nickpai commited on
Commit
0e795b0
·
verified ·
1 Parent(s): 591a0c2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -1
README.md CHANGED
@@ -49,4 +49,76 @@ tags:
49
  pretty_name: COCO2017-Colorization
50
  size_categories:
51
  - 100K<n<1M
52
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
  pretty_name: COCO2017-Colorization
50
  size_categories:
51
  - 100K<n<1M
52
+ ---
53
+ # COCO 2017 Dataset for Image Colorization
54
+
55
+ ## Overview
56
+
57
+ This dataset is derived from the COCO (Common Objects in Context) 2017 dataset, which is a large-scale object detection, segmentation, and captioning dataset. The COCO 2017 dataset has been adapted here specifically for the task of image colorization.
58
+
59
+ ## Dataset Description
60
+
61
+ - **Original Dataset:** [COCO 2017](https://cocodataset.org/)
62
+ - **Task:** Image Colorization
63
+ - **License:** [COCO dataset license](https://cocodataset.org/#termsofuse)
64
+
65
+ ## Data origin
66
+
67
+ * Data originates from [cocodataset.org](http://images.cocodataset.org/annotations/annotations_trainval2017.zip)
68
+
69
+ ## Format
70
+
71
+ ```python
72
+ DatasetDict({
73
+ train: Dataset({
74
+ features: ['license', 'file_name', 'coco_url', 'height', 'width', 'date_captured', 'flickr_url', 'image_id', 'ids', 'captions'],
75
+ num_rows: 112268
76
+ })
77
+ validation: Dataset({
78
+ features: ['license', 'file_name', 'coco_url', 'height', 'width', 'date_captured', 'flickr_url', 'image_id', 'ids', 'captions'],
79
+ num_rows: 5000
80
+ })
81
+ })
82
+ ```
83
+
84
+ ## Usage
85
+
86
+ ### Download image data and unzip
87
+
88
+ ```bash
89
+ cd PATH_TO_IMAGE_FOLDER
90
+
91
+ wget http://images.cocodataset.org/zips/train2017.zip
92
+ wget http://images.cocodataset.org/zips/val2017.zip
93
+
94
+ unzip train2017.zip
95
+ unzip val2017.zip
96
+ ```
97
+
98
+ ### Loading the Dataset
99
+
100
+ You can load this dataset using the Hugging Face `datasets` library:
101
+
102
+ ```python
103
+ from datasets import load_dataset
104
+
105
+ # Load the train split of the colorization dataset
106
+ train_dataset = load_dataset("nickpai/coco2017-colorization", split="train")
107
+
108
+ # Load the validation split of the colorization dataset
109
+ val_dataset = load_dataset("nickpai/coco2017-colorization", split="validation")
110
+ ```
111
+
112
+ ## Filtering Criteria
113
+
114
+ ### 1. Grayscale Images
115
+ - Images in grayscale mode are identified and removed.
116
+ - Grayscale images lack color information and may not be suitable for certain tasks.
117
+
118
+ ### 2. Identical Color Histograms
119
+ - Images with identical histograms across color channels (red, green, and blue) are removed.
120
+ - Such images may lack sufficient color variation, affecting model training and performance.
121
+
122
+ ### 3. Low Color Variance
123
+ - Images with low color variance, determined by a specified threshold, are removed.
124
+ - Low color variance can indicate poor image quality or uniform color distribution.