Commit
·
31061ea
1
Parent(s):
f611983
Update script.py
Browse files
script.py
CHANGED
@@ -3,6 +3,7 @@ import subprocess
|
|
3 |
from safetensors.torch import load_file
|
4 |
from diffusers import AutoPipelineForText2Image
|
5 |
from datasets import load_dataset
|
|
|
6 |
import torch
|
7 |
import re
|
8 |
import argparse
|
@@ -22,46 +23,52 @@ def do_train(script_args):
|
|
22 |
subprocess.run(['python', 'trainer.py'] + script_args)
|
23 |
|
24 |
def do_inference(dataset_name, output_dir, num_tokens):
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
prompts = dataset["train"]["prompt"]
|
34 |
-
card_string = ''
|
35 |
-
if(num_tokens > 0):
|
36 |
-
tokens_sequence = ''.join(f'<s{i}>' for i in range(num_tokens))
|
37 |
-
tokens_list = [f'<s{i}>' for i in range(num_tokens)]
|
38 |
-
|
39 |
-
state_dict = load_file(f"{output_dir}/embeddings.safetensors")
|
40 |
-
pipe.load_textual_inversion(state_dict["clip_l"], token=tokens_list, text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
|
41 |
-
pipe.load_textual_inversion(state_dict["clip_g"], token=tokens_list, text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
|
42 |
|
43 |
-
prompts = [
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
with open(f'{output_dir}/README.md', 'r') as file:
|
55 |
-
readme_content = file.read()
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
from huggingface_hub import HfApi
|
62 |
api = HfApi()
|
63 |
username = api.whoami()["name"]
|
64 |
print("Starting upload...")
|
|
|
65 |
api.upload_folder(
|
66 |
folder_path=output_dir,
|
67 |
repo_id=f"{username}/{output_dir}",
|
|
|
3 |
from safetensors.torch import load_file
|
4 |
from diffusers import AutoPipelineForText2Image
|
5 |
from datasets import load_dataset
|
6 |
+
from huggingface_hub.repocard import RepoCard
|
7 |
import torch
|
8 |
import re
|
9 |
import argparse
|
|
|
23 |
subprocess.run(['python', 'trainer.py'] + script_args)
|
24 |
|
25 |
def do_inference(dataset_name, output_dir, num_tokens):
|
26 |
+
try:
|
27 |
+
print("Starting inference to generate example images...")
|
28 |
+
dataset = load_dataset(dataset_name)
|
29 |
+
pipe = AutoPipelineForText2Image.from_pretrained(
|
30 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
31 |
+
)
|
32 |
+
pipe = pipe.to("cuda")
|
33 |
+
pipe.load_lora_weights(f'{output_dir}/pytorch_lora_weights.safetensors')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
prompts = dataset["train"]["prompt"]
|
36 |
+
widget_content = []
|
37 |
+
if(num_tokens > 0):
|
38 |
+
tokens_sequence = ''.join(f'<s{i}>' for i in range(num_tokens))
|
39 |
+
tokens_list = [f'<s{i}>' for i in range(num_tokens)]
|
40 |
+
|
41 |
+
state_dict = load_file(f"{output_dir}/embeddings.safetensors")
|
42 |
+
pipe.load_textual_inversion(state_dict["clip_l"], token=tokens_list, text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
|
43 |
+
pipe.load_textual_inversion(state_dict["clip_g"], token=tokens_list, text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
|
44 |
+
|
45 |
+
prompts = [prompt.replace("TOK", tokens_sequence) for prompt in prompts]
|
|
|
|
|
46 |
|
47 |
+
for i, prompt in enumerate(prompts):
|
48 |
+
image = pipe(prompt, num_inference_steps=25, guidance_scale=7.5).images[0]
|
49 |
+
filename = f"image-{i}.png"
|
50 |
+
image.save(f"{output_dir}/{filename}")
|
51 |
+
card_dict = {
|
52 |
+
"text": prompt,
|
53 |
+
"output": {
|
54 |
+
"url": filename
|
55 |
+
}
|
56 |
+
}
|
57 |
+
widget_content.append(card_dict)
|
58 |
+
with open(f'{output_dir}/README.md', 'r') as file:
|
59 |
+
readme_content = file.read()
|
60 |
+
|
61 |
+
card = RepoCard(readme_content)
|
62 |
+
card.data["widget"] = widget_content
|
63 |
+
card.save(f'{output_dir}/README.md')
|
64 |
+
except Exception as e:
|
65 |
+
print("Something went wrong with generating images, specifically: ", e)
|
66 |
+
|
67 |
from huggingface_hub import HfApi
|
68 |
api = HfApi()
|
69 |
username = api.whoami()["name"]
|
70 |
print("Starting upload...")
|
71 |
+
api.create_repo(f"{username}/{output_dir}", exist_ok=True)
|
72 |
api.upload_folder(
|
73 |
folder_path=output_dir,
|
74 |
repo_id=f"{username}/{output_dir}",
|