File size: 4,122 Bytes
b0fc364
 
 
 
 
 
 
 
 
 
 
 
b298fdd
 
 
 
 
 
b0fc364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4420711
b0fc364
 
 
 
8fb3870
 
b0fc364
 
 
 
 
4420711
b0fc364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
"""Nursery Dataset"""

from typing import List
from functools import partial

import datasets

import pandas


VERSION = datasets.Version("1.0.0")

_ENCODING_DICS = {
	"is_family_financially_stable": {
		"convenient": True,
		"inconvenient": False
	}
}

DESCRIPTION = "Nursery dataset."
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/69/molecular+biology+nursery+junction+gene+sequences"
_URLS = ("https://archive-beta.ics.uci.edu/dataset/69/molecular+biology+nursery+junction+gene+sequences")
_CITATION = """
@misc{misc_nursery_76,
  author       = {Rajkovic,Vladislav},
  title        = {{Nursery}},
  year         = {1997},
  howpublished = {UCI Machine Learning Repository},
  note         = {{DOI}: \\url{10.24432/C5P88W}}
}
"""

# Dataset info
urls_per_split = {
    "train": "https://huggingface.co/datasets/mstz/nursery/raw/main/nursery.data"
}
features_types_per_config = {
    "nursery": {
		"parents_attitude": datasets.Value("string"),
		"current_nursery_status": datasets.Value("string"),
		"form": datasets.Value("string"),
		"number_of_children": datasets.Value("int8"),
		"housing_status": datasets.Value("string"),
		"is_family_financially_stable": datasets.Value("bool"),
		"social_status": datasets.Value("string"),
		"health_status": datasets.Value("string"),
        "recommendation": datasets.ClassLabel(num_classes=5, names=("not recommended", "recommended", "priority recommendation",
																	"highly recommended", "specifically recommended"))
    },
	"nursery_binary": {
		"parents_attitude": datasets.Value("string"),
		"current_nursery_status": datasets.Value("string"),
		"form": datasets.Value("string"),
		"number_of_children": datasets.Value("int8"),
		"housing_status": datasets.Value("string"),
		"is_family_financially_stable": datasets.Value("bool"),
		"social_status": datasets.Value("string"),
		"health_status": datasets.Value("string"),
        "recommendation": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
    },
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}


class NurseryConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(NurseryConfig, self).__init__(version=VERSION, **kwargs)
        self.features = features_per_config[kwargs["name"]]


class Nursery(datasets.GeneratorBasedBuilder):
    # dataset versions
    DEFAULT_CONFIG = "nursery"
    BUILDER_CONFIGS = [
        NurseryConfig(name="nursery",
                   description="Nursery for multiclass classification."),
        NurseryConfig(name="nursery_binary",
                   description="Nursery for binary classification.")
    ]


    def _info(self):
        info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
                                    features=features_per_config[self.config.name])

        return info
    
    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        downloads = dl_manager.download_and_extract(urls_per_split)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
        ]
    
    def _generate_examples(self, filepath: str):
        data = pandas.read_csv(filepath)
        data = self.preprocess(data)

        for row_id, row in data.iterrows():
            data_row = dict(row)

            yield row_id, data_row

    def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
        if self.config.name == "nursery_binary":
            data["recommendation"] = data["recommendation"].apply(lambda x: 1 if x > 0 else 0)

        for feature in _ENCODING_DICS:
            encoding_function = partial(self.encode, feature)
            data.loc[:, feature] = data[feature].apply(encoding_function)
                
        return data[list(features_types_per_config[self.config.name].keys())]

    def encode(self, feature, value):
        if feature in _ENCODING_DICS:
            return _ENCODING_DICS[feature][value]
        raise ValueError(f"Unknown feature: {feature}")