import os import glob from datasets import load_dataset, get_dataset_config_names from dataclasses import dataclass, field from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM, HfArgumentParser from typing import Optional, List @dataclass class DownloadArgs: model_cache_dir: str = field( default='/share/LMs', metadata={'help': 'Default path to save language models'} ) model_name_or_path: Optional[str] = field( default=None, metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) use_lm_class: bool = field( default=False, metadata={'help': 'Call .from_pretrained from AutoModelForCausalLM? Useful when downloading remote-code based lms.'} ) dataset_cache_dir: str = field( default='/share/peitian/Data/Datasets/huggingface', metadata={'help': 'Default path to save huggingface datasets'} ) dataset_name_or_path: Optional[str] = field( default=None, metadata={'help': 'Dataset name'} ) dataset_subset: Optional[str] = field( default=None, metadata={'help': 'Dataset subset name'} ) dataset_split: Optional[str] = field( default=None, metadata={'help': 'Dataset split'} ) revision: str = field( default=None, metadata={'help': 'Remote code revision'} ) resume_download: bool = field( default=False, metadata={'help': 'Resume downloading'} ) def __post_init__(self): # folder or model not exists if self.model_name_or_path is not None: kwargs = { 'revision': self.revision, 'resume_download': self.resume_download } AutoTokenizer.from_pretrained(self.model_name_or_path, cache_dir=self.model_cache_dir, trust_remote_code=True, **kwargs) if self.use_lm_class: AutoModelForCausalLM.from_pretrained(self.model_name_or_path, cache_dir=self.model_cache_dir, trust_remote_code=True, **kwargs) else: AutoModel.from_pretrained(self.model_name_or_path, cache_dir=self.model_cache_dir, trust_remote_code=True, **kwargs) if self.dataset_name_or_path is not None: if self.dataset_subset is None: dataset_subsets = get_dataset_config_names(self.dataset_name_or_path) for dataset_subset in dataset_subsets: load_dataset(self.dataset_name_or_path, name=dataset_subset, split=self.dataset_split, cache_dir=self.dataset_cache_dir) else: load_dataset(self.dataset_name_or_path, name=self.dataset_subset, split=self.dataset_split, cache_dir=self.dataset_cache_dir) if __name__ == "__main__": parser = HfArgumentParser([DownloadArgs]) args, = parser.parse_args_into_dataclasses()