Datasets:
Upload 3 files
Browse files- README.md +17 -0
- speeddating.csv +0 -0
- speeddating.py +237 -0
README.md
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
tags:
|
| 5 |
+
- speeddating
|
| 6 |
+
- tabular_classification
|
| 7 |
+
- binary_classification
|
| 8 |
+
pretty_name: Speed dating
|
| 9 |
+
size_categories:
|
| 10 |
+
- 1K<n<10K
|
| 11 |
+
task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
|
| 12 |
+
- tabular-classification
|
| 13 |
+
configs:
|
| 14 |
+
- dating
|
| 15 |
+
---
|
| 16 |
+
# Speed dating
|
| 17 |
+
The [Speed dating dataset](https://www.openml.org/search?type=data&sort=nr_of_likes&status=active&id=40536) is cool.
|
speeddating.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
speeddating.py
ADDED
|
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Speeddating Dataset"""
|
| 2 |
+
|
| 3 |
+
from typing import List
|
| 4 |
+
from functools import partial
|
| 5 |
+
|
| 6 |
+
import datasets
|
| 7 |
+
|
| 8 |
+
import pandas
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
VERSION = datasets.Version("1.0.0")
|
| 12 |
+
_BASE_FEATURE_NAMES = [
|
| 13 |
+
"dater_gender",
|
| 14 |
+
"dater_age",
|
| 15 |
+
"dated_age",
|
| 16 |
+
"age_difference",
|
| 17 |
+
"dater_race",
|
| 18 |
+
"dated_race",
|
| 19 |
+
"are_same_race",
|
| 20 |
+
"same_race_importance_for_dater",
|
| 21 |
+
"same_religion_importance_for_dater",
|
| 22 |
+
"attractiveness_importance_for_dated",
|
| 23 |
+
"sincerity_importance_for_dated",
|
| 24 |
+
"intelligence_importance_for_dated",
|
| 25 |
+
"humor_importance_for_dated",
|
| 26 |
+
"ambition_importance_for_dated",
|
| 27 |
+
"shared_interests_importance_for_dated",
|
| 28 |
+
"attractiveness_score_of_dater_from_dated",
|
| 29 |
+
"sincerity_score_of_dater_from_dated",
|
| 30 |
+
"intelligence_score_of_dater_from_dated",
|
| 31 |
+
"humor_score_of_dater_from_dated",
|
| 32 |
+
"ambition_score_of_dater_from_dated",
|
| 33 |
+
"shared_interests_score_of_dater_from_dated",
|
| 34 |
+
"attractiveness_importance_for_dater",
|
| 35 |
+
"sincerity_importance_for_dater",
|
| 36 |
+
"intelligence_importance_for_dater",
|
| 37 |
+
"humor_importance_for_dater",
|
| 38 |
+
"ambition_importance_for_dater",
|
| 39 |
+
"shared_interests_importance_for_dater",
|
| 40 |
+
"self_reported_attractiveness_of_dater",
|
| 41 |
+
"self_reported_sincerity_of_dater",
|
| 42 |
+
"self_reported_intelligence_of_dater",
|
| 43 |
+
"self_reported_humor_of_dater",
|
| 44 |
+
"self_reported_ambition_of_dater",
|
| 45 |
+
"reported_attractiveness_of_dated_from_dater",
|
| 46 |
+
"reported_sincerity_of_dated_from_dater",
|
| 47 |
+
"reported_intelligence_of_dated_from_dater",
|
| 48 |
+
"reported_humor_of_dated_from_dater",
|
| 49 |
+
"reported_ambition_of_dated_from_dater",
|
| 50 |
+
"reported_shared_interests_of_dated_from_dater",
|
| 51 |
+
"dater_interest_in_sports",
|
| 52 |
+
"dater_interest_in_tvsports",
|
| 53 |
+
"dater_interest_in_exercise",
|
| 54 |
+
"dater_interest_in_dining",
|
| 55 |
+
"dater_interest_in_museums",
|
| 56 |
+
"dater_interest_in_art",
|
| 57 |
+
"dater_interest_in_hiking",
|
| 58 |
+
"dater_interest_in_gaming",
|
| 59 |
+
"dater_interest_in_clubbing",
|
| 60 |
+
"dater_interest_in_reading",
|
| 61 |
+
"dater_interest_in_tv",
|
| 62 |
+
"dater_interest_in_theater",
|
| 63 |
+
"dater_interest_in_movies",
|
| 64 |
+
"dater_interest_in_concerts",
|
| 65 |
+
"dater_interest_in_music",
|
| 66 |
+
"dater_interest_in_shopping",
|
| 67 |
+
"dater_interest_in_yoga",
|
| 68 |
+
"interests_correlation",
|
| 69 |
+
"expected_satisfaction_of_dater",
|
| 70 |
+
"expected_number_of_likes_of_dater_from_20_people",
|
| 71 |
+
"expected_number_of_dates_for_dater",
|
| 72 |
+
"dater_liked_dated",
|
| 73 |
+
"probability_dated_wants_to_date",
|
| 74 |
+
"already_met_before",
|
| 75 |
+
"dater_wants_to_date",
|
| 76 |
+
"dated_wants_to_date",
|
| 77 |
+
"is_match"
|
| 78 |
+
]
|
| 79 |
+
|
| 80 |
+
DESCRIPTION = "Speed-dating dataset."
|
| 81 |
+
_HOMEPAGE = "https://www.openml.org/search?type=data&sort=nr_of_likes&status=active&id=40536"
|
| 82 |
+
_URLS = ("https://huggingface.co/datasets/mstz/speeddating/raw/main/speeddating.csv")
|
| 83 |
+
_CITATION = """"""
|
| 84 |
+
|
| 85 |
+
# Dataset info
|
| 86 |
+
urls_per_split = {
|
| 87 |
+
"train": "https://huggingface.co/datasets/mstz/speeddating/raw/main/speeddating.csv",
|
| 88 |
+
}
|
| 89 |
+
features_types_per_config = {
|
| 90 |
+
"dating": {
|
| 91 |
+
"dater_gender": datasets.Value("int8"),
|
| 92 |
+
"dater_age": datasets.Value("int8"),
|
| 93 |
+
"dated_age": datasets.Value("int8"),
|
| 94 |
+
"age_difference": datasets.Value("int8"),
|
| 95 |
+
"dater_race": datasets.Value("string"),
|
| 96 |
+
"dated_race": datasets.Value("string"),
|
| 97 |
+
"are_same_race": datasets.Value("int8"),
|
| 98 |
+
"same_race_importance_for_dater": datasets.Value("int8"),
|
| 99 |
+
"same_religion_importance_for_dater": datasets.Value("int8"),
|
| 100 |
+
"attractiveness_importance_for_dated": datasets.Value("int8"),
|
| 101 |
+
"sincerity_importance_for_dated": datasets.Value("int8"),
|
| 102 |
+
"intelligence_importance_for_dated": datasets.Value("int8"),
|
| 103 |
+
"humor_importance_for_dated": datasets.Value("int8"),
|
| 104 |
+
"ambition_importance_for_dated": datasets.Value("int8"),
|
| 105 |
+
"shared_interests_importance_for_dated": datasets.Value("int8"),
|
| 106 |
+
"attractiveness_score_of_dater_from_dated": datasets.Value("int8"),
|
| 107 |
+
"sincerity_score_of_dater_from_dated": datasets.Value("int8"),
|
| 108 |
+
"intelligence_score_of_dater_from_dated": datasets.Value("int8"),
|
| 109 |
+
"humor_score_of_dater_from_dated": datasets.Value("int8"),
|
| 110 |
+
"ambition_score_of_dater_from_dated": datasets.Value("int8"),
|
| 111 |
+
"shared_interests_score_of_dater_from_dated": datasets.Value("int8"),
|
| 112 |
+
"attractiveness_importance_for_dater": datasets.Value("int8"),
|
| 113 |
+
"sincerity_importance_for_dater": datasets.Value("int8"),
|
| 114 |
+
"intelligence_importance_for_dater": datasets.Value("int8"),
|
| 115 |
+
"humor_importance_for_dater": datasets.Value("int8"),
|
| 116 |
+
"ambition_importance_for_dater": datasets.Value("int8"),
|
| 117 |
+
"shared_interests_importance_for_dater": datasets.Value("int8"),
|
| 118 |
+
"self_reported_attractiveness_of_dater": datasets.Value("int8"),
|
| 119 |
+
"self_reported_sincerity_of_dater": datasets.Value("int8"),
|
| 120 |
+
"self_reported_intelligence_of_dater": datasets.Value("int8"),
|
| 121 |
+
"self_reported_humor_of_dater": datasets.Value("int8"),
|
| 122 |
+
"self_reported_ambition_of_dater": datasets.Value("int8"),
|
| 123 |
+
"reported_attractiveness_of_dated_from_dater": datasets.Value("int8"),
|
| 124 |
+
"reported_sincerity_of_dated_from_dater": datasets.Value("int8"),
|
| 125 |
+
"reported_intelligence_of_dated_from_dater": datasets.Value("int8"),
|
| 126 |
+
"reported_humor_of_dated_from_dater": datasets.Value("int8"),
|
| 127 |
+
"reported_ambition_of_dated_from_dater": datasets.Value("int8"),
|
| 128 |
+
"reported_shared_interests_of_dated_from_dater": datasets.Value("int8"),
|
| 129 |
+
"dater_interest_in_sports": datasets.Value("int8"),
|
| 130 |
+
"dater_interest_in_tvsports": datasets.Value("int8"),
|
| 131 |
+
"dater_interest_in_exercise": datasets.Value("int8"),
|
| 132 |
+
"dater_interest_in_dining": datasets.Value("int8"),
|
| 133 |
+
"dater_interest_in_museums": datasets.Value("int8"),
|
| 134 |
+
"dater_interest_in_art": datasets.Value("int8"),
|
| 135 |
+
"dater_interest_in_hiking": datasets.Value("int8"),
|
| 136 |
+
"dater_interest_in_gaming": datasets.Value("int8"),
|
| 137 |
+
"dater_interest_in_clubbing": datasets.Value("int8"),
|
| 138 |
+
"dater_interest_in_reading": datasets.Value("int8"),
|
| 139 |
+
"dater_interest_in_tv": datasets.Value("int8"),
|
| 140 |
+
"dater_interest_in_theater": datasets.Value("int8"),
|
| 141 |
+
"dater_interest_in_movies": datasets.Value("int8"),
|
| 142 |
+
"dater_interest_in_concerts": datasets.Value("int8"),
|
| 143 |
+
"dater_interest_in_music": datasets.Value("int8"),
|
| 144 |
+
"dater_interest_in_shopping": datasets.Value("int8"),
|
| 145 |
+
"dater_interest_in_yoga": datasets.Value("int8"),
|
| 146 |
+
"interests_correlation": datasets.Value("float16"),
|
| 147 |
+
"expected_satisfaction_of_dater": datasets.Value("int8"),
|
| 148 |
+
"expected_number_of_likes_of_dater_from_20_people": datasets.Value("int8"),
|
| 149 |
+
"expected_number_of_dates_for_dater": datasets.Value("int8"),
|
| 150 |
+
"dater_liked_dated": datasets.Value("int8"),
|
| 151 |
+
"probability_dated_wants_to_date": datasets.Value("int8"),
|
| 152 |
+
"already_met_before": datasets.Value("int8"),
|
| 153 |
+
"dater_wants_to_date": datasets.Value("int8"),
|
| 154 |
+
"dated_wants_to_date": datasets.Value("int8"),
|
| 155 |
+
"is_match": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
|
| 156 |
+
}
|
| 157 |
+
|
| 158 |
+
}
|
| 159 |
+
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
class SpeeddatingConfig(datasets.BuilderConfig):
|
| 163 |
+
def __init__(self, **kwargs):
|
| 164 |
+
super(SpeeddatingConfig, self).__init__(version=VERSION, **kwargs)
|
| 165 |
+
self.features = features_per_config[kwargs["name"]]
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
class Speeddating(datasets.GeneratorBasedBuilder):
|
| 169 |
+
# dataset versions
|
| 170 |
+
DEFAULT_CONFIG = "dating"
|
| 171 |
+
BUILDER_CONFIGS = [
|
| 172 |
+
SpeeddatingConfig(name="dating",
|
| 173 |
+
description="Binary classification."),
|
| 174 |
+
]
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
def _info(self):
|
| 178 |
+
if self.config.name not in features_per_config:
|
| 179 |
+
raise ValueError(f"Unknown configuration: {self.config.name}")
|
| 180 |
+
|
| 181 |
+
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
|
| 182 |
+
features=features_per_config[self.config.name])
|
| 183 |
+
|
| 184 |
+
return info
|
| 185 |
+
|
| 186 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
| 187 |
+
downloads = dl_manager.download_and_extract(urls_per_split)
|
| 188 |
+
|
| 189 |
+
return [
|
| 190 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
|
| 191 |
+
]
|
| 192 |
+
|
| 193 |
+
def _generate_examples(self, filepath: str):
|
| 194 |
+
data = pandas.read_csv(filepath)
|
| 195 |
+
data = self.preprocess(data, config=self.config.name)
|
| 196 |
+
|
| 197 |
+
for row_id, row in data.iterrows():
|
| 198 |
+
data_row = dict(row)
|
| 199 |
+
|
| 200 |
+
yield row_id, data_row
|
| 201 |
+
|
| 202 |
+
def preprocess(self, data: pandas.DataFrame, config: str = "dating") -> pandas.DataFrame:
|
| 203 |
+
data.loc[data.race == "?", "race"] = "unknown"
|
| 204 |
+
data.loc[data.race == "Asian/Pacific Islander/Asian-American", "race"] = "asian"
|
| 205 |
+
data.loc[data.race == "European/Caucasian-American", "race"] = "caucasian"
|
| 206 |
+
data.loc[data.race == "Other", "race"] = "other"
|
| 207 |
+
data.loc[data.race == "Latino/Hispanic American", "race"] = "hispanic"
|
| 208 |
+
data.loc[data.race == "Black/African American", "race"] = "african-american"
|
| 209 |
+
|
| 210 |
+
sex_transform = partial(self.encoding_dics, "sex")
|
| 211 |
+
data.loc[:, "sex"] = data.sex.apply(sex_transform)
|
| 212 |
+
|
| 213 |
+
data.drop("has_null", axis="columns", inplace=True)
|
| 214 |
+
data.drop("field", axis="columns", inplace=True)
|
| 215 |
+
|
| 216 |
+
data = data[data.age != "?"]
|
| 217 |
+
data = data[data.importance_same_race != "?"]
|
| 218 |
+
data = data[data.pref_o_attractive != "?"]
|
| 219 |
+
data = data[data.pref_o_sincere != "?"]
|
| 220 |
+
data = data[data.interests_correlate != "?"]
|
| 221 |
+
|
| 222 |
+
data.columns = _BASE_FEATURE_NAMES
|
| 223 |
+
|
| 224 |
+
if config == "dating":
|
| 225 |
+
return data
|
| 226 |
+
else:
|
| 227 |
+
raise ValueError(f"Unknown config: {config}")
|
| 228 |
+
|
| 229 |
+
def encoding_dics(feature, value):
|
| 230 |
+
match feature:
|
| 231 |
+
case "sex":
|
| 232 |
+
return {
|
| 233 |
+
"female": 0,
|
| 234 |
+
"male": 1
|
| 235 |
+
}
|
| 236 |
+
case _:
|
| 237 |
+
raise ValueError(f"Unknown feature: {feature}")
|