from pathlib import Path from datasets import load_dataset, load_from_disk from dataclasses import dataclass, field from huggingface_hub import HfApi from transformers import AutoModel, AutoTokenizer, HfArgumentParser from typing import Optional, List @dataclass class DownloadArgs: model_cache_dir: str = field( default='/share/LMs', metadata={'help': 'Default path to save language models'} ) model_name_or_path: Optional[str] = field( default=None, metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) dataset_cache_dir: str = field( default='/share/peitian/Data/Datasets/huggingface', metadata={'help': 'Default path to save huggingface datasets'} ) dataset_name_or_path: Optional[str] = field( default=None, metadata={'help': 'Dataset name'} ) data_files: Optional[dict] = field( default=None, metadata={'help': 'Data files for json dataset.'} ) dataset_from_disk: bool = field( default=False, metadata={'help': 'Load dataset from disk?'} ) file: Optional[str] = field( default=None, metadata={'help': 'File to upload.'} ) file_in_repo: Optional[str] = field( default=None, metadata={'help': 'File name in repository.'} ) hub_name: Optional[str] = field( default=None, metadata={'help': 'Name of the huggingface repo.'} ) revision: str = field( default=None, metadata={'help': 'Remote code revision'} ) resume_download: bool = field( default=True, metadata={'help': 'Resume downloading'} ) def __post_init__(self): # folder or model not exists if self.model_name_or_path is not None: tokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path, cache_dir=self.model_cache_dir, trust_remote_code=True) model = AutoModel.from_pretrained(self.model_name_or_path, cache_dir=self.model_cache_dir, trust_remote_code=True) # use loop to force success upload while 1: try: tokenizer.push_to_hub(self.hub_name) break except: pass while 1: try: model.push_to_hub(self.hub_name) break except: pass if self.dataset_name_or_path is not None: if self.dataset_from_disk: dataset = load_from_disk(self.dataset_name_or_path) else: dataset = load_dataset(self.dataset_name_or_path, data_files=self.data_files, cache_dir=self.dataset_cache_dir) # use loop to force success upload while 1: try: dataset.push_to_hub(self.hub_name) break except: pass if self.file is not None: api = HfApi() if self.file_in_repo is None: self.file_in_repo = Path(self.file).name api.upload_file( path_or_fileobj=self.file, path_in_repo=self.file_in_repo, repo_id=self.hub_name, repo_type="dataset", ) if __name__ == "__main__": parser = HfArgumentParser([DownloadArgs]) args, = parser.parse_args_into_dataclasses()