Upload segment.py
Browse files- segment.py +277 -0
segment.py
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Segment Dataset"""
|
2 |
+
|
3 |
+
from typing import List
|
4 |
+
from functools import partial
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
|
8 |
+
import pandas
|
9 |
+
|
10 |
+
|
11 |
+
VERSION = datasets.Version("1.0.0")
|
12 |
+
|
13 |
+
_ENCODING_DICS = {}
|
14 |
+
|
15 |
+
DESCRIPTION = "Segment dataset."
|
16 |
+
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification"
|
17 |
+
_URLS = ("https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification")
|
18 |
+
_CITATION = """
|
19 |
+
@misc{misc_statlog_(image_segmentation)_147,
|
20 |
+
title = {{Statlog (Image Segmentation)}},
|
21 |
+
year = {1990},
|
22 |
+
howpublished = {UCI Machine Learning Repository},
|
23 |
+
note = {{DOI}: \\url{10.24432/C5P01G}}
|
24 |
+
}
|
25 |
+
"""
|
26 |
+
|
27 |
+
# Dataset info
|
28 |
+
urls_per_split = {
|
29 |
+
"train": "https://huggingface.co/datasets/mstz/segment/raw/main/segment.csv"
|
30 |
+
}
|
31 |
+
features_types_per_config = {
|
32 |
+
"segment": {
|
33 |
+
"region_centroid_col": datasets.Value("float64"),
|
34 |
+
"region_centroid_row": datasets.Value("float64"),
|
35 |
+
"region_centroid_pixel_count": datasets.Value("float64"),
|
36 |
+
"short_line_density": datasets.Value("float64"),
|
37 |
+
"vedge_mean": datasets.Value("float64"),
|
38 |
+
"vedge_std": datasets.Value("float64"),
|
39 |
+
"hedge_mean": datasets.Value("float64"),
|
40 |
+
"hedge_std": datasets.Value("float64"),
|
41 |
+
"intensity_mean": datasets.Value("float64"),
|
42 |
+
"rawred_mean": datasets.Value("float64"),
|
43 |
+
"rawblue_mean": datasets.Value("float64"),
|
44 |
+
"rawgreen_mean": datasets.Value("float64"),
|
45 |
+
"exred_mean": datasets.Value("float64"),
|
46 |
+
"exblue_mean": datasets.Value("float64"),
|
47 |
+
"exgreen_mean": datasets.Value("float64"),
|
48 |
+
"value_mean": datasets.Value("float64"),
|
49 |
+
"saturation_mean": datasets.Value("float64"),
|
50 |
+
"hue_mean": datasets.Value("float64"),
|
51 |
+
"class": datasets.ClassLabel(num_classes=7,
|
52 |
+
names=("brickface", "sky", "foliage", "cement", "window", "path", "grass")),
|
53 |
+
},
|
54 |
+
"brickface": {
|
55 |
+
"region_centroid_col": datasets.Value("float64"),
|
56 |
+
"region_centroid_row": datasets.Value("float64"),
|
57 |
+
"region_centroid_pixel_count": datasets.Value("float64"),
|
58 |
+
"short_line_density": datasets.Value("float64"),
|
59 |
+
"vedge_mean": datasets.Value("float64"),
|
60 |
+
"vedge_std": datasets.Value("float64"),
|
61 |
+
"hedge_mean": datasets.Value("float64"),
|
62 |
+
"hedge_std": datasets.Value("float64"),
|
63 |
+
"intensity_mean": datasets.Value("float64"),
|
64 |
+
"rawred_mean": datasets.Value("float64"),
|
65 |
+
"rawblue_mean": datasets.Value("float64"),
|
66 |
+
"rawgreen_mean": datasets.Value("float64"),
|
67 |
+
"exred_mean": datasets.Value("float64"),
|
68 |
+
"exblue_mean": datasets.Value("float64"),
|
69 |
+
"exgreen_mean": datasets.Value("float64"),
|
70 |
+
"value_mean": datasets.Value("float64"),
|
71 |
+
"saturation_mean": datasets.Value("float64"),
|
72 |
+
"hue_mean": datasets.Value("float64"),
|
73 |
+
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
|
74 |
+
},
|
75 |
+
"sky": {
|
76 |
+
"region_centroid_col": datasets.Value("float64"),
|
77 |
+
"region_centroid_row": datasets.Value("float64"),
|
78 |
+
"region_centroid_pixel_count": datasets.Value("float64"),
|
79 |
+
"short_line_density": datasets.Value("float64"),
|
80 |
+
"vedge_mean": datasets.Value("float64"),
|
81 |
+
"vedge_std": datasets.Value("float64"),
|
82 |
+
"hedge_mean": datasets.Value("float64"),
|
83 |
+
"hedge_std": datasets.Value("float64"),
|
84 |
+
"intensity_mean": datasets.Value("float64"),
|
85 |
+
"rawred_mean": datasets.Value("float64"),
|
86 |
+
"rawblue_mean": datasets.Value("float64"),
|
87 |
+
"rawgreen_mean": datasets.Value("float64"),
|
88 |
+
"exred_mean": datasets.Value("float64"),
|
89 |
+
"exblue_mean": datasets.Value("float64"),
|
90 |
+
"exgreen_mean": datasets.Value("float64"),
|
91 |
+
"value_mean": datasets.Value("float64"),
|
92 |
+
"saturation_mean": datasets.Value("float64"),
|
93 |
+
"hue_mean": datasets.Value("float64"),
|
94 |
+
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
|
95 |
+
},
|
96 |
+
"foliage": {
|
97 |
+
"region_centroid_col": datasets.Value("float64"),
|
98 |
+
"region_centroid_row": datasets.Value("float64"),
|
99 |
+
"region_centroid_pixel_count": datasets.Value("float64"),
|
100 |
+
"short_line_density": datasets.Value("float64"),
|
101 |
+
"vedge_mean": datasets.Value("float64"),
|
102 |
+
"vedge_std": datasets.Value("float64"),
|
103 |
+
"hedge_mean": datasets.Value("float64"),
|
104 |
+
"hedge_std": datasets.Value("float64"),
|
105 |
+
"intensity_mean": datasets.Value("float64"),
|
106 |
+
"rawred_mean": datasets.Value("float64"),
|
107 |
+
"rawblue_mean": datasets.Value("float64"),
|
108 |
+
"rawgreen_mean": datasets.Value("float64"),
|
109 |
+
"exred_mean": datasets.Value("float64"),
|
110 |
+
"exblue_mean": datasets.Value("float64"),
|
111 |
+
"exgreen_mean": datasets.Value("float64"),
|
112 |
+
"value_mean": datasets.Value("float64"),
|
113 |
+
"saturation_mean": datasets.Value("float64"),
|
114 |
+
"hue_mean": datasets.Value("float64"),
|
115 |
+
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
|
116 |
+
},
|
117 |
+
"cement": {
|
118 |
+
"region_centroid_col": datasets.Value("float64"),
|
119 |
+
"region_centroid_row": datasets.Value("float64"),
|
120 |
+
"region_centroid_pixel_count": datasets.Value("float64"),
|
121 |
+
"short_line_density": datasets.Value("float64"),
|
122 |
+
"vedge_mean": datasets.Value("float64"),
|
123 |
+
"vedge_std": datasets.Value("float64"),
|
124 |
+
"hedge_mean": datasets.Value("float64"),
|
125 |
+
"hedge_std": datasets.Value("float64"),
|
126 |
+
"intensity_mean": datasets.Value("float64"),
|
127 |
+
"rawred_mean": datasets.Value("float64"),
|
128 |
+
"rawblue_mean": datasets.Value("float64"),
|
129 |
+
"rawgreen_mean": datasets.Value("float64"),
|
130 |
+
"exred_mean": datasets.Value("float64"),
|
131 |
+
"exblue_mean": datasets.Value("float64"),
|
132 |
+
"exgreen_mean": datasets.Value("float64"),
|
133 |
+
"value_mean": datasets.Value("float64"),
|
134 |
+
"saturation_mean": datasets.Value("float64"),
|
135 |
+
"hue_mean": datasets.Value("float64"),
|
136 |
+
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
|
137 |
+
},
|
138 |
+
"window": {
|
139 |
+
"region_centroid_col": datasets.Value("float64"),
|
140 |
+
"region_centroid_row": datasets.Value("float64"),
|
141 |
+
"region_centroid_pixel_count": datasets.Value("float64"),
|
142 |
+
"short_line_density": datasets.Value("float64"),
|
143 |
+
"vedge_mean": datasets.Value("float64"),
|
144 |
+
"vedge_std": datasets.Value("float64"),
|
145 |
+
"hedge_mean": datasets.Value("float64"),
|
146 |
+
"hedge_std": datasets.Value("float64"),
|
147 |
+
"intensity_mean": datasets.Value("float64"),
|
148 |
+
"rawred_mean": datasets.Value("float64"),
|
149 |
+
"rawblue_mean": datasets.Value("float64"),
|
150 |
+
"rawgreen_mean": datasets.Value("float64"),
|
151 |
+
"exred_mean": datasets.Value("float64"),
|
152 |
+
"exblue_mean": datasets.Value("float64"),
|
153 |
+
"exgreen_mean": datasets.Value("float64"),
|
154 |
+
"value_mean": datasets.Value("float64"),
|
155 |
+
"saturation_mean": datasets.Value("float64"),
|
156 |
+
"hue_mean": datasets.Value("float64"),
|
157 |
+
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
|
158 |
+
},
|
159 |
+
"path": {
|
160 |
+
"region_centroid_col": datasets.Value("float64"),
|
161 |
+
"region_centroid_row": datasets.Value("float64"),
|
162 |
+
"region_centroid_pixel_count": datasets.Value("float64"),
|
163 |
+
"short_line_density": datasets.Value("float64"),
|
164 |
+
"vedge_mean": datasets.Value("float64"),
|
165 |
+
"vedge_std": datasets.Value("float64"),
|
166 |
+
"hedge_mean": datasets.Value("float64"),
|
167 |
+
"hedge_std": datasets.Value("float64"),
|
168 |
+
"intensity_mean": datasets.Value("float64"),
|
169 |
+
"rawred_mean": datasets.Value("float64"),
|
170 |
+
"rawblue_mean": datasets.Value("float64"),
|
171 |
+
"rawgreen_mean": datasets.Value("float64"),
|
172 |
+
"exred_mean": datasets.Value("float64"),
|
173 |
+
"exblue_mean": datasets.Value("float64"),
|
174 |
+
"exgreen_mean": datasets.Value("float64"),
|
175 |
+
"value_mean": datasets.Value("float64"),
|
176 |
+
"saturation_mean": datasets.Value("float64"),
|
177 |
+
"hue_mean": datasets.Value("float64"),
|
178 |
+
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
|
179 |
+
},
|
180 |
+
"grass": {
|
181 |
+
"region_centroid_col": datasets.Value("float64"),
|
182 |
+
"region_centroid_row": datasets.Value("float64"),
|
183 |
+
"region_centroid_pixel_count": datasets.Value("float64"),
|
184 |
+
"short_line_density": datasets.Value("float64"),
|
185 |
+
"vedge_mean": datasets.Value("float64"),
|
186 |
+
"vedge_std": datasets.Value("float64"),
|
187 |
+
"hedge_mean": datasets.Value("float64"),
|
188 |
+
"hedge_std": datasets.Value("float64"),
|
189 |
+
"intensity_mean": datasets.Value("float64"),
|
190 |
+
"rawred_mean": datasets.Value("float64"),
|
191 |
+
"rawblue_mean": datasets.Value("float64"),
|
192 |
+
"rawgreen_mean": datasets.Value("float64"),
|
193 |
+
"exred_mean": datasets.Value("float64"),
|
194 |
+
"exblue_mean": datasets.Value("float64"),
|
195 |
+
"exgreen_mean": datasets.Value("float64"),
|
196 |
+
"value_mean": datasets.Value("float64"),
|
197 |
+
"saturation_mean": datasets.Value("float64"),
|
198 |
+
"hue_mean": datasets.Value("float64"),
|
199 |
+
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
|
200 |
+
},
|
201 |
+
}
|
202 |
+
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
203 |
+
|
204 |
+
|
205 |
+
class SegmentConfig(datasets.BuilderConfig):
|
206 |
+
def __init__(self, **kwargs):
|
207 |
+
super(SegmentConfig, self).__init__(version=VERSION, **kwargs)
|
208 |
+
self.features = features_per_config[kwargs["name"]]
|
209 |
+
|
210 |
+
|
211 |
+
class Segment(datasets.GeneratorBasedBuilder):
|
212 |
+
# dataset versions
|
213 |
+
DEFAULT_CONFIG = "segment"
|
214 |
+
BUILDER_CONFIGS = [
|
215 |
+
SegmentConfig(name="segment", description="Segment for multiclass classification."),
|
216 |
+
SegmentConfig(name="brickface", description="Segment for binary classification."),
|
217 |
+
SegmentConfig(name="sky", description="Segment for binary classification."),
|
218 |
+
SegmentConfig(name="foliage", description="Segment for binary classification."),
|
219 |
+
SegmentConfig(name="cement", description="Segment for binary classification."),
|
220 |
+
SegmentConfig(name="window", description="Segment for binary classification."),
|
221 |
+
SegmentConfig(name="path", description="Segment for binary classification."),
|
222 |
+
SegmentConfig(name="grass", description="Segment for binary classification.")
|
223 |
+
]
|
224 |
+
|
225 |
+
|
226 |
+
def _info(self):
|
227 |
+
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
|
228 |
+
features=features_per_config[self.config.name])
|
229 |
+
|
230 |
+
return info
|
231 |
+
|
232 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
233 |
+
downloads = dl_manager.download_and_extract(urls_per_split)
|
234 |
+
|
235 |
+
return [
|
236 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
|
237 |
+
]
|
238 |
+
|
239 |
+
def _generate_examples(self, filepath: str):
|
240 |
+
data = pandas.read_csv(filepath)
|
241 |
+
data = self.preprocess(data)
|
242 |
+
|
243 |
+
for row_id, row in data.iterrows():
|
244 |
+
data_row = dict(row)
|
245 |
+
|
246 |
+
yield row_id, data_row
|
247 |
+
|
248 |
+
def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
|
249 |
+
data["class"] = data["class"].apply(lambda x: x - 1)
|
250 |
+
data = data.reset_index()
|
251 |
+
data.drop("index", axis="columns", inplace=True)
|
252 |
+
|
253 |
+
if self.config.name == "brickface":
|
254 |
+
data["class"] = data["class"].apply(lambda x: 1 if x == 0 else 0)
|
255 |
+
if self.config.name == "sky":
|
256 |
+
data["class"] = data["class"].apply(lambda x: 1 if x == 1 else 0)
|
257 |
+
if self.config.name == "foliage":
|
258 |
+
data["class"] = data["class"].apply(lambda x: 1 if x == 2 else 0)
|
259 |
+
if self.config.name == "cement":
|
260 |
+
data["class"] = data["class"].apply(lambda x: 1 if x == 3 else 0)
|
261 |
+
if self.config.name == "window":
|
262 |
+
data["class"] = data["class"].apply(lambda x: 1 if x == 4 else 0)
|
263 |
+
if self.config.name == "path":
|
264 |
+
data["class"] = data["class"].apply(lambda x: 1 if x == 5 else 0)
|
265 |
+
if self.config.name == "grass":
|
266 |
+
data["class"] = data["class"].apply(lambda x: 1 if x == 6 else 0)
|
267 |
+
|
268 |
+
for feature in _ENCODING_DICS:
|
269 |
+
encoding_function = partial(self.encode, feature)
|
270 |
+
data.loc[:, feature] = data[feature].apply(encoding_function)
|
271 |
+
|
272 |
+
return data[list(features_types_per_config[self.config.name].keys())]
|
273 |
+
|
274 |
+
def encode(self, feature, value):
|
275 |
+
if feature in _ENCODING_DICS:
|
276 |
+
return _ENCODING_DICS[feature][value]
|
277 |
+
raise ValueError(f"Unknown feature: {feature}")
|