File size: 4,704 Bytes
d66d498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f65b472
d66d498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f65b472
d66d498
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from typing import List

import datasets

import pandas


VERSION = datasets.Version("1.0.0")


DESCRIPTION = "Covertype dataset from the UCI ML repository."
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/31/covertype"
_URLS = ("https://archive-beta.ics.uci.edu/dataset/31/covertype")
_CITATION = """"""

# Dataset info
urls_per_split = {
    "train": "https://huggingface.co/datasets/mstz/covertype/raw/main/covtype.data"
}
features_types_per_config = {
    "covertype": {
        "elevation": datasets.Value("float32"),
		"aspect": datasets.Value("float32"),
		"slope": datasets.Value("float32"),
		"horizontal_distance_to_hydrology": datasets.Value("float32"),
		"vertical_distance_to_hydrology": datasets.Value("float32"),
		"horizontal_distance_to_roadways": datasets.Value("float32"),
		"hillshade_9am": datasets.Value("float32"),
		"hillshade_noon": datasets.Value("float32"),
		"hillshade_3pm": datasets.Value("float32"),
		"horizontal_distance_to_fire_points": datasets.Value("float32"),
		"is_a_wilderness_area": datasets.Value("bool"),
		"soil_type_id_0": datasets.Value("bool"),
		"soil_type_id_1": datasets.Value("bool"),
		"soil_type_id_2": datasets.Value("bool"),
		"soil_type_id_3": datasets.Value("bool"),
		"soil_type_id_4": datasets.Value("bool"),
		"soil_type_id_5": datasets.Value("bool"),
		"soil_type_id_6": datasets.Value("bool"),
		"soil_type_id_7": datasets.Value("bool"),
		"soil_type_id_8": datasets.Value("bool"),
		"soil_type_id_9": datasets.Value("bool"),
		"soil_type_id_10": datasets.Value("bool"),
		"soil_type_id_11": datasets.Value("bool"),
		"soil_type_id_12": datasets.Value("bool"),
		"soil_type_id_13": datasets.Value("bool"),
		"soil_type_id_14": datasets.Value("bool"),
		"soil_type_id_15": datasets.Value("bool"),
		"soil_type_id_16": datasets.Value("bool"),
		"soil_type_id_17": datasets.Value("bool"),
		"soil_type_id_18": datasets.Value("bool"),
		"soil_type_id_19": datasets.Value("bool"),
		"soil_type_id_20": datasets.Value("bool"),
		"soil_type_id_21": datasets.Value("bool"),
		"soil_type_id_22": datasets.Value("bool"),
		"soil_type_id_23": datasets.Value("bool"),
		"soil_type_id_24": datasets.Value("bool"),
		"soil_type_id_25": datasets.Value("bool"),
		"soil_type_id_26": datasets.Value("bool"),
		"soil_type_id_27": datasets.Value("bool"),
		"soil_type_id_28": datasets.Value("bool"),
		"soil_type_id_29": datasets.Value("bool"),
		"soil_type_id_30": datasets.Value("bool"),
		"soil_type_id_31": datasets.Value("bool"),
		"soil_type_id_32": datasets.Value("bool"),
		"soil_type_id_33": datasets.Value("bool"),
		"soil_type_id_34": datasets.Value("bool"),
		"soil_type_id_35": datasets.Value("bool"),
		"soil_type_id_36": datasets.Value("bool"),
		"soil_type_id_37": datasets.Value("bool"),
		"soil_type_id_38": datasets.Value("bool"),
		"soil_type_id_39": datasets.Value("bool"),
        "soil_type": datasets.Value("string"),
		"cover_type": datasets.ClassLabel(num_classes=7)
    }
}

features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}


class CovertypeConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(CovertypeConfig, self).__init__(version=VERSION, **kwargs)
        self.features = features_per_config[kwargs["name"]]


class Covertype(datasets.GeneratorBasedBuilder):
    # dataset versions
    DEFAULT_CONFIG = "covertype"
    BUILDER_CONFIGS = [
        CovertypeConfig(name="covertype",
                    description="Covertype for multiclass classification.")
    ]


    def _info(self):
        if self.config.name not in features_per_config:
            raise ValueError(f"Unknown configuration: {self.config.name}")
        
        info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
                                    features=features_per_config[self.config.name])

        return info
    
    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        downloads = dl_manager.download_and_extract(urls_per_split)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
        ]
    
    def _generate_examples(self, filepath: str):
            data = pandas.read_csv(filepath)
            data = self.preprocess(data, config=self.config.name)

            for row_id, row in data.iterrows():
                data_row = dict(row)

                yield row_id, data_row

    def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
        data.loc[:, "cover_type"] = data["cover_type"].apply(lambda x: x - 1)
        return data