File size: 13,412 Bytes
70a8946 9ea4653 70a8946 9ea4653 0c23882 ef49389 9ea4653 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
---
annotations_creators:
- derived
language:
- eng
license: unknown
multilinguality: monolingual
source_datasets:
- mteb/stackexchange-clustering
task_categories:
- text-classification
task_ids: []
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">StackExchangeClustering.v2</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
Clustering of titles from 121 stackexchanges. Clustering of 25 sets, each with 10-50 classes, and each class with 100 - 1000 sentences.
| | |
|---------------|---------------------------------------------|
| Task category | t2c |
| Domains | Web, Written |
| Reference | https://arxiv.org/abs/2104.07081 |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["StackExchangeClustering.v2"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@article{geigle:2021:arxiv,
archiveprefix = {arXiv},
author = {Gregor Geigle and
Nils Reimers and
Andreas R{\"u}ckl{\'e} and
Iryna Gurevych},
eprint = {2104.07081},
journal = {arXiv preprint},
title = {TWEAC: Transformer with Extendable QA Agent Classifiers},
url = {http://arxiv.org/abs/2104.07081},
volume = {abs/2104.07081},
year = {2021},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("StackExchangeClustering.v2")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 2048,
"number_of_characters": 117782,
"min_text_length": 19,
"average_text_length": 57.5107421875,
"max_text_length": 148,
"unique_texts": 116,
"min_labels_per_text": 7,
"average_labels_per_text": 1.0,
"max_labels_per_text": 37,
"unique_labels": 121,
"labels": {
"53": {
"count": 24
},
"26": {
"count": 15
},
"108": {
"count": 10
},
"4": {
"count": 24
},
"12": {
"count": 27
},
"68": {
"count": 11
},
"86": {
"count": 28
},
"37": {
"count": 32
},
"47": {
"count": 30
},
"7": {
"count": 16
},
"15": {
"count": 26
},
"119": {
"count": 18
},
"88": {
"count": 20
},
"102": {
"count": 18
},
"49": {
"count": 15
},
"2": {
"count": 36
},
"1": {
"count": 29
},
"40": {
"count": 8
},
"101": {
"count": 19
},
"91": {
"count": 37
},
"79": {
"count": 21
},
"5": {
"count": 13
},
"35": {
"count": 16
},
"41": {
"count": 14
},
"63": {
"count": 23
},
"73": {
"count": 8
},
"99": {
"count": 17
},
"42": {
"count": 15
},
"110": {
"count": 27
},
"64": {
"count": 21
},
"0": {
"count": 16
},
"18": {
"count": 12
},
"55": {
"count": 13
},
"34": {
"count": 16
},
"90": {
"count": 27
},
"114": {
"count": 17
},
"77": {
"count": 8
},
"32": {
"count": 26
},
"109": {
"count": 17
},
"78": {
"count": 12
},
"104": {
"count": 11
},
"96": {
"count": 19
},
"70": {
"count": 26
},
"105": {
"count": 19
},
"80": {
"count": 11
},
"38": {
"count": 17
},
"50": {
"count": 14
},
"30": {
"count": 18
},
"83": {
"count": 18
},
"52": {
"count": 10
},
"93": {
"count": 15
},
"58": {
"count": 9
},
"71": {
"count": 19
},
"16": {
"count": 14
},
"6": {
"count": 18
},
"89": {
"count": 16
},
"87": {
"count": 18
},
"14": {
"count": 8
},
"117": {
"count": 9
},
"66": {
"count": 28
},
"29": {
"count": 22
},
"82": {
"count": 13
},
"100": {
"count": 26
},
"45": {
"count": 19
},
"51": {
"count": 12
},
"60": {
"count": 24
},
"81": {
"count": 27
},
"17": {
"count": 28
},
"103": {
"count": 10
},
"33": {
"count": 15
},
"95": {
"count": 20
},
"3": {
"count": 8
},
"113": {
"count": 10
},
"21": {
"count": 12
},
"39": {
"count": 27
},
"112": {
"count": 9
},
"85": {
"count": 17
},
"65": {
"count": 13
},
"24": {
"count": 20
},
"75": {
"count": 16
},
"111": {
"count": 8
},
"36": {
"count": 22
},
"74": {
"count": 23
},
"84": {
"count": 15
},
"94": {
"count": 21
},
"44": {
"count": 13
},
"61": {
"count": 25
},
"56": {
"count": 19
},
"107": {
"count": 8
},
"28": {
"count": 19
},
"11": {
"count": 14
},
"10": {
"count": 13
},
"92": {
"count": 8
},
"43": {
"count": 20
},
"48": {
"count": 7
},
"106": {
"count": 19
},
"120": {
"count": 14
},
"25": {
"count": 19
},
"46": {
"count": 14
},
"116": {
"count": 13
},
"54": {
"count": 14
},
"20": {
"count": 25
},
"13": {
"count": 10
},
"19": {
"count": 15
},
"22": {
"count": 20
},
"23": {
"count": 12
},
"72": {
"count": 18
},
"8": {
"count": 33
},
"27": {
"count": 9
},
"67": {
"count": 7
},
"97": {
"count": 11
},
"62": {
"count": 17
},
"69": {
"count": 11
},
"118": {
"count": 13
},
"31": {
"count": 8
},
"76": {
"count": 12
},
"59": {
"count": 11
},
"98": {
"count": 17
},
"115": {
"count": 10
},
"9": {
"count": 7
},
"57": {
"count": 7
}
}
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |