Datasets:
Tasks:
Tabular Classification
Modalities:
Tabular
Formats:
csv
Languages:
English
Size:
10K - 100K
License:
Upload magic.py
Browse files
magic.py
CHANGED
|
@@ -87,73 +87,10 @@ class Magic(datasets.GeneratorBasedBuilder):
|
|
| 87 |
]
|
| 88 |
|
| 89 |
def _generate_examples(self, filepath: str):
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
elif self.config.name in ["magic", "magic-no race", "race"]:
|
| 99 |
-
data = pandas.read_csv(filepath)
|
| 100 |
-
data = self.preprocess(data, config=self.config.name)
|
| 101 |
-
|
| 102 |
-
for row_id, row in data.iterrows():
|
| 103 |
-
data_row = dict(row)
|
| 104 |
-
|
| 105 |
-
yield row_id, data_row
|
| 106 |
-
|
| 107 |
-
else:
|
| 108 |
-
raise ValueError(f"Unknown config: {self.config.name}")
|
| 109 |
-
|
| 110 |
-
def encodings(self):
|
| 111 |
-
data = [pandas.DataFrame([(feature, original_value, encoded_value)
|
| 112 |
-
for original_value, encoded_value in d.items()],
|
| 113 |
-
columns=["feature", "original_value", "encoded_value"])
|
| 114 |
-
for feature, d in _ENCODING_DICS.items()]
|
| 115 |
-
data.append(pandas.DataFrame([("race", original_value, encoded_value)
|
| 116 |
-
for original_value, encoded_value in _RACE_ENCODING.items()],
|
| 117 |
-
columns=["feature", "original_value", "encoded_value"]))
|
| 118 |
-
data.append(pandas.DataFrame([("education", original_value, encoded_value)
|
| 119 |
-
for original_value, encoded_value in _EDUCATION_ENCODING.items()],
|
| 120 |
-
columns=["feature", "original_value", "encoded_value"]))
|
| 121 |
-
data = pandas.concat(data, axis="rows").reset_index()
|
| 122 |
-
data.drop("index", axis="columns", inplace=True)
|
| 123 |
-
|
| 124 |
-
return data
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
|
| 128 |
-
data.drop("education", axis="columns", inplace=True)
|
| 129 |
-
data = data.rename(columns={"threshold": "over_threshold", "sex": "is_male"})
|
| 130 |
-
|
| 131 |
-
data = data[["age", "capital_gain", "capital_loss", "education-num", "final_weight",
|
| 132 |
-
"hours_per_week", "marital_status", "native_country", "occupation",
|
| 133 |
-
"race", "relationship", "is_male", "workclass", "over_threshold"]]
|
| 134 |
-
data.columns = _BASE_FEATURE_NAMES
|
| 135 |
-
|
| 136 |
-
for feature in _ENCODING_DICS:
|
| 137 |
-
encoding_function = partial(self.encode, feature)
|
| 138 |
-
data.loc[:, feature] = data[feature].apply(encoding_function)
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
if config == "magic":
|
| 142 |
-
return data[list(features_types_per_config["magic"].keys())]
|
| 143 |
-
elif config == "magic-no race":
|
| 144 |
-
return data[list(features_types_per_config["magic-no race"].keys())]
|
| 145 |
-
elif config =="race":
|
| 146 |
-
data.loc[:, "race"] = data.race.apply(self.encode_race)
|
| 147 |
-
data = data[list(features_types_per_config["race"].keys())]
|
| 148 |
-
|
| 149 |
-
return data
|
| 150 |
-
else:
|
| 151 |
-
raise ValueError(f"Unknown config: {config}")
|
| 152 |
-
|
| 153 |
-
def encode(self, feature, value):
|
| 154 |
-
if feature in _ENCODING_DICS:
|
| 155 |
-
return _ENCODING_DICS[feature][value]
|
| 156 |
-
raise ValueError(f"Unknown feature: {feature}")
|
| 157 |
-
|
| 158 |
-
def encode_race(self, race):
|
| 159 |
-
return _RACE_ENCODING[race]
|
|
|
|
| 87 |
]
|
| 88 |
|
| 89 |
def _generate_examples(self, filepath: str):
|
| 90 |
+
data = pandas.read_csv(filepath)
|
| 91 |
+
data = self.preprocess(data, config=self.config.name)
|
| 92 |
+
|
| 93 |
+
for row_id, row in data.iterrows():
|
| 94 |
+
data_row = dict(row)
|
| 95 |
+
|
| 96 |
+
yield row_id, data_row
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|