223,0.03521649142630718,0.004356343174673542,0.03486105728149414,0.035241778564453125,0.03557929000854492,0.07092830078125002,"[0.03474124908447265, 0.03529420852661133, 0.03632339096069336, 0.03650860977172852, 0.036083713531494144, 0.037152767181396484, 0.03645132827758789, 0.036311038970947264, 0.03472588729858399, 0.0354252815246582, 0.03531980895996094, 0.03479657745361328, 0.03465929412841797, 0.03616358566284179, 0.035585025787353515, 0.03515903854370117, 0.03486105728149414, 0.034651134490966795, 0.034900993347167966, 0.03449958419799805, 0.03328102493286133, 0.03349708938598633, 0.033560577392578124, 0.03324620819091797, 0.033328128814697267, 0.033255424499511715, 0.033754112243652344, 0.033223743438720706, 0.03327481460571289, 0.033438720703125, 0.0335175666809082, 0.03376332855224609, 0.03339468765258789, 0.03345305633544922, 0.03355033493041992, 0.034203647613525394, 0.03342233657836914, 0.03335372924804687, 0.0336732177734375, 0.03367116928100586, 0.03360870361328125, 0.03362508773803711, 0.03436441421508789, 0.03604377746582031, 0.03504127883911133, 0.03473920059204102, 0.0348037109375, 0.03472895812988281, 0.03472895812988281, 0.03479865646362305, 0.03479955291748047, 0.03479449462890625, 0.03474739074707031, 0.03478220748901367, 0.0347064323425293, 0.034907135009765625, 0.03474431991577148, 0.03473715209960938, 0.03485388946533203, 0.034683902740478514, 0.035019775390625, 0.0350750732421875, 0.0711178207397461, 0.0347955207824707, 0.034948097229003904, 0.03439616012573242, 0.03447808074951172, 0.03496755218505859, 0.034920448303222655, 0.0348590087890625, 0.034699264526367186, 0.0346163215637207, 0.03491430282592774, 0.03490304183959961, 0.03508019256591797, 0.034423809051513675, 0.03472793579101562, 0.03449446487426758, 0.03476377487182617, 0.03476582336425781, 0.03468902587890625, 0.03387494277954101, 0.0342210578918457, 0.034008094787597656, 0.03374998474121094, 0.03369062423706055, 0.033459201812744144, 0.03354937744140625, 0.03469715118408203, 0.03489484786987305, 0.03487027359008789, 0.03510067367553711, 0.03503513717651367, 0.03503923034667969, 0.03469619369506836, 0.03455590438842773, 0.03517852783203125, 0.03441353607177734, 0.03464704132080078, 0.03492659378051758, 0.034506752014160154, 0.03476070404052734, 0.03487846374511719, 0.03493478393554687, 0.03499212646484375, 0.034945056915283206, 0.035192798614501954, 0.03450265502929688, 0.03448524856567383, 0.03455487823486328, 0.034563072204589845, 0.03503104019165039, 0.03474431991577148, 0.03377872085571289, 0.03339875030517578, 0.03340800094604492, 0.03347558212280274, 0.03381350326538086, 0.033650688171386715, 0.033535999298095705, 0.033334270477294925, 0.03363123321533203, 0.03390771102905273, 0.03361996841430664, 0.03386880111694336, 0.06886093139648437, 0.03341823959350586, 0.03395993423461914, 0.03393228912353516, 0.03374387359619141, 0.03333529663085937, 0.0334919662475586, 0.03423027038574219, 0.03382476806640625, 0.03374387359619141, 0.0336824951171875, 0.033724353790283206, 0.03363532638549805, 0.033941505432128906, 0.03381760025024414, 0.033503231048583985, 0.03344998550415039, 0.033301502227783206, 0.033445888519287106, 0.033957889556884766, 0.03387801742553711, 0.03366092681884766, 0.03360153579711914, 0.03381043243408203, 0.033825790405273434, 0.03360870361328125, 0.03370703887939453, 0.03348271942138672, 0.03366502380371094, 0.03378995132446289, 0.03319193649291992, 0.03369267272949219, 0.03357900619506836, 0.033358848571777344, 0.0341104621887207, 0.03495731353759766, 0.03543961715698242, 0.03482316970825195, 0.034435073852539064, 0.034557952880859374, 0.034900993347167966, 0.034678783416748044, 0.03517542266845703, 0.03521023941040039, 0.035046398162841795, 0.03481702423095703, 0.03453235244750977, 0.03470131301879883, 0.03486412811279297, 0.03474739074707031, 0.03477196884155274, 0.03457843017578125, 0.034781185150146485, 0.03486310577392578, 0.035125247955322264, 0.03486617660522461, 0.03496243286132812, 0.03503513717651367, 0.03523891067504883, 0.03469823837280273, 0.0339128303527832, 0.03414220809936523, 0.035117088317871095, 0.0711659164428711, 0.03465318298339844, 0.03465727996826172, 0.03458355331420898, 0.034283519744873044, 0.034304000854492187, 0.03577958297729492, 0.03595161437988281, 0.03544473648071289, 0.03500543975830078, 0.03521843338012695, 0.03495935821533203, 0.0349194221496582, 0.0354252815246582, 0.03515903854370117, 0.0349306869506836, 0.03492454528808594, 0.036211711883544925, 0.03564441680908203, 0.03498086547851562, 0.034841598510742186, 0.034941951751708986, 0.03537612915039062, 0.034994174957275394, 0.0350382080078125, 0.03486105728149414, 0.03484672164916992, 0.03494297790527344, 0.03524095916748047, 0.03526041412353516, 0.03520614242553711, 0.03488153457641602, 0.03502796936035156, 0.03500543975830078, 0.03404185485839844, 0.033903617858886716, 0.03378073501586914, 0.03472281646728516, 0.03411251068115234, 0.03379097747802735, 0.03348787307739258, 0.0343633918762207, 0.03492659378051758, 0.03500339126586914, 0.03493788909912109, 0.03485590362548828, 0.034895870208740236, 0.034948097229003904, 0.03518771362304687, 0.034479103088378905, 0.03459174346923828, 0.035253280639648436, 0.034963424682617185, 0.034976768493652347, 0.03491843032836914, 0.034911201477050784, 0.035046398162841795, 0.03507199859619141, 0.03536383819580078, 0.03499929428100586, 0.03523379135131836, 0.03531161499023437, 0.03527679824829102, 0.07160934448242187, 0.0352624626159668, 0.03535769653320313, 0.03481087875366211, 0.03554921722412109, 0.034968544006347656, 0.03489491271972656, 0.034890689849853516, 0.03483238220214844, 0.034993152618408206, 0.035932159423828124, 0.03508838272094727, 0.03496755218505859, 0.03476377487182617, 0.03488358306884766, 0.03527884674072266, 0.03521228790283203, 0.035040256500244144, 0.03476684951782227, 0.03499622344970703, 0.03482316970825195, 0.03518259048461914, 0.03503411102294922, 0.036178943634033206, 0.039564289093017575, 0.035097599029541016, 0.03457843017578125, 0.03505561447143555, 0.034756607055664065, 0.0350013427734375, 0.03477811050415039, 0.035004417419433595, 0.03501772689819336, 0.0348671989440918, 0.03473100662231445, 0.0349224967956543, 0.03482931137084961, 0.03578777694702148, 0.0350115852355957, 0.03483443069458008, 0.03486412811279297, 0.03486207962036133, 0.034938880920410156, 0.03505561447143555, 0.035004417419433595, 0.034887680053710936, 0.034531326293945314, 0.03493580627441406, 0.03510067367553711, 0.03492454528808594, 0.034887680053710936, 0.03578879928588867, 0.034974720001220705, 0.03519180679321289, 0.034850879669189455, 0.03495315170288086, 0.035060768127441404, 0.034809825897216796, 0.03377766418457031, 0.03550620651245117, 0.034968544006347656, 0.034915328979492184, 0.03489177703857422, 0.07134719848632813, 0.03493273544311523, 0.03501465606689453, 0.03539148712158203, 0.03512319946289062, 0.034813953399658204, 0.03508019256591797, 0.03486515045166016, 0.035079166412353514, 0.03493580627441406, 0.034939903259277344, 0.034925567626953126, 0.03743027114868164, 0.034576385498046876, 0.03397836685180664, 0.03377356719970703, 0.03403878402709961, 0.03371724700927734, 0.03380223846435547, 0.03486310577392578, 0.03486412811279297, 0.03496243286132812, 0.03475046539306641, 0.03492659378051758, 0.03499622344970703, 0.034783233642578126, 0.033949695587158206, 0.033876991271972655, 0.03427123260498047, 0.03477811050415039, 0.03472076797485352, 0.034127872467041014, 0.03329740905761719, 0.0333834228515625, 0.03379814529418945, 0.03392409515380859, 0.03363532638549805, 0.03386982345581055, 0.03498086547851562, 0.034928638458251955, 0.03496345520019531, 0.03495423889160156, 0.03523891067504883, 0.03508838272094727, 0.034769920349121096, 0.03489279937744141, 0.03482624053955078, 0.034955265045166016, 0.03508838272094727, 0.03486412811279297, 0.03486515045166016, 0.03471769714355469, 0.034560001373291016, 0.034579456329345705, 0.03481292724609375, 0.03479244613647461, 0.034802688598632815, 0.03475254440307617, 0.03517948913574219, 0.03433884811401367, 0.033702880859375, 0.03359539031982422, 0.034111488342285154, 0.07044096374511719, 0.03437670516967774, 0.03483238220214844, 0.0348671989440918, 0.03470438385009766, 0.035230720520019534, 0.034816001892089846, 0.03467366409301758, 0.0347770881652832, 0.03501055908203125, 0.03429580688476563, 0.03443609619140625, 0.03509964752197266, 0.03524505615234375, 0.0347248649597168, 0.034753536224365236, 0.03496345520019531, 0.03496448135375976, 0.034770942687988284, 0.034799617767333986, 0.03484467315673828, 0.03481190490722656, 0.034353153228759765, 0.034062335968017575, 0.03349094390869141, 0.033584129333496096, 0.033587200164794925, 0.034141185760498044, 0.0347740478515625, 0.0345906867980957, 0.0344268798828125, 0.03489484786987305, 0.03420979309082031, 0.03364352035522461, 0.03377356719970703, 0.033686527252197264, 0.033290241241455076, 0.0337520637512207, 0.03401932907104492, 0.03371417617797851, 0.03375513458251953, 0.033691646575927735, 0.03370809555053711, 0.03350316619873047, 0.03325439834594727, 0.03360255813598633, 0.033860607147216795, 0.03376230239868164, 0.033691646575927735, 0.033783809661865234, 0.033797119140625, 0.03425177764892578, 0.03381452941894531, 0.033791999816894534, 0.033675262451171875, 0.03391385650634766, 0.034165760040283204, 0.03502899169921875, 0.03486822509765625, 0.034702335357666016, 0.035046398162841795, 0.03521535873413086, 0.034825214385986326, 0.07150080108642579, 0.03484364700317383, 0.034351104736328124, 0.03453747177124023, 0.035064830780029296, 0.03482931137084961, 0.03483238220214844, 0.03492659378051758, 0.034974720001220705, 0.03501465606689453, 0.034869247436523435, 0.034830337524414064, 0.034277374267578126, 0.034797569274902344, 0.03501363372802734, 0.03530342483520508, 0.0351016960144043, 0.03491635131835937, 0.03483238220214844, 0.03484672164916992, 0.03495116806030273, 0.03500646209716797, 0.03499827194213867, 0.03480678558349609, 0.03486207962036133, 0.03505152130126953, 0.034784255981445314, 0.034783233642578126, 0.034835456848144535, 0.03493580627441406, 0.034770942687988284, 0.035037185668945314, 0.035019775390625, 0.0342476806640625, 0.03505049514770508, 0.034315265655517575, 0.03477913665771484, 0.034791454315185544, 0.0353023681640625, 0.03562700653076172, 0.03510374450683594, 0.03493580627441406, 0.035156993865966796, 0.03526144027709961, 0.03488256072998047, 0.034933761596679686, 0.03517337417602539, 0.0348590087890625, 0.0352911376953125, 0.035888126373291016, 0.03522048187255859, 0.03506073760986328, 0.03483955383300781, 0.03486105728149414, 0.03498400115966797, 0.03498387145996094, 0.03485494232177734, 0.03438998413085938, 0.03479244613647461, 0.03507712173461914, 0.03500339126586914, 0.03471257781982422, 0.03476684951782227, 0.07122022247314454, 0.03482316970825195, 0.03523276901245117, 0.034941951751708986, 0.03477196884155274, 0.034991104125976565, 0.03495731353759766, 0.034939903259277344, 0.03488153457641602, 0.034900993347167966, 0.0347955207824707, 0.0350300178527832, 0.03487948989868164, 0.03520614242553711, 0.035297279357910154, 0.03513651275634765, 0.03494297790527344, 0.0349378547668457, 0.034948097229003904, 0.03488051223754883, 0.03481497573852539, 0.03454873657226563, 0.03495935821533203, 0.035062782287597655, 0.035043327331542966, 0.0349306869506836, 0.03497881698608398, 0.034909183502197266, 0.03493791961669922, 0.03483539199829101, 0.034869247436523435, 0.035031105041503904, 0.03493983840942383, 0.03483340835571289, 0.03487744140625, 0.03489484786987305, 0.03516108703613281, 0.03484364700317383, 0.034969600677490234, 0.035146751403808595, 0.035194881439208986, 0.03479244613647461, 0.03557068634033203, 0.03522969436645508, 0.035337215423583986, 0.03480473709106445, 0.03436236953735351, 0.033745918273925785, 0.03496755218505859, 0.03541401672363281, 0.03512934494018555, 0.035163135528564454, 0.0348487663269043, 0.03500339126586914, 0.03484467315673828, 0.03498495864868164, 0.03576115036010742, 0.03517030334472656, 0.03490816116333008, 0.034825214385986326, 0.0347586555480957, 0.03516723251342774, 0.035053569793701174, 0.07151315307617187, 0.03519071960449219, 0.03483852767944336, 0.03482419204711914, 0.03502592086791992, 0.03529216003417969, 0.035125247955322264, 0.034872318267822264, 0.034939903259277344, 0.0347658576965332, 0.03481699371337891, 0.03497267150878906, 0.03488665771484375, 0.034958335876464845, 0.035007488250732424, 0.03504537582397461, 0.03489382553100586, 0.03520716857910156, 0.034988033294677735, 0.034874366760253905, 0.03459481430053711, 0.03430297470092773, 0.0346879997253418, 0.03478732681274414, 0.03508736038208008, 0.0354856948852539, 0.034981952667236325, 0.0348732795715332, 0.03489382553100586, 0.03475558471679688, 0.03478732681274414, 0.03488358306884766, 0.03473920059204102, 0.03476172637939453, 0.034685951232910156, 0.035111934661865234, 0.03508736038208008, 0.03526553726196289, 0.03492147064208984, 0.03475763320922851, 0.034767871856689454, 0.03482316970825195, 0.03498092651367188, 0.03539142227172851, 0.03607961654663086, 0.03499008178710938, 0.03491123199462891, 0.034990142822265625, 0.03488249588012695, 0.03484467315673828, 0.03486207962036133, 0.0349378547668457, 0.034953216552734374, 0.03488051223754883, 0.03490816116333008, 0.0349378547668457, 0.03494604873657227, 0.03508838272094727, 0.03482726287841797, 0.03486003112792969, 0.03481702423095703, 0.034729984283447264, 0.0349224967956543]",tokens/s,28.395787300179112,,,,, 4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,,cuda,0,42,,,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,main,False,False,MB,1575.784448,5448.925184,0.0,4802.47808,4489.252352,s,10,5.114569244384766,0.5114569244384766,0.0014045752365005437,0.51150537109375,0.5130841125488281,0.5135362274169921,0.5138979193115234,"[0.512983642578125, 0.5139883422851562, 0.5091934204101562, 0.5101927795410156, 0.5104193725585937, 0.5101881103515625, 0.5112746887207031, 0.5121220092773437, 0.5117360534667968, 0.5124708251953125]",tokens/s,500.5309103617276,kWh,6.020330099595917e-06,3.2988774182740595e-06,2.7782869448500503e-05,3.710207696637048e-05,tokens/kWh,6899883.266158921,MB,1575.784448,5448.925184,0.0,4802.47808,4557.794816,s,10,301.333625,30.133362499999997,0.011965382718741807,30.1356015625,30.146014453125,30.1513353515625,30.1555920703125,"[30.12017578125, 30.120552734375, 30.1369375, 30.140724609375, 30.15665625, 30.137947265625, 30.123359375, 30.14483203125, 30.118173828125, 30.134265625]",tokens/s,2.0907059409649356,kWh,0.00035569889715148347,0.00019495335105611957,0.001580753417379499,0.002131405665587102,tokens/kWh,29557.958401431977,,s,629,305.4536612854004,0.48561790347440437,0.060780789003776696,0.4781598815917969,0.47936102294921873,0.4797579284667969,0.9888164648437501,"[0.47731610107421873, 0.4777103271484375, 0.4780533752441406, 0.4779223022460938, 0.47746868896484373, 0.47739285278320315, 0.4777676696777344, 0.47874050903320314, 0.47792022705078124, 0.4776212463378906, 0.47766937255859376, 0.4774625244140625, 0.4779018249511719, 0.47790591430664064, 0.47894528198242187, 0.47799398803710935, 0.47878759765625, 0.47878964233398436, 0.47852645874023436, 0.47817422485351563, 0.4778905334472656, 0.47780557250976563, 0.47809637451171877, 0.47767245483398435, 0.477765625, 0.4778649597167969, 0.4779622497558594, 0.47779531860351565, 0.47874456787109376, 0.47817214965820315, 0.4782950439453125, 0.47745944213867186, 0.47759051513671874, 0.4785008544921875, 0.47783013916015626, 0.4780267639160156, 0.4782438354492187, 0.4785858459472656, 0.4793190307617187, 0.47905487060546875, 0.47873635864257813, 0.47829400634765623, 0.4777697143554688, 0.4778240661621094, 0.47742047119140624, 0.4780851135253906, 0.4782008361816406, 0.47801651000976564, 0.47831243896484377, 0.47876199340820313, 0.4778547058105469, 0.47859405517578124, 0.4782591857910156, 0.47776461791992186, 0.47824075317382814, 0.4776304626464844, 0.4778383483886719, 0.4776642456054688, 0.47760385131835936, 0.478160888671875, 0.47876300048828124, 0.4783943786621094, 0.9927915649414063, 0.47756494140625, 0.4774000549316406, 0.47765298461914063, 0.47747378540039065, 0.4782704772949219, 0.477907958984375, 0.4783944091796875, 0.477813720703125, 0.47758950805664063, 0.47759051513671874, 0.4776069030761719, 0.47729867553710936, 0.4773724060058594, 0.47751473999023436, 0.47745742797851565, 0.4780113525390625, 0.4786903076171875, 0.47860427856445314, 0.4783482971191406, 0.47794790649414065, 0.47776461791992186, 0.4778291320800781, 0.4779427795410156, 0.4779376525878906, 0.47769189453125, 0.47908352661132814, 0.47773797607421875, 0.47901287841796875, 0.4777134094238281, 0.4779151306152344, 0.47777587890625, 0.47748709106445314, 0.47771136474609377, 0.4781527099609375, 0.47798886108398436, 0.47750042724609376, 0.47809127807617186, 0.47905892944335937, 0.4782591857910156, 0.4781598815917969, 0.4782981262207031, 0.4776468505859375, 0.47786392211914064, 0.4776560668945313, 0.478023681640625, 0.48116427612304685, 0.4793456726074219, 0.4777492370605469, 0.47873126220703127, 0.47907122802734375, 0.4783626098632813, 0.4779949951171875, 0.47790286254882813, 0.4776908874511719, 0.478065673828125, 0.4777738342285156, 0.477770751953125, 0.47832369995117185, 0.47939175415039065, 0.47875686645507814, 0.47773284912109376, 0.478023681640625, 0.988906494140625, 0.47783013916015626, 0.4776437683105469, 0.4778649597167969, 0.4783902587890625, 0.47753521728515624, 0.4795494384765625, 0.47817214965820315, 0.4789770202636719, 0.4776386413574219, 0.47787213134765627, 0.47758950805664063, 0.47774514770507814, 0.47762841796875, 0.47790386962890624, 0.479541259765625, 0.4791797790527344, 0.47914700317382813, 0.4779294738769531, 0.4777625732421875, 0.47816497802734376, 0.4782356567382812, 0.47807180786132814, 0.4797726745605469, 0.4777687072753906, 0.4803246154785156, 0.4800747375488281, 0.4793231506347656, 0.4796539001464844, 0.48039935302734377, 0.4796252136230469, 0.4790927429199219, 0.477655029296875, 0.4791510925292969, 0.4787394409179688, 0.47877017211914064, 0.47938558959960936, 0.47959552001953126, 0.47838516235351564, 0.47773593139648435, 0.478129150390625, 0.4781404113769531, 0.4776857604980469, 0.4779018249511719, 0.47747378540039065, 0.4776847229003906, 0.4781803588867187, 0.4799620971679687, 0.4786053161621094, 0.47794790649414065, 0.4777123718261719, 0.4776683654785156, 0.4774696960449219, 0.47712460327148437, 0.4774481811523438, 0.47752908325195315, 0.47732632446289064, 0.4782438354492187, 0.47871487426757814, 0.47837286376953125, 0.4777123718261719, 0.47754238891601564, 0.4779929504394531, 0.9885849609375, 0.47834625244140627, 0.47808615112304687, 0.47836468505859375, 0.47836468505859375, 0.4776908874511719, 0.47762738037109376, 0.4779254455566406, 0.477751220703125, 0.4784117736816406, 0.47790286254882813, 0.4781741943359375, 0.4787138671875, 0.47869439697265626, 0.47841998291015625, 0.4790876159667969, 0.47936920166015623, 0.4789770202636719, 0.4778157958984375, 0.47849676513671874, 0.4780349426269531, 0.4785776672363281, 0.4781475830078125, 0.4785581970214844, 0.4792135620117188, 0.47874969482421875, 0.4787026062011719, 0.47837899780273435, 0.47872308349609377, 0.47839334106445314, 0.4786411437988281, 0.4790169677734375, 0.47768063354492185, 0.4778465270996094, 0.4781793212890625, 0.47906610107421876, 0.47883367919921876, 0.4782213134765625, 0.4785172424316406, 0.47826739501953125, 0.478087158203125, 0.4777277526855469, 0.4778680419921875, 0.47746456909179685, 0.4802908020019531, 0.47867086791992186, 0.47896060180664063, 0.4792279052734375, 0.4781783142089844, 0.47810867309570315, 0.4786063232421875, 0.4785162353515625, 0.4785848388671875, 0.4778659973144531, 0.4776212463378906, 0.4777840576171875, 0.4788787231445312, 0.47973171997070313, 0.47971328735351565, 0.4792842102050781, 0.477655029296875, 0.47770315551757814, 0.4779049377441406, 0.9883463134765625, 0.4791357421875, 0.4782458801269531, 0.4794173583984375, 0.478166015625, 0.47800833129882814, 0.4775157775878906, 0.4780421142578125, 0.47852032470703126, 0.4791224365234375, 0.47801651000976564, 0.47799398803710935, 0.4782530517578125, 0.47967129516601564, 0.47834417724609374, 0.4779847717285156, 0.4790302734375, 0.47956378173828124, 0.4773304443359375, 0.4774420471191406, 0.4774143981933594, 0.4773447570800781, 0.47814349365234377, 0.47828582763671873, 0.479710205078125, 0.4788910217285156, 0.479056884765625, 0.47832369995117185, 0.4782438354492187, 0.4783964233398437, 0.479025146484375, 0.4786606140136719, 0.4782909545898438, 0.47821823120117185, 0.4802129821777344, 0.47790286254882813, 0.47835751342773436, 0.4782561340332031, 0.478635009765625, 0.47870156860351565, 0.4777001037597656, 0.4775802917480469, 0.47765914916992186, 0.479578125, 0.4784527282714844, 0.47922894287109374, 0.47923199462890625, 0.4788213806152344, 0.47869439697265626, 0.4787804260253906, 0.47939993286132815, 0.47935186767578125, 0.4787639770507813, 0.4786268310546875, 0.4793589782714844, 0.48041677856445314, 0.48034817504882815, 0.482777099609375, 0.4785745849609375, 0.478571533203125, 0.47958123779296874, 0.47865029907226564, 0.4787384338378906, 0.990581787109375, 0.4781793212890625, 0.4788521423339844, 0.47797039794921875, 0.47851007080078123, 0.47790286254882813, 0.4778321838378906, 0.47813427734375, 0.4789043273925781, 0.47835134887695313, 0.47826226806640626, 0.47895858764648436, 0.4790947875976562, 0.4783759460449219, 0.47830938720703126, 0.4781803588867187, 0.477991943359375, 0.47756903076171875, 0.47764480590820313, 0.47726080322265624, 0.47773797607421875, 0.47950848388671874, 0.47766015625, 0.47899853515625, 0.47830322265625, 0.4781537170410156, 0.47825204467773436, 0.4785592346191406, 0.479025146484375, 0.47944705200195314, 0.47835134887695313, 0.478445556640625, 0.47876199340820313, 0.47891659545898435, 0.4791101379394531, 0.47820391845703125, 0.4782581787109375, 0.47862374877929686, 0.4814622802734375, 0.47808819580078127, 0.47835751342773436, 0.47878964233398436, 0.4785551452636719, 0.4777082824707031, 0.4787271728515625, 0.4784322509765625, 0.47835546875, 0.4775679931640625, 0.4779346008300781, 0.47834521484375, 0.478160888671875, 0.47767962646484374, 0.47781170654296873, 0.4783585205078125, 0.4791285705566406, 0.4783697814941406, 0.47800216674804685, 0.47763250732421875, 0.4782294921875, 0.47773696899414064, 0.47801651000976564, 0.4774718017578125, 0.47802670288085936, 0.9896888427734375, 0.47829608154296877, 0.47802975463867187, 0.47756497192382813, 0.47750039672851563, 0.47811380004882814, 0.4781025390625, 0.4778936767578125, 0.47798370361328124, 0.47788851928710935, 0.4786268310546875, 0.4782899169921875, 0.4779632568359375, 0.47777484130859377, 0.47753521728515624, 0.4779007873535156, 0.47758544921875, 0.47753726196289065, 0.47787213134765627, 0.47847628784179685, 0.4782909545898438, 0.4778014831542969, 0.47860223388671874, 0.47986483764648435, 0.47783935546875, 0.47765298461914063, 0.4779980773925781, 0.47794073486328126, 0.4787517395019531, 0.4781506652832031, 0.4780155029296875, 0.47900875854492186, 0.47818548583984377, 0.47805029296875, 0.4782233581542969, 0.47802471923828127, 0.4779346008300781, 0.47827557373046875, 0.478497802734375, 0.47849063110351564, 0.47899237060546873, 0.4786196594238281, 0.47815167236328127, 0.4799846801757813, 0.47795709228515626, 0.47788851928710935, 0.4778270568847656, 0.4778547058105469, 0.478060546875, 0.47782608032226564, 0.4778434143066406, 0.477601806640625, 0.4788572082519531, 0.47828274536132814, 0.47832986450195314, 0.4779417724609375, 0.477633544921875, 0.477907958984375, 0.478065673828125, 0.4780482482910156, 0.47808819580078127, 0.47858380126953126, 0.47811892700195313, 0.9911572265625, 0.4780707702636719, 0.47788134765625, 0.4775536499023437, 0.4774696960449219, 0.47756185913085936, 0.47758642578125, 0.4777615356445313, 0.47794790649414065, 0.4787118225097656, 0.47779736328125, 0.47749325561523437, 0.4775475158691406, 0.4777697143554688, 0.4781363220214844, 0.4779141235351563, 0.4792012939453125, 0.4778874816894531, 0.47856845092773437, 0.47768267822265625, 0.4781311950683594, 0.4785070190429688, 0.47809127807617186, 0.4776365966796875, 0.4780707702636719, 0.47816497802734376, 0.47828582763671873, 0.47777279663085936, 0.4780728454589844, 0.47835751342773436, 0.47851211547851563, 0.47822235107421873, 0.4775055236816406, 0.4781465454101563, 0.47790386962890624, 0.4779018249511719, 0.478359619140625, 0.4794295654296875, 0.4784394226074219, 0.4795248718261719, 0.4780544128417969, 0.477949951171875, 0.48094821166992185, 0.4794306640625, 0.4784814147949219, 0.4792197265625, 0.4782981262207031, 0.47831655883789065, 0.47831243896484377, 0.4784998474121094, 0.47935488891601563, 0.47914599609375, 0.48005630493164064, 0.48013311767578126, 0.47997030639648436, 0.48005426025390624, 0.4799140625, 0.4794142150878906, 0.4800153503417969, 0.4793067626953125, 0.47961505126953125, 0.47790789794921873, 0.4778670043945312, 0.9900185546875, 0.4775372924804687, 0.47779840087890624, 0.477633544921875, 0.4782950439453125, 0.47761920166015626, 0.47800421142578126, 0.478803955078125, 0.4791029663085937, 0.4782643127441406, 0.47842098999023436, 0.4776908874511719, 0.4780185546875, 0.47770932006835937, 0.4777851257324219, 0.477681640625, 0.477812744140625, 0.47979006958007814, 0.47791717529296873, 0.4780451965332031, 0.4788193359375, 0.477955078125, 0.47790591430664064, 0.47803903198242187, 0.47824697875976563, 0.4786861572265625, 0.47816192626953125, 0.477655029296875, 0.47835134887695313, 0.478919677734375, 0.47831039428710936, 0.4777205810546875, 0.4773253173828125, 0.47773284912109376, 0.4778260498046875, 0.4776069030761719, 0.47773492431640624, 0.4777461853027344, 0.478587890625, 0.47767041015625, 0.4789801330566406, 0.47915618896484374, 0.4780257263183594, 0.47762841796875, 0.4778168334960938, 0.4776714172363281, 0.47783526611328125, 0.47757107543945315, 0.4779704284667969, 0.4786677856445313, 0.47908148193359373, 0.4783206481933594, 0.4781240234375, 0.47756494140625, 0.4773294067382812, 0.47757208251953126, 0.477348876953125, 0.47757720947265625, 0.47773492431640624, 0.47816192626953125, 0.47770932006835937, 0.4789381103515625, 0.47819366455078127, 0.9904609375, 0.47848550415039065, 0.478013427734375, 0.4775751647949219, 0.4774912109375, 0.4782847900390625, 0.4794931335449219, 0.4796549072265625, 0.47851318359375, 0.4785254211425781, 0.47859506225585935, 0.4788695068359375, 0.47816293334960935, 0.47827969360351563, 0.4785244140625, 0.4797358093261719, 0.4782438354492187, 0.4776570739746094, 0.4789125061035156, 0.47882650756835937, 0.4777082824707031, 0.47753216552734373, 0.47809637451171877, 0.47831655883789065, 0.4776488952636719, 0.4774471740722656, 0.4796170349121094, 0.47986483764648435, 0.4793456726074219, 0.479599609375, 0.4791654357910156, 0.4776488952636719, 0.4775475158691406, 0.47792538452148436, 0.4778240051269531, 0.4774819946289062, 0.4782612915039062, 0.4777738037109375, 0.4777543640136719, 0.47963134765625, 0.47828070068359374, 0.4778486022949219, 0.4777625427246094, 0.477601806640625, 0.4777185363769531, 0.47762432861328125, 0.47770932006835937, 0.4777062377929687, 0.47948800659179686, 0.4784066467285156, 0.47847015380859376, 0.4775106506347656, 0.4777420654296875, 0.47842098999023436, 0.47805233764648436, 0.47766015625, 0.47758746337890623, 0.47821926879882815, 0.4781087036132812, 0.4776806640625, 0.47913876342773437, 0.47851828002929686, 0.4783575744628906]",tokens/s,2.059232151132392,,,,, 4bit-awq-gemm-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,,cuda,0,42,,,,,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,main,False,False,MB,2236.862464,2932.342784,0.0,2285.89568,2082.706944,s,10,2.5091812438964842,0.25091812438964844,0.0016359490817563227,0.25024176025390626,0.25317278594970705,0.2535381980895996,0.25383052780151366,"[0.25309158325195313, 0.2539036102294922, 0.24987110900878906, 0.24888946533203124, 0.2497696075439453, 0.24914796447753906, 0.2504080047607422, 0.25179104614257813, 0.25223333740234377, 0.2500755157470703]",tokens/s,1020.253122897013,kWh,2.948670335578402e-06,1.6157431971317612e-06,1.3066561943753649e-05,1.763097547646381e-05,tokens/kWh,14519899.953450851,MB,2238.38208,2959.60576,0.0,2313.158656,2180.685312,s,10,143.8805810546875,14.38805810546875,0.011353783216855234,14.382828125,14.40145888671875,14.403668896484376,14.405436904296876,"[14.4009677734375, 14.40587890625, 14.39833203125, 14.3805361328125, 14.374423828125, 14.3830166015625, 14.400140625, 14.373748046875, 14.3808974609375, 14.3826396484375]",tokens/s,4.378631191102458,kWh,0.000169606630340582,9.295822156634463e-05,0.0007504743544440634,0.0010130392063509902,tokens/kWh,62189.10344736671,,s,629,145.90565167236326,0.2319644700673502,0.029875164751919897,0.22824755859375,0.22927770080566406,0.22946876831054688,0.47820606079101563,"[0.22992076110839843, 0.22815129089355468, 0.22794752502441407, 0.22817485046386718, 0.2277969970703125, 0.22800997924804686, 0.22908108520507814, 0.22838169860839844, 0.2285506591796875, 0.2286049346923828, 0.22830694580078126, 0.22801516723632811, 0.22815020751953125, 0.22767308044433593, 0.22776422119140624, 0.2276741180419922, 0.22829362487792967, 0.22767205810546876, 0.22779493713378907, 0.2277058563232422, 0.22765670776367186, 0.22813594055175782, 0.22820147705078125, 0.2283335723876953, 0.2275809326171875, 0.22812364196777343, 0.2283008575439453, 0.22861715698242188, 0.2281564178466797, 0.22812979125976562, 0.2289090576171875, 0.2288476104736328, 0.22834585571289062, 0.22857522583007814, 0.2290155487060547, 0.22790553283691406, 0.22831922912597657, 0.22821784973144532, 0.22858444213867188, 0.2286612548828125, 0.22839808654785157, 0.22902169799804686, 0.22916812133789063, 0.22946917724609375, 0.22901350402832032, 0.22913536071777343, 0.22909747314453124, 0.229138427734375, 0.22936679077148436, 0.22892851257324218, 0.22936268615722658, 0.22932582092285156, 0.22920909118652344, 0.22904730224609374, 0.2291425323486328, 0.22898892211914063, 0.22877183532714843, 0.2286202850341797, 0.229064697265625, 0.22876876831054688, 0.2292131805419922, 0.22902476501464844, 0.48329931640625, 0.2282854461669922, 0.228822021484375, 0.2279741516113281, 0.22834687805175782, 0.22893157958984375, 0.22888038635253907, 0.22889677429199218, 0.22806629943847656, 0.22842678833007812, 0.22791778564453125, 0.22817791748046876, 0.22819737243652344, 0.228274169921875, 0.22817791748046876, 0.2278656005859375, 0.22779391479492186, 0.22778982543945311, 0.22769561767578125, 0.22855783081054687, 0.2280273895263672, 0.22766490173339843, 0.2277734375, 0.2279331817626953, 0.22785125732421874, 0.2278594512939453, 0.227852294921875, 0.2281492462158203, 0.2276505584716797, 0.22739762878417968, 0.22808883666992188, 0.22794650268554686, 0.22817485046386718, 0.228094970703125, 0.22861415100097657, 0.22928793334960937, 0.22927769470214843, 0.22896333312988282, 0.22915072631835937, 0.22908006286621094, 0.22935040283203126, 0.22938829040527345, 0.22915583801269532, 0.22902578735351561, 0.22928282165527344, 0.22933914184570312, 0.23262924194335938, 0.22968319702148438, 0.22875648498535156, 0.22789529418945312, 0.2278666229248047, 0.2295767059326172, 0.22941900634765625, 0.22929306030273439, 0.22928282165527344, 0.22947532653808594, 0.2292490234375, 0.22923365783691407, 0.22946815490722655, 0.22925106811523438, 0.22942207336425782, 0.22925315856933592, 0.2293155517578125, 0.4786954345703125, 0.22789324951171874, 0.22778778076171874, 0.22853427124023437, 0.2276505584716797, 0.22818611145019532, 0.22808677673339844, 0.22816160583496095, 0.22942201232910156, 0.22774887084960938, 0.22915277099609374, 0.2292162628173828, 0.22927772521972656, 0.22797821044921876, 0.2286940155029297, 0.22868377685546876, 0.22756658935546875, 0.22776832580566406, 0.22760652160644532, 0.22787379455566406, 0.2284400634765625, 0.22826905822753907, 0.22876876831054688, 0.22959616088867188, 0.22788198852539063, 0.22754815673828124, 0.2290493469238281, 0.22905958557128905, 0.22827314758300782, 0.22785842895507813, 0.22869094848632812, 0.2282854461669922, 0.22885580444335937, 0.22893157958984375, 0.2289971160888672, 0.22875340270996095, 0.22852301025390626, 0.22836224365234375, 0.22938829040527345, 0.2279147491455078, 0.22865306091308593, 0.22844825744628905, 0.22864588928222657, 0.22837759399414062, 0.2290636749267578, 0.2289213409423828, 0.22904115295410157, 0.23109939575195312, 0.22880665588378907, 0.22881996154785156, 0.2284707794189453, 0.229232666015625, 0.22840829467773438, 0.2283520050048828, 0.23005081176757813, 0.22963821411132812, 0.22803654479980467, 0.22828851318359375, 0.22792909240722656, 0.22795878601074218, 0.22777548217773438, 0.22785331726074218, 0.22797004699707032, 0.47824075317382814, 0.22801408386230468, 0.22845132446289063, 0.22803660583496094, 0.22865408325195313, 0.22791679382324218, 0.22993101501464844, 0.22821376037597657, 0.22777548217773438, 0.2276874237060547, 0.22872781372070314, 0.22810418701171875, 0.22863462829589845, 0.2276290588378906, 0.22807244873046875, 0.2276546630859375, 0.22767514038085937, 0.22787481689453126, 0.22811648559570313, 0.22791270446777342, 0.22781336975097657, 0.22764236450195313, 0.2276822967529297, 0.22771916198730469, 0.22807347106933593, 0.22767718505859375, 0.22773248291015624, 0.2274396209716797, 0.2276177978515625, 0.2276126708984375, 0.22771405029296876, 0.2276884460449219, 0.22757273864746094, 0.22881689453125, 0.22877593994140624, 0.22816461181640624, 0.22797311401367187, 0.22859878540039064, 0.22825677490234375, 0.22843699645996093, 0.22875750732421876, 0.22935040283203126, 0.22820352172851563, 0.22832333374023436, 0.23120999145507812, 0.22912101745605468, 0.22907904052734376, 0.22970060729980468, 0.22873907470703125, 0.22823014831542968, 0.22959414672851564, 0.22853219604492186, 0.22784101867675782, 0.22805708312988282, 0.22899507141113282, 0.2288885803222656, 0.227852294921875, 0.2276669464111328, 0.2279219207763672, 0.22771916198730469, 0.22784921264648436, 0.2281492462158203, 0.22833561706542968, 0.47811685180664065, 0.22757478332519532, 0.2276433868408203, 0.227662841796875, 0.22771510314941407, 0.22770684814453124, 0.22767001342773438, 0.2279884796142578, 0.22770176696777344, 0.2278707275390625, 0.22784512329101564, 0.22757171630859374, 0.22767922973632812, 0.22853836059570312, 0.22817181396484376, 0.22842568969726562, 0.22801408386230468, 0.2303057861328125, 0.22843084716796874, 0.22846669006347656, 0.22829670715332032, 0.227631103515625, 0.22766796875, 0.22799462890625, 0.22806732177734376, 0.22791270446777342, 0.22781747436523436, 0.22777548217773438, 0.22781234741210937, 0.22849331665039063, 0.22844009399414061, 0.22815536499023437, 0.22805509948730468, 0.22854751586914063, 0.22936679077148436, 0.2276741180419922, 0.22772940063476563, 0.22759014892578125, 0.22804173278808593, 0.22774169921875, 0.22859373474121095, 0.22844819641113281, 0.22795266723632812, 0.22765052795410157, 0.22817893981933593, 0.22788096618652343, 0.2275768280029297, 0.227915771484375, 0.22789631652832032, 0.22774783325195314, 0.22783692932128907, 0.22787890625, 0.22841958618164063, 0.22780006408691406, 0.22799154663085938, 0.2284862060546875, 0.22839187622070312, 0.23194111633300782, 0.22911180114746094, 0.22951731872558595, 0.22850355529785157, 0.22849740600585938, 0.22812570190429687, 0.47752294921875, 0.2276556854248047, 0.22764544677734375, 0.22774169921875, 0.22828953552246095, 0.22794444274902342, 0.22778880310058594, 0.2285332489013672, 0.22908927917480468, 0.2287073211669922, 0.2291087341308594, 0.22870118713378906, 0.22815948486328125, 0.22893466186523437, 0.2281328582763672, 0.22798233032226561, 0.22857215881347656, 0.22788812255859375, 0.2276177978515625, 0.22820658874511718, 0.22790963745117188, 0.2278912353515625, 0.22779286193847656, 0.22789631652832032, 0.2286622772216797, 0.2280079345703125, 0.22793728637695312, 0.22807142639160155, 0.22804888916015625, 0.2280335388183594, 0.22812159729003906, 0.2278830108642578, 0.2276884460449219, 0.22792807006835938, 0.22778675842285157, 0.22810009765625, 0.22793215942382813, 0.22936473083496095, 0.23167283630371094, 0.22877081298828125, 0.22863258361816408, 0.22877593994140624, 0.22783282470703126, 0.2277181396484375, 0.22791270446777342, 0.22783183288574219, 0.22780720520019532, 0.22802841186523437, 0.2279536590576172, 0.2279619140625, 0.22795872497558595, 0.22792909240722656, 0.22810009765625, 0.22938214111328126, 0.22828031921386718, 0.228242431640625, 0.2287636413574219, 0.22942311096191406, 0.22908114624023437, 0.22857618713378905, 0.22855372619628905, 0.22922035217285155, 0.2285117492675781, 0.4789893188476563, 0.22813900756835936, 0.22828134155273438, 0.22873292541503906, 0.2284707794189453, 0.22896640014648437, 0.22858956909179687, 0.2285096893310547, 0.22846669006347656, 0.22824858093261718, 0.2286878662109375, 0.2290083770751953, 0.22912716674804687, 0.22828851318359375, 0.22853836059570312, 0.228384765625, 0.22901145935058595, 0.2284523468017578, 0.22929306030273439, 0.22884352111816406, 0.2288916473388672, 0.22799874877929688, 0.22763005065917968, 0.2294476776123047, 0.22789324951171874, 0.22849740600585938, 0.2280437774658203, 0.22870835876464843, 0.228890625, 0.228600830078125, 0.22893466186523437, 0.22901248168945312, 0.22887936401367187, 0.22905445861816406, 0.2291025848388672, 0.22861824035644532, 0.2289040069580078, 0.22949267578125, 0.22833255004882813, 0.22794650268554686, 0.2277928924560547, 0.2285117492675781, 0.2278656005859375, 0.22826905822753907, 0.22805914306640626, 0.22932992553710937, 0.2291025848388672, 0.2288046112060547, 0.22843597412109376, 0.22823526000976563, 0.2282977294921875, 0.22911488342285155, 0.22893772888183594, 0.2283100128173828, 0.22832127380371095, 0.22796287536621093, 0.22796389770507813, 0.22786151123046874, 0.22802024841308594, 0.22792703247070312, 0.2290247344970703, 0.2290872344970703, 0.2293729248046875, 0.48112127685546874, 0.22774476623535156, 0.22767205810546876, 0.22760140991210936, 0.22770790100097657, 0.228706298828125, 0.22839602661132813, 0.22828953552246095, 0.22751437377929687, 0.22827008056640624, 0.22855577087402343, 0.22760858154296876, 0.22853733825683595, 0.2290882568359375, 0.22853427124023437, 0.22787174987792969, 0.22959922790527343, 0.22843597412109376, 0.22793830871582033, 0.22853427124023437, 0.22780621337890625, 0.22782566833496093, 0.2280755157470703, 0.22808781433105468, 0.22815948486328125, 0.22787686157226564, 0.22864691162109374, 0.2278481903076172, 0.22766387939453125, 0.22787174987792969, 0.22767514038085937, 0.22795161437988282, 0.22794650268554686, 0.22880563354492187, 0.22775808715820312, 0.22767514038085937, 0.22767718505859375, 0.2277734375, 0.22772122192382813, 0.22761984252929687, 0.2289653778076172, 0.22932582092285156, 0.2285506591796875, 0.22796083068847656, 0.2276986846923828, 0.22787583923339844, 0.2282608642578125, 0.2280263671875, 0.22794137573242187, 0.2278461456298828, 0.22779391479492186, 0.22773248291015624, 0.2276259765625, 0.22793215942382813, 0.22887014770507813, 0.2283756103515625, 0.22759724426269531, 0.22863462829589845, 0.22802841186523437, 0.228279296875, 0.22952755737304686, 0.22824755859375, 0.2283223114013672, 0.4810905456542969, 0.22825372314453124, 0.22767202758789062, 0.22804582214355468, 0.22862745666503906, 0.227810302734375, 0.22774989318847655, 0.22795980834960938, 0.22772940063476563, 0.22866943359375, 0.22906982421875, 0.2284390411376953, 0.22901657104492187, 0.22875852966308594, 0.22855270385742188, 0.22873805236816405, 0.22831513977050782, 0.22964530944824219, 0.2282782745361328, 0.228890625, 0.22893772888183594, 0.22941389465332032, 0.22863871765136717, 0.22856192016601562, 0.2286868438720703, 0.22785536193847655, 0.22773554992675782, 0.22780723571777345, 0.22774887084960938, 0.22783795166015625, 0.2286028747558594, 0.2292316131591797, 0.22855474853515625, 0.2284277801513672, 0.22815129089355468, 0.22762086486816407, 0.22760345458984374, 0.2294599609375, 0.228251708984375, 0.22796998596191406, 0.22916300964355468, 0.22799667358398437, 0.22786355590820312, 0.2276986846923828, 0.22783282470703126, 0.22780621337890625, 0.22774681091308593, 0.22811955261230468, 0.22787890625, 0.22774374389648439, 0.2275000305175781, 0.22767001342773438, 0.2276884460449219, 0.22773554992675782, 0.2278778839111328, 0.22794650268554686, 0.22774476623535156, 0.22773452758789062, 0.22781234741210937, 0.22782975769042968, 0.22782054138183594, 0.22786151123046874, 0.22886604309082031, 0.4816783447265625, 0.22901145935058595, 0.22866943359375, 0.2290145263671875, 0.22938316345214843, 0.22859571838378906, 0.22785023498535156, 0.22841139221191406, 0.22864895629882812, 0.2287615966796875, 0.22899302673339844, 0.2279720916748047, 0.2287073211669922, 0.22850355529785157, 0.22853631591796875, 0.22866021728515626, 0.22911077880859376, 0.22943026733398436, 0.22803558349609376, 0.22808781433105468, 0.2292725830078125, 0.22914457702636717, 0.22839295959472655, 0.22797314453125, 0.22791267395019532, 0.22795161437988282, 0.22988902282714843, 0.2280447998046875, 0.22778163146972658, 0.2276444091796875, 0.2277928924560547, 0.2285015106201172, 0.22870835876464843, 0.22830181884765624, 0.22769766235351563, 0.22775193786621092, 0.22775091552734375, 0.22768333435058594, 0.22769664001464843, 0.22772633361816405, 0.22788607788085938, 0.22782054138183594, 0.22759837341308595, 0.22872572326660157, 0.2291568603515625, 0.22867762756347657, 0.228094970703125, 0.2280990753173828, 0.22783795166015625, 0.2277724151611328, 0.22763827514648438, 0.2278164520263672, 0.22774681091308593, 0.2276433868408203, 0.2277181396484375, 0.22805708312988282, 0.2277232666015625, 0.228068359375, 0.2278154296875, 0.2276864013671875, 0.22811546325683593, 0.22927462768554688, 0.2289459228515625]",tokens/s,4.311005041891343,,,,, 4bit-awq-gemv-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 64, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 117, in run _ = backend.generate(self.inputs, self.config.generate_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 369, in generate return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1576, in generate result = self._greedy_search( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2494, in _greedy_search outputs = self( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1211, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1018, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 741, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) TypeError: DeciCoderAttention.forward() got an unexpected keyword argument 'cache_position' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemv-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 64, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 117, in run _ = backend.generate(self.inputs, self.config.generate_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 369, in generate return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1576, in generate result = self._greedy_search( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2494, in _greedy_search outputs = self( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/transformers_v4_35_2__modeling_llama.py"", line 1034, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/modeling_decilm.py"", line 274, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/transformers_v4_35_2__modeling_llama.py"", line 672, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/modeling_decilm.py"", line 84, in forward query_states = self.q_proj(hidden_states) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward assert AWQ_INSTALLED, ( AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemv-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 64, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 117, in run _ = backend.generate(self.inputs, self.config.generate_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 369, in generate return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1576, in generate result = self._greedy_search( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2494, in _greedy_search outputs = self( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 1127, in forward transformer_outputs = self.transformer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 953, in forward outputs = block( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 581, in forward attn_outputs = self.attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 320, in forward query = self.q_proj(hidden_states) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward assert AWQ_INSTALLED, ( AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemv-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 64, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 117, in run _ = backend.generate(self.inputs, self.config.generate_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 369, in generate return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1576, in generate result = self._greedy_search( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2494, in _greedy_search outputs = self( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 974, in forward transformer_outputs = self.transformer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 842, in forward outputs = block( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 569, in forward attn_outputs = self.attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 521, in forward return self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 322, in forward query = self.q_proj(hidden_states) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward assert AWQ_INSTALLED, ( AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemv-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 64, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 117, in run _ = backend.generate(self.inputs, self.config.generate_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 369, in generate return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1576, in generate result = self._greedy_search( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2494, in _greedy_search outputs = self( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1211, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1018, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 741, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 435, in forward query_states = self.q_proj(hidden_states) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward assert AWQ_INSTALLED, ( AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemv-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 64, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 117, in run _ = backend.generate(self.inputs, self.config.generate_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 369, in generate return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1576, in generate result = self._greedy_search( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2494, in _greedy_search outputs = self( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 974, in forward transformer_outputs = self.transformer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 842, in forward outputs = block( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 569, in forward attn_outputs = self.attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 521, in forward return self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 322, in forward query = self.q_proj(hidden_states) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward assert AWQ_INSTALLED, ( AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemv-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 64, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 117, in run _ = backend.generate(self.inputs, self.config.generate_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 369, in generate return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1576, in generate result = self._greedy_search( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2494, in _greedy_search outputs = self( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1211, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1018, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 741, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 435, in forward query_states = self.q_proj(hidden_states) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward assert AWQ_INSTALLED, ( AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemv-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 64, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 117, in run _ = backend.generate(self.inputs, self.config.generate_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 369, in generate return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1576, in generate result = self._greedy_search( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2494, in _greedy_search outputs = self( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 974, in forward transformer_outputs = self.transformer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 842, in forward outputs = block( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 569, in forward attn_outputs = self.attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 521, in forward return self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 322, in forward query = self.q_proj(hidden_states) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward assert AWQ_INSTALLED, ( AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 600, in resolve_trust_remote_code answer = input( EOFError: EOF when reading a line During handling of the above exception, another exception occurred: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 228, in load_model_with_no_weights self.create_no_weights_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 210, in create_no_weights_model meta_model = self.automodel_class.from_config(self.pretrained_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 418, in from_config trust_remote_code = resolve_trust_remote_code( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code raise ValueError( ValueError: The repository for Deci/DeciCoder-1b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Deci/DeciCoder-1b. Please pass the argument `trust_remote_code=True` to allow custom code to be run. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 600, in resolve_trust_remote_code answer = input( EOFError: EOF when reading a line During handling of the above exception, another exception occurred: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 228, in load_model_with_no_weights self.create_no_weights_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 210, in create_no_weights_model meta_model = self.automodel_class.from_config(self.pretrained_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 418, in from_config trust_remote_code = resolve_trust_remote_code( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code raise ValueError( ValueError: The repository for Deci/DeciLM-7B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Deci/DeciLM-7B. Please pass the argument `trust_remote_code=True` to allow custom code to be run. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 436, in post_init_awq_exllama_modules model = exllamav2_post_init( File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init submodule.post_init(scratch_space=model.scratch_spaces[device]) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init self.q_handle = exlv2_ext.make_q_matrix( NameError: name 'exlv2_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 436, in post_init_awq_exllama_modules model = exllamav2_post_init( File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init submodule.post_init(scratch_space=model.scratch_spaces[device]) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init self.q_handle = exlv2_ext.make_q_matrix( NameError: name 'exlv2_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 436, in post_init_awq_exllama_modules model = exllamav2_post_init( File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init submodule.post_init(scratch_space=model.scratch_spaces[device]) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init self.q_handle = exlv2_ext.make_q_matrix( NameError: name 'exlv2_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 436, in post_init_awq_exllama_modules model = exllamav2_post_init( File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init submodule.post_init(scratch_space=model.scratch_spaces[device]) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init self.q_handle = exlv2_ext.make_q_matrix( NameError: name 'exlv2_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 436, in post_init_awq_exllama_modules model = exllamav2_post_init( File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init submodule.post_init(scratch_space=model.scratch_spaces[device]) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init self.q_handle = exlv2_ext.make_q_matrix( NameError: name 'exlv2_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 4bit-awq-exllama-v2-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 436, in post_init_awq_exllama_modules model = exllamav2_post_init( File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init submodule.post_init(scratch_space=model.scratch_spaces[device]) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init self.q_handle = exlv2_ext.make_q_matrix( NameError: name 'exlv2_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 4bit-awq-exllama-v1-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 558, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 432, in post_init_awq_exllama_modules model = exllama_post_init(model) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init submodule.post_init() File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 558, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 432, in post_init_awq_exllama_modules model = exllama_post_init(model) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init submodule.post_init() File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 432, in post_init_awq_exllama_modules model = exllama_post_init(model) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init submodule.post_init() File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 432, in post_init_awq_exllama_modules model = exllama_post_init(model) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init submodule.post_init() File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 432, in post_init_awq_exllama_modules model = exllama_post_init(model) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init submodule.post_init() File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 432, in post_init_awq_exllama_modules model = exllama_post_init(model) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init submodule.post_init() File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 432, in post_init_awq_exllama_modules model = exllama_post_init(model) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init submodule.post_init() File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 432, in post_init_awq_exllama_modules model = exllama_post_init(model) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init submodule.post_init() File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-exllama-v1-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 432, in post_init_awq_exllama_modules model = exllama_post_init(model) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 144, in exllama_post_init submodule.post_init() File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllama.py"", line 77, in post_init self.q4 = exl_ext.make_q4( NameError: name 'exl_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1,64,1 4bit-awq-gemv-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 64, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 117, in run _ = backend.generate(self.inputs, self.config.generate_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 369, in generate return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1576, in generate result = self._greedy_search( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2494, in _greedy_search outputs = self( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1211, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1018, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 741, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) TypeError: DeciCoderAttention.forward() got an unexpected keyword argument 'cache_position' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemv-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 64, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 117, in run _ = backend.generate(self.inputs, self.config.generate_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 369, in generate return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1576, in generate result = self._greedy_search( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2494, in _greedy_search outputs = self( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/transformers_v4_35_2__modeling_llama.py"", line 1034, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/modeling_decilm.py"", line 274, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/transformers_v4_35_2__modeling_llama.py"", line 672, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/root/.cache/huggingface/modules/transformers_modules/Deci/DeciLM-7B/c3c9f4226801dc0433f32aebffe0aac68ee2f051/modeling_decilm.py"", line 84, in forward query_states = self.q_proj(hidden_states) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward assert AWQ_INSTALLED, ( AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemv-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 64, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 117, in run _ = backend.generate(self.inputs, self.config.generate_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 369, in generate return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1576, in generate result = self._greedy_search( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2494, in _greedy_search outputs = self( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 1127, in forward transformer_outputs = self.transformer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 953, in forward outputs = block( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 581, in forward attn_outputs = self.attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gptj/modeling_gptj.py"", line 227, in forward query = self.q_proj(hidden_states) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward assert AWQ_INSTALLED, ( AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemv-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 64, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 117, in run _ = backend.generate(self.inputs, self.config.generate_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 369, in generate return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1576, in generate result = self._greedy_search( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2494, in _greedy_search outputs = self( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 974, in forward transformer_outputs = self.transformer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 842, in forward outputs = block( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 569, in forward attn_outputs = self.attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 521, in forward return self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 263, in forward query = self.q_proj(hidden_states) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward assert AWQ_INSTALLED, ( AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemv-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 64, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 117, in run _ = backend.generate(self.inputs, self.config.generate_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 369, in generate return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1576, in generate result = self._greedy_search( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2494, in _greedy_search outputs = self( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 1034, in forward outputs = self.gpt_neox( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 925, in forward outputs = layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 690, in forward attention_layer_outputs = self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neox/modeling_gpt_neox.py"", line 175, in forward qkv = self.query_key_value(hidden_states) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward assert AWQ_INSTALLED, ( AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemv-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 64, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 117, in run _ = backend.generate(self.inputs, self.config.generate_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 369, in generate return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1576, in generate result = self._greedy_search( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2494, in _greedy_search outputs = self( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1211, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1018, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 741, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 351, in forward query_states = self.q_proj(hidden_states) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward assert AWQ_INSTALLED, ( AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemv-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 64, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 117, in run _ = backend.generate(self.inputs, self.config.generate_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 369, in generate return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1576, in generate result = self._greedy_search( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2494, in _greedy_search outputs = self( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 974, in forward transformer_outputs = self.transformer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 842, in forward outputs = block( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 569, in forward attn_outputs = self.attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 521, in forward return self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 263, in forward query = self.q_proj(hidden_states) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward assert AWQ_INSTALLED, ( AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemv-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 64, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 117, in run _ = backend.generate(self.inputs, self.config.generate_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 369, in generate return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1576, in generate result = self._greedy_search( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2494, in _greedy_search outputs = self( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1211, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1018, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 741, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 351, in forward query_states = self.q_proj(hidden_states) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward assert AWQ_INSTALLED, ( AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemv-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 64, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 117, in run _ = backend.generate(self.inputs, self.config.generate_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 369, in generate return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1576, in generate result = self._greedy_search( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2494, in _greedy_search outputs = self( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 974, in forward transformer_outputs = self.transformer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 842, in forward outputs = block( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 569, in forward attn_outputs = self.attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 521, in forward return self.attention( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/gpt_neo/modeling_gpt_neo.py"", line 263, in forward query = self.q_proj(hidden_states) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward assert AWQ_INSTALLED, ( AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 64, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 117, in run _ = backend.generate(self.inputs, self.config.generate_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 369, in generate return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1576, in generate result = self._greedy_search( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2494, in _greedy_search outputs = self( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1211, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1018, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 741, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) TypeError: DeciCoderAttention.forward() got an unexpected keyword argument 'cache_position' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,,cuda,0,42,,,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,main,False,False,MB,1662.808064,5516.034048,0.0,4869.586944,4743.593472,s,10,6.1237835083007806,0.6123783508300781,0.001253925145814982,0.6120383911132812,0.6140244384765625,0.6141366088867187,0.6142263452148438,"[0.6138787841796876, 0.614248779296875, 0.6107066650390625, 0.61129736328125, 0.6111465454101562, 0.6114146728515625, 0.6116507568359375, 0.612426025390625, 0.61399951171875, 0.613014404296875]",tokens/s,418.0422114089963,kWh,7.21943411562178e-06,3.95425479798766e-06,3.477342651153299e-05,4.594711542514243e-05,tokens/kWh,5571622.889299289,MB,1662.808064,5516.034048,0.0,4869.586944,4769.651712,s,10,360.87087890624997,36.087087890625,0.01748383820965051,36.082986328125,36.11191953125,36.119573046875,36.125695859375,"[36.11021875, 36.1272265625, 36.08849609375, 36.07920703125, 36.0845625, 36.08481640625, 36.08141015625, 36.0650625, 36.07158203125, 36.078296875]",tokens/s,1.7457767773045123,kWh,0.00042595356252458363,0.00023346088450391426,0.0019820382702698735,0.0026414527172983716,tokens/kWh,23850.51210170259,,s,629,365.80599053955063,0.5815675525271077,0.07276675093795772,0.5726207885742187,0.5739550537109376,0.5744299926757812,1.1846730029296875,"[0.5736171264648438, 0.573517822265625, 0.5738854370117188, 0.57415576171875, 0.5742704467773437, 0.5731041259765625, 0.57312255859375, 0.5737461547851562, 0.5739632568359375, 0.5725850219726563, 0.5728665161132812, 0.5735147705078125, 0.5726494750976563, 0.573000732421875, 0.57260546875, 0.5726546020507812, 0.572073974609375, 0.5728809204101563, 0.572885986328125, 0.5725767822265625, 0.5731676025390625, 0.5745838012695312, 0.5729105834960937, 0.5730211791992188, 0.5729566650390625, 0.5723678588867187, 0.5724866333007812, 0.5726197509765625, 0.5735526123046875, 0.5740676879882812, 0.5729720458984375, 0.5732095947265625, 0.5726760864257813, 0.5724497680664062, 0.5724518432617187, 0.572790771484375, 0.5723668823242187, 0.5727159423828125, 0.5731563720703124, 0.5741424560546875, 0.5723576049804687, 0.5724334106445312, 0.5723883666992188, 0.5724548950195313, 0.5725368041992187, 0.5722142944335937, 0.5739407348632812, 0.5740206298828125, 0.572927001953125, 0.573212646484375, 0.5730181274414062, 0.5728184204101563, 0.5730816040039063, 0.5726177368164063, 0.572484619140625, 0.5727293701171875, 0.5740543823242188, 0.5732669677734376, 0.57483056640625, 0.574424072265625, 0.5744517211914062, 0.5744885864257813, 1.18734130859375, 0.5729505004882812, 0.5725030517578125, 0.5725654907226563, 0.5738137817382812, 0.572379150390625, 0.5741465454101562, 0.574750732421875, 0.573475830078125, 0.5734666137695312, 0.5736826782226563, 0.5750292358398438, 0.5742151489257813, 0.5739274291992188, 0.5746913452148438, 0.5744281616210938, 0.5742459106445312, 0.5746903076171875, 0.5750845336914062, 0.5739735107421875, 0.5736888427734375, 0.574476318359375, 0.5740001220703125, 0.573032470703125, 0.5722992553710937, 0.57221630859375, 0.571994140625, 0.573065185546875, 0.573844482421875, 0.5739673461914062, 0.5742745361328125, 0.5743206787109375, 0.5743236694335937, 0.5738577880859375, 0.5742110595703125, 0.5753764038085938, 0.5745797119140625, 0.57402880859375, 0.5725982666015625, 0.5732260131835938, 0.5737594604492188, 0.5739530029296875, 0.5731553344726562, 0.572927978515625, 0.57257470703125, 0.5744312133789062, 0.5755975952148438, 0.5727283325195313, 0.5721149291992188, 0.572199951171875, 0.5723617553710938, 0.572105712890625, 0.57270068359375, 0.5733294067382813, 0.5723873291015625, 0.57191015625, 0.573065185546875, 0.5727866821289063, 0.5724027099609375, 0.5726883544921875, 0.5723258666992187, 0.5720657958984375, 0.5731727294921874, 1.1836395263671875, 0.5721917724609376, 0.5728533325195313, 0.5732484741210937, 0.5725409545898438, 0.5732628784179687, 0.5741773071289062, 0.5730109252929687, 0.5731737670898438, 0.573043701171875, 0.5734686889648437, 0.5732505493164063, 0.5726914672851563, 0.5729924926757812, 0.5729525756835937, 0.5732260131835938, 0.574719970703125, 0.5727836303710937, 0.5730283813476562, 0.5724508056640625, 0.5733519287109375, 0.5728767700195313, 0.5725736694335938, 0.5743431396484375, 0.5745357055664062, 0.573507568359375, 0.572695556640625, 0.5729177856445312, 0.573022216796875, 0.5733980102539062, 0.5731030883789062, 0.5730037841796874, 0.572927978515625, 0.5738895263671875, 0.573137939453125, 0.57310107421875, 0.5718549194335938, 0.5721885986328125, 0.57208935546875, 0.5725255737304688, 0.5722398681640625, 0.5733836669921875, 0.5725736694335938, 0.57238525390625, 0.5722880249023438, 0.5720064086914063, 0.5721456909179687, 0.57385986328125, 0.5721773681640625, 0.5720176391601562, 0.5720484008789063, 0.5730570068359375, 0.5720934448242188, 0.5720852661132813, 0.5719961547851562, 0.5719992065429688, 0.5727928466796876, 0.5721221313476562, 0.5721630859375, 0.572600341796875, 0.5723125610351563, 0.5724631958007812, 0.5727794799804687, 1.1843287353515626, 0.572779541015625, 0.57261669921875, 0.5734041748046875, 0.5739274291992188, 0.57350146484375, 0.57328125, 0.5731553344726562, 0.5729392700195313, 0.5729403076171875, 0.5732833251953126, 0.57289013671875, 0.5743707885742187, 0.5724887084960938, 0.5720043334960937, 0.5718681640625, 0.5722941284179688, 0.5721036987304687, 0.5721763916015625, 0.57200537109375, 0.5717247924804687, 0.572310546875, 0.5729740600585937, 0.5724682006835937, 0.5719664916992188, 0.5723975830078125, 0.5722286376953125, 0.5723289794921875, 0.572221435546875, 0.5728389282226563, 0.5737000732421875, 0.5728737182617187, 0.5730037841796874, 0.572178466796875, 0.5720411376953125, 0.5717974853515625, 0.5721036987304687, 0.5720719604492187, 0.5719695434570312, 0.5730037841796874, 0.5722941284179688, 0.5718763427734375, 0.5725706176757812, 0.5727713012695312, 0.5752719116210937, 0.5729822998046875, 0.5730355224609375, 0.5741107177734375, 0.5727109375, 0.5726207885742187, 0.5727815551757812, 0.5729136352539063, 0.572896240234375, 0.572600341796875, 0.5730191650390625, 0.5724456787109375, 0.573222900390625, 0.57379736328125, 0.5722828979492187, 0.572052490234375, 0.5719766845703125, 0.5719429321289062, 0.5717380981445312, 1.1848990478515624, 0.5739724731445313, 0.5733632202148438, 0.5733693237304688, 0.5734880981445313, 0.5738117065429688, 0.5729403076171875, 0.5730672607421875, 0.5729863891601562, 0.5730140380859375, 0.57394482421875, 0.5726064453125, 0.5722265625, 0.5720391845703126, 0.5731246337890625, 0.5720433349609375, 0.57220703125, 0.5742510375976563, 0.5736365966796875, 0.572663818359375, 0.5723699340820313, 0.5724794921875, 0.5720340576171875, 0.5722705688476563, 0.5724047241210938, 0.57236376953125, 0.5725368041992187, 0.5725255737304688, 0.5728256225585937, 0.5726392211914062, 0.5721354370117188, 0.5721804809570312, 0.5721774291992188, 0.5723484497070312, 0.5721793823242187, 0.572990478515625, 0.5730048217773438, 0.5721558837890625, 0.572242919921875, 0.5721978759765625, 0.5722470703125, 0.5720596313476562, 0.5724047241210938, 0.5724436645507812, 0.5722009887695313, 0.5737861328125, 0.57619970703125, 0.5726668701171875, 0.5722962036132813, 0.5730099487304687, 0.5725439453125, 0.5726085205078125, 0.5728368530273438, 0.5743206176757812, 0.5726044311523437, 0.5726791381835937, 0.5723678588867187, 0.5721937866210938, 0.572822509765625, 0.5727109375, 0.5722070922851562, 0.5722654418945312, 0.5724968872070313, 1.1851029052734374, 0.5723607177734376, 0.57244775390625, 0.5727620849609375, 0.5731502075195313, 0.5729341430664062, 0.5733734130859375, 0.5732301025390625, 0.572663818359375, 0.5735577392578125, 0.5724036865234375, 0.5722737426757812, 0.5723555297851562, 0.5722726440429687, 0.5723494262695312, 0.5725409545898438, 0.5730109252929687, 0.57223681640625, 0.5723402099609375, 0.5722613525390625, 0.572516357421875, 0.5727579956054687, 0.5724467163085938, 0.572221435546875, 0.5731195068359375, 0.5724169921875, 0.5723781127929688, 0.5720811767578124, 0.5718343505859375, 0.5718425903320312, 0.57302734375, 0.5730027465820312, 0.5725501708984375, 0.5730252685546875, 0.57335498046875, 0.5724067993164063, 0.5720145874023438, 0.5724354858398437, 0.5753599853515625, 0.572169189453125, 0.5720125732421875, 0.5726105346679687, 0.5732147216796875, 0.57269970703125, 0.5723483276367187, 0.572010498046875, 0.5722890014648437, 0.5727958984375, 0.5723873901367188, 0.57226953125, 0.5728460693359375, 0.57364892578125, 0.5736980590820312, 0.5732618408203125, 0.5729075317382812, 0.5730396118164063, 0.5730027465820312, 0.5737277221679687, 0.5737984008789062, 0.574740478515625, 0.5733519287109375, 0.5725675659179688, 0.572537841796875, 1.184806884765625, 0.5725839233398438, 0.5726617431640625, 0.573106201171875, 0.5745018920898437, 0.5735618286132812, 0.573259765625, 0.5744578857421875, 0.5749258422851562, 0.5728265991210938, 0.5725081787109375, 0.5727150268554687, 0.5735505981445312, 0.573075439453125, 0.5722562255859375, 0.57212109375, 0.5720760498046875, 0.5723033447265625, 0.5736908569335938, 0.5737195434570312, 0.5725010375976562, 0.57371337890625, 0.5728123168945313, 0.5738147583007812, 0.571978759765625, 0.5718763427734375, 0.5724252319335937, 0.5723299560546875, 0.5721712646484375, 0.5726679077148438, 0.57254296875, 0.5723995971679687, 0.5719193725585937, 0.5722777709960938, 0.571779052734375, 0.5716900024414062, 0.5719306030273438, 0.5717493896484375, 0.571821044921875, 0.5734307861328125, 0.5732904663085937, 0.5728604125976563, 0.572748779296875, 0.57318603515625, 0.5727365112304688, 0.5732413330078125, 0.57249072265625, 0.5729822998046875, 0.573169677734375, 0.5721641235351562, 0.5722808227539062, 0.5722900390625, 0.57253173828125, 0.5722101440429688, 0.5723197631835938, 0.5721200561523437, 0.5727498168945313, 0.5729525756835937, 0.5725030517578125, 0.5723596801757812, 0.5721190185546875, 0.5728788452148438, 0.57232177734375, 1.18618115234375, 0.5729382934570313, 0.5724763793945312, 0.5728051147460937, 0.572410888671875, 0.5722828979492187, 0.5726187744140625, 0.57223681640625, 0.5720278930664062, 0.5722142944335937, 0.5735720825195313, 0.5724139404296875, 0.5722695922851563, 0.5720924072265625, 0.572410888671875, 0.5720698852539062, 0.5738741455078125, 0.5721026611328125, 0.5729136352539063, 0.5728265991210938, 0.5724375, 0.5722224731445312, 0.57202587890625, 0.573212646484375, 0.572484619140625, 0.5720780639648437, 0.57230859375, 0.57369384765625, 0.5728798828125, 0.572020751953125, 0.5721231079101563, 0.5717554931640625, 0.572156982421875, 0.5722654418945312, 0.5718435668945312, 0.5726340942382813, 0.573137939453125, 0.5722542114257813, 0.5726156616210938, 0.572095458984375, 0.572031982421875, 0.5723658447265625, 0.5724303588867188, 0.5722726440429687, 0.5725307006835938, 0.5731655883789063, 0.5721272583007813, 0.5720043334960937, 0.572042236328125, 0.572242919921875, 0.5721856079101563, 0.5724548950195313, 0.5724661865234375, 0.5730764770507812, 0.5732301025390625, 0.5725450439453125, 0.5724866333007812, 0.5721734008789062, 0.5719572143554688, 0.5721549072265625, 0.572000244140625, 0.5720064086914063, 0.5725757446289063, 1.1873709716796874, 0.5724487915039063, 0.5732085571289063, 0.572284912109375, 0.5727989501953125, 0.5728409423828125, 0.5729740600585937, 0.573497314453125, 0.572516357421875, 0.572705810546875, 0.5721886596679687, 0.5721958618164062, 0.5724036865234375, 0.5723381958007813, 0.57270068359375, 0.5734564208984375, 0.5733170776367188, 0.5739089965820312, 0.5724610595703125, 0.5728818969726562, 0.5730293579101563, 0.57270068359375, 0.572495849609375, 0.5729935302734375, 0.5724405517578125, 0.572822509765625, 0.5726105346679687, 0.572315673828125, 0.5717718505859375, 0.5719408569335938, 0.5722603759765625, 0.5722347412109375, 0.5724713134765625, 0.5740123901367188, 0.5722296142578125, 0.5719521484375, 0.572314697265625, 0.572317626953125, 0.5720811767578124, 0.5719705810546875, 0.5717545166015625, 0.5723504638671875, 0.5726515502929688, 0.5724016723632812, 0.5723504638671875, 0.572231689453125, 0.572205078125, 0.5721190185546875, 0.572031982421875, 0.5724467163085938, 0.573043701171875, 0.5730468139648438, 0.5726412353515625, 0.5725030517578125, 0.5725399169921875, 0.5724713134765625, 0.5720606689453125, 0.5723914184570312, 0.5728767700195313, 0.573179931640625, 0.5726597290039063, 0.572295166015625, 0.5719317016601563, 1.1857969970703126, 0.5727313842773437, 0.572368896484375, 0.572347412109375, 0.5732669677734376, 0.5725573120117188, 0.5721907348632812, 0.5723095092773437, 0.5727498168945313, 0.5725081787109375, 0.5725491333007813, 0.5726720581054687, 0.5733457641601563, 0.5733345336914063, 0.5721354370117188, 0.5723043823242188, 0.5719183349609375, 0.5717770385742188, 0.5724968872070313, 0.5726105346679687, 0.573053955078125, 0.5741567993164063, 0.5731102905273437, 0.5720698852539062, 0.5720145874023438, 0.57215185546875, 0.574278564453125, 0.5722521362304688, 0.5720453491210937, 0.5730723266601563, 0.5723924560546875, 0.5727354736328125, 0.572337158203125, 0.5723197631835938, 0.5723668212890625, 0.572221435546875, 0.5729075317382812, 0.5726556396484375, 0.5724456787109375, 0.5738014526367188, 0.5731779174804688, 0.572559326171875, 0.5726812133789062, 0.5728235473632812, 0.572885986328125, 0.5726618041992187, 0.5722745971679688, 0.5731082153320313, 0.5732781982421875, 0.5720135498046875, 0.5721507568359375, 0.57227880859375, 0.5728726806640625, 0.572346435546875, 0.5726781005859375, 0.5728286743164063, 0.5733345336914063, 0.5729228515625, 0.572737548828125, 0.5724548950195313, 0.5741793212890625, 0.5722265625, 0.572494873046875]",tokens/s,1.7194907034525255,,,,, 4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,,cuda,0,42,,,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,main,False,False,MB,2054.77888,5566.365696,0.0,4919.918592,4635.537408,s,10,5.159750671386719,0.5159750671386718,0.0024202673095528563,0.5153813171386719,0.5170659973144531,0.5199656463623047,0.5222853656005859,"[0.5228652954101562, 0.5143955078125, 0.5157650146484375, 0.5144519653320313, 0.5155265502929688, 0.5141107177734375, 0.516309814453125, 0.5146680908203125, 0.516421630859375, 0.515236083984375]",tokens/s,496.14800463061573,kWh,6.087385805116759e-06,3.3354087369571064e-06,2.7887036198498415e-05,3.7309830740572285e-05,tokens/kWh,6861462.379179726,MB,2054.77888,5566.365696,0.0,4919.918592,4794.439168,s,10,301.012869140625,30.101286914062502,0.007474756939868433,30.101162109375,30.1092380859375,30.11128505859375,30.11292263671875,"[30.104474609375, 30.0874609375, 30.10366796875, 30.09865625, 30.095248046875, 30.1085703125, 30.108783203125, 30.11333203125, 30.097923828125, 30.094751953125]",tokens/s,2.0929337732257594,kWh,0.00035535723721815483,0.00019476662748246779,0.0016039330748120972,0.00215405693951272,tokens/kWh,29247.13773548231,,s,629,305.1713383178704,0.4851690593288888,0.06123176770881389,0.4777687072753906,0.47843901367187497,0.47872921142578123,0.9921051538085938,"[0.47712460327148437, 0.4769034118652344, 0.47702426147460936, 0.47709390258789064, 0.47730584716796876, 0.4771205139160156, 0.4773304443359375, 0.47765298461914063, 0.4770846862792969, 0.4785274963378906, 0.47798681640625, 0.47815167236328127, 0.4778588256835937, 0.4773570556640625, 0.477907958984375, 0.47804620361328126, 0.47764480590820313, 0.4777400207519531, 0.4774901733398437, 0.4775546875, 0.4790906982421875, 0.47841998291015625, 0.4775454711914062, 0.4774205322265625, 0.4777062377929687, 0.4773007507324219, 0.47782296752929687, 0.477517822265625, 0.47927194213867186, 0.47922592163085936, 0.4796824951171875, 0.4796200866699219, 0.478603271484375, 0.47771649169921876, 0.4775034790039063, 0.47786904907226563, 0.4779376525878906, 0.4778526611328125, 0.47831039428710936, 0.47768167114257815, 0.4777820129394531, 0.47838104248046875, 0.4779438171386719, 0.4779376525878906, 0.47762432861328125, 0.47779022216796874, 0.47766015625, 0.4779346008300781, 0.47730584716796876, 0.47776666259765627, 0.4777215881347656, 0.4779438171386719, 0.4776980590820312, 0.4786534423828125, 0.47755673217773437, 0.4775034790039063, 0.47755059814453127, 0.47741543579101564, 0.4771686401367187, 0.47783526611328125, 0.4779069519042969, 0.4776560668945313, 0.9921392822265624, 0.4773294067382812, 0.4772085876464844, 0.477370361328125, 0.4770396728515625, 0.4769504699707031, 0.47741748046875, 0.47746356201171875, 0.4771512451171875, 0.47819979858398437, 0.4786329650878906, 0.47734783935546876, 0.477412353515625, 0.4770017395019531, 0.47757003784179686, 0.47735910034179685, 0.47719219970703125, 0.4772116394042969, 0.4775659484863281, 0.47811892700195313, 0.4780257263183594, 0.4779304809570312, 0.4777492370605469, 0.4775045166015625, 0.4776427612304687, 0.4780738525390625, 0.4773498840332031, 0.47781170654296873, 0.4772178039550781, 0.47686654663085937, 0.4779991149902344, 0.47811175537109374, 0.47742669677734373, 0.4774471740722656, 0.47721368408203124, 0.4768757629394531, 0.47745944213867186, 0.4774481811523438, 0.4774799499511719, 0.4782315979003906, 0.4776785583496094, 0.4772024230957031, 0.477707275390625, 0.47777587890625, 0.47741030883789065, 0.47758950805664063, 0.47756494140625, 0.47724337768554687, 0.4777215881347656, 0.47767962646484374, 0.47741543579101564, 0.47842715454101564, 0.4785602111816406, 0.4774819946289062, 0.4774615173339844, 0.4775465087890625, 0.4775475158691406, 0.4778106994628906, 0.4775577697753906, 0.4773294067382812, 0.47762738037109376, 0.47781375122070313, 0.4781895751953125, 0.9939957885742188, 0.47789157104492186, 0.4779029235839844, 0.4775321044921875, 0.4773294067382812, 0.47682968139648435, 0.4777994384765625, 0.478455810546875, 0.4786780090332031, 0.47789056396484375, 0.47756390380859376, 0.4770979919433594, 0.47737344360351563, 0.4772915344238281, 0.4772536315917969, 0.4778649597167969, 0.47748095703125, 0.4771614685058594, 0.47814862060546875, 0.47750143432617187, 0.4773918762207031, 0.47743896484375, 0.4776662902832031, 0.47875582885742185, 0.4773284606933594, 0.4779539794921875, 0.4778567810058594, 0.47754238891601564, 0.47780154418945314, 0.47773382568359374, 0.4781598815917969, 0.4780472412109375, 0.4777594909667969, 0.477765625, 0.47762841796875, 0.47739596557617187, 0.47771444702148436, 0.47763250732421875, 0.4777687072753906, 0.4783943786621094, 0.47779736328125, 0.4777215881347656, 0.47773284912109376, 0.47762841796875, 0.4779315185546875, 0.4779735107421875, 0.4777461853027344, 0.4787445983886719, 0.47787722778320313, 0.4785080261230469, 0.4784373779296875, 0.47873638916015626, 0.47828274536132814, 0.4777001037597656, 0.47793560791015627, 0.4780277709960937, 0.47800115966796874, 0.47787213134765627, 0.47758950805664063, 0.47742156982421874, 0.47888998413085937, 0.478159912109375, 0.47799700927734373, 0.9920173950195312, 0.47721368408203124, 0.4778260498046875, 0.477939697265625, 0.47749530029296877, 0.4772659912109375, 0.4777287292480469, 0.4779949645996094, 0.47825204467773436, 0.4779581298828125, 0.4773775329589844, 0.4774225769042969, 0.47868109130859376, 0.4778076171875, 0.47798785400390625, 0.478139404296875, 0.47792538452148436, 0.4779366455078125, 0.4774615173339844, 0.47746356201171875, 0.477728759765625, 0.47751473999023436, 0.47717376708984377, 0.47695462036132813, 0.4774942626953125, 0.47761920166015626, 0.4774625244140625, 0.4780001220703125, 0.4778526611328125, 0.47788134765625, 0.4775301513671875, 0.47762127685546873, 0.4773498229980469, 0.4779581298828125, 0.4775413818359375, 0.47721881103515623, 0.47748504638671874, 0.4778824462890625, 0.47803488159179686, 0.47796633911132813, 0.47795098876953124, 0.47843328857421874, 0.4778895263671875, 0.47771749877929687, 0.47763766479492187, 0.47745123291015623, 0.47731610107421873, 0.47720550537109374, 0.47810763549804686, 0.47794686889648436, 0.478023681640625, 0.47817214965820315, 0.4775679931640625, 0.4772167663574219, 0.4781783142089844, 0.4780738525390625, 0.4782264404296875, 0.4780769348144531, 0.4779223022460938, 0.4776662902832031, 0.47806668090820315, 0.4780738525390625, 0.47803903198242187, 0.9936957397460937, 0.47736831665039064, 0.4772413330078125, 0.47760589599609377, 0.47733966064453126, 0.4780892028808594, 0.47794790649414065, 0.4774604797363281, 0.47752294921875, 0.4775792541503906, 0.47779022216796874, 0.4776407165527344, 0.4775096435546875, 0.4774523010253906, 0.4773304443359375, 0.4777021484375, 0.477939697265625, 0.4781055908203125, 0.4771205749511719, 0.477898681640625, 0.47731201171875, 0.47782196044921876, 0.4773775329589844, 0.4771747741699219, 0.4777697143554688, 0.47787213134765627, 0.4778188781738281, 0.4779683837890625, 0.47738983154296877, 0.4772915344238281, 0.4775802917480469, 0.47765914916992186, 0.47731201171875, 0.47755877685546877, 0.4773355407714844, 0.4775382995605469, 0.477918212890625, 0.47747378540039065, 0.4770508728027344, 0.4778793029785156, 0.477528076171875, 0.47719937133789064, 0.4775516052246094, 0.4772341613769531, 0.4773990478515625, 0.47757415771484374, 0.47758746337890623, 0.47739495849609376, 0.47834423828125, 0.4778536682128906, 0.4773058776855469, 0.47772262573242186, 0.4777635498046875, 0.4777185363769531, 0.4785080261230469, 0.4780687255859375, 0.4775168151855469, 0.4807618408203125, 0.47829605102539063, 0.47767245483398435, 0.4783206481933594, 0.4779980773925781, 0.4780625915527344, 0.9916989135742188, 0.47712973022460936, 0.4770652160644531, 0.4772781982421875, 0.47782296752929687, 0.47800833129882814, 0.47793356323242187, 0.47763150024414064, 0.47709390258789064, 0.47777484130859377, 0.4777667236328125, 0.47767550659179686, 0.47757720947265625, 0.4771798400878906, 0.47727410888671873, 0.47779531860351565, 0.4776089477539063, 0.4775792541503906, 0.47766937255859376, 0.47783627319335936, 0.47713690185546875, 0.47779226684570314, 0.4778567810058594, 0.4774615173339844, 0.4775833740234375, 0.47805950927734375, 0.47846502685546877, 0.478561279296875, 0.4782633056640625, 0.4781055908203125, 0.47865753173828124, 0.47780044555664064, 0.47805950927734375, 0.4787906494140625, 0.47858688354492185, 0.47910400390625, 0.47804107666015627, 0.4773498840332031, 0.47763455200195315, 0.4782264404296875, 0.47779736328125, 0.47735809326171874, 0.4779683837890625, 0.4779571228027344, 0.47788134765625, 0.47783627319335936, 0.4788439025878906, 0.47873126220703127, 0.47824075317382814, 0.47784039306640624, 0.47777279663085936, 0.47869952392578125, 0.4775126953125, 0.47748504638671874, 0.4778311767578125, 0.47821005249023435, 0.478708740234375, 0.4786903076171875, 0.4786278381347656, 0.4780533752441406, 0.47773080444335936, 0.47787213134765627, 0.47809127807617186, 0.9952440185546875, 0.4780052490234375, 0.47796734619140624, 0.47861553955078123, 0.47840972900390627, 0.478055419921875, 0.4771358642578125, 0.47734375, 0.4771768188476562, 0.47729766845703125, 0.477949951171875, 0.4772239379882813, 0.4777277526855469, 0.47779531860351565, 0.47714407348632815, 0.47731814575195314, 0.47762841796875, 0.47755877685546877, 0.477528076171875, 0.4772034606933594, 0.47703143310546875, 0.47779531860351565, 0.4779202575683594, 0.4790067138671875, 0.478593017578125, 0.4792412109375, 0.47822540283203124, 0.4779069519042969, 0.4779427795410156, 0.47770932006835937, 0.47803802490234376, 0.4777840576171875, 0.47797247314453123, 0.477939697265625, 0.47781991577148436, 0.4778240051269531, 0.47803289794921877, 0.47818240356445313, 0.47798175048828123, 0.4779959716796875, 0.4778680419921875, 0.4780902404785156, 0.47819674682617186, 0.47809945678710936, 0.4779765625, 0.479388671875, 0.4785356750488281, 0.4774143981933594, 0.4776642456054688, 0.47775238037109374, 0.4779253234863281, 0.4778547058105469, 0.4781363220214844, 0.47750860595703126, 0.4780830688476562, 0.47821728515625, 0.4779703674316406, 0.47782196044921876, 0.4780851135253906, 0.4781322326660156, 0.47786392211914064, 0.4776509399414062, 0.4776099853515625, 0.9929461669921875, 0.47778509521484375, 0.48122674560546874, 0.47778509521484375, 0.4777943115234375, 0.47731814575195314, 0.4780748901367188, 0.47792538452148436, 0.47784756469726564, 0.4781158447265625, 0.4780155029296875, 0.47748403930664063, 0.4777891845703125, 0.4779100036621094, 0.4776908874511719, 0.47778713989257815, 0.47860736083984373, 0.47720037841796875, 0.4777891845703125, 0.4777216491699219, 0.4775577087402344, 0.47795404052734375, 0.47750143432617187, 0.47806668090820315, 0.4786780090332031, 0.477744140625, 0.47708673095703125, 0.47796429443359373, 0.4774686584472656, 0.4776775817871094, 0.4779796447753906, 0.47754855346679687, 0.4775096435546875, 0.4782417907714844, 0.47757107543945315, 0.4774205322265625, 0.4781158447265625, 0.4779376525878906, 0.47806362915039063, 0.47810763549804686, 0.4782090148925781, 0.478413818359375, 0.47833804321289064, 0.4782417907714844, 0.4790927429199219, 0.4781537170410156, 0.47856845092773437, 0.4775301208496094, 0.4781506652832031, 0.4774615173339844, 0.4780472412109375, 0.4780318603515625, 0.47794891357421876, 0.47838311767578123, 0.47825408935546876, 0.4780349426269531, 0.47770111083984373, 0.4779857788085938, 0.47789266967773436, 0.47788128662109375, 0.4787712097167969, 0.47795306396484377, 0.47804415893554686, 0.9943838500976563, 0.4787189636230469, 0.47804107666015627, 0.47781375122070313, 0.477370361328125, 0.4773304443359375, 0.47816705322265624, 0.47811993408203124, 0.4777738342285156, 0.47763250732421875, 0.4774573974609375, 0.47708673095703125, 0.47772467041015626, 0.47725567626953125, 0.47783627319335936, 0.47736831665039064, 0.4771112976074219, 0.478445556640625, 0.47864935302734374, 0.4780984191894531, 0.47761102294921876, 0.4776365966796875, 0.4789073791503906, 0.4771778564453125, 0.47777484130859377, 0.47784756469726564, 0.4784169006347656, 0.4775045166015625, 0.47752191162109375, 0.47713177490234376, 0.47731610107421873, 0.47756390380859376, 0.4773212280273437, 0.47744512939453126, 0.4777543640136719, 0.477222900390625, 0.477707275390625, 0.47724850463867186, 0.47723724365234377, 0.4778823547363281, 0.477412353515625, 0.4772392883300781, 0.4777994384765625, 0.47849676513671874, 0.4779949951171875, 0.47791104125976563, 0.47725466918945314, 0.47723629760742187, 0.47771026611328127, 0.478139404296875, 0.4780195922851562, 0.478129150390625, 0.47857867431640627, 0.47747174072265625, 0.47793869018554686, 0.47770932006835937, 0.4779571228027344, 0.47765509033203124, 0.4775464172363281, 0.47778713989257815, 0.477918212890625, 0.4777820129394531, 0.47804107666015627, 0.9942221069335937, 0.47767550659179686, 0.4771686401367187, 0.477431884765625, 0.4771603698730469, 0.47666278076171875, 0.4774676513671875, 0.47758746337890623, 0.47736114501953125, 0.4776488952636719, 0.47701708984375, 0.47684402465820314, 0.47745944213867186, 0.477633544921875, 0.4778076171875, 0.4772536315917969, 0.47761715698242185, 0.47721881103515623, 0.4775362548828125, 0.47752294921875, 0.4779653015136719, 0.47805645751953124, 0.47783526611328125, 0.47724032592773435, 0.4773447570800781, 0.4780175476074219, 0.4793231506347656, 0.4781588439941406, 0.47761715698242185, 0.47719937133789064, 0.4781537170410156, 0.47752294921875, 0.4775311279296875, 0.47761920166015626, 0.4774993896484375, 0.4768399353027344, 0.4775946960449219, 0.47729248046875, 0.47762841796875, 0.4775372924804687, 0.4772720642089844, 0.4776089477539063, 0.4787261352539062, 0.47772262573242186, 0.47747378540039065, 0.47768780517578124, 0.477528076171875, 0.477149169921875, 0.4776355895996094, 0.47729766845703125, 0.4775628662109375, 0.47870361328125, 0.4778188781738281, 0.4776509399414062, 0.4779898986816406, 0.4782561340332031, 0.47833087158203125, 0.47798681640625, 0.4781035461425781, 0.477955078125, 0.47816192626953125, 0.4783472595214844, 0.47877734375]",tokens/s,2.061137207272146,,,,, 4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,,cuda,0,42,,,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,main,False,False,MB,1554.096128,1957.167104,0.0,1310.72,1163.82464,s,10,1.286997444152832,0.1286997444152832,0.0010709154419692667,0.12870168304443358,0.13024390106201172,0.13026507034301757,0.13028200576782226,"[0.13028623962402344, 0.13023919677734375, 0.1282391662597656, 0.12805363464355468, 0.1269244155883789, 0.12729046630859375, 0.12865869140625, 0.1287446746826172, 0.1295413055419922, 0.1290196533203125]",tokens/s,1989.1259393177147,kWh,1.4998026454163673e-06,8.218217431655106e-07,6.2844740852399835e-06,8.60609847382186e-06,tokens/kWh,29746347.985524923,MB,1554.096128,1959.264256,0.0,1312.817152,1232.774656,s,10,75.16664355468751,7.516664355468751,0.019324999879587898,7.517852294921875,7.5454459960937506,7.548604345703125,7.551131025390625,"[7.5517626953125, 7.5180322265625, 7.52255224609375, 7.52390966796875, 7.544744140625, 7.51767236328125, 7.49461669921875, 7.49106689453125, 7.50185205078125, 7.5004345703125]",tokens/s,8.3813772999142,kWh,8.89009176429398e-05,4.872418928564946e-05,0.00036540068437377195,0.0005030257913023612,tokens/kWh,125242.08716393956,,s,629,76.20247959136968,0.12114861620249542,0.01533479707935131,0.1192816619873047,0.12045271148681641,0.12072119903564453,0.24720068908691412,"[0.12236902618408203, 0.12192870330810547, 0.12110336303710938, 0.12021862030029297, 0.12056371307373047, 0.11989708709716797, 0.11929497528076172, 0.11829862213134766, 0.11859661102294922, 0.11861504364013672, 0.11821469116210938, 0.11968099212646484, 0.11959193420410157, 0.12045926666259765, 0.12021043395996094, 0.1199452133178711, 0.11970047760009765, 0.12003225708007813, 0.120163330078125, 0.11992678070068359, 0.11977011108398437, 0.11847372436523437, 0.11856588745117187, 0.11883724975585938, 0.11842662048339844, 0.11851676940917968, 0.11948745727539062, 0.11911475372314453, 0.119552001953125, 0.1215068130493164, 0.120257568359375, 0.1204623031616211, 0.12012236785888672, 0.12004659271240234, 0.12008038330078125, 0.12001689910888672, 0.11995954895019531, 0.12004761505126953, 0.12005683135986328, 0.12010189056396485, 0.12003635406494141, 0.11968307495117188, 0.12004863739013671, 0.12036300659179687, 0.11988992309570312, 0.1200558090209961, 0.1202534408569336, 0.12022169494628906, 0.12032921600341796, 0.12026265716552734, 0.12077056121826171, 0.12018585968017578, 0.11901235198974609, 0.1193861083984375, 0.11910348510742187, 0.11925606536865234, 0.11975270080566407, 0.12020941162109375, 0.11999846649169922, 0.12033843231201172, 0.11914854431152344, 0.12003942108154297, 0.2506158142089844, 0.12027391815185547, 0.11959091186523438, 0.11991551971435546, 0.1192816619873047, 0.11801292419433594, 0.11855052947998047, 0.11803955078125, 0.11798016357421875, 0.11803241729736329, 0.11873174285888671, 0.12019200134277344, 0.11996057891845703, 0.11952947235107422, 0.11857612609863281, 0.11973939514160156, 0.11993702697753907, 0.11889049530029297, 0.11839385223388672, 0.11943730926513672, 0.11985203552246093, 0.11852082824707032, 0.11822898864746094, 0.11862739562988281, 0.11842758178710938, 0.11852185821533204, 0.1185054702758789, 0.11835596466064453, 0.11835699462890625, 0.11841331481933594, 0.11834674835205078, 0.11860070037841797, 0.12062003326416015, 0.11992473602294922, 0.12043059539794922, 0.12157746887207031, 0.12022579193115235, 0.11964927673339844, 0.12050534057617188, 0.12049407958984375, 0.12015615844726563, 0.11910553741455078, 0.12046438598632812, 0.1204510726928711, 0.12023603057861328, 0.11975885009765624, 0.12176998138427735, 0.12023705291748046, 0.12054937744140624, 0.11995750427246094, 0.12132864379882813, 0.11925917053222657, 0.1186283187866211, 0.11835699462890625, 0.11851776123046875, 0.11839794921875, 0.11879730987548828, 0.11951107025146485, 0.11866006469726563, 0.11900109100341796, 0.11836723327636718, 0.11853414154052734, 0.11843583679199218, 0.24882893371582032, 0.11982233428955077, 0.11939225769042969, 0.12049919891357422, 0.12002508544921875, 0.1198919677734375, 0.12023910522460937, 0.11994217681884765, 0.11870614624023437, 0.11836006164550782, 0.11821260833740234, 0.11851570892333985, 0.11971686553955078, 0.12000460815429688, 0.11984076690673828, 0.11931136322021485, 0.11905126190185547, 0.11986329650878906, 0.11975373077392579, 0.11980595397949219, 0.1196267547607422, 0.11956735992431641, 0.12024422454833984, 0.12106342315673828, 0.11977728271484375, 0.1197127685546875, 0.11865599822998046, 0.11831404876708984, 0.11899692535400391, 0.11852082824707032, 0.11829145812988281, 0.11852595520019531, 0.11846348571777343, 0.11836518096923829, 0.11844812774658203, 0.11833757019042969, 0.11830780792236328, 0.11964620971679688, 0.11897650909423828, 0.11840921783447265, 0.11968511962890625, 0.11841024017333984, 0.11969535827636718, 0.11970559692382812, 0.12029644775390624, 0.12001078033447266, 0.11961955261230468, 0.12051967620849609, 0.11861196899414063, 0.11842150115966797, 0.11837133026123046, 0.12028313446044922, 0.11990322875976563, 0.1188751983642578, 0.12033939361572266, 0.11918643188476563, 0.1187583999633789, 0.12003942108154297, 0.11934515380859376, 0.12007730865478515, 0.12025138854980469, 0.12019916534423829, 0.12015615844726563, 0.24848793029785157, 0.11997798156738282, 0.11991763305664062, 0.12037625885009766, 0.12008345794677734, 0.11944652557373046, 0.12011827087402344, 0.12008448028564453, 0.11987149047851563, 0.12019404602050782, 0.12016851043701172, 0.11977823638916016, 0.11987865447998047, 0.11973426818847656, 0.12008038330078125, 0.11942092895507812, 0.11997491455078126, 0.11880242919921875, 0.11979673767089843, 0.1197127685546875, 0.11939532470703125, 0.11976703643798828, 0.11997494506835937, 0.12019094085693359, 0.12064665222167968, 0.12001996612548828, 0.12060364532470703, 0.12040294647216797, 0.11997388458251954, 0.11948646545410156, 0.11998822021484375, 0.11993907165527344, 0.11955097961425781, 0.11953561401367188, 0.11927756500244141, 0.11897036743164062, 0.11999334716796875, 0.11905126190185547, 0.11846553802490234, 0.11841843414306641, 0.11854847717285157, 0.11835596466064453, 0.11830995178222656, 0.11828428649902344, 0.1203987808227539, 0.11818905639648437, 0.1193707504272461, 0.11814604949951171, 0.11847782135009766, 0.1183078384399414, 0.11799350738525391, 0.11804771423339844, 0.11817372894287109, 0.11848700714111328, 0.11852082824707032, 0.11849932861328125, 0.12020735931396484, 0.120089599609375, 0.12004761505126953, 0.12012134552001953, 0.11869286346435547, 0.11855974578857421, 0.11863142395019531, 0.24572006225585938, 0.1183477783203125, 0.11846041870117187, 0.11811737823486328, 0.1181470718383789, 0.11830067443847657, 0.11928985595703125, 0.11911065673828125, 0.1185771484375, 0.11835187530517578, 0.12018994903564453, 0.12008550262451172, 0.11990534210205078, 0.1200219497680664, 0.12004659271240234, 0.11994931030273437, 0.12035686492919923, 0.12041522979736329, 0.12053298950195312, 0.12031999969482422, 0.12058419036865234, 0.12013158416748047, 0.12075929260253906, 0.11833036804199219, 0.1206794204711914, 0.12085862731933594, 0.12161433410644532, 0.11919667053222656, 0.1187041244506836, 0.11844300842285156, 0.11833650970458984, 0.11833856201171875, 0.1186355209350586, 0.11820236968994141, 0.12034559631347656, 0.12019712066650391, 0.12016947174072265, 0.11850035095214843, 0.12005375671386719, 0.12051763153076171, 0.11887615966796874, 0.11807539367675782, 0.11823411560058594, 0.11905741119384766, 0.12032307434082032, 0.1189775390625, 0.12029132843017579, 0.12084019470214843, 0.12052992248535156, 0.1207357406616211, 0.12054220581054688, 0.12078284454345703, 0.12055244445800781, 0.12059852600097656, 0.12064358520507812, 0.12082486724853515, 0.1207326431274414, 0.12082278442382813, 0.12053196716308594, 0.12073065948486328, 0.12090262603759766, 0.12064870452880859, 0.12058112335205078, 0.24601292419433593, 0.11817881774902343, 0.11808255767822265, 0.11800780487060547, 0.118255615234375, 0.11830067443847657, 0.11829145812988281, 0.11941478729248046, 0.12005375671386719, 0.1198202896118164, 0.12005785369873047, 0.11806412506103516, 0.11867750549316407, 0.11829145812988281, 0.11833548736572265, 0.11830989074707031, 0.11806822204589844, 0.11833241271972657, 0.11837747192382812, 0.11845120239257813, 0.11834572601318359, 0.11841228485107422, 0.11827609252929687, 0.11805286407470703, 0.11896729278564454, 0.11836313629150391, 0.11981619262695313, 0.12392044830322266, 0.1205656967163086, 0.12015821075439453, 0.11990016174316406, 0.12003533172607422, 0.11934003448486329, 0.1199974365234375, 0.1193154525756836, 0.11959500885009766, 0.11863040161132812, 0.1188106231689453, 0.12067327880859376, 0.11914444732666016, 0.11830477142333984, 0.11853721618652344, 0.1185269775390625, 0.11941990661621094, 0.11858329772949219, 0.1186693115234375, 0.12036608123779297, 0.12004557037353515, 0.1200558090209961, 0.12050841522216797, 0.12022681427001954, 0.12039065551757812, 0.12011212921142578, 0.12010495758056641, 0.12036608123779297, 0.1201817626953125, 0.12043673706054688, 0.12033843231201172, 0.12007526397705078, 0.12000972747802735, 0.12006505584716796, 0.11996975708007812, 0.11998822021484375, 0.2494791717529297, 0.12030156707763671, 0.11901952362060547, 0.11824127960205078, 0.1192816619873047, 0.11887308502197266, 0.11826175689697266, 0.11869388580322265, 0.11826687622070313, 0.11836211395263672, 0.11810918426513672, 0.11887104034423829, 0.11972198486328126, 0.11960012817382812, 0.1192468490600586, 0.118002685546875, 0.11875942230224609, 0.11941478729248046, 0.11890585327148437, 0.11843382263183594, 0.1191526107788086, 0.11959500885009766, 0.11970668792724609, 0.11957036590576171, 0.11933695983886719, 0.11909327697753906, 0.11842966461181641, 0.11905228424072266, 0.11911888122558593, 0.11894780731201172, 0.11848089599609375, 0.1181890869140625, 0.11840406036376953, 0.1190297622680664, 0.11982848358154297, 0.11972096252441407, 0.11864371490478516, 0.11924582672119141, 0.11929804992675781, 0.11825459289550781, 0.11951718139648437, 0.11916287994384765, 0.11947417449951171, 0.11800064086914062, 0.11845017242431641, 0.11818089294433594, 0.11930210876464843, 0.1199810562133789, 0.11853517150878906, 0.11870310211181641, 0.11945164489746093, 0.11844096374511719, 0.1184194564819336, 0.118508544921875, 0.11926220703125, 0.12017356872558593, 0.11892838287353516, 0.1193021469116211, 0.11871849822998047, 0.11844911956787109, 0.11832115173339844, 0.11867545318603516, 0.11844403076171875, 0.24766259765625, 0.11916802978515625, 0.12123133087158203, 0.12028313446044922, 0.11920588684082031, 0.11884953308105468, 0.11862528228759765, 0.11994931030273437, 0.11886182403564453, 0.11885363006591797, 0.12013670349121094, 0.11913011169433593, 0.11992473602294922, 0.11888435363769531, 0.11946598052978516, 0.11882707214355469, 0.1207070083618164, 0.11865702056884765, 0.11839590454101563, 0.11839078521728516, 0.11947724914550781, 0.11919769287109375, 0.11886080169677735, 0.11848601531982422, 0.11876966094970703, 0.11810099029541016, 0.11880960083007812, 0.11817369842529298, 0.11927142333984375, 0.11965235137939453, 0.118761474609375, 0.11863654327392578, 0.11901439666748047, 0.11827814483642578, 0.11898368072509766, 0.11854233551025391, 0.11844915008544922, 0.11848397064208985, 0.11839078521728516, 0.11844608306884766, 0.11859455871582031, 0.11865190124511718, 0.11820441436767579, 0.11907686614990234, 0.11970867156982422, 0.11921715545654298, 0.11824230194091796, 0.11921817779541016, 0.11916390228271484, 0.11929804992675781, 0.11828326416015625, 0.11838361358642578, 0.11848499298095704, 0.11860991668701172, 0.11808153533935548, 0.11826588439941406, 0.11823715209960937, 0.11888639831542969, 0.11884031677246094, 0.11812454223632812, 0.11833446502685546, 0.11847577667236328, 0.11946905517578126, 0.24866712951660155, 0.11849318695068359, 0.11980188751220704, 0.11915773010253906, 0.11846041870117187, 0.1203589096069336, 0.1205381088256836, 0.11978342437744141, 0.11976601409912109, 0.11947417449951171, 0.11962163543701172, 0.11930316925048828, 0.11854541015625, 0.11897344207763672, 0.11885158538818359, 0.11875020599365234, 0.1181839370727539, 0.11931443023681641, 0.11823616027832032, 0.11900313568115234, 0.11816345977783203, 0.11854847717285157, 0.11989708709716797, 0.11902668762207032, 0.11941683197021484, 0.11941580963134765, 0.11852185821533204, 0.11982540893554687, 0.11974553680419922, 0.11874918365478515, 0.11918950653076171, 0.11970355224609375, 0.11946189117431641, 0.11857100677490234, 0.11914035034179687, 0.11940966033935548, 0.1185689926147461, 0.11831394958496094, 0.11820441436767579, 0.11945574188232422, 0.11997388458251954, 0.1203240966796875, 0.11903180694580077, 0.11818495941162109, 0.11810201263427735, 0.11788288116455078, 0.11807539367675782, 0.11814604949951171, 0.11880038452148438, 0.11919872283935547, 0.11881983947753906, 0.11975987243652343, 0.11975373077392579, 0.11953568267822266, 0.12003424072265625, 0.11991961669921875, 0.12044185638427735, 0.11880550384521485, 0.11889356994628907, 0.11842253112792969, 0.11843379211425781, 0.11815936279296875, 0.11811634826660156, 0.24846543884277345, 0.11927139282226562, 0.11798732757568359, 0.11792998504638671, 0.11840512084960937, 0.11863859558105469, 0.11815321350097656, 0.11805184173583984, 0.11871437072753906, 0.11836109161376954, 0.1180794906616211, 0.11815424346923828, 0.1181317138671875, 0.11853004455566406, 0.11842150115966797, 0.11837542724609375, 0.11854847717285157, 0.11832217407226563, 0.11862220764160156, 0.11864985656738282, 0.11943526458740235, 0.11942912292480469, 0.11993395233154297, 0.12021145629882812, 0.12013568115234376, 0.12069990539550782, 0.12175667572021484, 0.12003942108154297, 0.11987763214111329, 0.11907788848876953, 0.1194076156616211, 0.11910553741455078, 0.11873177337646484, 0.11934413146972657, 0.11961958312988281, 0.11883519744873047, 0.11877273559570313, 0.11876761627197266, 0.12034662628173828, 0.12008140563964843, 0.11964415740966797, 0.12007014465332032, 0.12065280151367187, 0.11880754852294922, 0.11892736053466797, 0.11855974578857421, 0.11855052947998047, 0.11903590393066406, 0.11845938873291016, 0.11849523162841796, 0.1184716796875, 0.11835289764404297, 0.11853619384765625, 0.11834368133544922, 0.11937382507324219, 0.11912806701660156, 0.11848806762695313, 0.11961753845214844, 0.1190113296508789, 0.11965132904052735, 0.11860281372070312, 0.11934611511230468, 0.11991145324707031]",tokens/s,8.254324575433342,,,,, 4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,,cuda,0,42,,,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,main,False,False,MB,1743.122432,22129.672192,0.0,21483.225088,20799.036928,s,10,27.909502197265624,2.7909502197265623,0.0030225550178342967,2.7914050292968753,2.79439267578125,2.794928149414062,2.7953565283203123,"[2.794273681640625, 2.795463623046875, 2.7873525390625, 2.789448486328125, 2.787631103515625, 2.78628466796875, 2.790373291015625, 2.792436767578125, 2.79304931640625, 2.793188720703125]",tokens/s,91.72503263962948,kWh,3.290233454770512e-05,1.803171549396211e-05,0.0001583880155991868,0.00020932206564085407,tokens/kWh,1222995.765956342,MB,1743.720448,22129.672192,0.0,21483.225088,20902.142976,s,10,1661.799328125,166.1799328125,0.024199823300055656,166.1772734375,166.2117125,166.21745,166.22204,"[166.17496875, 166.167359375, 166.14703125, 166.2104375, 166.2231875, 166.181296875, 166.179578125, 166.204078125, 166.159546875, 166.15184375]",tokens/s,0.37910714569299164,kWh,0.0019616428730719624,0.001075153456676562,0.009382404450362024,0.012419200780110549,tokens/kWh,5072.790199261051,,s,629,1684.2762666015624,2.677704716377683,0.33156351074934576,2.63752294921875,2.6395720703125,2.6405790039062498,5.428127246093751,"[2.63648046875, 2.637477783203125, 2.636610595703125, 2.63773388671875, 2.63674365234375, 2.6374482421875, 2.63684716796875, 2.637740966796875, 2.636241943359375, 2.6376162109375, 2.636966796875, 2.6365615234375, 2.639180908203125, 2.637003662109375, 2.637414306640625, 2.638074951171875, 2.638488525390625, 2.637603759765625, 2.6381865234375, 2.6367314453125, 2.63737646484375, 2.636360595703125, 2.63697314453125, 2.6366044921875, 2.6370693359375, 2.636568603515625, 2.636980224609375, 2.636353515625, 2.63706103515625, 2.636314697265625, 2.637646728515625, 2.63864208984375, 2.637822998046875, 2.63769091796875, 2.636580810546875, 2.636631103515625, 2.6366474609375, 2.636380126953125, 2.635778076171875, 2.639795166015625, 2.637285400390625, 2.636735595703125, 2.63680419921875, 2.636505126953125, 2.636515380859375, 2.637959228515625, 2.6366884765625, 2.638927001953125, 2.6396015625, 2.6393056640625, 2.640069580078125, 2.638898193359375, 2.6396181640625, 2.639129638671875, 2.6404248046875, 2.63950439453125, 2.6398291015625, 2.639203369140625, 2.639447021484375, 2.638824462890625, 2.638972900390625, 2.637701171875, 5.43399951171875, 2.63682861328125, 2.637526123046875, 2.637077392578125, 2.636991455078125, 2.636851318359375, 2.63690966796875, 2.636982177734375, 2.638088134765625, 2.63716455078125, 2.63853662109375, 2.638309326171875, 2.63889111328125, 2.64060107421875, 2.637055908203125, 2.63606884765625, 2.63802880859375, 2.637928466796875, 2.6390927734375, 2.6384384765625, 2.637506591796875, 2.63756298828125, 2.63665869140625, 2.636583984375, 2.63687060546875, 2.6370908203125, 2.637446044921875, 2.63802685546875, 2.6375556640625, 2.637516845703125, 2.63621728515625, 2.637552734375, 2.637285400390625, 2.637663330078125, 2.6371767578125, 2.637763671875, 2.63699560546875, 2.63773583984375, 2.637076416015625, 2.637444091796875, 2.636642333984375, 2.636317626953125, 2.63705078125, 2.636695556640625, 2.637413330078125, 2.63615478515625, 2.6434365234375, 2.637322265625, 2.638057373046875, 2.63786181640625, 2.638676025390625, 2.637177734375, 2.63716455078125, 2.637470703125, 2.63781689453125, 2.636496826171875, 2.63722802734375, 2.637602783203125, 2.638507080078125, 2.637663330078125, 2.636621826171875, 2.63727001953125, 2.6375107421875, 5.42925830078125, 2.638592041015625, 2.6379560546875, 2.637390869140625, 2.636768310546875, 2.63889501953125, 2.638235595703125, 2.638288818359375, 2.637874267578125, 2.638148681640625, 2.637728759765625, 2.637327392578125, 2.63690869140625, 2.637347900390625, 2.6369453125, 2.637433837890625, 2.63707958984375, 2.636822509765625, 2.637656982421875, 2.63617529296875, 2.636454833984375, 2.6358466796875, 2.636423095703125, 2.63856640625, 2.63604833984375, 2.63657470703125, 2.637000732421875, 2.637095947265625, 2.636664794921875, 2.6381435546875, 2.640372802734375, 2.638454833984375, 2.636282958984375, 2.636675048828125, 2.635629638671875, 2.636507080078125, 2.63680615234375, 2.63701611328125, 2.636884033203125, 2.63752294921875, 2.6366669921875, 2.63699462890625, 2.63780859375, 2.6374072265625, 2.636739501953125, 2.6374296875, 2.637625244140625, 2.639678466796875, 2.63699658203125, 2.63729052734375, 2.637656982421875, 2.636547119140625, 2.6364794921875, 2.636135498046875, 2.636613525390625, 2.636599365234375, 2.63747265625, 2.6357861328125, 2.63600439453125, 2.6359716796875, 2.636907470703125, 2.636198974609375, 2.639195068359375, 5.42974560546875, 2.637918212890625, 2.638065673828125, 2.6382080078125, 2.639459228515625, 2.638834716796875, 2.640337890625, 2.639097900390625, 2.638284912109375, 2.639035400390625, 2.636672119140625, 2.63703955078125, 2.63772265625, 2.639283203125, 2.6380830078125, 2.639520751953125, 2.63948291015625, 2.637526123046875, 2.638147705078125, 2.637602783203125, 2.63681640625, 2.63762841796875, 2.638529541015625, 2.63696484375, 2.63714599609375, 2.637178955078125, 2.6376796875, 2.63855810546875, 2.641314697265625, 2.637876220703125, 2.63853369140625, 2.63912548828125, 2.637345703125, 2.636560302734375, 2.636971923828125, 2.636669921875, 2.636619873046875, 2.6392392578125, 2.63902099609375, 2.638465087890625, 2.63775341796875, 2.638636962890625, 2.637673583984375, 2.6372373046875, 2.64167431640625, 2.6387353515625, 2.637962158203125, 2.639416259765625, 2.637681640625, 2.639564697265625, 2.6377236328125, 2.638668701171875, 2.638095458984375, 2.63796728515625, 2.637655029296875, 2.637210693359375, 2.63780859375, 2.638158935546875, 2.637846435546875, 2.63988232421875, 2.641334228515625, 2.636745849609375, 2.63619482421875, 5.42609521484375, 2.63847412109375, 2.64098095703125, 2.6405458984375, 2.64087451171875, 2.64148388671875, 2.64074755859375, 2.64026318359375, 2.640604248046875, 2.640962646484375, 2.638622802734375, 2.63895458984375, 2.636958740234375, 2.636030029296875, 2.636072021484375, 2.637117431640625, 2.636577880859375, 2.642241455078125, 2.64078857421875, 2.641033203125, 2.641383544921875, 2.64137841796875, 2.639701904296875, 2.640848876953125, 2.640034912109375, 2.6397451171875, 2.640384033203125, 2.637106201171875, 2.636432373046875, 2.636267578125, 2.637424560546875, 2.636958740234375, 2.63680712890625, 2.637274169921875, 2.638011474609375, 2.63804931640625, 2.63707861328125, 2.636590087890625, 2.63739794921875, 2.63689013671875, 2.63980029296875, 2.639002685546875, 2.638836669921875, 2.63720849609375, 2.637477783203125, 2.637814697265625, 2.637075439453125, 2.637104248046875, 2.638521240234375, 2.63874755859375, 2.63686962890625, 2.63682763671875, 2.637802490234375, 2.63747998046875, 2.6362255859375, 2.63657568359375, 2.636940185546875, 2.642130859375, 2.6372998046875, 2.63684912109375, 2.63803271484375, 2.63796533203125, 2.637073486328125, 5.4244033203125, 2.636745849609375, 2.6364814453125, 2.6371123046875, 2.637408203125, 2.636239990234375, 2.63697607421875, 2.638215087890625, 2.639066162109375, 2.63918994140625, 2.639048583984375, 2.63975634765625, 2.639510498046875, 2.63817626953125, 2.637822021484375, 2.6385029296875, 2.637655029296875, 2.637551513671875, 2.636876708984375, 2.63750048828125, 2.63714599609375, 2.63798779296875, 2.63727099609375, 2.637442138671875, 2.636712890625, 2.637854736328125, 2.638200927734375, 2.6394736328125, 2.63754541015625, 2.636971923828125, 2.637844482421875, 2.63727197265625, 2.6361865234375, 2.636801025390625, 2.637619140625, 2.637947998046875, 2.63809228515625, 2.637560791015625, 2.6417490234375, 2.63729052734375, 2.63712158203125, 2.63689111328125, 2.63716259765625, 2.635864990234375, 2.6373251953125, 2.63663623046875, 2.63742578125, 2.637765625, 2.63775341796875, 2.638487548828125, 2.638257080078125, 2.63924951171875, 2.639295654296875, 2.639500244140625, 2.63644970703125, 2.637189208984375, 2.637624267578125, 2.639413330078125, 2.639233154296875, 2.63777587890625, 2.637401123046875, 2.637765625, 2.63680712890625, 5.42891748046875, 2.637751220703125, 2.6369423828125, 2.637287353515625, 2.6384208984375, 2.6376162109375, 2.637705078125, 2.6376396484375, 2.636984375, 2.636735595703125, 2.637454345703125, 2.63906005859375, 2.641005615234375, 2.639869873046875, 2.638488525390625, 2.638159912109375, 2.638043212890625, 2.6367958984375, 2.6363330078125, 2.637013916015625, 2.63684716796875, 2.63693115234375, 2.636872802734375, 2.64043212890625, 2.636421142578125, 2.63861962890625, 2.63849169921875, 2.638710693359375, 2.637824951171875, 2.6379111328125, 2.636610595703125, 2.6375966796875, 2.637263916015625, 2.63708984375, 2.637641845703125, 2.637759521484375, 2.6372197265625, 2.63781591796875, 2.63773583984375, 2.638950439453125, 2.637347900390625, 2.63666796875, 2.638234619140625, 2.638180419921875, 2.637719482421875, 2.63872216796875, 2.639690673828125, 2.63703662109375, 2.636780517578125, 2.636748779296875, 2.637224853515625, 2.636233642578125, 2.636378173828125, 2.636863525390625, 2.63923193359375, 2.638593994140625, 2.638180419921875, 2.63895556640625, 2.638899169921875, 2.637263916015625, 2.63600537109375, 2.637727783203125, 2.63825, 5.43155078125, 2.637918212890625, 2.63883056640625, 2.63889208984375, 2.63790185546875, 2.637695068359375, 2.636559326171875, 2.636966796875, 2.63714208984375, 2.639033447265625, 2.6404404296875, 2.640530517578125, 2.64198046875, 2.640649169921875, 2.637720458984375, 2.637758544921875, 2.639655029296875, 2.63736328125, 2.63708251953125, 2.636771240234375, 2.636508056640625, 2.63598583984375, 2.6370068359375, 2.636777587890625, 2.636590087890625, 2.63606884765625, 2.63714111328125, 2.63913671875, 2.637537353515625, 2.63705712890625, 2.636992431640625, 2.638615478515625, 2.636080078125, 2.637097900390625, 2.636854248046875, 2.640509033203125, 2.63925146484375, 2.6389052734375, 2.6383544921875, 2.63872705078125, 2.638085205078125, 2.6382275390625, 2.637551513671875, 2.637571044921875, 2.637200439453125, 2.63806982421875, 2.637642822265625, 2.637718505859375, 2.6373642578125, 2.6366044921875, 2.638297119140625, 2.63918798828125, 2.63943896484375, 2.6392646484375, 2.639478759765625, 2.637856689453125, 2.638085205078125, 2.638904296875, 2.6383564453125, 2.639803466796875, 2.640150634765625, 2.637856689453125, 2.640256103515625, 5.4306796875, 2.637127685546875, 2.6382705078125, 2.640280517578125, 2.639151123046875, 2.639075439453125, 2.63817529296875, 2.638035888671875, 2.638784423828125, 2.639287353515625, 2.637106201171875, 2.637173828125, 2.6368388671875, 2.6376591796875, 2.635720703125, 2.63617333984375, 2.636442626953125, 2.63904150390625, 2.6368818359375, 2.635509765625, 2.636674072265625, 2.6366484375, 2.637701171875, 2.638306396484375, 2.64076806640625, 2.63686865234375, 2.6378896484375, 2.639107177734375, 2.6401259765625, 2.6394111328125, 2.63695166015625, 2.63650927734375, 2.636439453125, 2.63674267578125, 2.637043701171875, 2.637275146484375, 2.637382568359375, 2.63693115234375, 2.636669921875, 2.637486083984375, 2.636729248046875, 2.636916748046875, 2.6372802734375, 2.638066650390625, 2.637075439453125, 2.637048828125, 2.636240966796875, 2.637787109375, 2.636506103515625, 2.636660888671875, 2.63712548828125, 2.637421630859375, 2.637157470703125, 2.636517333984375, 2.637552734375, 2.636777587890625, 2.63666064453125, 2.6360966796875, 2.637487060546875, 2.636655517578125, 2.6372158203125, 2.637021240234375, 2.63826025390625, 5.43210595703125, 2.637992919921875, 2.6383369140625, 2.636921875, 2.637557861328125, 2.637305908203125, 2.63912646484375, 2.63752099609375, 2.6370693359375, 2.638551025390625, 2.6377646484375, 2.638067626953125, 2.637068359375, 2.63798876953125, 2.6374892578125, 2.63644775390625, 2.636535888671875, 2.637727783203125, 2.63798876953125, 2.637382568359375, 2.637177734375, 2.637806640625, 2.63628173828125, 2.6376171875, 2.63735302734375, 2.63743896484375, 2.6397236328125, 2.637740966796875, 2.637970458984375, 2.6363720703125, 2.636199951171875, 2.6363935546875, 2.638331787109375, 2.636755859375, 2.636908447265625, 2.636675048828125, 2.63809033203125, 2.636525634765625, 2.63657373046875, 2.63596435546875, 2.63809130859375, 2.6373671875, 2.636396484375, 2.637010009765625, 2.637177734375, 2.636538818359375, 2.637276123046875, 2.638035888671875, 2.636796875, 2.636739501953125, 2.636539794921875, 2.63828076171875, 2.63714404296875, 2.637462646484375, 2.637360107421875, 2.638277587890625, 2.636430419921875, 2.6370283203125, 2.6365234375, 2.638316650390625, 2.636391357421875, 2.636579833984375, 2.636466064453125]",tokens/s,0.3734541728532224,,,,, 4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,,cuda,0,42,,,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,main,False,False,MB,1273.409536,921.174016,0.0,274.726912,220.646912,s,10,0.326115104675293,0.032611510467529296,0.0012484582231843272,0.03218409538269043,0.032784641265869136,0.034564048767089836,0.035987574768066403,"[0.036343456268310544, 0.03226867294311524, 0.03213779067993164, 0.032141822814941406, 0.03203395080566406, 0.03214742279052735, 0.032220767974853515, 0.03238921737670898, 0.03208832168579102, 0.032343681335449216]",tokens/s,7849.989047728858,kWh,3.834838485734976e-07,2.1012961289151069e-07,8.25654520552228e-07,1.419267982017236e-06,tokens/kWh,180374674.2994524,MB,1273.409536,921.174016,0.0,274.726912,250.722304,s,10,20.085640136718748,2.008564013671875,0.006065788108395492,2.006720520019531,2.0181213745117184,2.0185785705566404,2.018944327392578,"[2.018019775390625, 2.006443115234375, 2.0069979248046876, 2.0103148193359375, 2.0040799560546874, 2.00180322265625, 2.00428125, 2.0133179931640623, 2.0013463134765623, 2.0190357666015624]",tokens/s,31.36569189290069,kWh,2.3731767884623614e-05,1.3005590929520364e-05,4.874369069043466e-05,8.548104950457861e-05,tokens/kWh,737005.457526882,,s,629,20.34066634368894,0.03233810229521298,0.0038819833531807996,0.03179007911682129,0.0323544822692871,0.032856268310546874,0.06427897552490235,"[0.03209625625610352, 0.031882240295410154, 0.031893503189086916, 0.032045055389404296, 0.03220787048339844, 0.031922176361083986, 0.031958015441894534, 0.03196518325805664, 0.031784959793090824, 0.03223756790161133, 0.031974399566650394, 0.031955968856811526, 0.03202969741821289, 0.03302809524536133, 0.03192835235595703, 0.031831008911132816, 0.03254272079467774, 0.033226783752441404, 0.032270305633544924, 0.032140289306640625, 0.031940607070922854, 0.032451583862304685, 0.03203788757324219, 0.03188531112670898, 0.032231422424316404, 0.031936511993408204, 0.03298099136352539, 0.03213516616821289, 0.03167948722839355, 0.031526912689208986, 0.031693824768066405, 0.03172966384887695, 0.03170918464660644, 0.03180953598022461, 0.03179929542541504, 0.031628288269042966, 0.031508480072021484, 0.03155660820007324, 0.03158937644958496, 0.03198259162902832, 0.03151974487304687, 0.03146342468261719, 0.031752191543579104, 0.03203481674194336, 0.03182796859741211, 0.03228160095214844, 0.03201331329345703, 0.03220377731323242, 0.03181056022644043, 0.031865856170654294, 0.031473663330078124, 0.031682559967041016, 0.031628288269042966, 0.03277414321899414, 0.03190790367126465, 0.0320777587890625, 0.03253350448608398, 0.032473087310791016, 0.032159744262695314, 0.03166924858093262, 0.03159654426574707, 0.031492095947265625, 0.06451507568359376, 0.032, 0.03342745590209961, 0.032282623291015625, 0.03176243209838867, 0.0318525447845459, 0.03180646324157715, 0.03143065643310547, 0.03154841613769531, 0.03168870353698731, 0.031514623641967776, 0.03150643157958984, 0.03214438247680664, 0.033160190582275394, 0.03213312149047851, 0.03156684875488281, 0.031958015441894534, 0.03179110336303711, 0.03184332847595215, 0.03142963218688965, 0.03191705513000488, 0.031768575668334964, 0.03164057540893555, 0.0317573127746582, 0.03179827117919922, 0.031731712341308595, 0.03301375961303711, 0.031920127868652344, 0.03172352027893066, 0.03289395141601562, 0.031927295684814457, 0.03162521553039551, 0.03168358421325684, 0.03179110336303711, 0.031666175842285156, 0.03177369689941406, 0.031678464889526366, 0.03179315185546875, 0.031765504837036135, 0.031699968338012696, 0.03142860794067383, 0.03162419128417969, 0.031615999221801756, 0.03140505599975586, 0.03147776031494141, 0.031458303451538085, 0.03143987274169922, 0.03174399948120117, 0.0317255687713623, 0.03142758369445801, 0.03156991958618164, 0.031783935546875, 0.03183616065979004, 0.0317890567779541, 0.03189248085021973, 0.03191910362243652, 0.031932416915893554, 0.032277503967285154, 0.032382976531982424, 0.0317706241607666, 0.03181260871887207, 0.031749120712280275, 0.03174502372741699, 0.06404198455810547, 0.03170611190795898, 0.031704063415527346, 0.031628288269042966, 0.03138764762878418, 0.031698944091796875, 0.03154022407531738, 0.03150540733337402, 0.03196416091918945, 0.03177881622314453, 0.032020481109619144, 0.03214233779907227, 0.03199692726135254, 0.031780864715576174, 0.03226009750366211, 0.032115711212158206, 0.03199180793762207, 0.03156787109375, 0.031453184127807614, 0.03144908714294434, 0.0314839038848877, 0.03146649551391602, 0.031458303451538085, 0.03172147178649903, 0.031893503189086916, 0.0328007698059082, 0.03156787109375, 0.031731712341308595, 0.031849472045898435, 0.03165388870239258, 0.03178700828552246, 0.03168259239196777, 0.03179311943054199, 0.031783935546875, 0.03212083053588867, 0.03178188705444336, 0.03179724884033203, 0.033549312591552735, 0.03284889602661133, 0.031834112167358396, 0.03212492752075195, 0.03198259162902832, 0.03174297523498535, 0.031731712341308595, 0.031753215789794925, 0.03182387161254883, 0.031473663330078124, 0.03165388870239258, 0.03157196807861328, 0.031453184127807614, 0.031734783172607424, 0.03165695953369141, 0.03180953598022461, 0.03184537506103516, 0.03207372665405273, 0.032285694122314454, 0.032556095123291016, 0.0321484146118164, 0.0324956169128418, 0.03182592010498047, 0.03148287963867188, 0.03179110336303711, 0.03181056022644043, 0.06443007659912109, 0.03183001518249512, 0.03196928024291992, 0.03182694435119629, 0.03170099258422852, 0.03181056022644043, 0.0315043830871582, 0.03177881622314453, 0.03177574348449707, 0.03191910362243652, 0.0321710090637207, 0.03204403305053711, 0.03181875228881836, 0.031703039169311525, 0.03174604797363281, 0.03175526428222656, 0.031764480590820314, 0.031731712341308595, 0.03183923149108887, 0.03340390396118164, 0.032922622680664065, 0.032161792755126956, 0.03223756790161133, 0.031734783172607424, 0.03291340637207031, 0.032074752807617186, 0.03202150344848633, 0.031716352462768556, 0.03155046463012695, 0.031692800521850584, 0.03226828765869141, 0.03171737670898438, 0.03140505599975586, 0.03134976005554199, 0.03197952079772949, 0.03200307083129883, 0.031696895599365234, 0.03169484710693359, 0.03176755142211914, 0.0321710090637207, 0.03153919982910156, 0.03143987274169922, 0.03146444892883301, 0.03160371208190918, 0.03245568084716797, 0.0314337272644043, 0.03163545608520508, 0.03231846237182617, 0.03222323226928711, 0.031942655563354495, 0.03174399948120117, 0.03162112045288086, 0.03139788818359375, 0.032302078247070314, 0.03218841552734375, 0.03275161743164062, 0.0322529296875, 0.03198361587524414, 0.03178803253173828, 0.031665151596069335, 0.03129241561889649, 0.03186073684692383, 0.031955968856811526, 0.06424063873291015, 0.03157811164855957, 0.03165695953369141, 0.03165081596374512, 0.03146854400634766, 0.031693824768066405, 0.03204095840454101, 0.03246182250976563, 0.03183103942871094, 0.03218636703491211, 0.03204095840454101, 0.031784959793090824, 0.03218431854248047, 0.03177779197692871, 0.031698944091796875, 0.03156684875488281, 0.031731712341308595, 0.03239424133300781, 0.03142758369445801, 0.03172966384887695, 0.03203379058837891, 0.03207167816162109, 0.03187302398681641, 0.033006591796875, 0.03175526428222656, 0.0316180477142334, 0.031959039688110355, 0.031514623641967776, 0.031884288787841795, 0.03161497688293457, 0.031440895080566404, 0.031442943572998046, 0.03174092864990234, 0.03172966384887695, 0.03197747230529785, 0.03176755142211914, 0.03205222320556641, 0.03165695953369141, 0.03194777679443359, 0.03171327972412109, 0.031562751770019534, 0.03168972778320313, 0.031731712341308595, 0.03172966384887695, 0.03186483192443847, 0.032143360137939454, 0.03146240043640137, 0.03147776031494141, 0.03138355255126953, 0.0313753604888916, 0.03180646324157715, 0.0317255687713623, 0.03186380767822266, 0.03160678482055664, 0.032494590759277346, 0.03222528076171875, 0.032045055389404296, 0.03183206367492676, 0.03183206367492676, 0.03180851173400879, 0.03134464073181152, 0.031470592498779294, 0.031731712341308595, 0.06429388427734375, 0.03167436790466309, 0.031923200607299806, 0.03159756851196289, 0.03151667213439941, 0.031647743225097655, 0.031802400588989255, 0.03235427093505859, 0.03198259162902832, 0.03172147178649903, 0.031888383865356446, 0.03179417610168457, 0.031507455825805664, 0.03172761535644531, 0.031579135894775394, 0.031692800521850584, 0.0315156478881836, 0.031440895080566404, 0.03173990440368652, 0.03155356788635254, 0.031624160766601565, 0.03153510475158691, 0.033051647186279294, 0.03177369689941406, 0.031783935546875, 0.03135897636413574, 0.03179007911682129, 0.031714303970336914, 0.031848447799682614, 0.031476736068725586, 0.03139993667602539, 0.03133440017700195, 0.03155763244628906, 0.03146956825256347, 0.03141024017333984, 0.031344575881958006, 0.03177574348449707, 0.03194675254821777, 0.03219046401977539, 0.03170918464660644, 0.031678464889526366, 0.03172249603271484, 0.03172147178649903, 0.031513599395751955, 0.03161497688293457, 0.03177779197692871, 0.03177574348449707, 0.03137228775024414, 0.03147369575500488, 0.031712223052978515, 0.03170918464660644, 0.03205222320556641, 0.03178803253173828, 0.03221299362182617, 0.03220889663696289, 0.03131391906738281, 0.03146956825256347, 0.03166720008850098, 0.031661056518554685, 0.03207376098632812, 0.03320111846923828, 0.032717823028564456, 0.032519168853759765, 0.06434508514404297, 0.031736831665039066, 0.031752191543579104, 0.031851520538330076, 0.03142963218688965, 0.03157196807861328, 0.032121856689453124, 0.03311513519287109, 0.03222534561157227, 0.03178079986572266, 0.03179827117919922, 0.03183206367492676, 0.03181465530395508, 0.03183206367492676, 0.03177267265319824, 0.03184025573730469, 0.031542272567749025, 0.03150540733337402, 0.03178598403930664, 0.03185663986206055, 0.03176038360595703, 0.03312639999389649, 0.03152179145812988, 0.032102401733398435, 0.03188019180297851, 0.03193036842346191, 0.031324159622192385, 0.031851520538330076, 0.03158016014099121, 0.031389696121215824, 0.03189555168151856, 0.03170099258422852, 0.03173785591125488, 0.031285247802734374, 0.03177068710327149, 0.031356864929199216, 0.03158527946472168, 0.031526912689208986, 0.03160985565185547, 0.03185868835449219, 0.031848447799682614, 0.031437824249267575, 0.0317388801574707, 0.03174297523498535, 0.0319866886138916, 0.03175014305114746, 0.031922176361083986, 0.031817728042602536, 0.03180544090270996, 0.03139072036743164, 0.03181260871887207, 0.03197952079772949, 0.03224166488647461, 0.03209011077880859, 0.03164057540893555, 0.03165184020996094, 0.031438848495483396, 0.03207372665405273, 0.03194675254821777, 0.03155148887634277, 0.03187302398681641, 0.03263488006591797, 0.03184025573730469, 0.06429801940917969, 0.03187299156188965, 0.03203276824951172, 0.032094207763671875, 0.03197849655151367, 0.031958015441894534, 0.031926271438598636, 0.031834112167358396, 0.03189452743530274, 0.03218841552734375, 0.032353279113769534, 0.0318791675567627, 0.03179315185546875, 0.031887359619140625, 0.03185868835449219, 0.03156480026245117, 0.03182796859741211, 0.0322426872253418, 0.032043006896972655, 0.03181670379638672, 0.03299020767211914, 0.032031742095947266, 0.03186892890930176, 0.032304126739501955, 0.03237171173095703, 0.0319866886138916, 0.031454208374023435, 0.031525888442993165, 0.03151155281066895, 0.031492095947265625, 0.03167334365844727, 0.031730688095092774, 0.03897753524780274, 0.032933887481689454, 0.031889408111572266, 0.03211980819702148, 0.031719423294067385, 0.031352832794189454, 0.03140505599975586, 0.031687711715698244, 0.031402975082397463, 0.03169177627563476, 0.031749120712280275, 0.03167948722839355, 0.03165695953369141, 0.0316753921508789, 0.03172659111022949, 0.03139072036743164, 0.03140812873840332, 0.03175526428222656, 0.03156684875488281, 0.03263590240478516, 0.03202252960205078, 0.03183923149108887, 0.0319682559967041, 0.031649791717529296, 0.031784959793090824, 0.03172352027893066, 0.03167129516601563, 0.0314337272644043, 0.03163443183898926, 0.03186483192443847, 0.03146137619018555, 0.06431948852539063, 0.03137843132019043, 0.03158016014099121, 0.031425535202026365, 0.031645696640014646, 0.031730688095092774, 0.03186486434936524, 0.031797216415405276, 0.0318156795501709, 0.03175628852844238, 0.031699968338012696, 0.031410175323486327, 0.03138355255126953, 0.03278540802001953, 0.03300454330444336, 0.032178176879882815, 0.0318156795501709, 0.031855615615844726, 0.031870975494384765, 0.03283967971801758, 0.0314204158782959, 0.0314081916809082, 0.031652799606323244, 0.03211775970458984, 0.031666175842285156, 0.03154022407531738, 0.031373311996459964, 0.03173785591125488, 0.031546367645263675, 0.0316753921508789, 0.0315043830871582, 0.031529983520507815, 0.031764480590820314, 0.03139481544494629, 0.03133440017700195, 0.03138559913635254, 0.03137843132019043, 0.031735807418823245, 0.031543296813964845, 0.03143065643310547, 0.03159859275817871, 0.031936511993408204, 0.031735807418823245, 0.03193548774719238, 0.031458303451538085, 0.031456256866455076, 0.031716352462768556, 0.0317388801574707, 0.032037952423095706, 0.031414207458496095, 0.0326901741027832, 0.03216793441772461, 0.031585344314575194, 0.03156883239746094, 0.03191398429870605, 0.031631359100341795, 0.031903743743896484, 0.03156076812744141, 0.03184736061096191, 0.03181363105773926, 0.03224371337890625, 0.03225702285766602, 0.031955968856811526, 0.06444134521484375, 0.03154431915283203, 0.031665151596069335, 0.03288780975341797, 0.031886335372924804, 0.03204403305053711, 0.03172659111022949, 0.031509504318237305, 0.03173785591125488, 0.032, 0.032320510864257815, 0.03182387161254883, 0.03230003356933594, 0.03187404823303223, 0.032198688507080075, 0.03247203063964844, 0.03235532760620117, 0.032702465057373044, 0.03311718368530273, 0.03155148887634277, 0.03170201683044434, 0.03225094223022461, 0.03220576095581055, 0.03237580871582031, 0.032230400085449216, 0.03218431854248047, 0.03240447998046875, 0.032449535369873043, 0.03225600051879883, 0.03243622589111328, 0.0319498233795166, 0.03165081596374512, 0.031528959274291994, 0.03161702346801758, 0.0321003532409668, 0.03190784072875977, 0.03203788757324219, 0.032328704833984374, 0.032467967987060545, 0.03184435272216797, 0.031665151596069335, 0.03177369689941406, 0.03174604797363281, 0.03233894348144531, 0.031704063415527346, 0.03172454452514648, 0.032039936065673826, 0.03196211242675781, 0.031926271438598636, 0.0328611831665039, 0.03221200180053711, 0.03217712020874024, 0.03181056022644043, 0.03184332847595215, 0.032064510345458985, 0.03207372665405273, 0.03184339141845703, 0.03191596794128418, 0.031817760467529294, 0.031796192169189455, 0.03153408050537109, 0.032161792755126956, 0.03232460784912109]",tokens/s,30.92327406447812,,,,, 4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,,cuda,0,42,,,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,main,False,False,MB,1608.957952,5448.925184,0.0,4802.47808,4489.12128,s,10,5.066485656738281,0.5066485656738281,0.0011948895817140703,0.5068220977783202,0.5079840667724609,0.5080279983520508,0.5080631436157227,"[0.5075723266601563, 0.5061219482421875, 0.504515380859375, 0.5053372497558594, 0.5061441345214843, 0.5055963745117188, 0.5075000610351562, 0.5076519470214844, 0.5080719299316406, 0.5079743041992187]",tokens/s,505.2812093912223,kWh,5.964234835571714e-06,3.2679267622643234e-06,2.7223952334698433e-05,3.6456113932534466e-05,tokens/kWh,7022141.758547072,MB,1610.637312,5448.925184,0.0,4802.47808,4557.793792,s,10,299.1010234375,29.910102343749998,0.01023537902845777,29.913578125,29.921135546875,29.9219037109375,29.9225182421875,"[29.899591796875, 29.901322265625, 29.913013671875, 29.890712890625, 29.920396484375, 29.922671875, 29.92096484375, 29.9152421875, 29.90296484375, 29.914142578125]",tokens/s,2.106311749654192,kWh,0.00035296389131082433,0.00019345485010443554,0.0015722178549955057,0.0021186365964107655,tokens/kWh,29736.104864198915,,s,629,303.18425177001956,0.4820099392210167,0.06023141623810366,0.4746004333496094,0.4757639221191406,0.4761423828125,0.98077423828125,"[0.474365966796875, 0.47431475830078124, 0.4748533630371094, 0.47396148681640626, 0.47435162353515625, 0.47414068603515624, 0.47463320922851565, 0.47518923950195313, 0.47532952880859375, 0.4745502624511719, 0.4740556945800781, 0.47391131591796876, 0.47444989013671873, 0.47430245971679685, 0.4739420166015625, 0.4737402954101563, 0.473987060546875, 0.47486770629882813, 0.4739993591308594, 0.475114501953125, 0.47402597045898437, 0.4752353210449219, 0.47403109741210936, 0.4739563598632813, 0.4750960693359375, 0.4755916748046875, 0.4742686767578125, 0.47484210205078126, 0.4754851989746094, 0.4751022033691406, 0.4755619812011719, 0.4745973815917969, 0.47523736572265624, 0.474829833984375, 0.474850341796875, 0.47421026611328126, 0.4759234619140625, 0.47534796142578123, 0.4750888977050781, 0.4741591186523437, 0.4745441284179687, 0.473744384765625, 0.4741099548339844, 0.473807861328125, 0.47429119873046877, 0.4740597839355469, 0.4742881164550781, 0.47400347900390627, 0.4744253234863281, 0.47619073486328123, 0.4757626953125, 0.4742860717773438, 0.47489535522460935, 0.47489950561523436, 0.47460345458984377, 0.4742686767578125, 0.4739921875, 0.4739420166015625, 0.47433624267578123, 0.4748810119628906, 0.4744110107421875, 0.47424615478515625, 0.980806640625, 0.4736993408203125, 0.47429733276367186, 0.4741478271484375, 0.4741099548339844, 0.47420416259765624, 0.4742000732421875, 0.47553228759765626, 0.4755077209472656, 0.4747817077636719, 0.47485235595703124, 0.4747202453613281, 0.4752384033203125, 0.4742318115234375, 0.4740137023925781, 0.4751011962890625, 0.47453387451171875, 0.4759981994628906, 0.4747898864746094, 0.4742266845703125, 0.47406185913085935, 0.4743239440917969, 0.4744366149902344, 0.47420416259765624, 0.47499981689453125, 0.47433114624023437, 0.47446322631835935, 0.47578317260742187, 0.47489739990234375, 0.4754503784179688, 0.4746977233886719, 0.47437005615234373, 0.4743680114746094, 0.47590194702148436, 0.47595211791992187, 0.47569818115234375, 0.474777587890625, 0.474113037109375, 0.4756346740722656, 0.4741652526855469, 0.47452056884765625, 0.4742778930664063, 0.474176513671875, 0.47388363647460935, 0.473754638671875, 0.47433624267578123, 0.474029052734375, 0.47412841796875, 0.4740433654785156, 0.47558758544921875, 0.4756910400390625, 0.4747693786621094, 0.47467111206054685, 0.4742625427246094, 0.4742799377441406, 0.473807861328125, 0.474387451171875, 0.47398092651367185, 0.4740495300292969, 0.47483187866210935, 0.4742236022949219, 0.4746342468261719, 0.4739717102050781, 0.98069091796875, 0.4739993591308594, 0.4743341979980469, 0.4740321350097656, 0.4741048278808594, 0.47378021240234375, 0.4756019287109375, 0.4752998352050781, 0.47476327514648436, 0.47476531982421877, 0.47458303833007814, 0.474603515625, 0.4745164794921875, 0.47447552490234374, 0.4745482177734375, 0.47400344848632814, 0.4754913330078125, 0.47445709228515626, 0.4743076171875, 0.4742041320800781, 0.47417855834960937, 0.4741171264648438, 0.47425332641601564, 0.47636785888671873, 0.4741949462890625, 0.4747110290527344, 0.4743659973144531, 0.47549435424804687, 0.47543499755859375, 0.4749854736328125, 0.4751646728515625, 0.4754985046386719, 0.4756643981933594, 0.475114501953125, 0.4750315551757813, 0.47576882934570314, 0.47484927368164065, 0.47597467041015623, 0.4747806701660156, 0.47479296875, 0.47538177490234373, 0.4749906005859375, 0.47488409423828126, 0.4746322021484375, 0.4749168701171875, 0.47477862548828126, 0.4759582824707031, 0.47688909912109373, 0.47617330932617186, 0.47571865844726563, 0.4744898681640625, 0.4741591186523437, 0.47446939086914064, 0.4745513000488281, 0.4750899047851562, 0.4740403137207031, 0.474461181640625, 0.4741929016113281, 0.47546676635742186, 0.47404339599609374, 0.474176513671875, 0.47427685546875, 0.47412841796875, 0.979821533203125, 0.4742574157714844, 0.4741734313964844, 0.47405874633789064, 0.47411508178710937, 0.47479910278320314, 0.476015625, 0.47458816528320313, 0.4742225952148437, 0.47418679809570313, 0.4743782043457031, 0.47417138671875, 0.4748810119628906, 0.47444174194335936, 0.4738058166503906, 0.4744478759765625, 0.47413861083984377, 0.47446221923828125, 0.47416116333007813, 0.47388262939453124, 0.47408843994140626, 0.47393484497070315, 0.4740771789550781, 0.47400857543945313, 0.47406695556640627, 0.4738518981933594, 0.4751022033691406, 0.4763402099609375, 0.47449191284179687, 0.4742512512207031, 0.4740157470703125, 0.4743352355957031, 0.47394509887695313, 0.473849853515625, 0.47430963134765625, 0.4738713684082031, 0.47423590087890627, 0.4743987121582031, 0.47423590087890627, 0.4738887634277344, 0.4744407043457031, 0.4742297668457031, 0.4740741271972656, 0.47423590087890627, 0.47649996948242185, 0.4742901611328125, 0.4741949462890625, 0.47464346313476563, 0.476073974609375, 0.47489022827148436, 0.4758292541503906, 0.47497113037109373, 0.47431890869140625, 0.4741651916503906, 0.4740843505859375, 0.47435162353515625, 0.47437310791015624, 0.4743291015625, 0.47532852172851564, 0.474313720703125, 0.474640380859375, 0.47469473266601564, 0.4747908630371094, 0.9814691772460937, 0.4747683715820312, 0.4747376708984375, 0.4743690185546875, 0.4749127807617187, 0.4760391540527344, 0.4749434814453125, 0.4753387451171875, 0.4744488830566406, 0.4743935852050781, 0.4743935852050781, 0.47374334716796873, 0.47430349731445315, 0.47411404418945313, 0.47499264526367185, 0.47437823486328123, 0.4740597839355469, 0.4755292053222656, 0.474429443359375, 0.4746004333496094, 0.47424716186523436, 0.4757176208496094, 0.474365966796875, 0.4744038391113281, 0.47409765625, 0.47461581420898435, 0.47587124633789063, 0.47467724609375, 0.47449700927734373, 0.4752076721191406, 0.47526400756835935, 0.4758815002441406, 0.4752086791992188, 0.4745318298339844, 0.4740362548828125, 0.47401980590820314, 0.474777587890625, 0.47447760009765627, 0.47450723266601563, 0.4745646057128906, 0.4748257141113281, 0.4746987609863281, 0.4746670227050781, 0.4746844177246094, 0.4750899047851562, 0.474967041015625, 0.4748011474609375, 0.47588555908203123, 0.47625112915039064, 0.4750325622558594, 0.4751790161132812, 0.47611801147460936, 0.4751523742675781, 0.4750223388671875, 0.4746065979003906, 0.4746875, 0.47461068725585936, 0.47841998291015625, 0.4753489990234375, 0.47590911865234375, 0.4750417785644531, 0.474998779296875, 0.47562240600585937, 0.9817487182617187, 0.47520870971679685, 0.4753449096679688, 0.47469158935546873, 0.4756121520996094, 0.47580160522460935, 0.47535000610351563, 0.47563983154296874, 0.47536431884765623, 0.4756459655761719, 0.4758149108886719, 0.47476327514648436, 0.47486669921875, 0.4744960021972656, 0.4750315551757813, 0.4745902099609375, 0.4752404479980469, 0.4754586181640625, 0.47481234741210937, 0.47426150512695314, 0.4745635986328125, 0.4747796630859375, 0.4742758483886719, 0.4749291381835937, 0.4753070068359375, 0.4757319641113281, 0.47559988403320314, 0.4744366149902344, 0.4746649475097656, 0.47449087524414063, 0.47499365234375, 0.47450009155273437, 0.47397579956054686, 0.47451034545898435, 0.47416116333007813, 0.4750878601074219, 0.47417752075195313, 0.47466085815429687, 0.4771686401367187, 0.4746567687988281, 0.47440997314453126, 0.4744816589355469, 0.4743618469238281, 0.47448269653320313, 0.47479705810546874, 0.47491070556640624, 0.47615179443359373, 0.4757442626953125, 0.4753827819824219, 0.4749906005859375, 0.4746219482421875, 0.4746925964355469, 0.4743485412597656, 0.4746967163085937, 0.47494552612304686, 0.4743270263671875, 0.47532647705078124, 0.47462603759765626, 0.4751585388183594, 0.4746270751953125, 0.47493734741210936, 0.47487387084960936, 0.4749823913574219, 0.9828372192382813, 0.4750807189941406, 0.4744366149902344, 0.4755558471679687, 0.47547698974609376, 0.47533465576171874, 0.4759132080078125, 0.4759879760742188, 0.47586407470703124, 0.4761640930175781, 0.4759255065917969, 0.4748451843261719, 0.474919921875, 0.476189697265625, 0.4745257263183594, 0.4750560913085938, 0.475325439453125, 0.474986572265625, 0.4742686157226563, 0.4745994262695313, 0.4747817077636719, 0.4749609069824219, 0.4750120849609375, 0.47644467163085935, 0.47719833374023435, 0.47524453735351563, 0.4750530700683594, 0.4744356384277344, 0.47469769287109376, 0.4745891418457031, 0.47447756958007814, 0.4750274658203125, 0.47433831787109376, 0.47436083984375, 0.4751431579589844, 0.4747120666503906, 0.474977294921875, 0.47543295288085935, 0.4742215576171875, 0.47395327758789063, 0.474292236328125, 0.473849853515625, 0.4742840270996094, 0.4745062255859375, 0.47460455322265627, 0.475863037109375, 0.4749680786132813, 0.4751790161132812, 0.4745482177734375, 0.47489227294921876, 0.4745994873046875, 0.47445599365234375, 0.47442022705078124, 0.47415603637695314, 0.47442739868164063, 0.474777587890625, 0.47418060302734377, 0.4745369567871094, 0.47485952758789063, 0.4748001708984375, 0.474187744140625, 0.47446221923828125, 0.47530703735351565, 0.9833133544921875, 0.4750899047851562, 0.4764405822753906, 0.47526705932617186, 0.4746055603027344, 0.47418368530273436, 0.4742369384765625, 0.4743475341796875, 0.474524658203125, 0.474323974609375, 0.4742778930664063, 0.47433010864257813, 0.4754462585449219, 0.47468850708007815, 0.474829833984375, 0.4747304992675781, 0.47638424682617186, 0.4761231994628906, 0.47679379272460937, 0.4750878601074219, 0.4745164794921875, 0.47426150512695314, 0.4747745361328125, 0.47573504638671876, 0.4750520324707031, 0.474893310546875, 0.4743792724609375, 0.4743096923828125, 0.474462158203125, 0.47433831787109376, 0.4749609069824219, 0.4743250427246094, 0.4742419738769531, 0.47488204956054686, 0.47455438232421876, 0.4743075866699219, 0.4756408386230469, 0.47438339233398436, 0.4743741760253906, 0.47458706665039063, 0.47492404174804687, 0.47545547485351564, 0.47435980224609375, 0.47457485961914064, 0.4752353210449219, 0.47622964477539065, 0.47467416381835936, 0.47408126831054687, 0.47500799560546875, 0.47463320922851565, 0.4743915405273437, 0.4742758483886719, 0.47516363525390626, 0.47539404296875, 0.4750796813964844, 0.4738518981933594, 0.4742266845703125, 0.477939697265625, 0.474281982421875, 0.47408126831054687, 0.4742758483886719, 0.4744366149902344, 0.4743372802734375, 0.9826785278320312, 0.4751769714355469, 0.47564697265625, 0.47452569580078124, 0.4744765319824219, 0.47413861083984377, 0.47415090942382815, 0.4741754760742187, 0.4749885559082031, 0.47412017822265623, 0.4737423400878906, 0.4744488830566406, 0.4739051513671875, 0.4738478088378906, 0.4745400390625, 0.47486770629882813, 0.47466085815429687, 0.47589376831054686, 0.47535205078125, 0.4755548095703125, 0.4743424072265625, 0.47426663208007813, 0.47488409423828126, 0.47611911010742186, 0.47500384521484373, 0.4744591369628906, 0.47539813232421874, 0.47478475952148436, 0.47490567016601565, 0.47446112060546874, 0.475104248046875, 0.4745164794921875, 0.47489535522460935, 0.47453900146484373, 0.4745594787597656, 0.47434445190429686, 0.47417752075195313, 0.47448269653320313, 0.4744724731445312, 0.4748072509765625, 0.47473458862304685, 0.4740843505859375, 0.4747591552734375, 0.4748912658691406, 0.4760514526367188, 0.47554150390625, 0.4754565124511719, 0.47558041381835936, 0.4751912841796875, 0.47503564453125, 0.47414990234375, 0.4742850646972656, 0.47414886474609375, 0.47481036376953123, 0.47404852294921873, 0.4742584228515625, 0.4739358825683594, 0.4744171447753906, 0.4741263427734375, 0.47414169311523435, 0.4739491882324219, 0.47383755493164065, 0.4742522888183594, 0.983693359375, 0.47566241455078123, 0.47446722412109377, 0.4746977233886719, 0.4751247253417969, 0.47474688720703123, 0.47455032348632814, 0.4745143737792969, 0.474745849609375, 0.4746485900878906, 0.4754575500488281, 0.47418881225585935, 0.474029052734375, 0.47392666625976565, 0.4740771789550781, 0.4740321350097656, 0.4739317626953125, 0.4744591369628906, 0.47454925537109377, 0.47516058349609375, 0.47410687255859374, 0.4743935852050781, 0.4761661376953125, 0.4749885559082031, 0.47419699096679685, 0.47460250854492186, 0.47660543823242185, 0.4745430908203125, 0.4743280639648437, 0.47440179443359376, 0.4743813171386719, 0.47454721069335937, 0.4742799377441406, 0.4744407043457031, 0.4743854064941406, 0.47423898315429686, 0.47517593383789064, 0.4753879089355469, 0.47501516723632814, 0.47492202758789065, 0.4744867858886719, 0.47409762573242187, 0.47553741455078125, 0.4761282653808594, 0.47627365112304687, 0.47592141723632814, 0.474745849609375, 0.47454931640625, 0.47427374267578126, 0.47429937744140627, 0.47435775756835935, 0.47429937744140627, 0.475188232421875, 0.4755568542480469, 0.4755281982421875, 0.4754483337402344, 0.4758005676269531, 0.47536639404296877, 0.4753592224121094, 0.4763494567871094, 0.47446011352539064, 0.4744376220703125, 0.4739686279296875]",tokens/s,2.074646015839662,,,,, 4bit-awq-gemm-flash_attention_2,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,,cuda,0,42,,,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,awq,4,gemm,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.0,217063f5c507ed7cc255df7e1f64c4333a0b4dfe,4.40.2,,0.30.1,,,,1.19.2,,,,0.10.0,,,main,False,False,MB,2234.441728,2932.342784,0.0,2285.89568,2082.575872,s,10,2.433214202880859,0.24332142028808593,0.0008617435568583196,0.24325077056884764,0.24459763488769531,0.24462198333740234,0.24464146209716797,"[0.24380015563964844, 0.24204917907714843, 0.24258213806152343, 0.24336614990234376, 0.24313539123535155, 0.24226588439941407, 0.24288755798339845, 0.24388919067382814, 0.24464633178710937, 0.24459222412109374]",tokens/s,1052.1063032465574,kWh,2.856464352872637e-06,1.5652168180297718e-06,1.2995936322662033e-05,1.7417617493564442e-05,tokens/kWh,14697762.199370166,MB,2234.441728,2959.60576,0.0,2313.158656,2180.684288,s,10,139.734884765625,13.9734884765625,0.01146198033243705,13.9710908203125,13.98807626953125,13.992370166015625,13.995805283203126,"[13.9871220703125, 13.9770771484375, 13.9966640625, 13.980609375, 13.95928515625, 13.96146875, 13.9670087890625, 13.9751728515625, 13.965376953125, 13.965099609375]",tokens/s,4.508537728833344,kWh,0.00016483188493384256,9.03412226583766e-05,0.0007461166431891384,0.0010012897507813577,tokens/kWh,62918.85036358144,,s,629,141.7022607421874,0.22528181358058424,0.02898003334479797,0.22168063354492187,0.2224162872314453,0.22265180053710937,0.4647246643066406,"[0.22235647583007812, 0.22139903259277344, 0.22141644287109374, 0.22147891235351563, 0.2213693389892578, 0.22170726013183595, 0.22163967895507813, 0.2214256591796875, 0.22199398803710937, 0.22159564208984375, 0.22243431091308594, 0.22190284729003906, 0.22202674865722657, 0.2210723876953125, 0.22141133117675782, 0.22209945678710938, 0.22192127990722657, 0.2224189453125, 0.22194073486328125, 0.22234317016601562, 0.22204518127441406, 0.22228582763671875, 0.2221793212890625, 0.22186904907226562, 0.222603271484375, 0.22207487487792968, 0.22233599853515626, 0.22205238342285155, 0.22235133361816406, 0.2235494384765625, 0.22263296508789063, 0.22236671447753906, 0.22127410888671875, 0.2215219268798828, 0.2213519287109375, 0.22189056396484375, 0.22161100769042968, 0.22196940612792967, 0.22203187561035156, 0.22196531677246092, 0.22140007019042968, 0.2213396453857422, 0.2219325408935547, 0.2218577880859375, 0.22200933837890624, 0.22186495971679687, 0.22244557189941405, 0.22216499328613282, 0.22224179077148437, 0.221955078125, 0.2217943115234375, 0.2224179229736328, 0.22189776611328124, 0.2225540771484375, 0.22166732788085938, 0.22277632141113282, 0.22537420654296875, 0.22221209716796875, 0.22146047973632813, 0.22176870727539064, 0.22216294860839844, 0.22160383605957032, 0.46420379638671877, 0.2221997833251953, 0.22188236999511718, 0.22198272705078126, 0.2217697296142578, 0.22201139831542968, 0.2215034942626953, 0.22119526672363282, 0.22219879150390626, 0.22249369812011718, 0.22189773559570314, 0.22246092224121095, 0.22249574279785156, 0.22148197937011718, 0.22124134826660155, 0.221802490234375, 0.22128536987304687, 0.2213744659423828, 0.22234214782714845, 0.22216806030273437, 0.22141746520996095, 0.22162637329101562, 0.22157516479492187, 0.22105191040039063, 0.2215782470703125, 0.2218741760253906, 0.2216898498535156, 0.22149427795410156, 0.2215536651611328, 0.2222725067138672, 0.22197760009765624, 0.22207795715332032, 0.2216847381591797, 0.22156083679199218, 0.2215741424560547, 0.2220595245361328, 0.22160179138183594, 0.22255001831054688, 0.22156492614746093, 0.22203904724121093, 0.22160179138183594, 0.22140109252929688, 0.22128640747070313, 0.22133660888671874, 0.2213908233642578, 0.22154035949707032, 0.22508236694335937, 0.22183013916015626, 0.22202879333496095, 0.2222407684326172, 0.2216785888671875, 0.22169293212890626, 0.22160691833496093, 0.22218649291992187, 0.2214686737060547, 0.22141439819335937, 0.222487548828125, 0.2225991668701172, 0.22195301818847657, 0.22147276306152344, 0.22199909973144533, 0.22176666259765626, 0.22219879150390626, 0.4654428100585937, 0.2218987579345703, 0.22210765075683594, 0.2219008026123047, 0.22165504455566407, 0.22182707214355468, 0.22211891174316406, 0.22192640686035156, 0.221770751953125, 0.22130482482910158, 0.22165913391113282, 0.22189263916015625, 0.2217932434082031, 0.22167552185058595, 0.22172467041015625, 0.22150143432617186, 0.22293606567382812, 0.22162535095214844, 0.2228019256591797, 0.22176255798339845, 0.22248243713378907, 0.22172979736328124, 0.22229402160644532, 0.22310092163085937, 0.22198988342285156, 0.22210150146484375, 0.22238616943359374, 0.22228480529785155, 0.22175334167480468, 0.22205337524414062, 0.22236058044433593, 0.2222407684326172, 0.2220369873046875, 0.2219929656982422, 0.2221854705810547, 0.2224127960205078, 0.22233395385742188, 0.22231858825683593, 0.22264627075195312, 0.22218751525878908, 0.22241587829589843, 0.22255718994140625, 0.2218741760253906, 0.22225920104980468, 0.22183935546875, 0.22192332458496095, 0.22207795715332032, 0.223752197265625, 0.22219673156738282, 0.22203289794921874, 0.22212197875976564, 0.2223206329345703, 0.22238616943359374, 0.22253575134277342, 0.22210047912597655, 0.22248442077636718, 0.2219356231689453, 0.2220912628173828, 0.22202572631835937, 0.22224896240234376, 0.22215168762207033, 0.22308761596679688, 0.22262168884277345, 0.46642996215820315, 0.22230323791503906, 0.22220390319824218, 0.22247935485839843, 0.22223155212402343, 0.22242303466796876, 0.22273023986816406, 0.2226411590576172, 0.22237493896484375, 0.22229808044433594, 0.2220185546875, 0.22259507751464844, 0.22249984741210938, 0.22244659423828125, 0.22167654418945312, 0.22273228454589844, 0.2222581787109375, 0.22126182556152343, 0.2230200653076172, 0.22316950988769532, 0.22224179077148437, 0.22140518188476563, 0.22184857177734374, 0.22160281372070312, 0.22178099060058593, 0.22235443115234374, 0.2213928985595703, 0.22145535278320314, 0.22126591491699218, 0.22138368225097657, 0.22140518188476563, 0.22138983154296876, 0.22134886169433593, 0.22174208068847656, 0.22144720458984374, 0.22132118225097655, 0.22146354675292967, 0.2214001007080078, 0.22144508361816406, 0.2214297637939453, 0.22163763427734376, 0.221517822265625, 0.22244044494628906, 0.22324838256835938, 0.22501274108886718, 0.22167861938476563, 0.22164067077636718, 0.2215004119873047, 0.22143283081054688, 0.22134579467773438, 0.22140518188476563, 0.22115122985839844, 0.22140415954589843, 0.2217195587158203, 0.22167449951171875, 0.2215034942626953, 0.22143795776367187, 0.2215854034423828, 0.22149530029296874, 0.22169497680664063, 0.22140931701660158, 0.22172157287597657, 0.22152806091308594, 0.4667914123535156, 0.22145228576660156, 0.2217512969970703, 0.2216468505859375, 0.22147789001464843, 0.221444091796875, 0.22145126342773438, 0.22144717407226563, 0.22157005310058595, 0.22128947448730468, 0.22147071838378907, 0.22156903076171874, 0.22139801025390626, 0.2215116729736328, 0.2211778564453125, 0.22171034240722656, 0.22124748229980468, 0.22265548706054689, 0.22149836730957032, 0.22151065063476563, 0.22136422729492186, 0.22120550537109376, 0.22162431335449218, 0.22184754943847657, 0.2219530487060547, 0.22183625793457032, 0.22151065063476563, 0.22187826538085936, 0.2214799346923828, 0.22132736206054687, 0.22136524963378906, 0.22137344360351563, 0.22129356384277343, 0.22121778869628905, 0.22129254150390626, 0.2211164093017578, 0.22158746337890625, 0.22140415954589843, 0.22128128051757812, 0.22147071838378907, 0.22140313720703125, 0.22121273803710936, 0.22131808471679687, 0.2216048583984375, 0.22186810302734375, 0.22218540954589844, 0.221623291015625, 0.22134477233886718, 0.22152088928222657, 0.22141746520996095, 0.22138368225097657, 0.22134169006347656, 0.22129458618164063, 0.22138983154296876, 0.22134169006347656, 0.2212956085205078, 0.221159423828125, 0.2240184326171875, 0.22193971252441405, 0.2216089630126953, 0.22141952514648439, 0.22154853820800782, 0.2216837158203125, 0.46434201049804685, 0.22140415954589843, 0.22150758361816406, 0.22161817932128905, 0.2220298309326172, 0.22168780517578124, 0.2222530517578125, 0.22144613647460937, 0.2217840576171875, 0.22155264282226564, 0.22125669860839844, 0.22169197082519532, 0.22176358032226562, 0.22181779479980468, 0.22157926940917969, 0.2215782470703125, 0.2214246368408203, 0.22152294921875, 0.22142771911621092, 0.22154547119140625, 0.22132429504394532, 0.22135606384277343, 0.22152394104003906, 0.22135398864746095, 0.22151577758789062, 0.2220185546875, 0.22214349365234376, 0.22169088745117188, 0.2212464599609375, 0.22148403930664062, 0.221370361328125, 0.22125363159179687, 0.22161305236816406, 0.22148197937011718, 0.22166015625, 0.2215977020263672, 0.22134783935546876, 0.2212351989746094, 0.2241535949707031, 0.22163558959960938, 0.2216785888671875, 0.22160691833496093, 0.221549560546875, 0.22167141723632813, 0.22142054748535156, 0.2214297637939453, 0.22139903259277344, 0.2217943115234375, 0.22149119567871095, 0.221876220703125, 0.22163250732421874, 0.221765625, 0.2215004119873047, 0.2217400360107422, 0.22149427795410156, 0.2213939208984375, 0.2211758117675781, 0.22143487548828125, 0.22141644287109374, 0.22124339294433593, 0.22147071838378907, 0.22166630554199218, 0.22171136474609374, 0.46487347412109375, 0.22141133117675782, 0.22127206420898438, 0.221338623046875, 0.2219622344970703, 0.22154342651367187, 0.22202265930175782, 0.22145330810546876, 0.22258995056152345, 0.22142874145507813, 0.22155264282226564, 0.22175334167480468, 0.2215741424560547, 0.22162739562988282, 0.22164378356933595, 0.2218803253173828, 0.22163250732421874, 0.22160076904296874, 0.22158848571777343, 0.2215116729736328, 0.2215679931640625, 0.22120550537109376, 0.22134477233886718, 0.22316543579101564, 0.22167039489746093, 0.22168063354492187, 0.22168678283691406, 0.2215116729736328, 0.2215188751220703, 0.22155363464355468, 0.22205235290527345, 0.22159359741210938, 0.22261351013183595, 0.2219059143066406, 0.22219161987304686, 0.22189773559570314, 0.22165504455566407, 0.22153114318847655, 0.2218076171875, 0.22219570922851561, 0.22192445373535155, 0.22225091552734375, 0.22204415893554688, 0.22189260864257812, 0.22191104125976563, 0.2215352325439453, 0.22143385314941405, 0.22180557250976562, 0.22147584533691406, 0.22139698791503906, 0.22178713989257812, 0.22213325500488282, 0.22149221801757812, 0.22222848510742188, 0.22150860595703126, 0.2214686737060547, 0.22136627197265624, 0.22127001953125, 0.22115020751953124, 0.22117478942871094, 0.22150143432617186, 0.22140211486816405, 0.22120550537109376, 0.46591384887695314, 0.22151065063476563, 0.22132838439941407, 0.22122496032714845, 0.22145433044433593, 0.22153318786621093, 0.2213519287109375, 0.22116044616699218, 0.22144717407226563, 0.22135296630859375, 0.2212833251953125, 0.22198477172851563, 0.22165811157226561, 0.22226739501953124, 0.22169804382324218, 0.22206361389160156, 0.22276095581054686, 0.22171136474609374, 0.22175949096679687, 0.22171034240722656, 0.22183833312988283, 0.2217021484375, 0.22223257446289063, 0.221876220703125, 0.22166323852539063, 0.22185369873046876, 0.22207693481445312, 0.22190386962890624, 0.2217379913330078, 0.22185165405273438, 0.22234214782714845, 0.22208717346191406, 0.22299136352539062, 0.22185061645507811, 0.22382899475097656, 0.22139187622070314, 0.22159461975097655, 0.22185369873046876, 0.2214072265625, 0.22193971252441405, 0.22215577697753905, 0.22185267639160156, 0.22164480590820312, 0.22156594848632813, 0.2215188751220703, 0.22147990417480468, 0.22186189270019532, 0.22172262573242188, 0.22174310302734376, 0.22215577697753905, 0.22219366455078124, 0.2219448699951172, 0.2216007385253906, 0.22184959411621094, 0.22170930480957032, 0.22189164733886718, 0.2221639404296875, 0.22170518493652344, 0.22201344299316406, 0.2217830352783203, 0.22169395446777343, 0.22200831604003907, 0.22163148498535157, 0.46692044067382815, 0.2217400360107422, 0.22165196228027345, 0.22197555541992187, 0.22193458557128906, 0.22203904724121093, 0.22154655456542968, 0.22138873291015626, 0.22145330810546876, 0.22146354675292967, 0.22145024108886718, 0.22175640869140625, 0.22180351257324218, 0.22217727661132813, 0.22153727722167968, 0.221896728515625, 0.2214164123535156, 0.2225797119140625, 0.22176051330566407, 0.22177381896972656, 0.22154649353027345, 0.221233154296875, 0.2214615020751953, 0.22134681701660155, 0.22129356384277343, 0.22127615356445313, 0.22128640747070313, 0.22148095703125, 0.22134169006347656, 0.22124339294433593, 0.22114816284179686, 0.2213191680908203, 0.2215188446044922, 0.22131814575195313, 0.22146969604492187, 0.22117990112304686, 0.22134375, 0.22164889526367187, 0.22181581115722657, 0.222171142578125, 0.22175640869140625, 0.22172979736328124, 0.22134066772460936, 0.22151986694335937, 0.22140313720703125, 0.22141030883789062, 0.22220594787597656, 0.22215887451171876, 0.22227349853515624, 0.22183116149902343, 0.22192640686035156, 0.22173184204101562, 0.2216898498535156, 0.22144717407226563, 0.22147584533691406, 0.22146354675292967, 0.22156903076171874, 0.22176051330566407, 0.22247833251953125, 0.221802490234375, 0.22252543640136718, 0.22219468688964844, 0.22166015625, 0.46707403564453126, 0.22175640869140625, 0.22192536926269532, 0.22187315368652344, 0.22208204650878907, 0.22162535095214844, 0.22142361450195314, 0.22128025817871094, 0.22170008850097656, 0.2215782470703125, 0.22144613647460937, 0.22178201293945313, 0.22167654418945312, 0.22178816223144532, 0.2213816375732422, 0.2216816711425781, 0.22158131408691406, 0.22198066711425782, 0.22218853759765625, 0.221770751953125, 0.22207693481445312, 0.2219069366455078, 0.22215782165527342, 0.2219069366455078, 0.2217830352783203, 0.2216417236328125, 0.2232033233642578, 0.22143283081054688, 0.22127719116210937, 0.22148300170898438, 0.22127104187011717, 0.2214615020751953, 0.22147584533691406, 0.22175538635253905, 0.22177690124511718, 0.2215290832519531, 0.22144717407226563, 0.22135296630859375, 0.22129356384277343, 0.22165196228027345, 0.22160076904296874, 0.22165402221679686, 0.22142771911621092, 0.22134783935546876, 0.22133555603027344, 0.22152088928222657, 0.22161509704589843, 0.2215034942626953, 0.22159257507324218, 0.22131712341308593, 0.22130586242675782, 0.22127410888671875, 0.22141850280761718, 0.22161305236816406, 0.22188954162597657, 0.22163456726074218, 0.2218014678955078, 0.2217902069091797, 0.22162124633789063, 0.22154444885253907, 0.22161305236816406, 0.2218956756591797, 0.22184857177734374]",tokens/s,4.438884720014453,,,,, 4bit-awq-exllama-v2-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 600, in resolve_trust_remote_code answer = input( EOFError: EOF when reading a line During handling of the above exception, another exception occurred: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 228, in load_model_with_no_weights self.create_no_weights_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 210, in create_no_weights_model meta_model = self.automodel_class.from_config(self.pretrained_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 418, in from_config trust_remote_code = resolve_trust_remote_code( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code raise ValueError( ValueError: The repository for Deci/DeciCoder-1b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Deci/DeciCoder-1b. Please pass the argument `trust_remote_code=True` to allow custom code to be run. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 4bit-awq-exllama-v2-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 600, in resolve_trust_remote_code answer = input( EOFError: EOF when reading a line During handling of the above exception, another exception occurred: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 228, in load_model_with_no_weights self.create_no_weights_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 210, in create_no_weights_model meta_model = self.automodel_class.from_config(self.pretrained_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 418, in from_config trust_remote_code = resolve_trust_remote_code( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code raise ValueError( ValueError: The repository for Deci/DeciLM-7B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Deci/DeciLM-7B. Please pass the argument `trust_remote_code=True` to allow custom code to be run. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 4bit-awq-exllama-v2-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3544, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1463, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1619, in _check_and_enable_sdpa raise ValueError( ValueError: GPTJForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 4bit-awq-exllama-v2-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3544, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1463, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1619, in _check_and_enable_sdpa raise ValueError( ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 4bit-awq-exllama-v2-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3544, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1463, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1619, in _check_and_enable_sdpa raise ValueError( ValueError: GPTNeoXForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 4bit-awq-exllama-v2-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 436, in post_init_awq_exllama_modules model = exllamav2_post_init( File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init submodule.post_init(scratch_space=model.scratch_spaces[device]) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init self.q_handle = exlv2_ext.make_q_matrix( NameError: name 'exlv2_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 4bit-awq-exllama-v2-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3544, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1463, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1619, in _check_and_enable_sdpa raise ValueError( ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 4bit-awq-exllama-v2-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 436, in post_init_awq_exllama_modules model = exllamav2_post_init( File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init submodule.post_init(scratch_space=model.scratch_spaces[device]) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init self.q_handle = exlv2_ext.make_q_matrix( NameError: name 'exlv2_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 4bit-awq-exllama-v2-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3544, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1463, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1619, in _check_and_enable_sdpa raise ValueError( ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 4bit-awq-gemv-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 64, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 117, in run _ = backend.generate(self.inputs, self.config.generate_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 369, in generate return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1576, in generate result = self._greedy_search( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2494, in _greedy_search outputs = self( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1211, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1018, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 741, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) TypeError: DeciCoderAttention.forward() got an unexpected keyword argument 'cache_position' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemv-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 558, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3544, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1463, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1619, in _check_and_enable_sdpa raise ValueError( ValueError: DeciLMForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemv-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3544, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1463, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1619, in _check_and_enable_sdpa raise ValueError( ValueError: GPTJForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemv-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3544, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1463, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1619, in _check_and_enable_sdpa raise ValueError( ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemv-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3544, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1463, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1619, in _check_and_enable_sdpa raise ValueError( ValueError: GPTNeoXForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemv-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 64, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 117, in run _ = backend.generate(self.inputs, self.config.generate_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 369, in generate return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1576, in generate result = self._greedy_search( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2494, in _greedy_search outputs = self( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1211, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1018, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 741, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 636, in forward query_states = self.q_proj(hidden_states) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward assert AWQ_INSTALLED, ( AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemv-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3544, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1463, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1619, in _check_and_enable_sdpa raise ValueError( ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemv-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 64, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 117, in run _ = backend.generate(self.inputs, self.config.generate_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 369, in generate return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 1576, in generate result = self._greedy_search( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2494, in _greedy_search outputs = self( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1211, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1018, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 741, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 636, in forward query_states = self.q_proj(hidden_states) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1532, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1541, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 115, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/gemv.py"", line 162, in forward assert AWQ_INSTALLED, ( AssertionError: AWQ kernels could not be loaded. Please install them from https://github.com/casper-hansen/AutoAWQ_kernels ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-gemv-sdpa,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,sdpa,,False,,False,forward,awq,4,gemv,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3544, in from_pretrained config = cls._autoset_attn_implementation( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1463, in _autoset_attn_implementation config = cls._check_and_enable_sdpa( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 1619, in _check_and_enable_sdpa raise ValueError( ValueError: GPTNeoForCausalLM does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet. Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation=""eager""` meanwhile. Example: `model = AutoModel.from_pretrained(""openai/whisper-tiny"", attn_implementation=""eager"")` ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-awq-exllama-v2-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 600, in resolve_trust_remote_code answer = input( EOFError: EOF when reading a line During handling of the above exception, another exception occurred: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 228, in load_model_with_no_weights self.create_no_weights_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 210, in create_no_weights_model meta_model = self.automodel_class.from_config(self.pretrained_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 418, in from_config trust_remote_code = resolve_trust_remote_code( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code raise ValueError( ValueError: The repository for Deci/DeciCoder-1b contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Deci/DeciCoder-1b. Please pass the argument `trust_remote_code=True` to allow custom code to be run. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 4bit-awq-exllama-v2-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 600, in resolve_trust_remote_code answer = input( EOFError: EOF when reading a line During handling of the above exception, another exception occurred: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 228, in load_model_with_no_weights self.create_no_weights_model() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 210, in create_no_weights_model meta_model = self.automodel_class.from_config(self.pretrained_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 418, in from_config trust_remote_code = resolve_trust_remote_code( File ""/usr/local/lib/python3.10/dist-packages/transformers/dynamic_module_utils.py"", line 613, in resolve_trust_remote_code raise ValueError( ValueError: The repository for Deci/DeciLM-7B contains custom code which must be executed to correctly load the model. You can inspect the repository content at https://hf.co/Deci/DeciLM-7B. Please pass the argument `trust_remote_code=True` to allow custom code to be run. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 4bit-awq-exllama-v2-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 436, in post_init_awq_exllama_modules model = exllamav2_post_init( File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init submodule.post_init(scratch_space=model.scratch_spaces[device]) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init self.q_handle = exlv2_ext.make_q_matrix( NameError: name 'exlv2_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 4bit-awq-exllama-v2-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 436, in post_init_awq_exllama_modules model = exllamav2_post_init( File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init submodule.post_init(scratch_space=model.scratch_spaces[device]) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init self.q_handle = exlv2_ext.make_q_matrix( NameError: name 'exlv2_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 4bit-awq-exllama-v2-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 436, in post_init_awq_exllama_modules model = exllamav2_post_init( File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init submodule.post_init(scratch_space=model.scratch_spaces[device]) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init self.q_handle = exlv2_ext.make_q_matrix( NameError: name 'exlv2_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 4bit-awq-exllama-v2-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 436, in post_init_awq_exllama_modules model = exllamav2_post_init( File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init submodule.post_init(scratch_space=model.scratch_spaces[device]) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init self.q_handle = exlv2_ext.make_q_matrix( NameError: name 'exlv2_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 4bit-awq-exllama-v2-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 436, in post_init_awq_exllama_modules model = exllamav2_post_init( File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init submodule.post_init(scratch_space=model.scratch_spaces[device]) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init self.q_handle = exlv2_ext.make_q_matrix( NameError: name 'exlv2_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 4bit-awq-exllama-v2-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 436, in post_init_awq_exllama_modules model = exllamav2_post_init( File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init submodule.post_init(scratch_space=model.scratch_spaces[device]) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init self.q_handle = exlv2_ext.make_q_matrix( NameError: name 'exlv2_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1 4bit-awq-exllama-v2-eager,pytorch,2.3.0+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,True,True,,float16,True,False,,eager,,False,,False,forward,awq,4,exllama,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,spawn, AMD EPYC 7R32,16,66697.29792,Linux,x86_64,Linux-5.10.215-203.850.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['NVIDIA A10G'],1,24146608128,0.2.1,,4.40.2,,0.30.1,,,,1.19.2,,,,0.11.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 148, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/base.py"", line 43, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 54, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 87, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/base.py"", line 56, in run backend: Backend = backend_factory(backend_config) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 79, in __init__ self.load_model_with_no_weights() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 255, in load_model_with_no_weights self.load_model_from_pretrained() File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 169, in load_model_from_pretrained self.pretrained_model = self.automodel_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py"", line 563, in from_pretrained return model_class.from_pretrained( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_utils.py"", line 3738, in from_pretrained hf_quantizer.postprocess_model(model) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/base.py"", line 195, in postprocess_model return self._process_model_after_weight_loading(model, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/quantizers/quantizer_awq.py"", line 105, in _process_model_after_weight_loading model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) File ""/usr/local/lib/python3.10/dist-packages/transformers/integrations/awq.py"", line 436, in post_init_awq_exllama_modules model = exllamav2_post_init( File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 198, in exllamav2_post_init submodule.post_init(scratch_space=model.scratch_spaces[device]) File ""/usr/local/lib/python3.10/dist-packages/awq/modules/linear/exllamav2.py"", line 81, in post_init self.q_handle = exlv2_ext.make_q_matrix( NameError: name 'exlv2_ext' is not defined ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2,64,1