RodrigoLimaRFL commited on
Commit
97bc446
·
verified ·
1 Parent(s): 4d9c7e8

Update NURC-SP_Corpus_Minimo.py

Browse files
Files changed (1) hide show
  1. NURC-SP_Corpus_Minimo.py +80 -80
NURC-SP_Corpus_Minimo.py CHANGED
@@ -1,80 +1,80 @@
1
- import csv
2
- import datasets
3
- from datasets import BuilderConfig, GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split
4
-
5
-
6
-
7
- _PROMPTS_URLS = {
8
- "all": "segmented_audios.csv",
9
- }
10
-
11
- _ARCHIVES = {
12
- "all": "nurc-sp_corpus_minimo.tar.gz",
13
- }
14
-
15
-
16
- class NurcSPConfig(BuilderConfig):
17
- def __init__(self, prompts_type="original", **kwargs):
18
- super().__init__(**kwargs)
19
- self.prompts_type = prompts_type
20
-
21
-
22
- class NurcSPDataset(GeneratorBasedBuilder):
23
- def _info(self):
24
- return DatasetInfo(
25
- features=datasets.Features(
26
- {
27
- "path": datasets.Value("string"),
28
- "name": datasets.Value("string"),
29
- "speaker": datasets.Value("string"),
30
- "start_time": datasets.Value("string"),
31
- "end_time": datasets.Value("string"),
32
- "normalized_text": datasets.Value("string"),
33
- "text": datasets.Value("string"),
34
- "audio": datasets.Audio(sampling_rate=16_000),
35
- }
36
- )
37
- )
38
-
39
- def _split_generators(self, dl_manager):
40
- prompts_path = dl_manager.download(_PROMPTS_URLS)
41
- archive = dl_manager.download(_ARCHIVES)
42
-
43
- return [
44
- {
45
- "prompts_path": prompts_path["all"],
46
- "audio_files": dl_manager.iter_archive(archive["all"]),
47
- }
48
- ]
49
-
50
- def _generate_examples(self, prompts_path, path_to_clips, audio_files):
51
- examples = {}
52
- with open(prompts_path, "r") as f:
53
- csv_reader = csv.DictReader(f)
54
- for row in csv_reader:
55
- path = row['path']
56
- name = row['name']
57
- speaker = row['speaker']
58
- start_time = row['start_time']
59
- end_time = row['end_time']
60
- normalized_text = row['normalized_text']
61
- text = row['text']
62
- examples[path] = {
63
- "name": name,
64
- "speaker": speaker,
65
- "start_time": start_time,
66
- "end_time": end_time,
67
- "normalized_text": normalized_text,
68
- "text": text,
69
- }
70
- inside_clips_dir = False
71
- id_ = 0
72
- for path, f in audio_files:
73
- if path.startswith(path_to_clips):
74
- inside_clips_dir = True
75
- if path in examples:
76
- audio = {"path": path, "bytes": f.read()}
77
- yield id_, {**examples[path], "audio": audio}
78
- id_ += 1
79
- elif inside_clips_dir:
80
- break
 
1
+ import csv
2
+ import datasets
3
+ from datasets import BuilderConfig, GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split
4
+
5
+
6
+
7
+ _PROMPTS_URLS = {
8
+ "def": "segmented_audios.csv",
9
+ }
10
+
11
+ _ARCHIVES = {
12
+ "def": "nurc-sp_corpus_minimo.tar.gz",
13
+ }
14
+
15
+
16
+ class NurcSPConfig(BuilderConfig):
17
+ def __init__(self, prompts_type="original", **kwargs):
18
+ super().__init__(**kwargs)
19
+ self.prompts_type = prompts_type
20
+
21
+
22
+ class NurcSPDataset(GeneratorBasedBuilder):
23
+ def _info(self):
24
+ return DatasetInfo(
25
+ features=datasets.Features(
26
+ {
27
+ "path": datasets.Value("string"),
28
+ "name": datasets.Value("string"),
29
+ "speaker": datasets.Value("string"),
30
+ "start_time": datasets.Value("string"),
31
+ "end_time": datasets.Value("string"),
32
+ "normalized_text": datasets.Value("string"),
33
+ "text": datasets.Value("string"),
34
+ "audio": datasets.Audio(sampling_rate=16_000),
35
+ }
36
+ )
37
+ )
38
+
39
+ def _split_generators(self, dl_manager):
40
+ prompts_path = dl_manager.download(_PROMPTS_URLS)
41
+ archive = dl_manager.download(_ARCHIVES)
42
+
43
+ return [
44
+ {
45
+ "prompts_path": prompts_path["def"],
46
+ "audio_files": dl_manager.iter_archive(archive["def"]),
47
+ }
48
+ ]
49
+
50
+ def _generate_examples(self, prompts_path, path_to_clips, audio_files):
51
+ examples = {}
52
+ with open(prompts_path, "r") as f:
53
+ csv_reader = csv.DictReader(f)
54
+ for row in csv_reader:
55
+ path = row['path']
56
+ name = row['name']
57
+ speaker = row['speaker']
58
+ start_time = row['start_time']
59
+ end_time = row['end_time']
60
+ normalized_text = row['normalized_text']
61
+ text = row['text']
62
+ examples[path] = {
63
+ "name": name,
64
+ "speaker": speaker,
65
+ "start_time": start_time,
66
+ "end_time": end_time,
67
+ "normalized_text": normalized_text,
68
+ "text": text,
69
+ }
70
+ inside_clips_dir = False
71
+ id_ = 0
72
+ for path, f in audio_files:
73
+ if path.startswith(path_to_clips):
74
+ inside_clips_dir = True
75
+ if path in examples:
76
+ audio = {"path": path, "bytes": f.read()}
77
+ yield id_, {**examples[path], "audio": audio}
78
+ id_ += 1
79
+ elif inside_clips_dir:
80
+ break