import sys import pandas as pd import numpy as np from sklearn.metrics import average_precision_score def score(solution: pd.DataFrame, submission: pd.DataFrame) -> float: merged = solution.merge(submission, on="id", how="left").fillna(0) return np.mean([ average_precision_score( merged.loc[merged["group"] == g, "target"], merged.loc[merged["group"] == g, "score"] ) for g in merged["group"].unique() ]) def evaluate(submission_csv: str, solution_csv: str): submission = pd.read_csv(submission_csv) solution = pd.read_csv(solution_csv) for usage in ["Public", "Private"]: subset = solution[solution["Usage"] == usage] mAP = score(subset[["id", "target", "group"]], submission[["id", "score"]]) print(f"mAP ({usage}): {mAP:.6f}") if __name__ == "__main__": if len(sys.argv) not in (2, 3): print("Usage: python evaluate_submission.py submission.csv [solution.csv]") sys.exit(1) submission_csv = sys.argv[1] solution_csv = sys.argv[2] if len(sys.argv) == 3 else "solution.csv" evaluate(submission_csv, solution_csv)