Datasets:
Upload 3 files
Browse files
.gitattributes
CHANGED
@@ -52,3 +52,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
52 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
53 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
52 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
53 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
55 |
+
higgs.csv filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- higgs
|
6 |
+
- tabular_classification
|
7 |
+
- binary_classification
|
8 |
+
pretty_name: Higgs
|
9 |
+
size_categories:
|
10 |
+
- 10K<n<100K
|
11 |
+
task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
|
12 |
+
- tabular-classification
|
13 |
+
configs:
|
14 |
+
- higgs
|
15 |
+
---
|
16 |
+
# Higgs
|
17 |
+
The [Higgs dataset](https://www.nature.com/articles/ncomms5308/) from "[Searching for exotic particles in high-energy physics with deep learning](https://www.nature.com/articles/ncomms5308/)".
|
18 |
+
|
19 |
+
# Configurations and tasks
|
20 |
+
- `higgs` Higgs boson identification;
|
21 |
+
|
22 |
+
# Features
|
23 |
+
|**Feature** |**Type** |
|
24 |
+
|---------------------------|-----------|
|
25 |
+
|`lepton_pT` |`[float64]`|
|
26 |
+
|`lepton_eta` |`[float64]`|
|
27 |
+
|`lepton_phi` |`[float64]`|
|
28 |
+
|`missing_energy_magnitude` |`[float64]`|
|
29 |
+
|`missing_energy_phi` |`[float64]`|
|
30 |
+
|`jet1pt` |`[float64]`|
|
31 |
+
|`jet1eta` |`[float64]`|
|
32 |
+
|`jet1phi` |`[float64]`|
|
33 |
+
|`jet1b` |`[float64]`|
|
34 |
+
|`jet2pt` |`[float64]`|
|
35 |
+
|`jet2eta` |`[float64]`|
|
36 |
+
|`jet2phi` |`[float64]`|
|
37 |
+
|`jet2b` |`[float64]`|
|
38 |
+
|`jet3pt` |`[float64]`|
|
39 |
+
|`jet3eta` |`[float64]`|
|
40 |
+
|`jet3phi` |`[float64]`|
|
41 |
+
|`jet3b` |`[float64]`|
|
42 |
+
|`jet4pt` |`[float64]`|
|
43 |
+
|`jet4eta` |`[float64]`|
|
44 |
+
|`jet4phi` |`[float64]`|
|
45 |
+
|`jet4b` |`[float64]`|
|
46 |
+
|`m_jj` |`[float64]`|
|
47 |
+
|`m_jjj` |`[float64]`|
|
48 |
+
|`m_lv` |`[float64]`|
|
49 |
+
|`m_jlv` |`[float64]`|
|
50 |
+
|`m_bb` |`[float64]`|
|
51 |
+
|`m_wbb` |`[float64]`|
|
52 |
+
|`m_wwbb` |`[float64]`|
|
higgs.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d48bd1d78420400e0ebe7e8b906a74162b3e66b65e98fc73f0729f0a80b57aba
|
3 |
+
size 45444445
|
higgs.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Higgs: A Census Dataset"""
|
2 |
+
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
|
7 |
+
import pandas
|
8 |
+
|
9 |
+
|
10 |
+
VERSION = datasets.Version("1.0.0")
|
11 |
+
_ORIGINAL_FEATURE_NAMES = [
|
12 |
+
"is_boson",
|
13 |
+
"lepton_pT",
|
14 |
+
"lepton_eta",
|
15 |
+
"lepton_phi",
|
16 |
+
"missing_energy_magnitude",
|
17 |
+
"missing_energy_phi",
|
18 |
+
"jet1pt",
|
19 |
+
"jet1eta",
|
20 |
+
"jet1phi",
|
21 |
+
"jet1b-tag",
|
22 |
+
"jet2pt",
|
23 |
+
"jet2eta",
|
24 |
+
"jet2phi",
|
25 |
+
"jet2b-tag",
|
26 |
+
"jet3pt",
|
27 |
+
"jet3eta",
|
28 |
+
"jet3phi",
|
29 |
+
"jet3b-tag",
|
30 |
+
"jet4pt",
|
31 |
+
"jet4eta",
|
32 |
+
"jet4phi",
|
33 |
+
"jet4b-tag",
|
34 |
+
"m_jj",
|
35 |
+
"m_jjj",
|
36 |
+
"m_lv",
|
37 |
+
"m_jlv",
|
38 |
+
"m_bb",
|
39 |
+
"m_wbb",
|
40 |
+
"m_wwbb"
|
41 |
+
]
|
42 |
+
|
43 |
+
DESCRIPTION = "Higgs dataset from \"Searching for exotic particles in high-energy physics with deep learning\"."
|
44 |
+
_HOMEPAGE = "https://www.nature.com/articles/ncomms5308/"
|
45 |
+
_URLS = ("https://www.openml.org/search?type=data&status=active&id=4532")
|
46 |
+
_CITATION = """
|
47 |
+
@article{baldi2014searching,
|
48 |
+
title={Searching for exotic particles in high-energy physics with deep learning},
|
49 |
+
author={Baldi, Pierre and Sadowski, Peter and Whiteson, Daniel},
|
50 |
+
journal={Nature communications},
|
51 |
+
volume={5},
|
52 |
+
number={1},
|
53 |
+
pages={4308},
|
54 |
+
year={2014},
|
55 |
+
publisher={Nature Publishing Group UK London}
|
56 |
+
}"""
|
57 |
+
|
58 |
+
# Dataset info
|
59 |
+
urls_per_split = {
|
60 |
+
"train": "https://huggingface.co/datasets/mstz/higgs/raw/main/higgs.csv",
|
61 |
+
}
|
62 |
+
features_types_per_config = {
|
63 |
+
"higgs": {
|
64 |
+
"lepton_pT": datasets.Value("float64"),
|
65 |
+
"lepton_eta": datasets.Value("float64"),
|
66 |
+
"lepton_phi": datasets.Value("float64"),
|
67 |
+
"missing_energy_magnitude": datasets.Value("float64"),
|
68 |
+
"missing_energy_phi": datasets.Value("float64"),
|
69 |
+
"jet1pt": datasets.Value("float64"),
|
70 |
+
"jet1eta": datasets.Value("float64"),
|
71 |
+
"jet1phi": datasets.Value("float64"),
|
72 |
+
"jet1b-tag": datasets.Value("float64"),
|
73 |
+
"jet2pt": datasets.Value("float64"),
|
74 |
+
"jet2eta": datasets.Value("float64"),
|
75 |
+
"jet2phi": datasets.Value("float64"),
|
76 |
+
"jet2b-tag": datasets.Value("float64"),
|
77 |
+
"jet3pt": datasets.Value("float64"),
|
78 |
+
"jet3eta": datasets.Value("float64"),
|
79 |
+
"jet3phi": datasets.Value("float64"),
|
80 |
+
"jet3b-tag": datasets.Value("float64"),
|
81 |
+
"jet4pt": datasets.Value("float64"),
|
82 |
+
"jet4eta": datasets.Value("float64"),
|
83 |
+
"jet4phi": datasets.Value("float64"),
|
84 |
+
"jet4b-tag": datasets.Value("float64"),
|
85 |
+
"m_jj": datasets.Value("float64"),
|
86 |
+
"m_jjj": datasets.Value("float64"),
|
87 |
+
"m_lv": datasets.Value("float64"),
|
88 |
+
"m_jlv": datasets.Value("float64"),
|
89 |
+
"m_bb": datasets.Value("float64"),
|
90 |
+
"m_wbb": datasets.Value("float64"),
|
91 |
+
"m_wwbb": datasets.Value("float64"),
|
92 |
+
"is_boson": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
|
93 |
+
}
|
94 |
+
}
|
95 |
+
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
96 |
+
|
97 |
+
|
98 |
+
class HiggsConfig(datasets.BuilderConfig):
|
99 |
+
def __init__(self, **kwargs):
|
100 |
+
super(HiggsConfig, self).__init__(version=VERSION, **kwargs)
|
101 |
+
self.features = features_per_config[kwargs["name"]]
|
102 |
+
|
103 |
+
|
104 |
+
class Higgs(datasets.GeneratorBasedBuilder):
|
105 |
+
# dataset versions
|
106 |
+
DEFAULT_CONFIG = "higgs"
|
107 |
+
BUILDER_CONFIGS = [
|
108 |
+
HiggsConfig(name="higgs",
|
109 |
+
description="Higgs boson binary classification.")
|
110 |
+
]
|
111 |
+
|
112 |
+
|
113 |
+
def _info(self):
|
114 |
+
if self.config.name not in features_per_config:
|
115 |
+
raise ValueError(f"Unknown configuration: {self.config.name}")
|
116 |
+
|
117 |
+
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
|
118 |
+
features=features_per_config[self.config.name])
|
119 |
+
|
120 |
+
return info
|
121 |
+
|
122 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
123 |
+
downloads = dl_manager.download_and_extract(urls_per_split)
|
124 |
+
|
125 |
+
return [
|
126 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
|
127 |
+
]
|
128 |
+
|
129 |
+
def _generate_examples(self, filepath: str):
|
130 |
+
data = pandas.read_csv(filepath)
|
131 |
+
data = self.preprocess(data, config=self.config.name)
|
132 |
+
|
133 |
+
for row_id, row in data.iterrows():
|
134 |
+
data_row = dict(row)
|
135 |
+
|
136 |
+
yield row_id, data_row
|
137 |
+
|
138 |
+
|
139 |
+
def preprocess(self, data: pandas.DataFrame, config: str = "higgs") -> pandas.DataFrame:
|
140 |
+
if config == "higgs":
|
141 |
+
return data[list(features_types_per_config["higgs"].keys())]
|
142 |
+
else:
|
143 |
+
raise ValueError(f"Unknown config: {config}")
|