File size: 6,767 Bytes
96fd80c
 
 
 
 
69bf1ce
 
96fd80c
 
 
69bf1ce
 
96fd80c
 
 
 
 
 
 
 
eb18258
 
 
 
96fd80c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import csv
import datasets
from datasets import BuilderConfig, GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split

_PROSODIC_PROMPTS_URLS = {
    "validation": "prosodic/validation.csv",
    "train": "prosodic/train.csv",
}

_AUTOMATIC_PROMPTS_URLS = {
    "validation": "automatic/validation.csv",
    "train": "automatic/train.csv",
}

_ARCHIVES = {
    "prosodic": "prosodic/audios.tar.gz",
    "automatic": "automatic/audios.tar.gz",
}

_PATH_TO_CLIPS = {
    "validation_prosodic": "prosodic/audios/validation",
    "train_prosodic": "prosodic/audios/train",
    "validation_automatic": "automatic/audios/validation",
    "train_automatic": "automatic/audios/train",
}

class EntoaConfig(BuilderConfig):
    def __init__(self, prompts_type="prosodic", **kwargs):
        super().__init__(**kwargs)
        self.prompts_type = prompts_type

class EntoaDataset(GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        EntoaConfig(name="prosodic", description="Prosodic audio prompts", prompts_type="prosodic"),
        EntoaConfig(name="automatic", description="Automatic audio prompts", prompts_type="automatic"),
    ]

    def _info(self):
        if self.config.name == "prosodic":
            features = datasets.Features(
                {
                    "path": datasets.Value("string"),
                    "name": datasets.Value("string"),
                    "speaker": datasets.Value("string"),
                    "start_time": datasets.Value("string"),
                    "end_time": datasets.Value("string"),
                    "normalized_text": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "duration": datasets.Value("string"),
                    "type": datasets.Value("string"),
                    "year": datasets.Value("string"),
                    "gender": datasets.Value("string"),
                    "age_range": datasets.Value("string"),
                    "total_duration": datasets.Value("string"),
                    "quality": datasets.Value("string"),
                    "theme": datasets.Value("string"),
                    "audio": datasets.Audio(sampling_rate=16_000),
                }
            )
        else:  # automatic
            features = datasets.Features(
                {
                    "audio_name": datasets.Value("string"),
                    "file_path": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "start_time": datasets.Value("string"),
                    "end_time": datasets.Value("string"),
                    "duration": datasets.Value("string"),
                    "quality": datasets.Value("string"),
                    "speech_genre": datasets.Value("string"),
                    "speech_style": datasets.Value("string"),
                    "variety": datasets.Value("string"),
                    "accent": datasets.Value("string"),
                    "sex": datasets.Value("string"),
                    "age_range": datasets.Value("string"),
                    "num_speakers": datasets.Value("string"),
                    "speaker_id": datasets.Value("string"),
                    "audio": datasets.Audio(sampling_rate=16_000),
                }
            )
        return DatasetInfo(features=features)

    def _split_generators(self, dl_manager):
        prompts_urls = _PROSODIC_PROMPTS_URLS if self.config.name == "prosodic" else _AUTOMATIC_PROMPTS_URLS
        archive = dl_manager.download(_ARCHIVES[self.config.name])
        prompts_path = dl_manager.download(prompts_urls)

        return [
            SplitGenerator(
                name=Split.VALIDATION,
                gen_kwargs={
                    "prompts_path": prompts_path["validation"],
                    "path_to_clips": _PATH_TO_CLIPS[f"validation_{self.config.name}"],
                    "audio_files": dl_manager.iter_archive(archive),
                },
            ),
            SplitGenerator(
                name=Split.TRAIN,
                gen_kwargs={
                    "prompts_path": prompts_path["train"],
                    "path_to_clips": _PATH_TO_CLIPS[f"train_{self.config.name}"],
                    "audio_files": dl_manager.iter_archive(archive),
                },
            ),
        ]

    def _generate_examples(self, prompts_path, path_to_clips, audio_files):
        examples = {}
        with open(prompts_path, "r") as f:
            csv_reader = csv.DictReader(f)
            for row in csv_reader:
                if self.config.name == "prosodic":
                    examples[row['path']] = {
                        "path": row['path'],
                        "name": row['name'],
                        "speaker": row['speaker'],
                        "start_time": row['start_time'],
                        "end_time": row['end_time'],
                        "normalized_text": row['normalized_text'],
                        "text": row['text'],
                        "duration": row['duration'],
                        "type": row['type'],
                        "year": row['year'],
                        "gender": row['gender'],
                        "age_range": row['age_range'],
                        "total_duration": row['total_duration'],
                        "quality": row['quality'],
                        "theme": row['theme'],
                    }
                else:  # automatic
                    examples[row['file_path']] = {
                        "audio_name": row['audio_name'],
                        "file_path": row['file_path'],
                        "text": row['text'],
                        "start_time": row['start_time'],
                        "end_time": row['end_time'],
                        "duration": row['duration'],
                        "quality": row['quality'],
                        "speech_genre": row['speech_genre'],
                        "speech_style": row['speech_style'],
                        "variety": row['variety'],
                        "accent": row['accent'],
                        "sex": row['sex'],
                        "age_range": row['age_range'],
                        "num_speakers": row['num_speakers'],
                        "speaker_id": row['speaker_id'],
                    }

        id_ = 0
        inside_clips_dir = False
        for path, f in audio_files:
            if path.startswith(path_to_clips):
                inside_clips_dir = True
                if path in examples:
                    audio = {"path": path, "bytes": f.read()}
                    yield id_, {**examples[path], "audio": audio}
                    id_ += 1
            elif inside_clips_dir:
                break