# Getting Started with WavePulse Radio Transcripts Dataset This tutorial will help you get started with using the WavePulse Radio Transcripts dataset from Hugging Face. ## Prerequisites Before starting, make sure you have the required packages installed: ```bash pip install datasets pip install huggingface-hub ``` ## Basic Setup First, let's set up our environment with some helpful configurations: ```python from datasets import load_dataset import huggingface_hub # Increase timeout for large downloads huggingface_hub.constants.HF_HUB_DOWNLOAD_TIMEOUT = 60 # Set up cache directory (optional) cache_dir = "wavepulse_dataset" ``` ## Loading Strategies ### 1. Loading a Specific State (Recommended for Beginners) Instead of loading the entire dataset, start with one state: ```python # Load data for just New York ny_dataset = load_dataset("nyu-dice-lab/wavepulse-radio-raw-transcripts", "NY", cache_dir=cache_dir) ``` ### 2. Streaming Mode (Memory Efficient) If you're working with limited RAM: ```python # Stream the dataset stream_dataset = load_dataset("nyu-dice-lab/wavepulse-radio-raw-transcripts", streaming=True, cache_dir=cache_dir) # Access data in a streaming fashion for example in stream_dataset["train"].take(5): print(example["text"]) ``` ## Common Tasks ### 1. Filtering by Date Range ```python # Filter for August 2024 filtered_ds = dataset.filter( lambda x: "2024-08-01" <= x['datetime'] <= "2024-08-31" ) ``` ### 2. Finding Specific Stations ```python # Get unique stations stations = set(dataset["train"]["station"]) # Filter for a specific station station_ds = dataset.filter(lambda x: x['station'] == 'KENI') ``` ### 3. Analyzing Transcripts ```python # Get all segments from a specific transcript transcript_ds = dataset.filter( lambda x: x['transcript_id'] == 'AK_KAGV_2024_08_25_13_00' ) # Sort segments by their index to maintain order sorted_segments = sorted(transcript_ds, key=lambda x: x['segment_index']) ``` ## Best Practices 1. **Memory Management**: - Start with a single state or small sample - Use streaming mode for large-scale processing - Clear cache when needed: `from datasets import clear_cache; clear_cache()` 2. **Disk Space**: - Ensure at least 75-80 GB free space for full dataset - Use state-specific loading to reduce space requirements - Regular cache cleanup 3. **Error Handling**: - Always include timeout configurations - Implement retry logic for large downloads - Handle connection errors gracefully ## Example Use Cases ### 1. Basic Content Analysis ```python # Count segments per station from collections import Counter station_counts = Counter(dataset["train"]["station"]) print("Most common stations:", station_counts.most_common(5)) ``` ### 2. Time-based Analysis ```python # Get distribution of segments across hours import datetime hour_distribution = Counter( datetime.datetime.fromisoformat(dt).hour for dt in dataset["train"]["datetime"] ) ``` ### 3. Speaker Analysis ```python # Analyze speaker patterns in a transcript def analyze_speakers(transcript_id): segments = dataset.filter( lambda x: x['transcript_id'] == transcript_id ) speakers = [seg['speaker'] for seg in segments] return Counter(speakers) ``` ## Common Issues and Solutions 1. **Timeout Errors**: ```python # Increase timeout duration huggingface_hub.constants.HF_HUB_DOWNLOAD_TIMEOUT = 120 ``` 2. **Memory Errors**: ```python # Use streaming to process in chunks for batch in dataset.iter(batch_size=1000): process_batch(batch) ``` 3. **Disk Space Issues**: ```python # Check available space before downloading import shutil total, used, free = shutil.disk_usage("/") print(f"Free disk space: {free // (2**30)} GB") ``` ## Need Help? - Dataset documentation: https://huggingface.co/datasets/nyu-dice-lab/wavepulse-radio-raw-transcripts - Project website: https://wave-pulse.io - Report issues: https://github.com/nyu-dice-lab/wavepulse/issues Remember to cite the dataset in your work: ```bibtex @article{mittal2024wavepulse, title={WavePulse: Real-time Content Analytics of Radio Livestreams}, author={Mittal, Govind and Gupta, Sarthak and Wagle, Shruti and Chopra, Chirag and DeMattee, Anthony J and Memon, Nasir and Ahamad, Mustaque and Hegde, Chinmay}, journal={arXiv preprint arXiv:2412.17998}, year={2024} } ```