Delete bank.py
Browse files
bank.py
DELETED
|
@@ -1,197 +0,0 @@
|
|
| 1 |
-
"""Bank Dataset"""
|
| 2 |
-
|
| 3 |
-
from typing import List
|
| 4 |
-
|
| 5 |
-
import datasets
|
| 6 |
-
|
| 7 |
-
import pandas
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
VERSION = datasets.Version("1.0.0")
|
| 11 |
-
_ORIGINAL_FEATURE_NAMES = [
|
| 12 |
-
"age",
|
| 13 |
-
"job",
|
| 14 |
-
"marital",
|
| 15 |
-
"education",
|
| 16 |
-
"default",
|
| 17 |
-
"balance",
|
| 18 |
-
"housing",
|
| 19 |
-
"loan",
|
| 20 |
-
"contact",
|
| 21 |
-
"day",
|
| 22 |
-
"month",
|
| 23 |
-
"duration",
|
| 24 |
-
"campaign",
|
| 25 |
-
"pdays",
|
| 26 |
-
"previous",
|
| 27 |
-
"poutcome",
|
| 28 |
-
"y"
|
| 29 |
-
]
|
| 30 |
-
_BASE_FEATURE_NAMES = [
|
| 31 |
-
"age",
|
| 32 |
-
"job",
|
| 33 |
-
"marital_status",
|
| 34 |
-
"education",
|
| 35 |
-
"has_defaulted",
|
| 36 |
-
"account_balance",
|
| 37 |
-
"has_housing_loan",
|
| 38 |
-
"has_personal_loan",
|
| 39 |
-
"month_of_last_contact",
|
| 40 |
-
"number_of_calls_in_ad_campaign",
|
| 41 |
-
"days_since_last_contact_of_previous_campaign",
|
| 42 |
-
"number_of_calls_before_this_campaign",
|
| 43 |
-
"successfull_subscription"
|
| 44 |
-
]
|
| 45 |
-
|
| 46 |
-
DESCRIPTION = "Bank dataset for subscription prediction."
|
| 47 |
-
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/bank+marketing"
|
| 48 |
-
_URLS = ("https://huggingface.co/datasets/mstz/bank/raw/main/bank-full.csv")
|
| 49 |
-
_CITATION = """"""
|
| 50 |
-
|
| 51 |
-
# Dataset info
|
| 52 |
-
urls_per_split = {
|
| 53 |
-
"train": "https://huggingface.co/datasets/mstz/bank/raw/main/bank-full.csv",
|
| 54 |
-
}
|
| 55 |
-
features_types_per_config = {
|
| 56 |
-
"encoding": {
|
| 57 |
-
"feature": datasets.Value("string"),
|
| 58 |
-
"original_value": datasets.Value("string"),
|
| 59 |
-
"encoded_value": datasets.Value("int8"),
|
| 60 |
-
},
|
| 61 |
-
|
| 62 |
-
"subscription": {
|
| 63 |
-
"age": datasets.Value("int64"),
|
| 64 |
-
"job": datasets.Value("string"),
|
| 65 |
-
"marital_status": datasets.Value("string"),
|
| 66 |
-
"education": datasets.Value("int8"),
|
| 67 |
-
"has_defaulted": datasets.Value("int8"),
|
| 68 |
-
"account_balance": datasets.Value("int64"),
|
| 69 |
-
"has_housing_loan": datasets.Value("int8"),
|
| 70 |
-
"has_personal_loan": datasets.Value("int8"),
|
| 71 |
-
"month_of_last_contact": datasets.Value("string"),
|
| 72 |
-
"number_of_calls_in_ad_campaign": datasets.Value("string"),
|
| 73 |
-
"days_since_last_contact_of_previous_campaign": datasets.Value("int16"),
|
| 74 |
-
"number_of_calls_before_this_campaign": datasets.Value("int16"),
|
| 75 |
-
"successfull_subscription": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
|
| 76 |
-
}
|
| 77 |
-
|
| 78 |
-
}
|
| 79 |
-
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
class BankConfig(datasets.BuilderConfig):
|
| 83 |
-
def __init__(self, **kwargs):
|
| 84 |
-
super(BankConfig, self).__init__(version=VERSION, **kwargs)
|
| 85 |
-
self.features = features_per_config[kwargs["name"]]
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
class Bank(datasets.GeneratorBasedBuilder):
|
| 89 |
-
# dataset versions
|
| 90 |
-
DEFAULT_CONFIG = "subscription"
|
| 91 |
-
BUILDER_CONFIGS = [
|
| 92 |
-
BankConfig(name="encoding",
|
| 93 |
-
description="Encoding dictionaries for discrete features."),
|
| 94 |
-
BankConfig(name="subscription",
|
| 95 |
-
description="Bank binary classification for client subscription."),
|
| 96 |
-
]
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
def _info(self):
|
| 100 |
-
if self.config.name not in features_per_config:
|
| 101 |
-
raise ValueError(f"Unknown configuration: {self.config.name}")
|
| 102 |
-
|
| 103 |
-
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
|
| 104 |
-
features=features_per_config[self.config.name])
|
| 105 |
-
|
| 106 |
-
return info
|
| 107 |
-
|
| 108 |
-
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
| 109 |
-
downloads = dl_manager.download_and_extract(urls_per_split)
|
| 110 |
-
|
| 111 |
-
return [
|
| 112 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
|
| 113 |
-
]
|
| 114 |
-
|
| 115 |
-
def _generate_examples(self, filepath: str):
|
| 116 |
-
if self.config.name == "encoding":
|
| 117 |
-
data = self.encoding_dictionaries()
|
| 118 |
-
else:
|
| 119 |
-
data = pandas.read_csv(filepath, sep=";")
|
| 120 |
-
data = self.preprocess(data, config=self.config.name)
|
| 121 |
-
|
| 122 |
-
for row_id, row in data.iterrows():
|
| 123 |
-
data_row = dict(row)
|
| 124 |
-
|
| 125 |
-
yield row_id, data_row
|
| 126 |
-
|
| 127 |
-
def preprocess(self, data: pandas.DataFrame, config: str = "subscription") -> pandas.DataFrame:
|
| 128 |
-
data.drop("day", axis="columns", inplace=True)
|
| 129 |
-
data.drop("contact", axis="columns", inplace=True)
|
| 130 |
-
data.drop("duration", axis="columns", inplace=True)
|
| 131 |
-
data.drop("poutcome", axis="columns", inplace=True)
|
| 132 |
-
|
| 133 |
-
# discretize features
|
| 134 |
-
data.loc[:, "education"] = data.education.apply(self.encode_education)
|
| 135 |
-
data.loc[:, "loan"] = data.loan.apply(self.encode_yes_no)
|
| 136 |
-
data.loc[:, "housing"] = data.housing.apply(self.encode_yes_no)
|
| 137 |
-
data.loc[:, "default"] = data.default.apply(self.encode_yes_no)
|
| 138 |
-
|
| 139 |
-
data.columns = _BASE_FEATURE_NAMES
|
| 140 |
-
|
| 141 |
-
data.loc[:, "successfull_subscription"] = data.successfull_subscription.apply(lambda x: 0 if x == "no" else 1)
|
| 142 |
-
|
| 143 |
-
if config == "subscription":
|
| 144 |
-
return data
|
| 145 |
-
else:
|
| 146 |
-
raise ValueError(f"Unknown config: {config}")
|
| 147 |
-
|
| 148 |
-
def encoding_dictionaries(self):
|
| 149 |
-
education_dic, yes_no_dic = self.education_encoding_dic(), self.yes_no_encoding_dic()
|
| 150 |
-
education_data = [("education", education, code) for education, code in education_dic.items()]
|
| 151 |
-
loan_data = [("loan", loan, code) for loan, code in yes_no_dic.items()]
|
| 152 |
-
housing_data = [("housing", housing, code) for housing, code in yes_no_dic.items()]
|
| 153 |
-
default_data = [("default", default, code) for default, code in yes_no_dic.items()]
|
| 154 |
-
data = pandas.DataFrame(education_data + loan_data + housing_data + default_data,
|
| 155 |
-
columns=["feature", "original_value", "encoded_value"])
|
| 156 |
-
|
| 157 |
-
return data
|
| 158 |
-
|
| 159 |
-
def encode_education(self, education):
|
| 160 |
-
return self.education_encoding_dic()[education]
|
| 161 |
-
|
| 162 |
-
def decode_education(self, code):
|
| 163 |
-
return self.education_decoding_dic()[code]
|
| 164 |
-
|
| 165 |
-
def education_decoding_dic(self):
|
| 166 |
-
return {
|
| 167 |
-
0: "unknown",
|
| 168 |
-
1: "primary",
|
| 169 |
-
2: "secondary",
|
| 170 |
-
3: "tertiary"
|
| 171 |
-
}
|
| 172 |
-
|
| 173 |
-
def education_encoding_dic(self):
|
| 174 |
-
return {
|
| 175 |
-
"unknown": 0,
|
| 176 |
-
"primary": 1,
|
| 177 |
-
"secondary": 2,
|
| 178 |
-
"tertiary": 3
|
| 179 |
-
}
|
| 180 |
-
|
| 181 |
-
def encode_yes_no(self, yes_no):
|
| 182 |
-
return self.yes_no_encoding_dic()[yes_no]
|
| 183 |
-
|
| 184 |
-
def decode_yes_no(self, code):
|
| 185 |
-
return self.yes_no_decoding_dic()[code]
|
| 186 |
-
|
| 187 |
-
def yes_no_decoding_dic(self):
|
| 188 |
-
return {
|
| 189 |
-
0: "no",
|
| 190 |
-
1: "yes"
|
| 191 |
-
}
|
| 192 |
-
|
| 193 |
-
def yes_no_encoding_dic(self):
|
| 194 |
-
return {
|
| 195 |
-
"no": 0,
|
| 196 |
-
"yes": 1
|
| 197 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|