"""Segment Dataset""" from typing import List from functools import partial import datasets import pandas VERSION = datasets.Version("1.0.0") _ENCODING_DICS = {} DESCRIPTION = "Segment dataset." _HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification" _URLS = ("https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification") _CITATION = """ @misc{misc_statlog_(image_segmentation)_147, title = {{Statlog (Image Segmentation)}}, year = {1990}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C5P01G}} } """ # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/segment/raw/main/segment.csv" } features_types_per_config = { "segment": { "region_centroid_col": datasets.Value("float64"), "region_centroid_row": datasets.Value("float64"), "region_centroid_pixel_count": datasets.Value("float64"), "short_line_density": datasets.Value("float64"), "vedge_mean": datasets.Value("float64"), "vedge_std": datasets.Value("float64"), "hedge_mean": datasets.Value("float64"), "hedge_std": datasets.Value("float64"), "intensity_mean": datasets.Value("float64"), "rawred_mean": datasets.Value("float64"), "rawblue_mean": datasets.Value("float64"), "rawgreen_mean": datasets.Value("float64"), "exred_mean": datasets.Value("float64"), "exblue_mean": datasets.Value("float64"), "exgreen_mean": datasets.Value("float64"), "value_mean": datasets.Value("float64"), "saturation_mean": datasets.Value("float64"), "hue_mean": datasets.Value("float64"), "class": datasets.ClassLabel(num_classes=7, names=("brickface", "sky", "foliage", "cement", "window", "path", "grass")), }, "brickface": { "region_centroid_col": datasets.Value("float64"), "region_centroid_row": datasets.Value("float64"), "region_centroid_pixel_count": datasets.Value("float64"), "short_line_density": datasets.Value("float64"), "vedge_mean": datasets.Value("float64"), "vedge_std": datasets.Value("float64"), "hedge_mean": datasets.Value("float64"), "hedge_std": datasets.Value("float64"), "intensity_mean": datasets.Value("float64"), "rawred_mean": datasets.Value("float64"), "rawblue_mean": datasets.Value("float64"), "rawgreen_mean": datasets.Value("float64"), "exred_mean": datasets.Value("float64"), "exblue_mean": datasets.Value("float64"), "exgreen_mean": datasets.Value("float64"), "value_mean": datasets.Value("float64"), "saturation_mean": datasets.Value("float64"), "hue_mean": datasets.Value("float64"), "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")), }, "sky": { "region_centroid_col": datasets.Value("float64"), "region_centroid_row": datasets.Value("float64"), "region_centroid_pixel_count": datasets.Value("float64"), "short_line_density": datasets.Value("float64"), "vedge_mean": datasets.Value("float64"), "vedge_std": datasets.Value("float64"), "hedge_mean": datasets.Value("float64"), "hedge_std": datasets.Value("float64"), "intensity_mean": datasets.Value("float64"), "rawred_mean": datasets.Value("float64"), "rawblue_mean": datasets.Value("float64"), "rawgreen_mean": datasets.Value("float64"), "exred_mean": datasets.Value("float64"), "exblue_mean": datasets.Value("float64"), "exgreen_mean": datasets.Value("float64"), "value_mean": datasets.Value("float64"), "saturation_mean": datasets.Value("float64"), "hue_mean": datasets.Value("float64"), "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")), }, "foliage": { "region_centroid_col": datasets.Value("float64"), "region_centroid_row": datasets.Value("float64"), "region_centroid_pixel_count": datasets.Value("float64"), "short_line_density": datasets.Value("float64"), "vedge_mean": datasets.Value("float64"), "vedge_std": datasets.Value("float64"), "hedge_mean": datasets.Value("float64"), "hedge_std": datasets.Value("float64"), "intensity_mean": datasets.Value("float64"), "rawred_mean": datasets.Value("float64"), "rawblue_mean": datasets.Value("float64"), "rawgreen_mean": datasets.Value("float64"), "exred_mean": datasets.Value("float64"), "exblue_mean": datasets.Value("float64"), "exgreen_mean": datasets.Value("float64"), "value_mean": datasets.Value("float64"), "saturation_mean": datasets.Value("float64"), "hue_mean": datasets.Value("float64"), "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")), }, "cement": { "region_centroid_col": datasets.Value("float64"), "region_centroid_row": datasets.Value("float64"), "region_centroid_pixel_count": datasets.Value("float64"), "short_line_density": datasets.Value("float64"), "vedge_mean": datasets.Value("float64"), "vedge_std": datasets.Value("float64"), "hedge_mean": datasets.Value("float64"), "hedge_std": datasets.Value("float64"), "intensity_mean": datasets.Value("float64"), "rawred_mean": datasets.Value("float64"), "rawblue_mean": datasets.Value("float64"), "rawgreen_mean": datasets.Value("float64"), "exred_mean": datasets.Value("float64"), "exblue_mean": datasets.Value("float64"), "exgreen_mean": datasets.Value("float64"), "value_mean": datasets.Value("float64"), "saturation_mean": datasets.Value("float64"), "hue_mean": datasets.Value("float64"), "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")), }, "window": { "region_centroid_col": datasets.Value("float64"), "region_centroid_row": datasets.Value("float64"), "region_centroid_pixel_count": datasets.Value("float64"), "short_line_density": datasets.Value("float64"), "vedge_mean": datasets.Value("float64"), "vedge_std": datasets.Value("float64"), "hedge_mean": datasets.Value("float64"), "hedge_std": datasets.Value("float64"), "intensity_mean": datasets.Value("float64"), "rawred_mean": datasets.Value("float64"), "rawblue_mean": datasets.Value("float64"), "rawgreen_mean": datasets.Value("float64"), "exred_mean": datasets.Value("float64"), "exblue_mean": datasets.Value("float64"), "exgreen_mean": datasets.Value("float64"), "value_mean": datasets.Value("float64"), "saturation_mean": datasets.Value("float64"), "hue_mean": datasets.Value("float64"), "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")), }, "path": { "region_centroid_col": datasets.Value("float64"), "region_centroid_row": datasets.Value("float64"), "region_centroid_pixel_count": datasets.Value("float64"), "short_line_density": datasets.Value("float64"), "vedge_mean": datasets.Value("float64"), "vedge_std": datasets.Value("float64"), "hedge_mean": datasets.Value("float64"), "hedge_std": datasets.Value("float64"), "intensity_mean": datasets.Value("float64"), "rawred_mean": datasets.Value("float64"), "rawblue_mean": datasets.Value("float64"), "rawgreen_mean": datasets.Value("float64"), "exred_mean": datasets.Value("float64"), "exblue_mean": datasets.Value("float64"), "exgreen_mean": datasets.Value("float64"), "value_mean": datasets.Value("float64"), "saturation_mean": datasets.Value("float64"), "hue_mean": datasets.Value("float64"), "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")), }, "grass": { "region_centroid_col": datasets.Value("float64"), "region_centroid_row": datasets.Value("float64"), "region_centroid_pixel_count": datasets.Value("float64"), "short_line_density": datasets.Value("float64"), "vedge_mean": datasets.Value("float64"), "vedge_std": datasets.Value("float64"), "hedge_mean": datasets.Value("float64"), "hedge_std": datasets.Value("float64"), "intensity_mean": datasets.Value("float64"), "rawred_mean": datasets.Value("float64"), "rawblue_mean": datasets.Value("float64"), "rawgreen_mean": datasets.Value("float64"), "exred_mean": datasets.Value("float64"), "exblue_mean": datasets.Value("float64"), "exgreen_mean": datasets.Value("float64"), "value_mean": datasets.Value("float64"), "saturation_mean": datasets.Value("float64"), "hue_mean": datasets.Value("float64"), "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")), }, } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class SegmentConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(SegmentConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Segment(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "segment" BUILDER_CONFIGS = [ SegmentConfig(name="segment", description="Segment for multiclass classification."), SegmentConfig(name="brickface", description="Segment for binary classification."), SegmentConfig(name="sky", description="Segment for binary classification."), SegmentConfig(name="foliage", description="Segment for binary classification."), SegmentConfig(name="cement", description="Segment for binary classification."), SegmentConfig(name="window", description="Segment for binary classification."), SegmentConfig(name="path", description="Segment for binary classification."), SegmentConfig(name="grass", description="Segment for binary classification.") ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath) data = self.preprocess(data) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame: data["class"] = data["class"].apply(lambda x: x - 1) data = data.reset_index() data.drop("index", axis="columns", inplace=True) if self.config.name == "brickface": data["class"] = data["class"].apply(lambda x: 1 if x == 0 else 0) if self.config.name == "sky": data["class"] = data["class"].apply(lambda x: 1 if x == 1 else 0) if self.config.name == "foliage": data["class"] = data["class"].apply(lambda x: 1 if x == 2 else 0) if self.config.name == "cement": data["class"] = data["class"].apply(lambda x: 1 if x == 3 else 0) if self.config.name == "window": data["class"] = data["class"].apply(lambda x: 1 if x == 4 else 0) if self.config.name == "path": data["class"] = data["class"].apply(lambda x: 1 if x == 5 else 0) if self.config.name == "grass": data["class"] = data["class"].apply(lambda x: 1 if x == 6 else 0) for feature in _ENCODING_DICS: encoding_function = partial(self.encode, feature) data.loc[:, feature] = data[feature].apply(encoding_function) return data[list(features_types_per_config[self.config.name].keys())] def encode(self, feature, value): if feature in _ENCODING_DICS: return _ENCODING_DICS[feature][value] raise ValueError(f"Unknown feature: {feature}")