Commit
·
904cb61
1
Parent(s):
6ce3ece
init
Browse files- .gitignore +4 -0
- crema-d.py +164 -0
- data/crema_d.tar.gz +3 -0
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.DS_Store
|
2 |
+
Pipfile
|
3 |
+
Pipfile.lock
|
4 |
+
example.py
|
crema-d.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import os
|
17 |
+
import datasets # type: ignore
|
18 |
+
|
19 |
+
logger = datasets.logging.get_logger(__name__)
|
20 |
+
|
21 |
+
|
22 |
+
"""CREMA-D (Crowd-sourced Emotional Multimodal Actors Dataset)"""
|
23 |
+
|
24 |
+
_CITATION = """\
|
25 |
+
@article{cao2014crema,
|
26 |
+
title={CREMA-D: Crowd-sourced Emotional Multimodal Actors Dataset},
|
27 |
+
author={Cao, H. and Cooper, D. G. and Keutmann, M. K. and Gur, R. C. and Nenkova, A. and Verma, R.},
|
28 |
+
journal={IEEE transactions on affective computing},
|
29 |
+
volume={5},
|
30 |
+
number={4},
|
31 |
+
pages={377--390},
|
32 |
+
year={2014},
|
33 |
+
doi={10.1109/TAFFC.2014.2336244},
|
34 |
+
url={https://doi.org/10.1109/TAFFC.2014.2336244}
|
35 |
+
}
|
36 |
+
"""
|
37 |
+
|
38 |
+
_DESCRIPTION = """\
|
39 |
+
CREMA-D is a data set of 7,442 original clips from 91 actors.
|
40 |
+
These clips were from 48 male and 43 female actors between the ages of 20 and 74
|
41 |
+
coming from a variety of races and ethnicities (African America, Asian, Caucasian, Hispanic, and Unspecified).
|
42 |
+
Actors spoke from a selection of 12 sentences.
|
43 |
+
The sentences were presented using one of six different emotions (Anger, Disgust, Fear, Happy, Neutral and Sad)
|
44 |
+
and four different emotion levels (Low, Medium, High and Unspecified).
|
45 |
+
Participants rated the emotion and emotion levels based on the combined audiovisual presentation,
|
46 |
+
the video alone, and the audio alone. Due to the large number of ratings needed, this effort was crowd-sourced
|
47 |
+
and a total of 2443 participants each rated 90 unique clips, 30 audio, 30 visual, and 30 audio-visual.
|
48 |
+
95% of the clips have more than 7 rating.
|
49 |
+
"""
|
50 |
+
|
51 |
+
_HOMEPAGE = "https://github.com/CheyneyComputerScience/CREMA-D"
|
52 |
+
_LICENSE = "ODbL"
|
53 |
+
|
54 |
+
_ROOT_DIR = "crema_d"
|
55 |
+
_DATA_URL = f"data/{_ROOT_DIR}.tar.gz"
|
56 |
+
|
57 |
+
|
58 |
+
_SENTENCE_MAP = {
|
59 |
+
"IEO": "It's eleven o'clock",
|
60 |
+
"TIE": "That is exactly what happened",
|
61 |
+
"IOM": "I'm on my way to the meeting",
|
62 |
+
"IWW": "I wonder what this is about",
|
63 |
+
"TAI": "The airplane is almost full",
|
64 |
+
"MTI": "Maybe tomorrow it will be cold",
|
65 |
+
"IWL": "I would like a new alarm clock",
|
66 |
+
"ITH": "I think I have a doctor's appointment",
|
67 |
+
"DFA": "Don't forget a jacket",
|
68 |
+
"ITS": "I think I've seen this before",
|
69 |
+
"TSI": "The surface is slick",
|
70 |
+
"WSI": "We'll stop in a couple of minutes",
|
71 |
+
}
|
72 |
+
|
73 |
+
|
74 |
+
_EMOTION_MAP = {
|
75 |
+
"ANG": "anger",
|
76 |
+
"DIS": "disgust",
|
77 |
+
"FEA": "fear",
|
78 |
+
"HAP": "happy",
|
79 |
+
"NEU": "neutral",
|
80 |
+
"SAD": "sad",
|
81 |
+
}
|
82 |
+
|
83 |
+
_INTENSITY_MAP = {
|
84 |
+
"LO": "Low",
|
85 |
+
"MD": "Medium",
|
86 |
+
"HI": "High",
|
87 |
+
"XX": "Unspecified",
|
88 |
+
## on stray file
|
89 |
+
"X": "Unspecified",
|
90 |
+
}
|
91 |
+
|
92 |
+
_CLASS_NAMES = list(_EMOTION_MAP.values())
|
93 |
+
|
94 |
+
|
95 |
+
class CremaDDataset(datasets.GeneratorBasedBuilder):
|
96 |
+
"""The Crema-D dataset"""
|
97 |
+
|
98 |
+
VERSION = datasets.Version("1.0.0")
|
99 |
+
|
100 |
+
def _info(self):
|
101 |
+
sampling_rate = 16_000
|
102 |
+
features = datasets.Features(
|
103 |
+
{
|
104 |
+
# "path": datasets.Value("string"),
|
105 |
+
"audio": datasets.Audio(sampling_rate=sampling_rate),
|
106 |
+
"actor_id": datasets.Value("string"),
|
107 |
+
"sentence": datasets.Value("string"),
|
108 |
+
# "emotion": datasets.Value("string"),
|
109 |
+
"emotion_intensity": datasets.Value("string"),
|
110 |
+
"label": datasets.ClassLabel(names=_CLASS_NAMES),
|
111 |
+
}
|
112 |
+
)
|
113 |
+
|
114 |
+
return datasets.DatasetInfo(
|
115 |
+
description=_DESCRIPTION,
|
116 |
+
features=features,
|
117 |
+
homepage=_HOMEPAGE,
|
118 |
+
citation=_CITATION,
|
119 |
+
license=_LICENSE,
|
120 |
+
# task_templates=[datasets.TaskTemplate("audio-classification")],
|
121 |
+
)
|
122 |
+
|
123 |
+
def _split_generators(self, dl_manager):
|
124 |
+
|
125 |
+
archive = dl_manager.download(_DATA_URL)
|
126 |
+
local_extracted_archive = (
|
127 |
+
dl_manager.extract(archive) if not dl_manager.is_streaming else None
|
128 |
+
)
|
129 |
+
|
130 |
+
return [
|
131 |
+
datasets.SplitGenerator(
|
132 |
+
name=datasets.Split.TRAIN,
|
133 |
+
gen_kwargs={
|
134 |
+
# "archive_path": _ROOT_DIR,
|
135 |
+
"local_extracted_archive": local_extracted_archive,
|
136 |
+
"audio_files": dl_manager.iter_archive(archive),
|
137 |
+
},
|
138 |
+
)
|
139 |
+
]
|
140 |
+
|
141 |
+
def _generate_examples(self, local_extracted_archive, audio_files):
|
142 |
+
"4digitActorId_sentenceId_emotionId_emotionLevel"
|
143 |
+
|
144 |
+
id_ = 0
|
145 |
+
for path, f in audio_files:
|
146 |
+
path = os.path.join(
|
147 |
+
local_extracted_archive, path
|
148 |
+
) # if local_extracted_archive else path
|
149 |
+
filename = os.path.basename(path)
|
150 |
+
with open(path, "rb") as f:
|
151 |
+
audio_bytes = f.read()
|
152 |
+
actor_id, sentence_id, emotion_id, emotion_level = filename.split(".")[
|
153 |
+
0
|
154 |
+
].split("_")
|
155 |
+
base = {
|
156 |
+
"path": path,
|
157 |
+
"actor_id": actor_id,
|
158 |
+
"sentence": _SENTENCE_MAP[sentence_id],
|
159 |
+
"label": _EMOTION_MAP[emotion_id],
|
160 |
+
"emotion_intensity": _INTENSITY_MAP[emotion_level],
|
161 |
+
}
|
162 |
+
audio = {"path": path, "bytes": audio_bytes}
|
163 |
+
yield id_, {**base, "audio": audio}
|
164 |
+
id_ += 1
|
data/crema_d.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87b9dcce1fdcad68f8769201e047b505ff31cb38c782a6757aa2fb59c31e5590
|
3 |
+
size 470756748
|