File size: 7,725 Bytes
761febb
 
 
8c86618
761febb
 
 
 
 
 
 
 
5e8b1f9
 
 
 
 
 
 
 
 
 
 
 
 
761febb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4303419
 
 
761febb
 
 
 
ef24fda
 
 
 
 
 
 
 
 
 
 
 
 
761febb
 
 
c4bda92
 
 
 
 
 
 
 
 
 
 
 
 
761febb
 
 
c4bda92
 
 
 
 
 
 
 
 
 
 
 
 
761febb
 
 
c4bda92
 
 
 
 
 
 
 
 
 
 
 
 
761febb
 
 
 
 
d606eed
 
208cd4c
 
 
d606eed
 
 
761febb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d0a9fe
761febb
 
 
b858b60
761febb
0d52394
d606eed
 
 
0d52394
d606eed
 
a276e03
 
ae6b4ed
761febb
957c563
 
d606eed
 
957c563
761febb
 
 
 
d606eed
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
"""Heart"""

from typing import List
from functools import partial

import datasets

import pandas


VERSION = datasets.Version("1.0.0")
_BASE_FEATURE_NAMES = [
    "age",
    "is_male",
    "type_of_chest_pain",
    "resting_blood_pressure",
    "serum_cholesterol",
    "fasting_blood_sugar",
    "rest_electrocardiographic_type",
    "maximum_heart_rate",
    "has_exercise_induced_angina",
    "depression_induced_by_exercise",
    "slope_of_peak_exercise",
    "number_of_major_vessels_colored_by_flourosopy",
    "thal",
    "has_hearth_disease"
]

DESCRIPTION = "Heart dataset from the UCI ML repository."
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Heart"
_URLS = ("https://huggingface.co/datasets/mstz/heart/raw/heart.csv")
_CITATION = """
@misc{misc_heart_disease_45,
  author       = {Janosi,Andras, Steinbrunn,William, Pfisterer,Matthias, Detrano,Robert & M.D.,M.D.},
  title        = {{Heart Disease}},
  year         = {1988},
  howpublished = {UCI Machine Learning Repository},
  note         = {{DOI}: \\url{10.24432/C52P4X}}
}"""

# Dataset info
urls_per_split = {
    "cleveland": {"train": "https://huggingface.co/datasets/mstz/heart/raw/main/processed.cleveland.data"},
    "hungary": {"train": "https://huggingface.co/datasets/mstz/heart/raw/main/processed.hungarian.data"},
    "switzerland": {"train": "https://huggingface.co/datasets/mstz/heart/raw/main/processed.switzerland.data"},
    "va": {"train": "https://huggingface.co/datasets/mstz/heart/raw/main/processed.va.data"}
}
features_types_per_config = {
    "cleveland": {
        "age": datasets.Value("int8"),
        "is_male": datasets.Value("bool"),
        "type_of_chest_pain": datasets.Value("string"),
        "resting_blood_pressure": datasets.Value("float32"),
        "serum_cholesterol": datasets.Value("float32"),
        "fasting_blood_sugar": datasets.Value("float32"),
        "rest_electrocardiographic_type": datasets.Value("string"),
        "maximum_heart_rate": datasets.Value("float32"),
        "has_exercise_induced_angina": datasets.Value("bool"),
        "depression_induced_by_exercise": datasets.Value("float32"),
        "slope_of_peak_exercise": datasets.Value("float32"),
        "number_of_major_vessels_colored_by_flourosopy": datasets.Value("int16"),
        "thal": datasets.Value("float32"),
        "has_hearth_disease": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
    },
    "va": {
        "age": datasets.Value("int8"),
        "is_male": datasets.Value("bool"),
        "type_of_chest_pain": datasets.Value("string"),
        "resting_blood_pressure": datasets.Value("float32"),
        "serum_cholesterol": datasets.Value("float32"),
        "fasting_blood_sugar": datasets.Value("float32"),
        "rest_electrocardiographic_type": datasets.Value("string"),
        "maximum_heart_rate": datasets.Value("float32"),
        "has_exercise_induced_angina": datasets.Value("bool"),
        "depression_induced_by_exercise": datasets.Value("float32"),
        "slope_of_peak_exercise": datasets.Value("float32"),
        "number_of_major_vessels_colored_by_flourosopy": datasets.Value("int16"),
        "thal": datasets.Value("float32"),
        "has_hearth_disease": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
    },
    "switzerland": {
        "age": datasets.Value("int8"),
        "is_male": datasets.Value("bool"),
        "type_of_chest_pain": datasets.Value("string"),
        "resting_blood_pressure": datasets.Value("float32"),
        "serum_cholesterol": datasets.Value("float32"),
        "fasting_blood_sugar": datasets.Value("float32"),
        "rest_electrocardiographic_type": datasets.Value("string"),
        "maximum_heart_rate": datasets.Value("float32"),
        "has_exercise_induced_angina": datasets.Value("bool"),
        "depression_induced_by_exercise": datasets.Value("float32"),
        "slope_of_peak_exercise": datasets.Value("float32"),
        "number_of_major_vessels_colored_by_flourosopy": datasets.Value("int16"),
        "thal": datasets.Value("float32"),
        "has_hearth_disease": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
    },
    "hungary": {
        "age": datasets.Value("int8"),
        "is_male": datasets.Value("bool"),
        "type_of_chest_pain": datasets.Value("string"),
        "resting_blood_pressure": datasets.Value("float32"),
        "serum_cholesterol": datasets.Value("float32"),
        "fasting_blood_sugar": datasets.Value("float32"),
        "rest_electrocardiographic_type": datasets.Value("string"),
        "maximum_heart_rate": datasets.Value("float32"),
        "has_exercise_induced_angina": datasets.Value("bool"),
        "depression_induced_by_exercise": datasets.Value("float32"),
        "slope_of_peak_exercise": datasets.Value("float32"),
        "number_of_major_vessels_colored_by_flourosopy": datasets.Value("int16"),
        "thal": datasets.Value("float32"),
        "has_hearth_disease": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
    },
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}

_ENCODING_DICS = {
    "type_of_chest_pain": {
        1: "typical angina",
        2: "atypical angina",
        3: "non-anginal pain",
        4: "asymptomatic"
    }
}

class HeartConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(HeartConfig, self).__init__(version=VERSION, **kwargs)
        self.features = features_per_config[kwargs["name"]]


class Heart(datasets.GeneratorBasedBuilder):
    # dataset versions
    DEFAULT_CONFIG = "cleveland"
    BUILDER_CONFIGS = [
        HeartConfig(name="cleveland",
                    description="Heart for binary classification, dataset."),
        HeartConfig(name="va",
                    description="Heart for binary classification, va dataset."),
        HeartConfig(name="switzerland",
                    description="Heart for binary classification, switzerland dataset."),
        HeartConfig(name="hungary",
                    description="Heart for binary classification, hungary dataset.")
    ]


    def _info(self):
        info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
                                    features=features_per_config[self.config.name])

        return info
    
    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        downloads = dl_manager.download_and_extract(urls_per_split)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads[self.config.name]["train"]})
        ]
    
    def _generate_examples(self, filepath: str):
        data = pandas.read_csv(filepath, header=None)
        data.columns = _BASE_FEATURE_NAMES

        for feature in _ENCODING_DICS:
            encoding_function = partial(self.encode, feature)
            data.loc[:, feature] = data[feature].apply(encoding_function)

        data = data.astype({"is_male": bool, "has_exercise_induced_angina": bool})
        data.age.applymap(int)
        data = data[data.thal != "?"]
        data = data[data.number_of_major_vessels_colored_by_flourosopy != "?"]
        data = data.infer_objects()

        print(data.head())
        print(data.dtypes)
        print(data.number_of_major_vessels_colored_by_flourosopy.unique())
        print(data.thal.unique())

        for row_id, row in data.iterrows():
            data_row = dict(row)

            yield row_id, data_row

    def encode(self, feature, value):
        if feature in _ENCODING_DICS:
            return _ENCODING_DICS[feature][value]
        raise ValueError(f"Unknown feature: {feature}")