mstz commited on
Commit
0139bba
·
1 Parent(s): d0aef76

Delete bank.py

Browse files
Files changed (1) hide show
  1. bank.py +0 -197
bank.py DELETED
@@ -1,197 +0,0 @@
1
- """Bank Dataset"""
2
-
3
- from typing import List
4
-
5
- import datasets
6
-
7
- import pandas
8
-
9
-
10
- VERSION = datasets.Version("1.0.0")
11
- _ORIGINAL_FEATURE_NAMES = [
12
- "age",
13
- "job",
14
- "marital",
15
- "education",
16
- "default",
17
- "balance",
18
- "housing",
19
- "loan",
20
- "contact",
21
- "day",
22
- "month",
23
- "duration",
24
- "campaign",
25
- "pdays",
26
- "previous",
27
- "poutcome",
28
- "y"
29
- ]
30
- _BASE_FEATURE_NAMES = [
31
- "age",
32
- "job",
33
- "marital_status",
34
- "education",
35
- "has_defaulted",
36
- "account_balance",
37
- "has_housing_loan",
38
- "has_personal_loan",
39
- "month_of_last_contact",
40
- "number_of_calls_in_ad_campaign",
41
- "days_since_last_contact_of_previous_campaign",
42
- "number_of_calls_before_this_campaign",
43
- "successfull_subscription"
44
- ]
45
-
46
- DESCRIPTION = "Bank dataset for subscription prediction."
47
- _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/bank+marketing"
48
- _URLS = ("https://huggingface.co/datasets/mstz/bank/raw/main/bank-full.csv")
49
- _CITATION = """"""
50
-
51
- # Dataset info
52
- urls_per_split = {
53
- "train": "https://huggingface.co/datasets/mstz/bank/raw/main/bank-full.csv",
54
- }
55
- features_types_per_config = {
56
- "encoding": {
57
- "feature": datasets.Value("string"),
58
- "original_value": datasets.Value("string"),
59
- "encoded_value": datasets.Value("int8"),
60
- },
61
-
62
- "subscription": {
63
- "age": datasets.Value("int64"),
64
- "job": datasets.Value("string"),
65
- "marital_status": datasets.Value("string"),
66
- "education": datasets.Value("int8"),
67
- "has_defaulted": datasets.Value("int8"),
68
- "account_balance": datasets.Value("int64"),
69
- "has_housing_loan": datasets.Value("int8"),
70
- "has_personal_loan": datasets.Value("int8"),
71
- "month_of_last_contact": datasets.Value("string"),
72
- "number_of_calls_in_ad_campaign": datasets.Value("string"),
73
- "days_since_last_contact_of_previous_campaign": datasets.Value("int16"),
74
- "number_of_calls_before_this_campaign": datasets.Value("int16"),
75
- "successfull_subscription": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
76
- }
77
-
78
- }
79
- features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
80
-
81
-
82
- class BankConfig(datasets.BuilderConfig):
83
- def __init__(self, **kwargs):
84
- super(BankConfig, self).__init__(version=VERSION, **kwargs)
85
- self.features = features_per_config[kwargs["name"]]
86
-
87
-
88
- class Bank(datasets.GeneratorBasedBuilder):
89
- # dataset versions
90
- DEFAULT_CONFIG = "subscription"
91
- BUILDER_CONFIGS = [
92
- BankConfig(name="encoding",
93
- description="Encoding dictionaries for discrete features."),
94
- BankConfig(name="subscription",
95
- description="Bank binary classification for client subscription."),
96
- ]
97
-
98
-
99
- def _info(self):
100
- if self.config.name not in features_per_config:
101
- raise ValueError(f"Unknown configuration: {self.config.name}")
102
-
103
- info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
104
- features=features_per_config[self.config.name])
105
-
106
- return info
107
-
108
- def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
109
- downloads = dl_manager.download_and_extract(urls_per_split)
110
-
111
- return [
112
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
113
- ]
114
-
115
- def _generate_examples(self, filepath: str):
116
- if self.config.name == "encoding":
117
- data = self.encoding_dictionaries()
118
- else:
119
- data = pandas.read_csv(filepath, sep=";")
120
- data = self.preprocess(data, config=self.config.name)
121
-
122
- for row_id, row in data.iterrows():
123
- data_row = dict(row)
124
-
125
- yield row_id, data_row
126
-
127
- def preprocess(self, data: pandas.DataFrame, config: str = "subscription") -> pandas.DataFrame:
128
- data.drop("day", axis="columns", inplace=True)
129
- data.drop("contact", axis="columns", inplace=True)
130
- data.drop("duration", axis="columns", inplace=True)
131
- data.drop("poutcome", axis="columns", inplace=True)
132
-
133
- # discretize features
134
- data.loc[:, "education"] = data.education.apply(self.encode_education)
135
- data.loc[:, "loan"] = data.loan.apply(self.encode_yes_no)
136
- data.loc[:, "housing"] = data.housing.apply(self.encode_yes_no)
137
- data.loc[:, "default"] = data.default.apply(self.encode_yes_no)
138
-
139
- data.columns = _BASE_FEATURE_NAMES
140
-
141
- data.loc[:, "successfull_subscription"] = data.successfull_subscription.apply(lambda x: 0 if x == "no" else 1)
142
-
143
- if config == "subscription":
144
- return data
145
- else:
146
- raise ValueError(f"Unknown config: {config}")
147
-
148
- def encoding_dictionaries(self):
149
- education_dic, yes_no_dic = self.education_encoding_dic(), self.yes_no_encoding_dic()
150
- education_data = [("education", education, code) for education, code in education_dic.items()]
151
- loan_data = [("loan", loan, code) for loan, code in yes_no_dic.items()]
152
- housing_data = [("housing", housing, code) for housing, code in yes_no_dic.items()]
153
- default_data = [("default", default, code) for default, code in yes_no_dic.items()]
154
- data = pandas.DataFrame(education_data + loan_data + housing_data + default_data,
155
- columns=["feature", "original_value", "encoded_value"])
156
-
157
- return data
158
-
159
- def encode_education(self, education):
160
- return self.education_encoding_dic()[education]
161
-
162
- def decode_education(self, code):
163
- return self.education_decoding_dic()[code]
164
-
165
- def education_decoding_dic(self):
166
- return {
167
- 0: "unknown",
168
- 1: "primary",
169
- 2: "secondary",
170
- 3: "tertiary"
171
- }
172
-
173
- def education_encoding_dic(self):
174
- return {
175
- "unknown": 0,
176
- "primary": 1,
177
- "secondary": 2,
178
- "tertiary": 3
179
- }
180
-
181
- def encode_yes_no(self, yes_no):
182
- return self.yes_no_encoding_dic()[yes_no]
183
-
184
- def decode_yes_no(self, code):
185
- return self.yes_no_decoding_dic()[code]
186
-
187
- def yes_no_decoding_dic(self):
188
- return {
189
- 0: "no",
190
- 1: "yes"
191
- }
192
-
193
- def yes_no_encoding_dic(self):
194
- return {
195
- "no": 0,
196
- "yes": 1
197
- }