tareqsisalem commited on
Commit
be99069
Β·
verified Β·
1 Parent(s): ba5b18c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -53
README.md CHANGED
@@ -49,31 +49,27 @@ language:
49
  tags:
50
  - wireless
51
  ---
 
 
 
52
  # πŸ“Ά Beam-Level (5G) Time-Series Dataset
53
 
54
- This dataset introduces a **novel multivariate time series** specifically curated to support research to enable **accurate prediction of KPIs** across communication networks, as illustrated below:
55
 
56
  <p align="center">
57
- <img src="images/network.png" alt="Base station, cells, and beams" />
58
  </p>
59
 
60
- Precise forecasting of network traffic is critical for:
61
- - Optimizing **network management**
62
- - Enhancing **resource allocation efficiency**
63
-
64
- This task is of both **practical and theoretical importance** to researchers in networking and machine learning, offering a strong benchmark for state-of-the-art (SOTA) time series models.
65
 
66
  ---
67
 
68
  ## πŸ“‚ Dataset Overview
69
 
70
- - **Beams:** 2,880
71
- - **Base Stations:** 30
72
- - **Cells per Station:** 3
73
- - **Beams per Cell:** 32
74
- - **Frequency:** Hourly
75
- - **Duration:** 5 weeks + 2 target weeks
76
- - **Total Hours (per beam):** Up to 840 (train) and 1176 (total)
77
 
78
  ---
79
 
@@ -81,61 +77,48 @@ This task is of both **practical and theoretical importance** to researchers in
81
 
82
  ### πŸ‹οΈβ€β™‚οΈ Training Set (Weeks 0–5)
83
 
84
- | File Name | Metric |
85
- |------------------------------|----------------------------------|
86
- | `DLThpVol_train_0w-5w.csv` | Downlink throughput volume |
87
- | `DLThpTime_train_0w-5w.csv` | Throughput transmission time |
88
- | `DLPRB_train_0w-5w.csv` | PRB (Physical Resource Block) usage |
89
- | `MR_number_train_0w-5w.csv` | User count (Measurement Reports) |
90
 
91
  ### 🎯 Forecast Targets
92
 
93
  #### πŸ“† 6th Week (Week 5–6)
94
 
95
- | File Name | Metric |
96
- |--------------------------------|----------------------------------|
97
- | `DLThpVol_test_5w-6w.csv` | Downlink throughput volume |
98
- | `DLThpTime_test_5w-6w.csv` | Throughput transmission time |
99
- | `DLPRB_test_5w-6w.csv` | PRB usage |
100
- | `MR_number_test_5w-6w.csv` | User count |
101
 
102
  #### πŸ“† 11th Week (Week 10–11)
103
 
104
- | File Name | Metric |
105
- |----------------------------------|----------------------------------|
106
- | `DLThpVol_test_10w-11w.csv` | Downlink throughput volume |
107
- | `DLThpTime_test_10w-11w.csv` | Throughput transmission time |
108
- | `DLPRB_test_10w-11w.csv` | PRB usage |
109
- | `MR_number_test_10w-11w.csv` | User count |
110
-
111
 
112
  ---
113
 
114
  ## πŸ§ͺ Dataset Splits
115
 
116
  <p align="center">
117
- <img src="images/dataset_split.png" alt="Dataset train/forecast split" />
118
  </p>
119
 
120
- - **Training Set:** First 5 weeks
121
- - **Forecast Targets:**
122
- - **Week 6** (immediate future)
123
- - **Week 11** (long-term future)
124
 
125
  ---
126
 
127
  ## πŸ“„ Data Format
128
 
129
- Each CSV file follows this structure:
130
-
131
- - **`Time` column**:
132
- - Ranges:
133
- - `0–839` for training (weeks 1–6)
134
- - `0–167` for week 6
135
- - `168–335` for week 11
136
-
137
- - **Beam columns (`0_0_0`, ..., `29_2_31`)**:
138
- - Each uniquely identifies one of the **2,880 beams** across 30 base stations.
139
 
140
  ---
141
 
@@ -143,13 +126,10 @@ Each CSV file follows this structure:
143
 
144
  If you use this dataset in your research, please cite:
145
 
146
- > **L. Fechete et al.**,
147
- > *Goal-Oriented Time-Series Forecasting: Foundation Framework Design*,
148
- > arXiv:2504.17493 (2025)
149
 
150
  ---
151
 
152
  ## πŸ”— Code Repository
153
 
154
- The official codebase for working with this dataset is available here:
155
- πŸ‘‰ [https://github.com/netop-team/gotsf](https://github.com/netop-team/gotsf)
 
49
  tags:
50
  - wireless
51
  ---
52
+
53
+
54
+
55
  # πŸ“Ά Beam-Level (5G) Time-Series Dataset
56
 
57
+ This dataset introduces a **novel multivariate time series** specifically curated to support research in enabling **accurate prediction of KPIs** across communication networks, as illustrated below:
58
 
59
  <p align="center">
60
+ Β  <img src="images/network.png" alt="Base station, cells, and beams" />
61
  </p>
62
 
63
+ Precise forecasting of network traffic is critical for optimizing **network management** and enhancing **resource allocation efficiency**. This task is of both **practical and theoretical importance** to researchers in networking and machine learning, offering a strong benchmark for state-of-the-art (SOTA) time series models.
 
 
 
 
64
 
65
  ---
66
 
67
  ## πŸ“‚ Dataset Overview
68
 
69
+ The dataset comprises:
70
+ * **2,880 Beams** across 30 Base Stations (3 Cells per Station, 32 Beams per Cell).
71
+ * **Hourly frequency**.
72
+ * **Duration:** 5 weeks + 2 target weeks, totaling up to 840 training hours and 1176 total hours per beam.
 
 
 
73
 
74
  ---
75
 
 
77
 
78
  ### πŸ‹οΈβ€β™‚οΈ Training Set (Weeks 0–5)
79
 
80
+ | File Name | Metric |
81
+ |---|---|
82
+ | `DLThpVol_train_0w-5w.csv` | Downlink throughput volume |
83
+ | `DLThpTime_train_0w-5w.csv` | Throughput transmission time |
84
+ | `DLPRB_train_0w-5w.csv` | PRB (Physical Resource Block) usage |
85
+ | `MR_number_train_0w-5w.csv` | User count (Measurement Reports) |
86
 
87
  ### 🎯 Forecast Targets
88
 
89
  #### πŸ“† 6th Week (Week 5–6)
90
 
91
+ | File Name | Metric |
92
+ |---|---|
93
+ | `DLThpVol_test_5w-6w.csv` | Downlink throughput volume |
94
+ | `DLThpTime_test_5w-6w.csv` | Throughput transmission time |
95
+ | `DLPRB_test_5w-6w.csv` | PRB usage |
96
+ | `MR_number_test_5w-6w.csv` | User count |
97
 
98
  #### πŸ“† 11th Week (Week 10–11)
99
 
100
+ | File Name | Metric |
101
+ |---|---|
102
+ | `DLThpVol_test_10w-11w.csv` | Downlink throughput volume |
103
+ | `DLThpTime_test_10w-11w.csv` | Throughput transmission time |
104
+ | `DLPRB_test_10w-11w.csv` | PRB usage |
105
+ | `MR_number_test_10w-11w.csv` | User count |
 
106
 
107
  ---
108
 
109
  ## πŸ§ͺ Dataset Splits
110
 
111
  <p align="center">
112
+ Β  <img src="images/dataset_split.png" alt="Dataset train/forecast split" />
113
  </p>
114
 
115
+ The dataset is split into a **Training Set** (first 5 weeks) and **Forecast Targets** for Week 6 (immediate future) and Week 11 (long-term future).
 
 
 
116
 
117
  ---
118
 
119
  ## πŸ“„ Data Format
120
 
121
+ Each CSV file contains a `Time` column and multiple beam columns (e.g., `0_0_0` to `29_2_31`). The `Time` column ranges from `0–839` for training (weeks 1–6), `0–167` for week 6, and `168–335` for week 11. Each beam column uniquely identifies one of the **2,880 beams** across 30 base stations.
 
 
 
 
 
 
 
 
 
122
 
123
  ---
124
 
 
126
 
127
  If you use this dataset in your research, please cite:
128
 
129
+ > **L. Fechete et al.**, *Goal-Oriented Time-Series Forecasting: Foundation Framework Design*, arXiv:2504.17493 (2025)
 
 
130
 
131
  ---
132
 
133
  ## πŸ”— Code Repository
134
 
135
+ The official codebase for working with this dataset is available here: πŸ‘‰ [https://github.com/netop-team/gotsf](https://github.com/netop-team/gotsf)