Last commit not found
# coding=utf-8 | |
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""The Multi-Genre NLI Corpus.""" | |
import json | |
import os | |
import datasets | |
_CITATION = """\ | |
@InProceedings{N18-1101, | |
author = {Williams, Adina | |
and Nangia, Nikita | |
and Bowman, Samuel}, | |
title = {A Broad-Coverage Challenge Corpus for | |
Sentence Understanding through Inference}, | |
booktitle = {Proceedings of the 2018 Conference of | |
the North American Chapter of the | |
Association for Computational Linguistics: | |
Human Language Technologies, Volume 1 (Long | |
Papers)}, | |
year = {2018}, | |
publisher = {Association for Computational Linguistics}, | |
pages = {1112--1122}, | |
location = {New Orleans, Louisiana}, | |
url = {http://aclweb.org/anthology/N18-1101} | |
} | |
""" | |
_DESCRIPTION = """\ | |
The Multi-Genre Natural Language Inference (MultiNLI) corpus is a | |
crowd-sourced collection of 433k sentence pairs annotated with textual | |
entailment information. The corpus is modeled on the SNLI corpus, but differs in | |
that covers a range of genres of spoken and written text, and supports a | |
distinctive cross-genre generalization evaluation. The corpus served as the | |
basis for the shared task of the RepEval 2017 Workshop at EMNLP in Copenhagen. | |
""" | |
class MultiNli(datasets.GeneratorBasedBuilder): | |
"""MultiNLI: The Stanford Question Answering Dataset. Version 1.1.""" | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"promptID": datasets.Value("int32"), | |
"pairID": datasets.Value("string"), | |
"premise": datasets.Value("string"), | |
"premise_binary_parse": datasets.Value("string"), # parses in unlabeled binary-branching format | |
"premise_parse": datasets.Value("string"), # sentence as parsed by the Stanford PCFG Parser 3.5.2 | |
"hypothesis": datasets.Value("string"), | |
"hypothesis_binary_parse": datasets.Value("string"), # parses in unlabeled binary-branching format | |
"hypothesis_parse": datasets.Value( | |
"string" | |
), # sentence as parsed by the Stanford PCFG Parser 3.5.2 | |
"genre": datasets.Value("string"), | |
"label": datasets.features.ClassLabel(names=["entailment", "neutral", "contradiction"]), | |
} | |
), | |
# No default supervised_keys (as we have to pass both premise | |
# and hypothesis as input). | |
supervised_keys=None, | |
homepage="https://www.nyu.edu/projects/bowman/multinli/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
downloaded_dir = dl_manager.download_and_extract("https://cims.nyu.edu/~sbowman/multinli/multinli_1.0.zip") | |
mnli_path = os.path.join(downloaded_dir, "multinli_1.0") | |
train_path = os.path.join(mnli_path, "multinli_1.0_train.jsonl") | |
matched_validation_path = os.path.join(mnli_path, "multinli_1.0_dev_matched.jsonl") | |
mismatched_validation_path = os.path.join(mnli_path, "multinli_1.0_dev_mismatched.jsonl") | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), | |
datasets.SplitGenerator(name="validation_matched", gen_kwargs={"filepath": matched_validation_path}), | |
datasets.SplitGenerator(name="validation_mismatched", gen_kwargs={"filepath": mismatched_validation_path}), | |
] | |
def _generate_examples(self, filepath): | |
"""Generate mnli examples""" | |
with open(filepath, encoding="utf-8") as f: | |
for id_, row in enumerate(f): | |
data = json.loads(row) | |
if data["gold_label"] == "-": | |
continue | |
yield id_, { | |
"promptID": data["promptID"], | |
"pairID": data["pairID"], | |
"premise": data["sentence1"], | |
"premise_binary_parse": data["sentence1_binary_parse"], | |
"premise_parse": data["sentence1_parse"], | |
"hypothesis": data["sentence2"], | |
"hypothesis_binary_parse": data["sentence2_binary_parse"], | |
"hypothesis_parse": data["sentence2_parse"], | |
"genre": data["genre"], | |
"label": data["gold_label"], | |
} | |