"""Australian_credit""" from typing import List import datasets import pandas VERSION = datasets.Version("1.0.0") DESCRIPTION = "Australian_credit dataset from the UCI ML repository." _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Australian_credit" _URLS = ("https://archive.ics.uci.edu/ml/datasets/Australian_credit") _CITATION = """ @misc{misc_statlog_(australian_credit_approval)_143, author = {Quinlan,Ross}, title = {{Statlog (Australian Credit Approval)}}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C59012}} }""" # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/australian_credit/raw/main/australian.dat" } features_types_per_config = { "australian_credit": { "feature_1": datasets.Value("bool"), "feature_2": datasets.Value("float64"), "feature_3": datasets.Value("float64"), "feature_4": datasets.Value("string"), "feature_5": datasets.Value("string"), "feature_6": datasets.Value("string"), "feature_7": datasets.Value("float64"), "feature_8": datasets.Value("string"), "feature_9": datasets.Value("string"), "feature_10": datasets.Value("float64"), "feature_11": datasets.Value("string"), "feature_12": datasets.Value("string"), "feature_13": datasets.Value("float64"), "feature_14": datasets.Value("float64"), "is_granted": datasets.ClassLabel(num_classes=2, names=("no", "yes")) } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class AustralianCreditConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(AustralianCreditConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class AustralianCredit(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "australian_credit" BUILDER_CONFIGS = [ AustralianCreditConfig(name="australian_credit", description="Australian_credit for binary classification.") ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath, header=None, sep=" ") data = self.preprocess(data) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row def preprocess(self, data): features = list(features_types_per_config[self.config.name]) data.columns = features return data