Datasets:
Last commit not found
"""Heart""" | |
from typing import List | |
import datasets | |
import pandas | |
VERSION = datasets.Version("1.0.0") | |
_BASE_FEATURE_NAMES = [ | |
"age", | |
"is_male", | |
"type_of_chest_pain", | |
"resting_blood_pressure", | |
"serum_cholesterol", | |
"fasting_blood_sugar", | |
"rest_electrocardiographic_type", | |
"maximum_heart_rate", | |
"has_exercise_induced_angina", | |
"depression_induced_by_exercise", | |
"slope_of_peak_exercise", | |
"number_of_major_vessels_colored_by_flourosopy", | |
"thal", | |
"has_hearth_disease" | |
] | |
DESCRIPTION = "Heart dataset from the UCI ML repository." | |
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Heart" | |
_URLS = ("https://huggingface.co/datasets/mstz/heart/raw/heart.csv") | |
_CITATION = """ | |
@misc{misc_heart_disease_45, | |
author = {Janosi,Andras, Steinbrunn,William, Pfisterer,Matthias, Detrano,Robert & M.D.,M.D.}, | |
title = {{Heart Disease}}, | |
year = {1988}, | |
howpublished = {UCI Machine Learning Repository}, | |
note = {{DOI}: \\url{10.24432/C52P4X}} | |
}""" | |
# Dataset info | |
urls_per_split = { | |
"cleveland": {"train": "https://huggingface.co/datasets/mstz/heart/raw/main/processed.cleveland.data"}, | |
"hungary": {"train": "https://huggingface.co/datasets/mstz/heart/raw/main/processed.hungarian.data"}, | |
"switzerland": {"train": "https://huggingface.co/datasets/mstz/heart/raw/main/processed.switzerland.data"}, | |
"va": {"train": "https://huggingface.co/datasets/mstz/heart/raw/main/processed.va.data"} | |
} | |
features_types_per_config = { | |
"cleveland": { | |
"age": datasets.Value("int8"), | |
"is_male": datasets.Value("bool"), | |
"type_of_chest_pain": datasets.Value("string"), | |
"resting_blood_pressure": datasets.Value("float32"), | |
"serum_cholesterol": datasets.Value("float32"), | |
"fasting_blood_sugar": datasets.Value("float32"), | |
"rest_electrocardiographic_type": datasets.Value("string"), | |
"maximum_heart_rate": datasets.Value("float32"), | |
"has_exercise_induced_angina": datasets.Value("bool"), | |
"depression_induced_by_exercise": datasets.Value("float32"), | |
"slope_of_peak_exercise": datasets.Value("float32"), | |
"number_of_major_vessels_colored_by_flourosopy": datasets.Value("int16"), | |
"thal": datasets.Value("float32"), | |
"has_hearth_disease": datasets.ClassLabel(num_classes=2, names=("no", "yes")) | |
}, | |
"va": { | |
"age": datasets.Value("int8"), | |
"is_male": datasets.Value("bool"), | |
"type_of_chest_pain": datasets.Value("string"), | |
"resting_blood_pressure": datasets.Value("float32"), | |
"serum_cholesterol": datasets.Value("float32"), | |
"fasting_blood_sugar": datasets.Value("float32"), | |
"rest_electrocardiographic_type": datasets.Value("string"), | |
"maximum_heart_rate": datasets.Value("float32"), | |
"has_exercise_induced_angina": datasets.Value("bool"), | |
"depression_induced_by_exercise": datasets.Value("float32"), | |
"slope_of_peak_exercise": datasets.Value("float32"), | |
"number_of_major_vessels_colored_by_flourosopy": datasets.Value("int16"), | |
"thal": datasets.Value("float32"), | |
"has_hearth_disease": datasets.ClassLabel(num_classes=2, names=("no", "yes")) | |
}, | |
"switzerland": { | |
"age": datasets.Value("int8"), | |
"is_male": datasets.Value("bool"), | |
"type_of_chest_pain": datasets.Value("string"), | |
"resting_blood_pressure": datasets.Value("float32"), | |
"serum_cholesterol": datasets.Value("float32"), | |
"fasting_blood_sugar": datasets.Value("float32"), | |
"rest_electrocardiographic_type": datasets.Value("string"), | |
"maximum_heart_rate": datasets.Value("float32"), | |
"has_exercise_induced_angina": datasets.Value("bool"), | |
"depression_induced_by_exercise": datasets.Value("float32"), | |
"slope_of_peak_exercise": datasets.Value("float32"), | |
"number_of_major_vessels_colored_by_flourosopy": datasets.Value("int16"), | |
"thal": datasets.Value("float32"), | |
"has_hearth_disease": datasets.ClassLabel(num_classes=2, names=("no", "yes")) | |
}, | |
"hungary": { | |
"age": datasets.Value("int8"), | |
"is_male": datasets.Value("bool"), | |
"type_of_chest_pain": datasets.Value("string"), | |
"resting_blood_pressure": datasets.Value("float32"), | |
"serum_cholesterol": datasets.Value("float32"), | |
"fasting_blood_sugar": datasets.Value("float32"), | |
"rest_electrocardiographic_type": datasets.Value("string"), | |
"maximum_heart_rate": datasets.Value("float32"), | |
"has_exercise_induced_angina": datasets.Value("bool"), | |
"depression_induced_by_exercise": datasets.Value("float32"), | |
"slope_of_peak_exercise": datasets.Value("float32"), | |
"number_of_major_vessels_colored_by_flourosopy": datasets.Value("int16"), | |
"thal": datasets.Value("float32"), | |
"has_hearth_disease": datasets.ClassLabel(num_classes=2, names=("no", "yes")) | |
}, | |
} | |
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} | |
class HeartConfig(datasets.BuilderConfig): | |
def __init__(self, **kwargs): | |
super(HeartConfig, self).__init__(version=VERSION, **kwargs) | |
self.features = features_per_config[kwargs["name"]] | |
class Heart(datasets.GeneratorBasedBuilder): | |
# dataset versions | |
DEFAULT_CONFIG = "cleveland" | |
BUILDER_CONFIGS = [ | |
HeartConfig(name="cleveland", | |
description="Heart for binary classification, dataset."), | |
HeartConfig(name="va", | |
description="Heart for binary classification, va dataset."), | |
HeartConfig(name="switzerland", | |
description="Heart for binary classification, switzerland dataset."), | |
HeartConfig(name="hungary", | |
description="Heart for binary classification, hungary dataset.") | |
] | |
def _info(self): | |
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, | |
features=features_per_config[self.config.name]) | |
return info | |
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | |
downloads = dl_manager.download_and_extract(urls_per_split) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads[self.config.name]["train"]}) | |
] | |
def _generate_examples(self, filepath: str): | |
data = pandas.read_csv(filepath, header=None) | |
data.columns = _BASE_FEATURE_NAMES | |
data = data.astype({"is_male": bool, "has_exercise_induced_angina": bool}) | |
data = data[data.thal != "?"] | |
data = data[data.number_of_major_vessels_colored_by_flourosopy != "?"] | |
data = data.infer_objects() | |
print(data.head()) | |
print(data.dtypes) | |
for row_id, row in data.iterrows(): | |
data_row = dict(row) | |
yield row_id, data_row | |