File size: 7,314 Bytes
96fd80c
 
 
 
 
69bf1ce
 
96fd80c
 
 
69bf1ce
 
96fd80c
 
 
 
 
 
 
 
cf2eb9d
 
eb18258
 
96fd80c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbea063
 
 
 
96fd80c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbea063
 
 
96fd80c
 
 
bbea063
 
 
96fd80c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbea063
 
 
 
96fd80c
 
 
 
 
 
bbea063
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import csv
import datasets
from datasets import BuilderConfig, GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split

_PROSODIC_PROMPTS_URLS = {
    "validation": "prosodic/validation.csv",
    "train": "prosodic/train.csv",
}

_AUTOMATIC_PROMPTS_URLS = {
    "validation": "automatic/validation.csv",
    "train": "automatic/train.csv",
}

_ARCHIVES = {
    "prosodic": "prosodic/audios.tar.gz",
    "automatic": "automatic/audios.tar.gz",
}

_PATH_TO_CLIPS = {
    "validation_prosodic": "prosodic/audios",
    "train_prosodic": "prosodic/audios",
    "validation_automatic": "automatic/audios/validation",
    "train_automatic": "automatic/audios/train",
}

class EntoaConfig(BuilderConfig):
    def __init__(self, prompts_type="prosodic", **kwargs):
        super().__init__(**kwargs)
        self.prompts_type = prompts_type

class EntoaDataset(GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        EntoaConfig(name="prosodic", description="Prosodic audio prompts", prompts_type="prosodic"),
        EntoaConfig(name="automatic", description="Automatic audio prompts", prompts_type="automatic"),
    ]

    def _info(self):
        if self.config.name == "prosodic":
            features = datasets.Features(
                {
                    "path": datasets.Value("string"),
                    "name": datasets.Value("string"),
                    "speaker": datasets.Value("string"),
                    "start_time": datasets.Value("string"),
                    "end_time": datasets.Value("string"),
                    "normalized_text": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "duration": datasets.Value("string"),
                    "type": datasets.Value("string"),
                    "year": datasets.Value("string"),
                    "gender": datasets.Value("string"),
                    "age_range": datasets.Value("string"),
                    "total_duration": datasets.Value("string"),
                    "quality": datasets.Value("string"),
                    "theme": datasets.Value("string"),
                    "audio": datasets.Audio(sampling_rate=16_000),
                }
            )
        else:  # automatic
            features = datasets.Features(
                {
                    "audio_name": datasets.Value("string"),
                    "file_path": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "start_time": datasets.Value("string"),
                    "end_time": datasets.Value("string"),
                    "duration": datasets.Value("string"),
                    "quality": datasets.Value("string"),
                    "speech_genre": datasets.Value("string"),
                    "speech_style": datasets.Value("string"),
                    "variety": datasets.Value("string"),
                    "accent": datasets.Value("string"),
                    "sex": datasets.Value("string"),
                    "age_range": datasets.Value("string"),
                    "num_speakers": datasets.Value("string"),
                    "speaker_id": datasets.Value("string"),
                    "audio": datasets.Audio(sampling_rate=16_000),
                }
            )
        return DatasetInfo(features=features)

    def _split_generators(self, dl_manager):
        prompts_urls = _PROSODIC_PROMPTS_URLS if self.config.name == "prosodic" else _AUTOMATIC_PROMPTS_URLS
        archive = dl_manager.download(_ARCHIVES[self.config.name])
        prompts_path = dl_manager.download(prompts_urls)

        # Debug prints for downloaded paths
        print(f"Downloaded prompts: {prompts_path}")
        print(f"Downloaded archive: {archive}")

        return [
            SplitGenerator(
                name=Split.VALIDATION,
                gen_kwargs={
                    "prompts_path": prompts_path["validation"],
                    "path_to_clips": _PATH_TO_CLIPS[f"validation_{self.config.name}"],
                    "audio_files": dl_manager.iter_archive(archive),
                },
            ),
            SplitGenerator(
                name=Split.TRAIN,
                gen_kwargs={
                    "prompts_path": prompts_path["train"],
                    "path_to_clips": _PATH_TO_CLIPS[f"train_{self.config.name}"],
                    "audio_files": dl_manager.iter_archive(archive),
                },
            ),
        ]

    def _generate_examples(self, prompts_path, path_to_clips, audio_files):
        examples = {}

        # Debug print for prompts path
        print(f"Reading prompts from: {prompts_path}")
        with open(prompts_path, "r") as f:
            csv_reader = csv.DictReader(f)
            for row in csv_reader:
                # Debug print for row processing
                print(f"Processing row: {row}")

                if self.config.name == "prosodic":
                    examples[row['path']] = {
                        "path": row['path'],
                        "name": row['name'],
                        "speaker": row['speaker'],
                        "start_time": row['start_time'],
                        "end_time": row['end_time'],
                        "normalized_text": row['normalized_text'],
                        "text": row['text'],
                        "duration": row['duration'],
                        "type": row['type'],
                        "year": row['year'],
                        "gender": row['gender'],
                        "age_range": row['age_range'],
                        "total_duration": row['total_duration'],
                        "quality": row['quality'],
                        "theme": row['theme'],
                    }
                else:  # automatic
                    examples[row['file_path']] = {
                        "audio_name": row['audio_name'],
                        "file_path": row['file_path'],
                        "text": row['text'],
                        "start_time": row['start_time'],
                        "end_time": row['end_time'],
                        "duration": row['duration'],
                        "quality": row['quality'],
                        "speech_genre": row['speech_genre'],
                        "speech_style": row['speech_style'],
                        "variety": row['variety'],
                        "accent": row['accent'],
                        "sex": row['sex'],
                        "age_range": row['age_range'],
                        "num_speakers": row['num_speakers'],
                        "speaker_id": row['speaker_id'],
                    }

        id_ = 0
        inside_clips_dir = False
        for path, f in audio_files:
            if path.startswith(path_to_clips):
                inside_clips_dir = True

                # Debug print for matching audio file
                print(f"Found matching audio file: {path}")

                if path in examples:
                    audio = {"path": path, "bytes": f.read()}
                    yield id_, {**examples[path], "audio": audio}
                    id_ += 1
            elif inside_clips_dir:
                break

        # Debug print for completion
        print(f"Completed generating examples. Total examples: {id_}")