Datasets:
Delete bank.py
Browse files
bank.py
DELETED
@@ -1,197 +0,0 @@
|
|
1 |
-
"""Bank Dataset"""
|
2 |
-
|
3 |
-
from typing import List
|
4 |
-
|
5 |
-
import datasets
|
6 |
-
|
7 |
-
import pandas
|
8 |
-
|
9 |
-
|
10 |
-
VERSION = datasets.Version("1.0.0")
|
11 |
-
_ORIGINAL_FEATURE_NAMES = [
|
12 |
-
"age",
|
13 |
-
"job",
|
14 |
-
"marital",
|
15 |
-
"education",
|
16 |
-
"default",
|
17 |
-
"balance",
|
18 |
-
"housing",
|
19 |
-
"loan",
|
20 |
-
"contact",
|
21 |
-
"day",
|
22 |
-
"month",
|
23 |
-
"duration",
|
24 |
-
"campaign",
|
25 |
-
"pdays",
|
26 |
-
"previous",
|
27 |
-
"poutcome",
|
28 |
-
"y"
|
29 |
-
]
|
30 |
-
_BASE_FEATURE_NAMES = [
|
31 |
-
"age",
|
32 |
-
"job",
|
33 |
-
"marital_status",
|
34 |
-
"education",
|
35 |
-
"has_defaulted",
|
36 |
-
"account_balance",
|
37 |
-
"has_housing_loan",
|
38 |
-
"has_personal_loan",
|
39 |
-
"month_of_last_contact",
|
40 |
-
"number_of_calls_in_ad_campaign",
|
41 |
-
"days_since_last_contact_of_previous_campaign",
|
42 |
-
"number_of_calls_before_this_campaign",
|
43 |
-
"successfull_subscription"
|
44 |
-
]
|
45 |
-
|
46 |
-
DESCRIPTION = "Bank dataset for subscription prediction."
|
47 |
-
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/bank+marketing"
|
48 |
-
_URLS = ("https://huggingface.co/datasets/mstz/bank/raw/main/bank-full.csv")
|
49 |
-
_CITATION = """"""
|
50 |
-
|
51 |
-
# Dataset info
|
52 |
-
urls_per_split = {
|
53 |
-
"train": "https://huggingface.co/datasets/mstz/bank/raw/main/bank-full.csv",
|
54 |
-
}
|
55 |
-
features_types_per_config = {
|
56 |
-
"encoding": {
|
57 |
-
"feature": datasets.Value("string"),
|
58 |
-
"original_value": datasets.Value("string"),
|
59 |
-
"encoded_value": datasets.Value("int8"),
|
60 |
-
},
|
61 |
-
|
62 |
-
"subscription": {
|
63 |
-
"age": datasets.Value("int64"),
|
64 |
-
"job": datasets.Value("string"),
|
65 |
-
"marital_status": datasets.Value("string"),
|
66 |
-
"education": datasets.Value("int8"),
|
67 |
-
"has_defaulted": datasets.Value("int8"),
|
68 |
-
"account_balance": datasets.Value("int64"),
|
69 |
-
"has_housing_loan": datasets.Value("int8"),
|
70 |
-
"has_personal_loan": datasets.Value("int8"),
|
71 |
-
"month_of_last_contact": datasets.Value("string"),
|
72 |
-
"number_of_calls_in_ad_campaign": datasets.Value("string"),
|
73 |
-
"days_since_last_contact_of_previous_campaign": datasets.Value("int16"),
|
74 |
-
"number_of_calls_before_this_campaign": datasets.Value("int16"),
|
75 |
-
"successfull_subscription": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
|
76 |
-
}
|
77 |
-
|
78 |
-
}
|
79 |
-
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
80 |
-
|
81 |
-
|
82 |
-
class BankConfig(datasets.BuilderConfig):
|
83 |
-
def __init__(self, **kwargs):
|
84 |
-
super(BankConfig, self).__init__(version=VERSION, **kwargs)
|
85 |
-
self.features = features_per_config[kwargs["name"]]
|
86 |
-
|
87 |
-
|
88 |
-
class Bank(datasets.GeneratorBasedBuilder):
|
89 |
-
# dataset versions
|
90 |
-
DEFAULT_CONFIG = "subscription"
|
91 |
-
BUILDER_CONFIGS = [
|
92 |
-
BankConfig(name="encoding",
|
93 |
-
description="Encoding dictionaries for discrete features."),
|
94 |
-
BankConfig(name="subscription",
|
95 |
-
description="Bank binary classification for client subscription."),
|
96 |
-
]
|
97 |
-
|
98 |
-
|
99 |
-
def _info(self):
|
100 |
-
if self.config.name not in features_per_config:
|
101 |
-
raise ValueError(f"Unknown configuration: {self.config.name}")
|
102 |
-
|
103 |
-
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
|
104 |
-
features=features_per_config[self.config.name])
|
105 |
-
|
106 |
-
return info
|
107 |
-
|
108 |
-
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
109 |
-
downloads = dl_manager.download_and_extract(urls_per_split)
|
110 |
-
|
111 |
-
return [
|
112 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
|
113 |
-
]
|
114 |
-
|
115 |
-
def _generate_examples(self, filepath: str):
|
116 |
-
if self.config.name == "encoding":
|
117 |
-
data = self.encoding_dictionaries()
|
118 |
-
else:
|
119 |
-
data = pandas.read_csv(filepath, sep=";")
|
120 |
-
data = self.preprocess(data, config=self.config.name)
|
121 |
-
|
122 |
-
for row_id, row in data.iterrows():
|
123 |
-
data_row = dict(row)
|
124 |
-
|
125 |
-
yield row_id, data_row
|
126 |
-
|
127 |
-
def preprocess(self, data: pandas.DataFrame, config: str = "subscription") -> pandas.DataFrame:
|
128 |
-
data.drop("day", axis="columns", inplace=True)
|
129 |
-
data.drop("contact", axis="columns", inplace=True)
|
130 |
-
data.drop("duration", axis="columns", inplace=True)
|
131 |
-
data.drop("poutcome", axis="columns", inplace=True)
|
132 |
-
|
133 |
-
# discretize features
|
134 |
-
data.loc[:, "education"] = data.education.apply(self.encode_education)
|
135 |
-
data.loc[:, "loan"] = data.loan.apply(self.encode_yes_no)
|
136 |
-
data.loc[:, "housing"] = data.housing.apply(self.encode_yes_no)
|
137 |
-
data.loc[:, "default"] = data.default.apply(self.encode_yes_no)
|
138 |
-
|
139 |
-
data.columns = _BASE_FEATURE_NAMES
|
140 |
-
|
141 |
-
data.loc[:, "successfull_subscription"] = data.successfull_subscription.apply(lambda x: 0 if x == "no" else 1)
|
142 |
-
|
143 |
-
if config == "subscription":
|
144 |
-
return data
|
145 |
-
else:
|
146 |
-
raise ValueError(f"Unknown config: {config}")
|
147 |
-
|
148 |
-
def encoding_dictionaries(self):
|
149 |
-
education_dic, yes_no_dic = self.education_encoding_dic(), self.yes_no_encoding_dic()
|
150 |
-
education_data = [("education", education, code) for education, code in education_dic.items()]
|
151 |
-
loan_data = [("loan", loan, code) for loan, code in yes_no_dic.items()]
|
152 |
-
housing_data = [("housing", housing, code) for housing, code in yes_no_dic.items()]
|
153 |
-
default_data = [("default", default, code) for default, code in yes_no_dic.items()]
|
154 |
-
data = pandas.DataFrame(education_data + loan_data + housing_data + default_data,
|
155 |
-
columns=["feature", "original_value", "encoded_value"])
|
156 |
-
|
157 |
-
return data
|
158 |
-
|
159 |
-
def encode_education(self, education):
|
160 |
-
return self.education_encoding_dic()[education]
|
161 |
-
|
162 |
-
def decode_education(self, code):
|
163 |
-
return self.education_decoding_dic()[code]
|
164 |
-
|
165 |
-
def education_decoding_dic(self):
|
166 |
-
return {
|
167 |
-
0: "unknown",
|
168 |
-
1: "primary",
|
169 |
-
2: "secondary",
|
170 |
-
3: "tertiary"
|
171 |
-
}
|
172 |
-
|
173 |
-
def education_encoding_dic(self):
|
174 |
-
return {
|
175 |
-
"unknown": 0,
|
176 |
-
"primary": 1,
|
177 |
-
"secondary": 2,
|
178 |
-
"tertiary": 3
|
179 |
-
}
|
180 |
-
|
181 |
-
def encode_yes_no(self, yes_no):
|
182 |
-
return self.yes_no_encoding_dic()[yes_no]
|
183 |
-
|
184 |
-
def decode_yes_no(self, code):
|
185 |
-
return self.yes_no_decoding_dic()[code]
|
186 |
-
|
187 |
-
def yes_no_decoding_dic(self):
|
188 |
-
return {
|
189 |
-
0: "no",
|
190 |
-
1: "yes"
|
191 |
-
}
|
192 |
-
|
193 |
-
def yes_no_encoding_dic(self):
|
194 |
-
return {
|
195 |
-
"no": 0,
|
196 |
-
"yes": 1
|
197 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|