multimodalart HF staff commited on
Commit
5b3b260
·
1 Parent(s): 1fd3a94

Create script.py

Browse files
Files changed (1) hide show
  1. script.py +79 -0
script.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import subprocess
3
+ from safetensors.torch import load_file
4
+ from diffusers import AutoPipelineForText2Image
5
+ import torch
6
+ import re
7
+
8
+ def do_train(script_args):
9
+ # Pass all arguments to script.py
10
+ subprocess.run(['python', 'script.py'] + script_args)
11
+
12
+ def do_inference(dataset_name, output_dir, num_tokens):
13
+ dataset = load_dataset(dataset_name)
14
+ pipe = AutoPipelineForText2Image.from_pretrained(
15
+ "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
16
+ )
17
+ pipe = pipe.to("cuda")
18
+ pipe.load_lora_weights(f'{output_dir}/pytorch_lora_weights.safetensors')
19
+
20
+ prompts = dataset["train"]["prompt"]
21
+ card_string = ''
22
+ if(num_tokens > 0):
23
+ tokens_sequence = ''.join(f'<s{i}>' for i in range(num_tokens))
24
+ tokens_list = tokens_sequence.split('>')
25
+ state_dict = load_file(f"{output_dir}/embeddings.safetensors")
26
+ pipeline.load_textual_inversion(state_dict["clip_l"], token=tokens_list, text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
27
+ pipeline.load_textual_inversion(state_dict["clip_g"], token=tokens_list, text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
28
+
29
+ prompts = [prompt.replace("TOK", tokens_sequence) for prompt in prompts]
30
+ for i, prompt in enumerate(prompts):
31
+ image = pipe(prompt, num_inference_steps=25, guidance_scale=7.5).images[0]
32
+ filename = f"image-{i}.png"
33
+ image.save(f"{output_dir}/filename")
34
+ card_string += f"""
35
+ - text: '{prompt}'
36
+ output:
37
+ url:
38
+ '{filename}'"""
39
+ with open(f'{output_dir}/README.md', 'r') as file:
40
+ readme_content = file.read()
41
+
42
+ updated_readme_content = re.sub(r'(widget:\n)(.*?)(?=\n\S+:)', f'\\1{card_string}', readme_content, flags=re.DOTALL)
43
+
44
+ with open('README.md', 'w') as file:
45
+ file.write(updated_readme_content)
46
+ from huggingface_hub import HfApi
47
+ api = HfApi()
48
+ username = api.whoami()["name"]
49
+ api.upload_folder(
50
+ folder_path=output_dir,
51
+ repo_id=f"{username}/{output_dir}",
52
+ repo_type="model",
53
+ )
54
+ def main():
55
+ # Capture all arguments except the script name
56
+ script_args = sys.argv[1:]
57
+
58
+ # Extract dataset_name argument
59
+ dataset_name = None
60
+ output_dir = None
61
+ for arg in script_args:
62
+ if arg.startswith('--dataset_name='):
63
+ dataset_name = arg.split('=')[1]
64
+ break
65
+ if arg.startswith('--output_dir='):
66
+ output_dir = arg.split('=')[1]
67
+ break
68
+ if args.startswith('--train_text_encoder_ti'):
69
+ num_tokens = 0
70
+ elif args.startswith('--num_new_tokens_per_abstraction='):
71
+ num_tokens = arg.split('=')[1]
72
+ if dataset_name is None or output_dir is None:
73
+ raise ValueError("Dataset name not provided.")
74
+
75
+ do_train(script_args)
76
+ do_inference(dataset_name, output_dir, num_tokens)
77
+
78
+ if __name__ == "__main__":
79
+ main()