Datasets:
Update `num_to_words`, `filter_and_clean_text` & `preprocess_text` and add `map_special_terms`
Browse files
chall.py
CHANGED
|
@@ -1,12 +1,13 @@
|
|
| 1 |
import json
|
| 2 |
import os
|
| 3 |
-
|
|
|
|
|
|
|
| 4 |
from datasets import DatasetInfo, BuilderConfig, GeneratorBasedBuilder, Version, Features, Value, Audio, SplitGenerator, Split, logging
|
| 5 |
from datasets.features import Sequence
|
| 6 |
import soundfile as sf
|
| 7 |
import importlib.util
|
| 8 |
|
| 9 |
-
|
| 10 |
_SAMPLE_RATE = 16000
|
| 11 |
|
| 12 |
_DESCRIPTION = "tbd"
|
|
@@ -22,17 +23,32 @@ class ChallConfig(BuilderConfig):
|
|
| 22 |
split_segments: bool = False
|
| 23 |
|
| 24 |
# settings that can only be used together with split_segments
|
| 25 |
-
max_chunk_length: Union[float, None]
|
| 26 |
-
min_chunk_length: Union[float, None]
|
| 27 |
-
max_pause_length: Union[float, None]
|
| 28 |
remove_trailing_pauses: bool = False
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
def __init__(self, **kwargs):
|
| 31 |
-
self.split_segments = kwargs.pop("split_segments",
|
| 32 |
-
self.remove_trailing_pauses = kwargs.pop("remove_trailing_pauses",
|
| 33 |
-
|
| 34 |
-
self.
|
| 35 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
super(ChallConfig, self).__init__(**kwargs)
|
| 38 |
|
|
@@ -66,6 +82,8 @@ class Chall(GeneratorBasedBuilder):
|
|
| 66 |
max_chunk_length=12,
|
| 67 |
min_chunk_length=0.5,
|
| 68 |
remove_trailing_pauses=True,
|
|
|
|
|
|
|
| 69 |
description="Settings used for the paper."
|
| 70 |
)
|
| 71 |
]
|
|
@@ -86,7 +104,6 @@ class Chall(GeneratorBasedBuilder):
|
|
| 86 |
"""
|
| 87 |
self._check_dependencies()
|
| 88 |
super().__init__(**kwargs)
|
| 89 |
-
print(self.config)
|
| 90 |
|
| 91 |
@staticmethod
|
| 92 |
def _check_dependencies() -> None:
|
|
@@ -122,6 +139,8 @@ class Chall(GeneratorBasedBuilder):
|
|
| 122 |
"area_of_school_code": Value("int32"),
|
| 123 |
"background_noise": Value("bool"),
|
| 124 |
"speaker": Value("string"),
|
|
|
|
|
|
|
| 125 |
"words": Sequence(
|
| 126 |
{
|
| 127 |
"start": Value("float"),
|
|
@@ -138,6 +157,8 @@ class Chall(GeneratorBasedBuilder):
|
|
| 138 |
"intervention": Value("int32"),
|
| 139 |
"school_grade": Value("string"),
|
| 140 |
"area_of_school_code": Value("int32"),
|
|
|
|
|
|
|
| 141 |
"participants": Sequence(
|
| 142 |
{
|
| 143 |
"pseudonym": Value("string"),
|
|
@@ -243,8 +264,7 @@ class Chall(GeneratorBasedBuilder):
|
|
| 243 |
else:
|
| 244 |
yield from self._generate_transcript_examples(audio_id, str(audio_file_path), row, transcript)
|
| 245 |
|
| 246 |
-
|
| 247 |
-
def _generate_transcript_examples(audio_id: str, audio_file_path: str, data: dict, transcript: dict):
|
| 248 |
"""
|
| 249 |
Generates examples based on the entire audio file and its associated transcript metadata. This method reads the
|
| 250 |
entire audio file, extracts speaker and segment information from the transcript, and packages these along with
|
|
@@ -261,6 +281,9 @@ class Chall(GeneratorBasedBuilder):
|
|
| 261 |
transcript_data["speakers"] = transcript.get("speakers", [])
|
| 262 |
transcript_data["segments"] = transcript.get("segments", [])
|
| 263 |
|
|
|
|
|
|
|
|
|
|
| 264 |
with sf.SoundFile(audio_file_path) as audio_file:
|
| 265 |
audio = audio_file.read(dtype='float32')
|
| 266 |
|
|
@@ -295,6 +318,9 @@ class Chall(GeneratorBasedBuilder):
|
|
| 295 |
segment_data["speaker_id"] = segment["speaker"]
|
| 296 |
segment_data["words"] = segment["words"]
|
| 297 |
|
|
|
|
|
|
|
|
|
|
| 298 |
start_time = segment["words"][0]["start"]
|
| 299 |
end_time = segment["words"][-1]["end"]
|
| 300 |
start_frame = int(_SAMPLE_RATE * start_time)
|
|
@@ -443,4 +469,176 @@ class Chall(GeneratorBasedBuilder):
|
|
| 443 |
|
| 444 |
return list_of_chunks
|
| 445 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 446 |
|
|
|
|
|
|
| 1 |
import json
|
| 2 |
import os
|
| 3 |
+
import re
|
| 4 |
+
import string
|
| 5 |
+
from typing import Union, List, Dict
|
| 6 |
from datasets import DatasetInfo, BuilderConfig, GeneratorBasedBuilder, Version, Features, Value, Audio, SplitGenerator, Split, logging
|
| 7 |
from datasets.features import Sequence
|
| 8 |
import soundfile as sf
|
| 9 |
import importlib.util
|
| 10 |
|
|
|
|
| 11 |
_SAMPLE_RATE = 16000
|
| 12 |
|
| 13 |
_DESCRIPTION = "tbd"
|
|
|
|
| 23 |
split_segments: bool = False
|
| 24 |
|
| 25 |
# settings that can only be used together with split_segments
|
| 26 |
+
max_chunk_length: Union[float, None]
|
| 27 |
+
min_chunk_length: Union[float, None]
|
| 28 |
+
max_pause_length: Union[float, None]
|
| 29 |
remove_trailing_pauses: bool = False
|
| 30 |
|
| 31 |
+
lowercase: bool
|
| 32 |
+
num_to_words: bool
|
| 33 |
+
allowed_chars: set
|
| 34 |
+
special_terms_mapping: dict
|
| 35 |
+
|
| 36 |
def __init__(self, **kwargs):
|
| 37 |
+
self.split_segments = kwargs.pop("split_segments", False)
|
| 38 |
+
self.remove_trailing_pauses = kwargs.pop("remove_trailing_pauses", False)
|
| 39 |
+
|
| 40 |
+
self.max_chunk_length = kwargs.pop("max_chunk_length", None)
|
| 41 |
+
self.min_chunk_length = kwargs.pop("min_chunk_length", None)
|
| 42 |
+
self.max_pause_length = kwargs.pop("max_pause_length", None)
|
| 43 |
+
|
| 44 |
+
self.lowercase = kwargs.pop("lowercase", True)
|
| 45 |
+
self.num_to_words = kwargs.pop("num_to_words", True)
|
| 46 |
+
self.special_terms_mapping = kwargs.pop("special_terms_mapping", {})
|
| 47 |
+
|
| 48 |
+
if self.lowercase:
|
| 49 |
+
self.allowed_chars = set(string.ascii_lowercase + " äöü'")
|
| 50 |
+
else:
|
| 51 |
+
self.allowed_chars: set = set(string.ascii_lowercase + string.ascii_uppercase + " ÄÖÜäöü'")
|
| 52 |
|
| 53 |
super(ChallConfig, self).__init__(**kwargs)
|
| 54 |
|
|
|
|
| 82 |
max_chunk_length=12,
|
| 83 |
min_chunk_length=0.5,
|
| 84 |
remove_trailing_pauses=True,
|
| 85 |
+
lowercase=True,
|
| 86 |
+
num_to_words=True,
|
| 87 |
description="Settings used for the paper."
|
| 88 |
)
|
| 89 |
]
|
|
|
|
| 104 |
"""
|
| 105 |
self._check_dependencies()
|
| 106 |
super().__init__(**kwargs)
|
|
|
|
| 107 |
|
| 108 |
@staticmethod
|
| 109 |
def _check_dependencies() -> None:
|
|
|
|
| 139 |
"area_of_school_code": Value("int32"),
|
| 140 |
"background_noise": Value("bool"),
|
| 141 |
"speaker": Value("string"),
|
| 142 |
+
"raw_text": Value("string"),
|
| 143 |
+
"clear_text": Value("string"),
|
| 144 |
"words": Sequence(
|
| 145 |
{
|
| 146 |
"start": Value("float"),
|
|
|
|
| 157 |
"intervention": Value("int32"),
|
| 158 |
"school_grade": Value("string"),
|
| 159 |
"area_of_school_code": Value("int32"),
|
| 160 |
+
"raw_text": Value("string"),
|
| 161 |
+
"clear_text": Value("string"),
|
| 162 |
"participants": Sequence(
|
| 163 |
{
|
| 164 |
"pseudonym": Value("string"),
|
|
|
|
| 264 |
else:
|
| 265 |
yield from self._generate_transcript_examples(audio_id, str(audio_file_path), row, transcript)
|
| 266 |
|
| 267 |
+
def _generate_transcript_examples(self, audio_id: str, audio_file_path: str, data: dict, transcript: dict):
|
|
|
|
| 268 |
"""
|
| 269 |
Generates examples based on the entire audio file and its associated transcript metadata. This method reads the
|
| 270 |
entire audio file, extracts speaker and segment information from the transcript, and packages these along with
|
|
|
|
| 281 |
transcript_data["speakers"] = transcript.get("speakers", [])
|
| 282 |
transcript_data["segments"] = transcript.get("segments", [])
|
| 283 |
|
| 284 |
+
transcript_data["raw_text"] = raw_text = self.get_raw_text([word for segment in transcript["segments"] for word in segment["words"]])
|
| 285 |
+
transcript_data["clear_text"] = self.get_clear_text(raw_text)
|
| 286 |
+
|
| 287 |
with sf.SoundFile(audio_file_path) as audio_file:
|
| 288 |
audio = audio_file.read(dtype='float32')
|
| 289 |
|
|
|
|
| 318 |
segment_data["speaker_id"] = segment["speaker"]
|
| 319 |
segment_data["words"] = segment["words"]
|
| 320 |
|
| 321 |
+
segment_data["raw_text"] = raw_text = self.get_raw_text(segment["words"])
|
| 322 |
+
segment_data["clear_text"] = self.get_clear_text(raw_text)
|
| 323 |
+
|
| 324 |
start_time = segment["words"][0]["start"]
|
| 325 |
end_time = segment["words"][-1]["end"]
|
| 326 |
start_frame = int(_SAMPLE_RATE * start_time)
|
|
|
|
| 469 |
|
| 470 |
return list_of_chunks
|
| 471 |
|
| 472 |
+
@staticmethod
|
| 473 |
+
def get_raw_text(words: List[Dict]) -> str:
|
| 474 |
+
"""
|
| 475 |
+
|
| 476 |
+
"""
|
| 477 |
+
raw_text = " ".join([word["text"] for word in words])
|
| 478 |
+
return raw_text
|
| 479 |
+
|
| 480 |
+
def get_clear_text(self, raw_text: str) -> str:
|
| 481 |
+
"""
|
| 482 |
+
Processes the raw text to produce a clear, cleaned version by removing annotations,
|
| 483 |
+
preprocessing the text, converting numbers to words, mapping special terms,
|
| 484 |
+
converting to lowercase, and filtering allowed characters.
|
| 485 |
+
|
| 486 |
+
:param raw_text: The raw input text to be processed.
|
| 487 |
+
:return: A string representing the processed clear text.
|
| 488 |
+
"""
|
| 489 |
+
|
| 490 |
+
clear_text = self.remove_annotations(raw_text)
|
| 491 |
+
clear_text = self.preprocess_text(clear_text)
|
| 492 |
+
|
| 493 |
+
if self.config.num_to_words:
|
| 494 |
+
clear_text = self.num_to_words(clear_text)
|
| 495 |
+
|
| 496 |
+
if self.config.special_terms_mapping:
|
| 497 |
+
self.map_special_terms(clear_text, special_terms_mapping=self.config.special_terms_mapping)
|
| 498 |
+
|
| 499 |
+
if self.config.lowercase:
|
| 500 |
+
clear_text = clear_text.lower()
|
| 501 |
+
|
| 502 |
+
if self.config.allowed_chars:
|
| 503 |
+
clear_text = self.filter_and_clean_text(clear_text, allowed_chars=self.config.allowed_chars)
|
| 504 |
+
|
| 505 |
+
return clear_text
|
| 506 |
+
|
| 507 |
+
@staticmethod
|
| 508 |
+
def preprocess_text(transcript: str) -> str:
|
| 509 |
+
"""
|
| 510 |
+
Preprocesses the text by removing words between brackets and parentheses,
|
| 511 |
+
standardizing spaces before apostrophes, removing commas between digits,
|
| 512 |
+
and replacing special characters.
|
| 513 |
+
|
| 514 |
+
:param transcript: The input transcript to preprocess.
|
| 515 |
+
:return: The preprocessed transcript with various text normalization applied.
|
| 516 |
+
"""
|
| 517 |
+
|
| 518 |
+
transcript = re.sub(r"[<\[][^>\]]*[>\]]", "", transcript) # remove words between brackets
|
| 519 |
+
transcript = re.sub(r"\(([^)]+?)\)", "", transcript) # remove words between parenthesis
|
| 520 |
+
transcript = re.sub(r"\s+'", "'", transcript) # standardize when there's a space before an apostrophe
|
| 521 |
+
transcript = re.sub(r"(\d),(\d)", r"\1\2", transcript) # remove commas between digits
|
| 522 |
+
transcript = re.sub(r"\.([^0-9]|$)", r" \1", transcript) # remove periods not followed by numbers
|
| 523 |
+
|
| 524 |
+
# Replace special characters
|
| 525 |
+
special_chars = {
|
| 526 |
+
'ß': 'ss', 'ç': 'c', 'á': 'a', 'à': 'a', 'â': 'a', 'é': 'e', 'è': 'e', 'ê': 'e', 'í': 'i', 'ì': 'i', 'î': 'i',
|
| 527 |
+
'ó': 'o', 'ò': 'o', 'ô': 'o', 'ú': 'u', 'ù': 'u', 'û': 'u', '-': ' ', '\u2013': ' ', '\xad': ' ', '/': ' '
|
| 528 |
+
}
|
| 529 |
+
for char, replacement in special_chars.items():
|
| 530 |
+
transcript = transcript.replace(char, replacement)
|
| 531 |
+
|
| 532 |
+
# Normalize whitespace
|
| 533 |
+
transcript = re.compile(r'[ \t]+').sub(' ', transcript)
|
| 534 |
+
|
| 535 |
+
return transcript
|
| 536 |
+
|
| 537 |
+
@staticmethod
|
| 538 |
+
def remove_annotations(transcript: str) -> str:
|
| 539 |
+
"""
|
| 540 |
+
Removes specific annotations and conventions from the transcript
|
| 541 |
+
|
| 542 |
+
:param transcript: The transcript to preprocess.
|
| 543 |
+
:return: The preprocessed transcript with conventions and annotations removed.
|
| 544 |
+
"""
|
| 545 |
+
transcript = transcript.replace('@g', '') # (Swiss-)German words
|
| 546 |
+
transcript = transcript.replace('@?', '') # best guess
|
| 547 |
+
transcript = transcript.replace('@!', '') # Errors
|
| 548 |
+
transcript = transcript.replace('-', '') # Repetitions
|
| 549 |
+
transcript = transcript.replace('--', '') # Reformulations
|
| 550 |
+
transcript = transcript.replace('(...)', '') # Long pauses
|
| 551 |
+
transcript = transcript.replace('(Whispering)', '') # Whispering
|
| 552 |
+
transcript = transcript.replace('(whispers)', '') # Whispering
|
| 553 |
+
transcript = transcript.replace('(whispering)', '') # Whispering
|
| 554 |
+
transcript = transcript.replace('(unv.)', '') # ?
|
| 555 |
+
transcript = transcript.replace('(laughing)', '') # Laughing
|
| 556 |
+
transcript = transcript.replace('(laughs)', '') # Laughing
|
| 557 |
+
transcript = transcript.replace('(Laughter)', '') # Laughing
|
| 558 |
+
return transcript
|
| 559 |
+
|
| 560 |
+
@staticmethod
|
| 561 |
+
def num_to_words(transcript: str) -> str:
|
| 562 |
+
"""
|
| 563 |
+
Converts numerical expressions in the transcript to their word equivalents using the num2words library.
|
| 564 |
+
|
| 565 |
+
:param transcript: The input transcript containing numerical expressions.
|
| 566 |
+
:return: The transcript with numerical expressions converted to words.
|
| 567 |
+
"""
|
| 568 |
+
|
| 569 |
+
from num2words import num2words
|
| 570 |
+
|
| 571 |
+
def replace(match):
|
| 572 |
+
number_str = match.group(0)
|
| 573 |
+
if re.match(r'\d+\.', number_str):
|
| 574 |
+
# Check if this is an ordinal context by looking at the following character
|
| 575 |
+
next_char_index = match.end()
|
| 576 |
+
if next_char_index < len(transcript) and transcript[next_char_index].islower():
|
| 577 |
+
# Convert to ordinal if followed by a lowercase letter
|
| 578 |
+
number = int(number_str[:-1]) # Remove the period
|
| 579 |
+
return num2words(number, to='ordinal')
|
| 580 |
+
else:
|
| 581 |
+
# Treat as the end of a sentence, return as is
|
| 582 |
+
return number_str
|
| 583 |
+
|
| 584 |
+
elif re.match(r'\d{4}s', number_str):
|
| 585 |
+
# Convert decades
|
| 586 |
+
number = int(number_str[:-1])
|
| 587 |
+
return num2words(number, to='year') + "s"
|
| 588 |
+
|
| 589 |
+
elif re.match(r'\d+m\b', number_str):
|
| 590 |
+
# Convert numbers with 'm' (meters) suffix
|
| 591 |
+
number = int(number_str[:-1])
|
| 592 |
+
return num2words(number) + " meters"
|
| 593 |
+
|
| 594 |
+
elif number_str[-2:] in ['st', 'nd', 'rd', 'th']:
|
| 595 |
+
# Convert ordinal numbers with suffix
|
| 596 |
+
number = int(re.match(r'\d+', number_str).group(0))
|
| 597 |
+
|
| 598 |
+
return num2words(number, to='ordinal')
|
| 599 |
+
|
| 600 |
+
else:
|
| 601 |
+
# Convert cardinal numbers
|
| 602 |
+
return num2words(number_str)
|
| 603 |
+
|
| 604 |
+
# Regular expression to find numbers, ordinals, ordinals with period, decades, and numbers with 'm' suffix
|
| 605 |
+
pattern = re.compile(r'\b\d+(\.\d+)?\b|\b\d+(st|nd|rd|th)\b|\b\d+\.\b|\b\d{4}s\b|\b\d+m\b')
|
| 606 |
+
|
| 607 |
+
# Substitute numbers with their word equivalent
|
| 608 |
+
new_sentence = pattern.sub(replace, transcript)
|
| 609 |
+
|
| 610 |
+
return new_sentence
|
| 611 |
+
|
| 612 |
+
@staticmethod
|
| 613 |
+
def map_special_terms(transcript: str, special_terms_mapping: dict):
|
| 614 |
+
"""
|
| 615 |
+
Maps special terms in the transcript to their corresponding replacements using dictionary of pairs
|
| 616 |
+
|
| 617 |
+
:param transcript: The input transcript containing special terms to be mapped.
|
| 618 |
+
:param special_terms_mapping: A dictionary where keys are special terms and values are their replacements.
|
| 619 |
+
:return: The transcript with special terms replaced.
|
| 620 |
+
"""
|
| 621 |
+
|
| 622 |
+
for term, replacement in special_terms_mapping.items():
|
| 623 |
+
transcript = re.sub(r'\b' + re.escape(term) + r'\b', replacement, transcript, flags=re.IGNORECASE)
|
| 624 |
+
return transcript
|
| 625 |
+
|
| 626 |
+
@staticmethod
|
| 627 |
+
def filter_and_clean_text(transcript: str, allowed_chars: set = None):
|
| 628 |
+
"""
|
| 629 |
+
Filters the transcript to include only the allowed characters and normalizes
|
| 630 |
+
whitespace by removing extra spaces and trimming the text.
|
| 631 |
+
|
| 632 |
+
:param transcript: The input transcript to be filtered and cleaned.
|
| 633 |
+
:param allowed_chars: A set of allowed characters. If provided, only these characters will be retained in the transcript.
|
| 634 |
+
:return: The filtered and cleaned transcript.
|
| 635 |
+
"""
|
| 636 |
+
|
| 637 |
+
# Filter allowed characters
|
| 638 |
+
if allowed_chars is not None:
|
| 639 |
+
transcript = ''.join([char for char in transcript if char in allowed_chars])
|
| 640 |
+
|
| 641 |
+
# Normalize whitespace
|
| 642 |
+
transcript = re.compile(r'[ \t]+').sub(' ', transcript).strip()
|
| 643 |
|
| 644 |
+
return transcript
|