File size: 6,767 Bytes
96fd80c 69bf1ce 96fd80c 69bf1ce 96fd80c eb18258 96fd80c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import csv
import datasets
from datasets import BuilderConfig, GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split
_PROSODIC_PROMPTS_URLS = {
"validation": "prosodic/validation.csv",
"train": "prosodic/train.csv",
}
_AUTOMATIC_PROMPTS_URLS = {
"validation": "automatic/validation.csv",
"train": "automatic/train.csv",
}
_ARCHIVES = {
"prosodic": "prosodic/audios.tar.gz",
"automatic": "automatic/audios.tar.gz",
}
_PATH_TO_CLIPS = {
"validation_prosodic": "prosodic/audios/validation",
"train_prosodic": "prosodic/audios/train",
"validation_automatic": "automatic/audios/validation",
"train_automatic": "automatic/audios/train",
}
class EntoaConfig(BuilderConfig):
def __init__(self, prompts_type="prosodic", **kwargs):
super().__init__(**kwargs)
self.prompts_type = prompts_type
class EntoaDataset(GeneratorBasedBuilder):
BUILDER_CONFIGS = [
EntoaConfig(name="prosodic", description="Prosodic audio prompts", prompts_type="prosodic"),
EntoaConfig(name="automatic", description="Automatic audio prompts", prompts_type="automatic"),
]
def _info(self):
if self.config.name == "prosodic":
features = datasets.Features(
{
"path": datasets.Value("string"),
"name": datasets.Value("string"),
"speaker": datasets.Value("string"),
"start_time": datasets.Value("string"),
"end_time": datasets.Value("string"),
"normalized_text": datasets.Value("string"),
"text": datasets.Value("string"),
"duration": datasets.Value("string"),
"type": datasets.Value("string"),
"year": datasets.Value("string"),
"gender": datasets.Value("string"),
"age_range": datasets.Value("string"),
"total_duration": datasets.Value("string"),
"quality": datasets.Value("string"),
"theme": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
}
)
else: # automatic
features = datasets.Features(
{
"audio_name": datasets.Value("string"),
"file_path": datasets.Value("string"),
"text": datasets.Value("string"),
"start_time": datasets.Value("string"),
"end_time": datasets.Value("string"),
"duration": datasets.Value("string"),
"quality": datasets.Value("string"),
"speech_genre": datasets.Value("string"),
"speech_style": datasets.Value("string"),
"variety": datasets.Value("string"),
"accent": datasets.Value("string"),
"sex": datasets.Value("string"),
"age_range": datasets.Value("string"),
"num_speakers": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
}
)
return DatasetInfo(features=features)
def _split_generators(self, dl_manager):
prompts_urls = _PROSODIC_PROMPTS_URLS if self.config.name == "prosodic" else _AUTOMATIC_PROMPTS_URLS
archive = dl_manager.download(_ARCHIVES[self.config.name])
prompts_path = dl_manager.download(prompts_urls)
return [
SplitGenerator(
name=Split.VALIDATION,
gen_kwargs={
"prompts_path": prompts_path["validation"],
"path_to_clips": _PATH_TO_CLIPS[f"validation_{self.config.name}"],
"audio_files": dl_manager.iter_archive(archive),
},
),
SplitGenerator(
name=Split.TRAIN,
gen_kwargs={
"prompts_path": prompts_path["train"],
"path_to_clips": _PATH_TO_CLIPS[f"train_{self.config.name}"],
"audio_files": dl_manager.iter_archive(archive),
},
),
]
def _generate_examples(self, prompts_path, path_to_clips, audio_files):
examples = {}
with open(prompts_path, "r") as f:
csv_reader = csv.DictReader(f)
for row in csv_reader:
if self.config.name == "prosodic":
examples[row['path']] = {
"path": row['path'],
"name": row['name'],
"speaker": row['speaker'],
"start_time": row['start_time'],
"end_time": row['end_time'],
"normalized_text": row['normalized_text'],
"text": row['text'],
"duration": row['duration'],
"type": row['type'],
"year": row['year'],
"gender": row['gender'],
"age_range": row['age_range'],
"total_duration": row['total_duration'],
"quality": row['quality'],
"theme": row['theme'],
}
else: # automatic
examples[row['file_path']] = {
"audio_name": row['audio_name'],
"file_path": row['file_path'],
"text": row['text'],
"start_time": row['start_time'],
"end_time": row['end_time'],
"duration": row['duration'],
"quality": row['quality'],
"speech_genre": row['speech_genre'],
"speech_style": row['speech_style'],
"variety": row['variety'],
"accent": row['accent'],
"sex": row['sex'],
"age_range": row['age_range'],
"num_speakers": row['num_speakers'],
"speaker_id": row['speaker_id'],
}
id_ = 0
inside_clips_dir = False
for path, f in audio_files:
if path.startswith(path_to_clips):
inside_clips_dir = True
if path in examples:
audio = {"path": path, "bytes": f.read()}
yield id_, {**examples[path], "audio": audio}
id_ += 1
elif inside_clips_dir:
break
|