Datasets:
File size: 4,087 Bytes
73025cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
"""Breast Dataset"""
from typing import List
import datasets
import pandas
VERSION = datasets.Version("1.0.0")
_ORIGINAL_FEATURE_NAMES = [
"id",
"clump thickness",
"uniformity of cell size",
"uniformity of cell shape",
"marginal adhesion",
"single epithelial cell size",
"bare nuclei",
"bland chromatin",
"normal nucleoli",
"mitoses",
"is_cancer"
]
_BASE_FEATURE_NAMES = [
"clump thickness",
"uniformity of cell size",
"uniformity of cell shape",
"marginal adhesion",
"single epithelial cell size",
"bare nuclei",
"bland chromatin",
"normal nucleoli",
"mitoses",
"is_cancer"
]
DESCRIPTION = "Breast dataset for cancer prediction."
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29"
_URLS = ("https://huggingface.co/datasets/mstz/breast/raw/main/breast-cancer-wisconsin.data")
_CITATION = """
@article{wolberg1990multisurface,
title={Multisurface method of pattern separation for medical diagnosis applied to breast cytology.},
author={Wolberg, William H and Mangasarian, Olvi L},
journal={Proceedings of the national academy of sciences},
volume={87},
number={23},
pages={9193--9196},
year={1990},
publisher={National Acad Sciences}
}
"""
# Dataset info
urls_per_split = {
"train": "https://huggingface.co/datasets/mstz/breast/raw/main/breast-full.csv",
}
features_types_per_config = {
"encoding": {
"feature": datasets.Value("string"),
"original_value": datasets.Value("string"),
"encoded_value": datasets.Value("int8"),
},
"cancer": {
"clump thickness": datasets.Value("int8"),
"uniformity of cell size": datasets.Value("int8"),
"uniformity of cell shape": datasets.Value("int8"),
"marginal adhesion": datasets.Value("int8"),
"single epithelial cell size": datasets.Value("int8"),
"bare nuclei": datasets.Value("int8"),
"bland chromatin": datasets.Value("int8"),
"normal nucleoli": datasets.Value("int8"),
"mitoses": datasets.Value("int8"),
"is_cancer": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
}
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
class BreastConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(BreastConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class Breast(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "cancer"
BUILDER_CONFIGS = [
BreastConfig(name="cancer",
description="Encoding dictionaries for discrete features."),
]
def _info(self):
if self.config.name not in features_per_config:
raise ValueError(f"Unknown configuration: {self.config.name}")
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
features=features_per_config[self.config.name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
]
def _generate_examples(self, filepath: str):
data = pandas.read_csv(filepath, columns=_ORIGINAL_FEATURE_NAMES)
data = self.preprocess(data, config=self.config.name)
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row
def preprocess(self, data: pandas.DataFrame, config: str = "cancer") -> pandas.DataFrame:
data.drop("id", axis="columns", inplace=True)
data.columns = _BASE_FEATURE_NAMES
if config == "cancer":
return data
else:
raise ValueError(f"Unknown config: {config}")
|