Create Tutorial.md
Browse files- Tutorial.md +191 -0
Tutorial.md
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Getting Started with WavePulse Radio Transcripts Dataset
|
2 |
+
|
3 |
+
This tutorial will help you get started with using the WavePulse Radio Transcripts dataset from Hugging Face.
|
4 |
+
|
5 |
+
## Prerequisites
|
6 |
+
|
7 |
+
Before starting, make sure you have the required packages installed:
|
8 |
+
|
9 |
+
```bash
|
10 |
+
pip install datasets
|
11 |
+
pip install huggingface-hub
|
12 |
+
```
|
13 |
+
|
14 |
+
## Basic Setup
|
15 |
+
|
16 |
+
First, let's set up our environment with some helpful configurations:
|
17 |
+
|
18 |
+
```python
|
19 |
+
from datasets import load_dataset
|
20 |
+
import huggingface_hub
|
21 |
+
|
22 |
+
# Increase timeout for large downloads
|
23 |
+
huggingface_hub.constants.HF_HUB_DOWNLOAD_TIMEOUT = 60
|
24 |
+
|
25 |
+
# Set up cache directory (optional)
|
26 |
+
cache_dir = "wavepulse_dataset"
|
27 |
+
```
|
28 |
+
|
29 |
+
## Loading Strategies
|
30 |
+
|
31 |
+
### 1. Loading a Specific State (Recommended for Beginners)
|
32 |
+
Instead of loading the entire dataset, start with one state:
|
33 |
+
|
34 |
+
```python
|
35 |
+
# Load data for just New York
|
36 |
+
ny_dataset = load_dataset("nyu-dice-lab/wavepulse-radio-raw-transcripts",
|
37 |
+
"NY",
|
38 |
+
cache_dir=cache_dir)
|
39 |
+
```
|
40 |
+
|
41 |
+
### 2. Streaming Mode (Memory Efficient)
|
42 |
+
If you're working with limited RAM:
|
43 |
+
|
44 |
+
```python
|
45 |
+
# Stream the dataset
|
46 |
+
stream_dataset = load_dataset("nyu-dice-lab/wavepulse-radio-raw-transcripts",
|
47 |
+
streaming=True,
|
48 |
+
cache_dir=cache_dir)
|
49 |
+
|
50 |
+
# Access data in a streaming fashion
|
51 |
+
for example in stream_dataset["train"].take(5):
|
52 |
+
print(example["text"])
|
53 |
+
```
|
54 |
+
|
55 |
+
### 3. Loading a Small Sample
|
56 |
+
For testing or exploration:
|
57 |
+
|
58 |
+
```python
|
59 |
+
# Load just 1000 examples
|
60 |
+
sample_dataset = load_dataset("nyu-dice-lab/wavepulse-radio-raw-transcripts",
|
61 |
+
split="train[:1000]",
|
62 |
+
cache_dir=cache_dir)
|
63 |
+
```
|
64 |
+
|
65 |
+
## Common Tasks
|
66 |
+
|
67 |
+
### 1. Filtering by Date Range
|
68 |
+
|
69 |
+
```python
|
70 |
+
# Filter for August 2024
|
71 |
+
filtered_ds = dataset.filter(
|
72 |
+
lambda x: "2024-08-01" <= x['datetime'] <= "2024-08-31"
|
73 |
+
)
|
74 |
+
```
|
75 |
+
|
76 |
+
### 2. Finding Specific Stations
|
77 |
+
|
78 |
+
```python
|
79 |
+
# Get unique stations
|
80 |
+
stations = set(dataset["train"]["station"])
|
81 |
+
|
82 |
+
# Filter for a specific station
|
83 |
+
station_ds = dataset.filter(lambda x: x['station'] == 'KENI')
|
84 |
+
```
|
85 |
+
|
86 |
+
### 3. Analyzing Transcripts
|
87 |
+
|
88 |
+
```python
|
89 |
+
# Get all segments from a specific transcript
|
90 |
+
transcript_ds = dataset.filter(
|
91 |
+
lambda x: x['transcript_id'] == 'AK_KAGV_2024_08_25_13_00'
|
92 |
+
)
|
93 |
+
|
94 |
+
# Sort segments by their index to maintain order
|
95 |
+
sorted_segments = sorted(transcript_ds, key=lambda x: x['segment_index'])
|
96 |
+
```
|
97 |
+
|
98 |
+
## Best Practices
|
99 |
+
|
100 |
+
1. **Memory Management**:
|
101 |
+
- Start with a single state or small sample
|
102 |
+
- Use streaming mode for large-scale processing
|
103 |
+
- Clear cache when needed: `from datasets import clear_cache; clear_cache()`
|
104 |
+
|
105 |
+
2. **Disk Space**:
|
106 |
+
- Ensure at least 75-80 GB free space for full dataset
|
107 |
+
- Use state-specific loading to reduce space requirements
|
108 |
+
- Regular cache cleanup
|
109 |
+
|
110 |
+
3. **Error Handling**:
|
111 |
+
- Always include timeout configurations
|
112 |
+
- Implement retry logic for large downloads
|
113 |
+
- Handle connection errors gracefully
|
114 |
+
|
115 |
+
## Example Use Cases
|
116 |
+
|
117 |
+
### 1. Basic Content Analysis
|
118 |
+
|
119 |
+
```python
|
120 |
+
# Count segments per station
|
121 |
+
from collections import Counter
|
122 |
+
|
123 |
+
station_counts = Counter(dataset["train"]["station"])
|
124 |
+
print("Most common stations:", station_counts.most_common(5))
|
125 |
+
```
|
126 |
+
|
127 |
+
### 2. Time-based Analysis
|
128 |
+
|
129 |
+
```python
|
130 |
+
# Get distribution of segments across hours
|
131 |
+
import datetime
|
132 |
+
|
133 |
+
hour_distribution = Counter(
|
134 |
+
datetime.datetime.fromisoformat(dt).hour
|
135 |
+
for dt in dataset["train"]["datetime"]
|
136 |
+
)
|
137 |
+
```
|
138 |
+
|
139 |
+
### 3. Speaker Analysis
|
140 |
+
|
141 |
+
```python
|
142 |
+
# Analyze speaker patterns in a transcript
|
143 |
+
def analyze_speakers(transcript_id):
|
144 |
+
segments = dataset.filter(
|
145 |
+
lambda x: x['transcript_id'] == transcript_id
|
146 |
+
)
|
147 |
+
speakers = [seg['speaker'] for seg in segments]
|
148 |
+
return Counter(speakers)
|
149 |
+
```
|
150 |
+
|
151 |
+
## Common Issues and Solutions
|
152 |
+
|
153 |
+
1. **Timeout Errors**:
|
154 |
+
```python
|
155 |
+
# Increase timeout duration
|
156 |
+
huggingface_hub.constants.HF_HUB_DOWNLOAD_TIMEOUT = 120
|
157 |
+
```
|
158 |
+
|
159 |
+
2. **Memory Errors**:
|
160 |
+
```python
|
161 |
+
# Use streaming to process in chunks
|
162 |
+
for batch in dataset.iter(batch_size=1000):
|
163 |
+
process_batch(batch)
|
164 |
+
```
|
165 |
+
|
166 |
+
3. **Disk Space Issues**:
|
167 |
+
```python
|
168 |
+
# Check available space before downloading
|
169 |
+
import shutil
|
170 |
+
total, used, free = shutil.disk_usage("/")
|
171 |
+
print(f"Free disk space: {free // (2**30)} GB")
|
172 |
+
```
|
173 |
+
|
174 |
+
## Need Help?
|
175 |
+
|
176 |
+
- Dataset documentation: https://huggingface.co/datasets/nyu-dice-lab/wavepulse-radio-raw-transcripts
|
177 |
+
- Project website: https://wave-pulse.io
|
178 |
+
- Report issues: https://github.com/nyu-dice-lab/wavepulse/issues
|
179 |
+
|
180 |
+
Remember to cite the dataset in your work:
|
181 |
+
|
182 |
+
```bibtex
|
183 |
+
@article{mittal2024wavepulse,
|
184 |
+
title={WavePulse: Real-time Content Analytics of Radio Livestreams},
|
185 |
+
author={Mittal, Govind and Gupta, Sarthak and Wagle, Shruti and Chopra, Chirag
|
186 |
+
and DeMattee, Anthony J and Memon, Nasir and Ahamad, Mustaque
|
187 |
+
and Hegde, Chinmay},
|
188 |
+
journal={arXiv preprint arXiv:2412.17998},
|
189 |
+
year={2024}
|
190 |
+
}
|
191 |
+
```
|