Datasets:
File size: 7,725 Bytes
761febb 8c86618 761febb 5e8b1f9 761febb 4303419 761febb ef24fda 761febb c4bda92 761febb c4bda92 761febb c4bda92 761febb d606eed 208cd4c d606eed 761febb 8d0a9fe 761febb b858b60 761febb 0d52394 d606eed 0d52394 d606eed a276e03 ae6b4ed 761febb 957c563 d606eed 957c563 761febb d606eed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
"""Heart"""
from typing import List
from functools import partial
import datasets
import pandas
VERSION = datasets.Version("1.0.0")
_BASE_FEATURE_NAMES = [
"age",
"is_male",
"type_of_chest_pain",
"resting_blood_pressure",
"serum_cholesterol",
"fasting_blood_sugar",
"rest_electrocardiographic_type",
"maximum_heart_rate",
"has_exercise_induced_angina",
"depression_induced_by_exercise",
"slope_of_peak_exercise",
"number_of_major_vessels_colored_by_flourosopy",
"thal",
"has_hearth_disease"
]
DESCRIPTION = "Heart dataset from the UCI ML repository."
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Heart"
_URLS = ("https://huggingface.co/datasets/mstz/heart/raw/heart.csv")
_CITATION = """
@misc{misc_heart_disease_45,
author = {Janosi,Andras, Steinbrunn,William, Pfisterer,Matthias, Detrano,Robert & M.D.,M.D.},
title = {{Heart Disease}},
year = {1988},
howpublished = {UCI Machine Learning Repository},
note = {{DOI}: \\url{10.24432/C52P4X}}
}"""
# Dataset info
urls_per_split = {
"cleveland": {"train": "https://huggingface.co/datasets/mstz/heart/raw/main/processed.cleveland.data"},
"hungary": {"train": "https://huggingface.co/datasets/mstz/heart/raw/main/processed.hungarian.data"},
"switzerland": {"train": "https://huggingface.co/datasets/mstz/heart/raw/main/processed.switzerland.data"},
"va": {"train": "https://huggingface.co/datasets/mstz/heart/raw/main/processed.va.data"}
}
features_types_per_config = {
"cleveland": {
"age": datasets.Value("int8"),
"is_male": datasets.Value("bool"),
"type_of_chest_pain": datasets.Value("string"),
"resting_blood_pressure": datasets.Value("float32"),
"serum_cholesterol": datasets.Value("float32"),
"fasting_blood_sugar": datasets.Value("float32"),
"rest_electrocardiographic_type": datasets.Value("string"),
"maximum_heart_rate": datasets.Value("float32"),
"has_exercise_induced_angina": datasets.Value("bool"),
"depression_induced_by_exercise": datasets.Value("float32"),
"slope_of_peak_exercise": datasets.Value("float32"),
"number_of_major_vessels_colored_by_flourosopy": datasets.Value("int16"),
"thal": datasets.Value("float32"),
"has_hearth_disease": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
},
"va": {
"age": datasets.Value("int8"),
"is_male": datasets.Value("bool"),
"type_of_chest_pain": datasets.Value("string"),
"resting_blood_pressure": datasets.Value("float32"),
"serum_cholesterol": datasets.Value("float32"),
"fasting_blood_sugar": datasets.Value("float32"),
"rest_electrocardiographic_type": datasets.Value("string"),
"maximum_heart_rate": datasets.Value("float32"),
"has_exercise_induced_angina": datasets.Value("bool"),
"depression_induced_by_exercise": datasets.Value("float32"),
"slope_of_peak_exercise": datasets.Value("float32"),
"number_of_major_vessels_colored_by_flourosopy": datasets.Value("int16"),
"thal": datasets.Value("float32"),
"has_hearth_disease": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
},
"switzerland": {
"age": datasets.Value("int8"),
"is_male": datasets.Value("bool"),
"type_of_chest_pain": datasets.Value("string"),
"resting_blood_pressure": datasets.Value("float32"),
"serum_cholesterol": datasets.Value("float32"),
"fasting_blood_sugar": datasets.Value("float32"),
"rest_electrocardiographic_type": datasets.Value("string"),
"maximum_heart_rate": datasets.Value("float32"),
"has_exercise_induced_angina": datasets.Value("bool"),
"depression_induced_by_exercise": datasets.Value("float32"),
"slope_of_peak_exercise": datasets.Value("float32"),
"number_of_major_vessels_colored_by_flourosopy": datasets.Value("int16"),
"thal": datasets.Value("float32"),
"has_hearth_disease": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
},
"hungary": {
"age": datasets.Value("int8"),
"is_male": datasets.Value("bool"),
"type_of_chest_pain": datasets.Value("string"),
"resting_blood_pressure": datasets.Value("float32"),
"serum_cholesterol": datasets.Value("float32"),
"fasting_blood_sugar": datasets.Value("float32"),
"rest_electrocardiographic_type": datasets.Value("string"),
"maximum_heart_rate": datasets.Value("float32"),
"has_exercise_induced_angina": datasets.Value("bool"),
"depression_induced_by_exercise": datasets.Value("float32"),
"slope_of_peak_exercise": datasets.Value("float32"),
"number_of_major_vessels_colored_by_flourosopy": datasets.Value("int16"),
"thal": datasets.Value("float32"),
"has_hearth_disease": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
},
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
_ENCODING_DICS = {
"type_of_chest_pain": {
1: "typical angina",
2: "atypical angina",
3: "non-anginal pain",
4: "asymptomatic"
}
}
class HeartConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(HeartConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class Heart(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "cleveland"
BUILDER_CONFIGS = [
HeartConfig(name="cleveland",
description="Heart for binary classification, dataset."),
HeartConfig(name="va",
description="Heart for binary classification, va dataset."),
HeartConfig(name="switzerland",
description="Heart for binary classification, switzerland dataset."),
HeartConfig(name="hungary",
description="Heart for binary classification, hungary dataset.")
]
def _info(self):
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
features=features_per_config[self.config.name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads[self.config.name]["train"]})
]
def _generate_examples(self, filepath: str):
data = pandas.read_csv(filepath, header=None)
data.columns = _BASE_FEATURE_NAMES
for feature in _ENCODING_DICS:
encoding_function = partial(self.encode, feature)
data.loc[:, feature] = data[feature].apply(encoding_function)
data = data.astype({"is_male": bool, "has_exercise_induced_angina": bool})
data.age.applymap(int)
data = data[data.thal != "?"]
data = data[data.number_of_major_vessels_colored_by_flourosopy != "?"]
data = data.infer_objects()
print(data.head())
print(data.dtypes)
print(data.number_of_major_vessels_colored_by_flourosopy.unique())
print(data.thal.unique())
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row
def encode(self, feature, value):
if feature in _ENCODING_DICS:
return _ENCODING_DICS[feature][value]
raise ValueError(f"Unknown feature: {feature}") |