Datasets:

Modalities:
Tabular
Text
Formats:
json
Languages:
English
Size:
< 1K
Libraries:
Datasets
Dask
License:
File size: 15,004 Bytes
d28ab6c
 
 
 
8358173
d28ab6c
 
 
 
 
 
 
 
 
 
 
 
 
 
8358173
d28ab6c
 
 
 
 
 
 
9b8c6f0
d28ab6c
 
8358173
 
9b8c6f0
8358173
d28ab6c
9b8c6f0
d28ab6c
 
 
8358173
d28ab6c
9b8c6f0
 
8358173
9b8c6f0
 
d28ab6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8358173
 
 
 
 
 
 
 
d28ab6c
 
9b8c6f0
d28ab6c
 
 
 
 
 
 
 
 
 
8358173
 
 
 
 
9b8c6f0
 
 
 
 
d28ab6c
 
 
 
 
 
 
 
 
 
9b8c6f0
d28ab6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b8c6f0
d28ab6c
 
 
 
 
 
 
8358173
 
 
 
 
 
 
 
 
 
 
 
9b8c6f0
 
 
 
 
8358173
 
 
d28ab6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "a429de48-964c-4ad8-aa98-b3b180321f0a",
   "metadata": {},
   "outputs": [],
   "source": [
    "import json\n",
    "import numpy as np\n",
    "\n",
    "from pathlib import Path\n",
    "\n",
    "from tabulate import tabulate"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "e78d66f4-f7fa-4802-b870-c5b5375a56c7",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[PosixPath('electra-base/scandeval_benchmark_results.jsonl'), PosixPath('roberta-base/scandeval_benchmark_results.jsonl'), PosixPath('bert-base-token-dropping-finewebs-1m/scandeval_benchmark_results.jsonl'), PosixPath('bert-base-token-dropping-finewebs-801k/scandeval_benchmark_results.jsonl'), PosixPath('teams-base-finewebs-901k/scandeval_benchmark_results.jsonl'), PosixPath('bert-base-token-dropping-finewebs-851k/scandeval_benchmark_results.jsonl'), PosixPath('bert-base-finewebs-851k/scandeval_benchmark_results.jsonl'), PosixPath('teams-base-finewebs-951k/scandeval_benchmark_results.jsonl'), PosixPath('bert-base-finewebs-801k/scandeval_benchmark_results.jsonl'), PosixPath('bert-base-finewebs-901k/scandeval_benchmark_results.jsonl'), PosixPath('bert-base-cased/scandeval_benchmark_results.jsonl'), PosixPath('bert-base-token-dropping-finewebs-901k/scandeval_benchmark_results.jsonl'), PosixPath('bert-base-finewebs-1m/scandeval_benchmark_results.jsonl'), PosixPath('teams-base-finewebs-851k/scandeval_benchmark_results.jsonl'), PosixPath('teams-base-finewebs-1m/scandeval_benchmark_results.jsonl'), PosixPath('bert-base-finewebs-951k/scandeval_benchmark_results.jsonl'), PosixPath('bert-base-token-dropping-finewebs-951k/scandeval_benchmark_results.jsonl'), PosixPath('teams-base-finewebs-801k/scandeval_benchmark_results.jsonl')]\n",
      "google/electra-base-discriminator\n",
      "FacebookAI/roberta-base\n",
      "model-garden-lms/bert-base-token-dropping-finewebs-1m\n",
      "model-garden-lms/bert-base-token-dropping-finewebs-801k\n",
      "model-garden-lms/teams-base-finewebs-901k\n",
      "model-garden-lms/bert-base-token-dropping-finewebs-851k\n",
      "model-garden-lms/bert-base-finewebs-851k\n",
      "model-garden-lms/teams-base-finewebs-951k\n",
      "model-garden-lms/bert-base-finewebs-801k\n",
      "model-garden-lms/bert-base-finewebs-901k\n",
      "google-bert/bert-base-cased\n",
      "model-garden-lms/bert-base-token-dropping-finewebs-901k\n",
      "model-garden-lms/bert-base-finewebs-1m\n",
      "model-garden-lms/teams-base-finewebs-851k\n",
      "model-garden-lms/teams-base-finewebs-1m\n",
      "model-garden-lms/bert-base-finewebs-951k\n",
      "model-garden-lms/bert-base-token-dropping-finewebs-951k\n",
      "model-garden-lms/teams-base-finewebs-801k\n"
     ]
    }
   ],
   "source": [
    "benchmark_result_files = list(Path(\"./\").rglob(\"*scandeval_benchmark_results.jsonl\"))\n",
    "\n",
    "print(benchmark_result_files)\n",
    "\n",
    "model_id_results_mapping = {}\n",
    "\n",
    "for benchmark_result_file in benchmark_result_files:                      \n",
    "    model_id = None\n",
    "\n",
    "    dataset_metrics_mapping = {}\n",
    "\n",
    "    scores = []\n",
    "    \n",
    "    with open(benchmark_result_file) as f_p:\n",
    "        for line in f_p:\n",
    "            line = line.strip()\n",
    "            if not line:\n",
    "                continue\n",
    "            data = json.loads(line)\n",
    "\n",
    "            model_id = data[\"model\"]\n",
    "            dataset = data[\"dataset\"]\n",
    "            total = data[\"results\"][\"total\"]\n",
    "            if dataset == \"conll-en\":\n",
    "                test_micro_f1_no_misc = round(total[\"test_micro_f1_no_misc\"], 2)\n",
    "                test_micro_f1_no_misc_se = round(total[\"test_micro_f1_no_misc_se\"], 2)\n",
    "                test_micro_f1 = round(total[\"test_micro_f1\"], 2)\n",
    "                test_micro_f1_se = round(total[\"test_micro_f1_se\"], 2)\n",
    "\n",
    "                scores.append(test_micro_f1_no_misc)\n",
    "                scores.append(test_micro_f1)\n",
    "                \n",
    "                metric_string = f\"{test_micro_f1_no_misc} ± {test_micro_f1_no_misc_se} / {test_micro_f1} ± {test_micro_f1_se}\"\n",
    "                dataset_metrics_mapping[dataset] = metric_string\n",
    "            elif dataset in [\"sst5\", \"scala-en\"]:\n",
    "                test_mcc = round(total[\"test_mcc\"], 2)\n",
    "                test_mcc_se = round(total[\"test_mcc_se\"], 2)\n",
    "                test_macro_f1 = round(total[\"test_macro_f1\"], 2)\n",
    "                test_macro_f1_se = round(total[\"test_macro_f1_se\"], 2)\n",
    "\n",
    "                scores.append(test_mcc)\n",
    "                scores.append(test_macro_f1)\n",
    "                \n",
    "                metric_string = f\"{test_mcc} ± {test_mcc_se} / {test_macro_f1} ± {test_macro_f1_se}\"\n",
    "                dataset_metrics_mapping[dataset] = metric_string\n",
    "            elif dataset == \"squad\":\n",
    "                test_em = round(total[\"test_em\"], 2)\n",
    "                test_em_se = round(total[\"test_em_se\"], 2)\n",
    "                test_f1 = round(total[\"test_f1\"], 2)\n",
    "                test_f1_se = round(total[\"test_f1_se\"], 2)\n",
    "\n",
    "                scores.append(test_em)\n",
    "                scores.append(test_f1)\n",
    "                \n",
    "                metric_string = f\"{test_em} ± {test_em_se} / {test_f1} ± {test_f1_se}\"\n",
    "                dataset_metrics_mapping[dataset] = metric_string\n",
    "\n",
    "    score = round(np.mean(scores), 2)\n",
    "    score_string = f\"{score}\"\n",
    "    \n",
    "    dataset_metrics_mapping[\"score\"] = score_string\n",
    "    \n",
    "    print(model_id)\n",
    "    \n",
    "    model_id_results_mapping[model_id] = dataset_metrics_mapping"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "30cdec2c-d0da-49a5-9965-b923f8212340",
   "metadata": {},
   "source": [
    "# Overall"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "730ef788-95d6-4149-960b-6f2ca9311ea5",
   "metadata": {},
   "outputs": [],
   "source": [
    "model_id_order = [\n",
    "    \"model-garden-lms/bert-base-finewebs-1m\",\n",
    "    \"model-garden-lms/bert-base-finewebs-951k\",\n",
    "    \"model-garden-lms/bert-base-finewebs-901k\",\n",
    "    \"model-garden-lms/bert-base-finewebs-851k\",\n",
    "    \"model-garden-lms/bert-base-finewebs-801k\",\n",
    "    \"model-garden-lms/bert-base-token-dropping-finewebs-1m\",\n",
    "    \"model-garden-lms/bert-base-token-dropping-finewebs-951k\",\n",
    "    \"model-garden-lms/bert-base-token-dropping-finewebs-901k\",\n",
    "    \"model-garden-lms/bert-base-token-dropping-finewebs-851k\",\n",
    "    \"model-garden-lms/bert-base-token-dropping-finewebs-801k\",\n",
    "    \"model-garden-lms/teams-base-finewebs-1m\",\n",
    "    \"model-garden-lms/teams-base-finewebs-951k\",\n",
    "    \"model-garden-lms/teams-base-finewebs-901k\",\n",
    "    \"model-garden-lms/teams-base-finewebs-851k\",\n",
    "    \"model-garden-lms/teams-base-finewebs-801k\",\n",
    "    \"google-bert/bert-base-cased\",\n",
    "    \"google/electra-base-discriminator\",\n",
    "    \"FacebookAI/roberta-base\",\n",
    "]\n",
    "\n",
    "dataset_order = [\"score\", \"conll-en\", \"sst5\", \"scala-en\", \"squad\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "af8ee3a3-7798-4bed-8b45-c5e7ba89d9ac",
   "metadata": {},
   "outputs": [],
   "source": [
    "headers = [\"Model ID\", \"Avg. Score\", \"CoNLL-En\", \"SST5\", \"ScaLA-En\", \"SQuAD\"]\n",
    "\n",
    "table = []\n",
    "\n",
    "for model_id in model_id_order:\n",
    "    current_row = []\n",
    "    \n",
    "    model_id_markdown = f\"[{model_id}](https://huggingface.co/{model_id})\"\n",
    "    current_row.append(model_id_markdown)\n",
    "\n",
    "    for dataset in dataset_order:\n",
    "        current_row.append(model_id_results_mapping[model_id][dataset])\n",
    "\n",
    "    table.append(current_row)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "24cafd52-5e5f-44b9-8a9d-1ce04991473f",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "| Model ID                                                                                                                                  |   Avg. Score | CoNLL-En                    | SST5                        | ScaLA-En                    | SQuAD                       |\n",
      "|-------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|\n",
      "| [model-garden-lms/bert-base-finewebs-1m](https://huggingface.co/model-garden-lms/bert-base-finewebs-1m)                                   |        69.03 | 88.98 ± 0.43 / 88.67 ± 0.36 | 58.11 ± 1.2 / 59.77 ± 1.49  | 57.29 ± 3.57 / 77.15 ± 2.17 | 55.82 ± 1.35 / 66.46 ± 1.51 |\n",
      "| [model-garden-lms/bert-base-finewebs-951k](https://huggingface.co/model-garden-lms/bert-base-finewebs-951k)                               |        69.41 | 89.25 ± 0.4 / 88.9 ± 0.37   | 58.17 ± 1.26 / 59.86 ± 1.65 | 58.83 ± 3.46 / 78.22 ± 2.11 | 55.66 ± 1.19 / 66.36 ± 1.42 |\n",
      "| [model-garden-lms/bert-base-finewebs-901k](https://huggingface.co/model-garden-lms/bert-base-finewebs-901k)                               |        69.12 | 89.22 ± 0.69 / 88.97 ± 0.45 | 57.93 ± 1.1 / 59.49 ± 1.44  | 58.66 ± 2.99 / 77.94 ± 1.88 | 55.0 ± 1.05 / 65.75 ± 1.29  |\n",
      "| [model-garden-lms/bert-base-finewebs-851k](https://huggingface.co/model-garden-lms/bert-base-finewebs-851k)                               |        68.76 | 89.29 ± 0.52 / 89.0 ± 0.51  | 57.68 ± 0.97 / 59.01 ± 1.23 | 57.11 ± 3.77 / 77.36 ± 1.97 | 54.79 ± 1.21 / 65.87 ± 1.32 |\n",
      "| [model-garden-lms/bert-base-finewebs-801k](https://huggingface.co/model-garden-lms/bert-base-finewebs-801k)                               |        68.12 | 88.92 ± 0.45 / 88.6 ± 0.44  | 57.64 ± 1.09 / 60.8 ± 1.88  | 54.28 ± 4.83 / 75.48 ± 2.97 | 54.13 ± 1.61 / 65.09 ± 1.65 |\n",
      "| [model-garden-lms/bert-base-token-dropping-finewebs-1m](https://huggingface.co/model-garden-lms/bert-base-token-dropping-finewebs-1m)     |        67.66 | 88.68 ± 0.76 / 88.47 ± 0.62 | 57.4 ± 1.7 / 59.61 ± 1.6    | 52.72 ± 5.13 / 73.6 ± 4.42  | 55.04 ± 1.54 / 65.72 ± 1.75 |\n",
      "| [model-garden-lms/bert-base-token-dropping-finewebs-951k](https://huggingface.co/model-garden-lms/bert-base-token-dropping-finewebs-951k) |        66.87 | 88.81 ± 0.68 / 88.64 ± 0.54 | 57.44 ± 1.39 / 56.85 ± 2.09 | 50.91 ± 5.08 / 72.22 ± 4.2  | 54.63 ± 1.3 / 65.43 ± 1.43  |\n",
      "| [model-garden-lms/bert-base-token-dropping-finewebs-901k](https://huggingface.co/model-garden-lms/bert-base-token-dropping-finewebs-901k) |        68.01 | 88.98 ± 0.64 / 88.67 ± 0.55 | 57.79 ± 1.31 / 58.91 ± 1.85 | 54.25 ± 6.3 / 75.73 ± 3.54  | 54.4 ± 0.72 / 65.31 ± 1.01  |\n",
      "| [model-garden-lms/bert-base-token-dropping-finewebs-851k](https://huggingface.co/model-garden-lms/bert-base-token-dropping-finewebs-851k) |        67.97 | 88.9 ± 0.7 / 88.81 ± 0.54   | 58.0 ± 1.02 / 58.73 ± 1.8   | 54.04 ± 2.61 / 74.89 ± 2.07 | 54.75 ± 1.08 / 65.66 ± 1.26 |\n",
      "| [model-garden-lms/bert-base-token-dropping-finewebs-801k](https://huggingface.co/model-garden-lms/bert-base-token-dropping-finewebs-801k) |        67.8  | 88.95 ± 0.7 / 88.73 ± 0.58  | 57.71 ± 1.43 / 60.5 ± 1.69  | 50.95 ± 6.3 / 74.16 ± 3.2   | 55.24 ± 1.37 / 66.13 ± 1.24 |\n",
      "| [model-garden-lms/teams-base-finewebs-1m](https://huggingface.co/model-garden-lms/teams-base-finewebs-1m)                                 |        72.64 | 89.27 ± 0.41 / 88.82 ± 0.41 | 59.58 ± 0.64 / 62.63 ± 3.0  | 66.72 ± 0.94 / 83.01 ± 0.45 | 59.95 ± 0.71 / 71.13 ± 0.58 |\n",
      "| [model-garden-lms/teams-base-finewebs-951k](https://huggingface.co/model-garden-lms/teams-base-finewebs-951k)                             |        72.06 | 89.64 ± 0.52 / 89.18 ± 0.42 | 60.31 ± 1.03 / 58.82 ± 2.79 | 65.85 ± 2.01 / 82.47 ± 1.23 | 59.36 ± 0.77 / 70.82 ± 0.62 |\n",
      "| [model-garden-lms/teams-base-finewebs-901k](https://huggingface.co/model-garden-lms/teams-base-finewebs-901k)                             |        72.19 | 89.31 ± 0.52 / 88.71 ± 0.53 | 59.86 ± 1.05 / 62.17 ± 2.61 | 64.89 ± 2.86 / 81.84 ± 1.65 | 59.74 ± 0.55 / 71.0 ± 0.5   |\n",
      "| [model-garden-lms/teams-base-finewebs-851k](https://huggingface.co/model-garden-lms/teams-base-finewebs-851k)                             |        71.41 | 89.48 ± 0.47 / 88.99 ± 0.52 | 59.17 ± 1.2 / 60.25 ± 3.25  | 63.01 ± 2.31 / 80.77 ± 1.38 | 59.13 ± 0.53 / 70.5 ± 0.49  |\n",
      "| [model-garden-lms/teams-base-finewebs-801k](https://huggingface.co/model-garden-lms/teams-base-finewebs-801k)                             |        70.73 | 89.2 ± 0.43 / 88.8 ± 0.46   | 59.21 ± 1.5 / 61.41 ± 2.36  | 58.47 ± 4.1 / 78.24 ± 2.4   | 59.59 ± 0.66 / 70.9 ± 0.59  |\n",
      "| [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased)                                                         |        62.26 | 87.39 ± 0.79 / 87.11 ± 0.66 | 54.49 ± 1.36 / 53.22 ± 1.15 | 52.08 ± 2.13 / 74.52 ± 1.31 | 38.63 ± 2.1 / 50.68 ± 1.87  |\n",
      "| [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator)                                             |        69.26 | 87.82 ± 0.69 / 86.83 ± 0.62 | 62.3 ± 1.12 / 55.93 ± 0.67  | 62.61 ± 1.21 / 80.85 ± 0.59 | 52.51 ± 0.86 / 65.2 ± 0.85  |\n",
      "| [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base)                                                                 |        68.96 | 90.35 ± 0.23 / 90.14 ± 0.2  | 60.95 ± 1.4 / 57.52 ± 1.97  | 50.64 ± 1.69 / 74.55 ± 0.9  | 57.82 ± 1.35 / 69.68 ± 1.02 |\n"
     ]
    }
   ],
   "source": [
    "print(tabulate(table, headers=headers, tablefmt=\"github\"))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}