gt
stringclasses
1 value
context
stringlengths
2.49k
119k
# coding: utf-8 """ OpenAPI spec version: Generated by: https://github.com/swagger-api/swagger-codegen.git Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import absolute_import import os import sys import unittest import lib_openshift from lib_openshift.rest import ApiException from lib_openshift.apis.oapi_v1 import OapiV1 class TestOapiV1(unittest.TestCase): """ OapiV1 unit test stubs """ def setUp(self): self.api = lib_openshift.apis.oapi_v1.OapiV1() def tearDown(self): pass def test_create_build(self): """ Test case for create_build create a Build """ pass def test_create_buildconfig(self): """ Test case for create_buildconfig create a BuildConfig """ pass def test_create_clusternetwork(self): """ Test case for create_clusternetwork create a ClusterNetwork """ pass def test_create_clusterpolicie(self): """ Test case for create_clusterpolicie create a ClusterPolicy """ pass def test_create_clusterpolicybinding(self): """ Test case for create_clusterpolicybinding create a ClusterPolicyBinding """ pass def test_create_clusterrole(self): """ Test case for create_clusterrole create a ClusterRole """ pass def test_create_clusterrolebinding(self): """ Test case for create_clusterrolebinding create a ClusterRoleBinding """ pass def test_create_deploymentconfig(self): """ Test case for create_deploymentconfig create a DeploymentConfig """ pass def test_create_deploymentconfigrollback(self): """ Test case for create_deploymentconfigrollback create a DeploymentConfigRollback """ pass def test_create_group(self): """ Test case for create_group create a Group """ pass def test_create_hostsubnet(self): """ Test case for create_hostsubnet create a HostSubnet """ pass def test_create_identitie(self): """ Test case for create_identitie create a Identity """ pass def test_create_image(self): """ Test case for create_image create a Image """ pass def test_create_imagestream(self): """ Test case for create_imagestream create a ImageStream """ pass def test_create_imagestreamimport(self): """ Test case for create_imagestreamimport create a ImageStreamImport """ pass def test_create_imagestreammapping(self): """ Test case for create_imagestreammapping create a ImageStreamMapping """ pass def test_create_localresourceaccessreview(self): """ Test case for create_localresourceaccessreview create a LocalResourceAccessReview """ pass def test_create_localsubjectaccessreview(self): """ Test case for create_localsubjectaccessreview create a LocalSubjectAccessReview """ pass def test_create_namespaced_build(self): """ Test case for create_namespaced_build create a Build """ pass def test_create_namespaced_build_clone(self): """ Test case for create_namespaced_build_clone create clone of a BuildRequest """ pass def test_create_namespaced_buildconfig(self): """ Test case for create_namespaced_buildconfig create a BuildConfig """ pass def test_create_namespaced_buildconfig_instantiate(self): """ Test case for create_namespaced_buildconfig_instantiate create instantiate of a BuildRequest """ pass def test_create_namespaced_buildconfig_instantiatebinary(self): """ Test case for create_namespaced_buildconfig_instantiatebinary connect POST requests to instantiatebinary of BinaryBuildRequestOptions """ pass def test_create_namespaced_buildconfig_webhook(self): """ Test case for create_namespaced_buildconfig_webhook connect POST requests to webhooks of Status """ pass def test_create_namespaced_buildconfig_webhookspath(self): """ Test case for create_namespaced_buildconfig_webhookspath connect POST requests to webhooks of Status """ pass def test_create_namespaced_deploymentconfig(self): """ Test case for create_namespaced_deploymentconfig create a DeploymentConfig """ pass def test_create_namespaced_deploymentconfigrollback(self): """ Test case for create_namespaced_deploymentconfigrollback create a DeploymentConfigRollback """ pass def test_create_namespaced_imagestream(self): """ Test case for create_namespaced_imagestream create a ImageStream """ pass def test_create_namespaced_imagestreamimport(self): """ Test case for create_namespaced_imagestreamimport create a ImageStreamImport """ pass def test_create_namespaced_imagestreammapping(self): """ Test case for create_namespaced_imagestreammapping create a ImageStreamMapping """ pass def test_create_namespaced_localresourceaccessreview(self): """ Test case for create_namespaced_localresourceaccessreview create a LocalResourceAccessReview """ pass def test_create_namespaced_localsubjectaccessreview(self): """ Test case for create_namespaced_localsubjectaccessreview create a LocalSubjectAccessReview """ pass def test_create_namespaced_policie(self): """ Test case for create_namespaced_policie create a Policy """ pass def test_create_namespaced_policybinding(self): """ Test case for create_namespaced_policybinding create a PolicyBinding """ pass def test_create_namespaced_processedtemplate(self): """ Test case for create_namespaced_processedtemplate create a Template """ pass def test_create_namespaced_resourceaccessreview(self): """ Test case for create_namespaced_resourceaccessreview create a ResourceAccessReview """ pass def test_create_namespaced_role(self): """ Test case for create_namespaced_role create a Role """ pass def test_create_namespaced_rolebinding(self): """ Test case for create_namespaced_rolebinding create a RoleBinding """ pass def test_create_namespaced_route(self): """ Test case for create_namespaced_route create a Route """ pass def test_create_namespaced_subjectaccessreview(self): """ Test case for create_namespaced_subjectaccessreview create a SubjectAccessReview """ pass def test_create_namespaced_template(self): """ Test case for create_namespaced_template create a Template """ pass def test_create_netnamespace(self): """ Test case for create_netnamespace create a NetNamespace """ pass def test_create_oauthaccesstoken(self): """ Test case for create_oauthaccesstoken create a OAuthAccessToken """ pass def test_create_oauthauthorizetoken(self): """ Test case for create_oauthauthorizetoken create a OAuthAuthorizeToken """ pass def test_create_oauthclient(self): """ Test case for create_oauthclient create a OAuthClient """ pass def test_create_oauthclientauthorization(self): """ Test case for create_oauthclientauthorization create a OAuthClientAuthorization """ pass def test_create_policie(self): """ Test case for create_policie create a Policy """ pass def test_create_policybinding(self): """ Test case for create_policybinding create a PolicyBinding """ pass def test_create_processedtemplate(self): """ Test case for create_processedtemplate create a Template """ pass def test_create_project(self): """ Test case for create_project create a Project """ pass def test_create_projectrequest(self): """ Test case for create_projectrequest create a ProjectRequest """ pass def test_create_resourceaccessreview(self): """ Test case for create_resourceaccessreview create a ResourceAccessReview """ pass def test_create_role(self): """ Test case for create_role create a Role """ pass def test_create_rolebinding(self): """ Test case for create_rolebinding create a RoleBinding """ pass def test_create_route(self): """ Test case for create_route create a Route """ pass def test_create_subjectaccessreview(self): """ Test case for create_subjectaccessreview create a SubjectAccessReview """ pass def test_create_template(self): """ Test case for create_template create a Template """ pass def test_create_user(self): """ Test case for create_user create a User """ pass def test_create_useridentitymapping(self): """ Test case for create_useridentitymapping create a UserIdentityMapping """ pass def test_delete_clusternetwork(self): """ Test case for delete_clusternetwork delete a ClusterNetwork """ pass def test_delete_clusternetworks(self): """ Test case for delete_clusternetworks delete collection of ClusterNetwork """ pass def test_delete_clusterpolicie(self): """ Test case for delete_clusterpolicie delete a ClusterPolicy """ pass def test_delete_clusterpolicies(self): """ Test case for delete_clusterpolicies delete collection of ClusterPolicy """ pass def test_delete_clusterpolicybinding(self): """ Test case for delete_clusterpolicybinding delete a ClusterPolicyBinding """ pass def test_delete_clusterpolicybindings(self): """ Test case for delete_clusterpolicybindings delete collection of ClusterPolicyBinding """ pass def test_delete_clusterrole(self): """ Test case for delete_clusterrole delete a ClusterRole """ pass def test_delete_clusterrolebinding(self): """ Test case for delete_clusterrolebinding delete a ClusterRoleBinding """ pass def test_delete_group(self): """ Test case for delete_group delete a Group """ pass def test_delete_groups(self): """ Test case for delete_groups delete collection of Group """ pass def test_delete_hostsubnet(self): """ Test case for delete_hostsubnet delete a HostSubnet """ pass def test_delete_hostsubnets(self): """ Test case for delete_hostsubnets delete collection of HostSubnet """ pass def test_delete_identitie(self): """ Test case for delete_identitie delete a Identity """ pass def test_delete_identities(self): """ Test case for delete_identities delete collection of Identity """ pass def test_delete_image(self): """ Test case for delete_image delete a Image """ pass def test_delete_images(self): """ Test case for delete_images delete collection of Image """ pass def test_delete_namespaced_build(self): """ Test case for delete_namespaced_build delete a Build """ pass def test_delete_namespaced_buildconfig(self): """ Test case for delete_namespaced_buildconfig delete a BuildConfig """ pass def test_delete_namespaced_buildconfigs(self): """ Test case for delete_namespaced_buildconfigs delete collection of BuildConfig """ pass def test_delete_namespaced_builds(self): """ Test case for delete_namespaced_builds delete collection of Build """ pass def test_delete_namespaced_deploymentconfig(self): """ Test case for delete_namespaced_deploymentconfig delete a DeploymentConfig """ pass def test_delete_namespaced_deploymentconfigs(self): """ Test case for delete_namespaced_deploymentconfigs delete collection of DeploymentConfig """ pass def test_delete_namespaced_imagestream(self): """ Test case for delete_namespaced_imagestream delete a ImageStream """ pass def test_delete_namespaced_imagestreams(self): """ Test case for delete_namespaced_imagestreams delete collection of ImageStream """ pass def test_delete_namespaced_imagestreamtag(self): """ Test case for delete_namespaced_imagestreamtag delete a ImageStreamTag """ pass def test_delete_namespaced_policie(self): """ Test case for delete_namespaced_policie delete a Policy """ pass def test_delete_namespaced_policies(self): """ Test case for delete_namespaced_policies delete collection of Policy """ pass def test_delete_namespaced_policybinding(self): """ Test case for delete_namespaced_policybinding delete a PolicyBinding """ pass def test_delete_namespaced_policybindings(self): """ Test case for delete_namespaced_policybindings delete collection of PolicyBinding """ pass def test_delete_namespaced_role(self): """ Test case for delete_namespaced_role delete a Role """ pass def test_delete_namespaced_rolebinding(self): """ Test case for delete_namespaced_rolebinding delete a RoleBinding """ pass def test_delete_namespaced_route(self): """ Test case for delete_namespaced_route delete a Route """ pass def test_delete_namespaced_routes(self): """ Test case for delete_namespaced_routes delete collection of Route """ pass def test_delete_namespaced_template(self): """ Test case for delete_namespaced_template delete a Template """ pass def test_delete_namespaced_templates(self): """ Test case for delete_namespaced_templates delete collection of Template """ pass def test_delete_netnamespace(self): """ Test case for delete_netnamespace delete a NetNamespace """ pass def test_delete_netnamespaces(self): """ Test case for delete_netnamespaces delete collection of NetNamespace """ pass def test_delete_oauthaccesstoken(self): """ Test case for delete_oauthaccesstoken delete a OAuthAccessToken """ pass def test_delete_oauthauthorizetoken(self): """ Test case for delete_oauthauthorizetoken delete a OAuthAuthorizeToken """ pass def test_delete_oauthclient(self): """ Test case for delete_oauthclient delete a OAuthClient """ pass def test_delete_oauthclientauthorization(self): """ Test case for delete_oauthclientauthorization delete a OAuthClientAuthorization """ pass def test_delete_oauthclientauthorizations(self): """ Test case for delete_oauthclientauthorizations delete collection of OAuthClientAuthorization """ pass def test_delete_oauthclients(self): """ Test case for delete_oauthclients delete collection of OAuthClient """ pass def test_delete_project(self): """ Test case for delete_project delete a Project """ pass def test_delete_user(self): """ Test case for delete_user delete a User """ pass def test_delete_useridentitymapping(self): """ Test case for delete_useridentitymapping delete a UserIdentityMapping """ pass def test_delete_users(self): """ Test case for delete_users delete collection of User """ pass def test_get_clusternetwork(self): """ Test case for get_clusternetwork read the specified ClusterNetwork """ pass def test_get_clusterpolicie(self): """ Test case for get_clusterpolicie read the specified ClusterPolicy """ pass def test_get_clusterpolicybinding(self): """ Test case for get_clusterpolicybinding read the specified ClusterPolicyBinding """ pass def test_get_clusterrole(self): """ Test case for get_clusterrole read the specified ClusterRole """ pass def test_get_clusterrolebinding(self): """ Test case for get_clusterrolebinding read the specified ClusterRoleBinding """ pass def test_get_group(self): """ Test case for get_group read the specified Group """ pass def test_get_hostsubnet(self): """ Test case for get_hostsubnet read the specified HostSubnet """ pass def test_get_identitie(self): """ Test case for get_identitie read the specified Identity """ pass def test_get_image(self): """ Test case for get_image read the specified Image """ pass def test_get_namespaced_build(self): """ Test case for get_namespaced_build read the specified Build """ pass def test_get_namespaced_build_log(self): """ Test case for get_namespaced_build_log read log of the specified BuildLog """ pass def test_get_namespaced_buildconfig(self): """ Test case for get_namespaced_buildconfig read the specified BuildConfig """ pass def test_get_namespaced_deploymentconfig(self): """ Test case for get_namespaced_deploymentconfig read the specified DeploymentConfig """ pass def test_get_namespaced_deploymentconfig_log(self): """ Test case for get_namespaced_deploymentconfig_log read log of the specified DeploymentLog """ pass def test_get_namespaced_deploymentconfig_scale(self): """ Test case for get_namespaced_deploymentconfig_scale read scale of the specified Scale """ pass def test_get_namespaced_generatedeploymentconfig(self): """ Test case for get_namespaced_generatedeploymentconfig read the specified DeploymentConfig """ pass def test_get_namespaced_imagestream(self): """ Test case for get_namespaced_imagestream read the specified ImageStream """ pass def test_get_namespaced_imagestream_secrets(self): """ Test case for get_namespaced_imagestream_secrets read secrets of the specified SecretList """ pass def test_get_namespaced_imagestreamimage(self): """ Test case for get_namespaced_imagestreamimage read the specified ImageStreamImage """ pass def test_get_namespaced_imagestreamtag(self): """ Test case for get_namespaced_imagestreamtag read the specified ImageStreamTag """ pass def test_get_namespaced_policie(self): """ Test case for get_namespaced_policie read the specified Policy """ pass def test_get_namespaced_policybinding(self): """ Test case for get_namespaced_policybinding read the specified PolicyBinding """ pass def test_get_namespaced_role(self): """ Test case for get_namespaced_role read the specified Role """ pass def test_get_namespaced_rolebinding(self): """ Test case for get_namespaced_rolebinding read the specified RoleBinding """ pass def test_get_namespaced_route(self): """ Test case for get_namespaced_route read the specified Route """ pass def test_get_namespaced_template(self): """ Test case for get_namespaced_template read the specified Template """ pass def test_get_netnamespace(self): """ Test case for get_netnamespace read the specified NetNamespace """ pass def test_get_oauthaccesstoken(self): """ Test case for get_oauthaccesstoken read the specified OAuthAccessToken """ pass def test_get_oauthauthorizetoken(self): """ Test case for get_oauthauthorizetoken read the specified OAuthAuthorizeToken """ pass def test_get_oauthclient(self): """ Test case for get_oauthclient read the specified OAuthClient """ pass def test_get_oauthclientauthorization(self): """ Test case for get_oauthclientauthorization read the specified OAuthClientAuthorization """ pass def test_get_project(self): """ Test case for get_project read the specified Project """ pass def test_get_user(self): """ Test case for get_user read the specified User """ pass def test_get_useridentitymapping(self): """ Test case for get_useridentitymapping read the specified UserIdentityMapping """ pass def test_list(self): """ Test case for list get available resources """ pass def test_list_buildconfigs(self): """ Test case for list_buildconfigs list or watch objects of kind BuildConfig """ pass def test_list_builds(self): """ Test case for list_builds list or watch objects of kind Build """ pass def test_list_clusternetworks(self): """ Test case for list_clusternetworks list or watch objects of kind ClusterNetwork """ pass def test_list_clusterpolicies(self): """ Test case for list_clusterpolicies list or watch objects of kind ClusterPolicy """ pass def test_list_clusterpolicybindings(self): """ Test case for list_clusterpolicybindings list or watch objects of kind ClusterPolicyBinding """ pass def test_list_clusterrolebindings(self): """ Test case for list_clusterrolebindings list objects of kind ClusterRoleBinding """ pass def test_list_clusterroles(self): """ Test case for list_clusterroles list objects of kind ClusterRole """ pass def test_list_deploymentconfigs(self): """ Test case for list_deploymentconfigs list or watch objects of kind DeploymentConfig """ pass def test_list_groups(self): """ Test case for list_groups list or watch objects of kind Group """ pass def test_list_hostsubnets(self): """ Test case for list_hostsubnets list or watch objects of kind HostSubnet """ pass def test_list_identities(self): """ Test case for list_identities list or watch objects of kind Identity """ pass def test_list_images(self): """ Test case for list_images list or watch objects of kind Image """ pass def test_list_imagestreams(self): """ Test case for list_imagestreams list or watch objects of kind ImageStream """ pass def test_list_imagestreamtags(self): """ Test case for list_imagestreamtags list objects of kind ImageStreamTag """ pass def test_list_namespaced_buildconfigs(self): """ Test case for list_namespaced_buildconfigs list or watch objects of kind BuildConfig """ pass def test_list_namespaced_builds(self): """ Test case for list_namespaced_builds list or watch objects of kind Build """ pass def test_list_namespaced_deploymentconfigs(self): """ Test case for list_namespaced_deploymentconfigs list or watch objects of kind DeploymentConfig """ pass def test_list_namespaced_imagestreams(self): """ Test case for list_namespaced_imagestreams list or watch objects of kind ImageStream """ pass def test_list_namespaced_imagestreamtags(self): """ Test case for list_namespaced_imagestreamtags list objects of kind ImageStreamTag """ pass def test_list_namespaced_policies(self): """ Test case for list_namespaced_policies list or watch objects of kind Policy """ pass def test_list_namespaced_policybindings(self): """ Test case for list_namespaced_policybindings list or watch objects of kind PolicyBinding """ pass def test_list_namespaced_rolebindings(self): """ Test case for list_namespaced_rolebindings list objects of kind RoleBinding """ pass def test_list_namespaced_roles(self): """ Test case for list_namespaced_roles list objects of kind Role """ pass def test_list_namespaced_routes(self): """ Test case for list_namespaced_routes list or watch objects of kind Route """ pass def test_list_namespaced_templates(self): """ Test case for list_namespaced_templates list or watch objects of kind Template """ pass def test_list_netnamespaces(self): """ Test case for list_netnamespaces list or watch objects of kind NetNamespace """ pass def test_list_oauthaccesstokens(self): """ Test case for list_oauthaccesstokens list objects of kind OAuthAccessToken """ pass def test_list_oauthauthorizetokens(self): """ Test case for list_oauthauthorizetokens list objects of kind OAuthAuthorizeToken """ pass def test_list_oauthclientauthorizations(self): """ Test case for list_oauthclientauthorizations list or watch objects of kind OAuthClientAuthorization """ pass def test_list_oauthclients(self): """ Test case for list_oauthclients list or watch objects of kind OAuthClient """ pass def test_list_policies(self): """ Test case for list_policies list or watch objects of kind Policy """ pass def test_list_policybindings(self): """ Test case for list_policybindings list or watch objects of kind PolicyBinding """ pass def test_list_projectrequests(self): """ Test case for list_projectrequests list objects of kind ProjectRequest """ pass def test_list_projects(self): """ Test case for list_projects list objects of kind Project """ pass def test_list_rolebindings(self): """ Test case for list_rolebindings list objects of kind RoleBinding """ pass def test_list_roles(self): """ Test case for list_roles list objects of kind Role """ pass def test_list_routes(self): """ Test case for list_routes list or watch objects of kind Route """ pass def test_list_templates(self): """ Test case for list_templates list or watch objects of kind Template """ pass def test_list_users(self): """ Test case for list_users list or watch objects of kind User """ pass def test_patch_clusternetwork(self): """ Test case for patch_clusternetwork partially update the specified ClusterNetwork """ pass def test_patch_clusterpolicie(self): """ Test case for patch_clusterpolicie partially update the specified ClusterPolicy """ pass def test_patch_clusterpolicybinding(self): """ Test case for patch_clusterpolicybinding partially update the specified ClusterPolicyBinding """ pass def test_patch_clusterrole(self): """ Test case for patch_clusterrole partially update the specified ClusterRole """ pass def test_patch_clusterrolebinding(self): """ Test case for patch_clusterrolebinding partially update the specified ClusterRoleBinding """ pass def test_patch_group(self): """ Test case for patch_group partially update the specified Group """ pass def test_patch_hostsubnet(self): """ Test case for patch_hostsubnet partially update the specified HostSubnet """ pass def test_patch_identitie(self): """ Test case for patch_identitie partially update the specified Identity """ pass def test_patch_image(self): """ Test case for patch_image partially update the specified Image """ pass def test_patch_namespaced_build(self): """ Test case for patch_namespaced_build partially update the specified Build """ pass def test_patch_namespaced_buildconfig(self): """ Test case for patch_namespaced_buildconfig partially update the specified BuildConfig """ pass def test_patch_namespaced_deploymentconfig(self): """ Test case for patch_namespaced_deploymentconfig partially update the specified DeploymentConfig """ pass def test_patch_namespaced_deploymentconfig_scale(self): """ Test case for patch_namespaced_deploymentconfig_scale partially update scale of the specified Scale """ pass def test_patch_namespaced_imagestream(self): """ Test case for patch_namespaced_imagestream partially update the specified ImageStream """ pass def test_patch_namespaced_imagestreamtag(self): """ Test case for patch_namespaced_imagestreamtag partially update the specified ImageStreamTag """ pass def test_patch_namespaced_policie(self): """ Test case for patch_namespaced_policie partially update the specified Policy """ pass def test_patch_namespaced_policybinding(self): """ Test case for patch_namespaced_policybinding partially update the specified PolicyBinding """ pass def test_patch_namespaced_role(self): """ Test case for patch_namespaced_role partially update the specified Role """ pass def test_patch_namespaced_rolebinding(self): """ Test case for patch_namespaced_rolebinding partially update the specified RoleBinding """ pass def test_patch_namespaced_route(self): """ Test case for patch_namespaced_route partially update the specified Route """ pass def test_patch_namespaced_template(self): """ Test case for patch_namespaced_template partially update the specified Template """ pass def test_patch_netnamespace(self): """ Test case for patch_netnamespace partially update the specified NetNamespace """ pass def test_patch_oauthclient(self): """ Test case for patch_oauthclient partially update the specified OAuthClient """ pass def test_patch_oauthclientauthorization(self): """ Test case for patch_oauthclientauthorization partially update the specified OAuthClientAuthorization """ pass def test_patch_project(self): """ Test case for patch_project partially update the specified Project """ pass def test_patch_user(self): """ Test case for patch_user partially update the specified User """ pass def test_patch_useridentitymapping(self): """ Test case for patch_useridentitymapping partially update the specified UserIdentityMapping """ pass def test_replace_clusternetwork(self): """ Test case for replace_clusternetwork replace the specified ClusterNetwork """ pass def test_replace_clusterpolicie(self): """ Test case for replace_clusterpolicie replace the specified ClusterPolicy """ pass def test_replace_clusterpolicybinding(self): """ Test case for replace_clusterpolicybinding replace the specified ClusterPolicyBinding """ pass def test_replace_clusterrole(self): """ Test case for replace_clusterrole replace the specified ClusterRole """ pass def test_replace_clusterrolebinding(self): """ Test case for replace_clusterrolebinding replace the specified ClusterRoleBinding """ pass def test_replace_group(self): """ Test case for replace_group replace the specified Group """ pass def test_replace_hostsubnet(self): """ Test case for replace_hostsubnet replace the specified HostSubnet """ pass def test_replace_identitie(self): """ Test case for replace_identitie replace the specified Identity """ pass def test_replace_image(self): """ Test case for replace_image replace the specified Image """ pass def test_replace_namespaced_build(self): """ Test case for replace_namespaced_build replace the specified Build """ pass def test_replace_namespaced_build_details(self): """ Test case for replace_namespaced_build_details replace details of the specified Build """ pass def test_replace_namespaced_buildconfig(self): """ Test case for replace_namespaced_buildconfig replace the specified BuildConfig """ pass def test_replace_namespaced_deploymentconfig(self): """ Test case for replace_namespaced_deploymentconfig replace the specified DeploymentConfig """ pass def test_replace_namespaced_deploymentconfig_scale(self): """ Test case for replace_namespaced_deploymentconfig_scale replace scale of the specified Scale """ pass def test_replace_namespaced_imagestream(self): """ Test case for replace_namespaced_imagestream replace the specified ImageStream """ pass def test_replace_namespaced_imagestream_status(self): """ Test case for replace_namespaced_imagestream_status replace status of the specified ImageStream """ pass def test_replace_namespaced_imagestreamtag(self): """ Test case for replace_namespaced_imagestreamtag replace the specified ImageStreamTag """ pass def test_replace_namespaced_policie(self): """ Test case for replace_namespaced_policie replace the specified Policy """ pass def test_replace_namespaced_policybinding(self): """ Test case for replace_namespaced_policybinding replace the specified PolicyBinding """ pass def test_replace_namespaced_role(self): """ Test case for replace_namespaced_role replace the specified Role """ pass def test_replace_namespaced_rolebinding(self): """ Test case for replace_namespaced_rolebinding replace the specified RoleBinding """ pass def test_replace_namespaced_route(self): """ Test case for replace_namespaced_route replace the specified Route """ pass def test_replace_namespaced_route_status(self): """ Test case for replace_namespaced_route_status replace status of the specified Route """ pass def test_replace_namespaced_template(self): """ Test case for replace_namespaced_template replace the specified Template """ pass def test_replace_netnamespace(self): """ Test case for replace_netnamespace replace the specified NetNamespace """ pass def test_replace_oauthclient(self): """ Test case for replace_oauthclient replace the specified OAuthClient """ pass def test_replace_oauthclientauthorization(self): """ Test case for replace_oauthclientauthorization replace the specified OAuthClientAuthorization """ pass def test_replace_project(self): """ Test case for replace_project replace the specified Project """ pass def test_replace_user(self): """ Test case for replace_user replace the specified User """ pass def test_replace_useridentitymapping(self): """ Test case for replace_useridentitymapping replace the specified UserIdentityMapping """ pass def test_watch_namespaced_watch_build(self): """ Test case for watch_namespaced_watch_build watch changes to an object of kind Build """ pass def test_watch_namespaced_watch_buildconfig(self): """ Test case for watch_namespaced_watch_buildconfig watch changes to an object of kind BuildConfig """ pass def test_watch_namespaced_watch_buildconfigs(self): """ Test case for watch_namespaced_watch_buildconfigs watch individual changes to a list of BuildConfig """ pass def test_watch_namespaced_watch_builds(self): """ Test case for watch_namespaced_watch_builds watch individual changes to a list of Build """ pass def test_watch_namespaced_watch_deploymentconfig(self): """ Test case for watch_namespaced_watch_deploymentconfig watch changes to an object of kind DeploymentConfig """ pass def test_watch_namespaced_watch_deploymentconfigs(self): """ Test case for watch_namespaced_watch_deploymentconfigs watch individual changes to a list of DeploymentConfig """ pass def test_watch_namespaced_watch_imagestream(self): """ Test case for watch_namespaced_watch_imagestream watch changes to an object of kind ImageStream """ pass def test_watch_namespaced_watch_imagestreams(self): """ Test case for watch_namespaced_watch_imagestreams watch individual changes to a list of ImageStream """ pass def test_watch_namespaced_watch_policie(self): """ Test case for watch_namespaced_watch_policie watch changes to an object of kind Policy """ pass def test_watch_namespaced_watch_policies(self): """ Test case for watch_namespaced_watch_policies watch individual changes to a list of Policy """ pass def test_watch_namespaced_watch_policybinding(self): """ Test case for watch_namespaced_watch_policybinding watch changes to an object of kind PolicyBinding """ pass def test_watch_namespaced_watch_policybindings(self): """ Test case for watch_namespaced_watch_policybindings watch individual changes to a list of PolicyBinding """ pass def test_watch_namespaced_watch_route(self): """ Test case for watch_namespaced_watch_route watch changes to an object of kind Route """ pass def test_watch_namespaced_watch_routes(self): """ Test case for watch_namespaced_watch_routes watch individual changes to a list of Route """ pass def test_watch_namespaced_watch_template(self): """ Test case for watch_namespaced_watch_template watch changes to an object of kind Template """ pass def test_watch_namespaced_watch_templates(self): """ Test case for watch_namespaced_watch_templates watch individual changes to a list of Template """ pass def test_watch_watch_buildconfigs(self): """ Test case for watch_watch_buildconfigs watch individual changes to a list of BuildConfig """ pass def test_watch_watch_builds(self): """ Test case for watch_watch_builds watch individual changes to a list of Build """ pass def test_watch_watch_clusternetwork(self): """ Test case for watch_watch_clusternetwork watch changes to an object of kind ClusterNetwork """ pass def test_watch_watch_clusternetworks(self): """ Test case for watch_watch_clusternetworks watch individual changes to a list of ClusterNetwork """ pass def test_watch_watch_clusterpolicie(self): """ Test case for watch_watch_clusterpolicie watch changes to an object of kind ClusterPolicy """ pass def test_watch_watch_clusterpolicies(self): """ Test case for watch_watch_clusterpolicies watch individual changes to a list of ClusterPolicy """ pass def test_watch_watch_clusterpolicybinding(self): """ Test case for watch_watch_clusterpolicybinding watch changes to an object of kind ClusterPolicyBinding """ pass def test_watch_watch_clusterpolicybindings(self): """ Test case for watch_watch_clusterpolicybindings watch individual changes to a list of ClusterPolicyBinding """ pass def test_watch_watch_deploymentconfigs(self): """ Test case for watch_watch_deploymentconfigs watch individual changes to a list of DeploymentConfig """ pass def test_watch_watch_group(self): """ Test case for watch_watch_group watch changes to an object of kind Group """ pass def test_watch_watch_groups(self): """ Test case for watch_watch_groups watch individual changes to a list of Group """ pass def test_watch_watch_hostsubnet(self): """ Test case for watch_watch_hostsubnet watch changes to an object of kind HostSubnet """ pass def test_watch_watch_hostsubnets(self): """ Test case for watch_watch_hostsubnets watch individual changes to a list of HostSubnet """ pass def test_watch_watch_identitie(self): """ Test case for watch_watch_identitie watch changes to an object of kind Identity """ pass def test_watch_watch_identities(self): """ Test case for watch_watch_identities watch individual changes to a list of Identity """ pass def test_watch_watch_image(self): """ Test case for watch_watch_image watch changes to an object of kind Image """ pass def test_watch_watch_images(self): """ Test case for watch_watch_images watch individual changes to a list of Image """ pass def test_watch_watch_imagestreams(self): """ Test case for watch_watch_imagestreams watch individual changes to a list of ImageStream """ pass def test_watch_watch_netnamespace(self): """ Test case for watch_watch_netnamespace watch changes to an object of kind NetNamespace """ pass def test_watch_watch_netnamespaces(self): """ Test case for watch_watch_netnamespaces watch individual changes to a list of NetNamespace """ pass def test_watch_watch_oauthclient(self): """ Test case for watch_watch_oauthclient watch changes to an object of kind OAuthClient """ pass def test_watch_watch_oauthclientauthorization(self): """ Test case for watch_watch_oauthclientauthorization watch changes to an object of kind OAuthClientAuthorization """ pass def test_watch_watch_oauthclientauthorizations(self): """ Test case for watch_watch_oauthclientauthorizations watch individual changes to a list of OAuthClientAuthorization """ pass def test_watch_watch_oauthclients(self): """ Test case for watch_watch_oauthclients watch individual changes to a list of OAuthClient """ pass def test_watch_watch_policies(self): """ Test case for watch_watch_policies watch individual changes to a list of Policy """ pass def test_watch_watch_policybindings(self): """ Test case for watch_watch_policybindings watch individual changes to a list of PolicyBinding """ pass def test_watch_watch_routes(self): """ Test case for watch_watch_routes watch individual changes to a list of Route """ pass def test_watch_watch_templates(self): """ Test case for watch_watch_templates watch individual changes to a list of Template """ pass def test_watch_watch_user(self): """ Test case for watch_watch_user watch changes to an object of kind User """ pass def test_watch_watch_users(self): """ Test case for watch_watch_users watch individual changes to a list of User """ pass if __name__ == '__main__': unittest.main()
# Copyright 2019, Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections from absl.testing import parameterized import tensorflow as tf from tensorflow_federated.python.core.backends.native import execution_contexts from tensorflow_federated.python.simulation.baselines import client_spec from tensorflow_federated.python.simulation.baselines.stackoverflow import word_prediction_preprocessing TEST_DATA = collections.OrderedDict( creation_date=(['unused date']), score=([tf.constant(0, dtype=tf.int64)]), tags=(['unused test tag']), title=(['unused title']), tokens=(['one must imagine']), type=(['unused type']), ) def _compute_length_of_dataset(ds): return ds.reduce(0, lambda x, _: x + 1) class SplitInputTest(tf.test.TestCase): def test_split_input_returns_expected_result(self): tokens = tf.constant([[0, 1, 2, 3, 4]], dtype=tf.int64) expected_input = [[0, 1, 2, 3]] expected_target = [[1, 2, 3, 4]] split = word_prediction_preprocessing.split_input_target(tokens) self.assertAllEqual(self.evaluate(split[0]), expected_input) self.assertAllEqual(self.evaluate(split[1]), expected_target) class ToIDsFnTest(tf.test.TestCase): def test_ids_fn_truncates_on_input_longer_than_sequence_length(self): vocab = ['A', 'B', 'C'] max_seq_len = 1 bos = word_prediction_preprocessing.get_special_tokens( len(vocab)).beginning_of_sentence to_ids_fn = word_prediction_preprocessing.build_to_ids_fn( vocab, max_seq_len) data = {'tokens': 'A B C'} processed = to_ids_fn(data) self.assertAllEqual(self.evaluate(processed), [bos, 1]) def test_build_to_ids_fn_embeds_all_vocab(self): vocab = ['A', 'B', 'C'] max_seq_len = 5 special_tokens = word_prediction_preprocessing.get_special_tokens( len(vocab)) bos = special_tokens.beginning_of_sentence eos = special_tokens.end_of_sentence to_ids_fn = word_prediction_preprocessing.build_to_ids_fn( vocab, max_seq_len) data = {'tokens': 'A B C'} processed = to_ids_fn(data) self.assertAllEqual(self.evaluate(processed), [bos, 1, 2, 3, eos]) def test_pad_token_correct(self): vocab = ['A', 'B', 'C'] max_seq_len = 5 to_ids_fn = word_prediction_preprocessing.build_to_ids_fn( vocab, max_seq_len) special_tokens = word_prediction_preprocessing.get_special_tokens( len(vocab)) pad = special_tokens.padding bos = special_tokens.beginning_of_sentence eos = special_tokens.end_of_sentence data = {'tokens': 'A B C'} processed = to_ids_fn(data) batched_ds = tf.data.Dataset.from_tensor_slices([processed]).padded_batch( 1, padded_shapes=[6]) sample_elem = next(iter(batched_ds)) self.assertAllEqual(self.evaluate(sample_elem), [[bos, 1, 2, 3, eos, pad]]) def test_out_of_vocab_tokens_are_correct(self): vocab = ['A', 'B', 'C'] max_seq_len = 5 num_out_of_vocab_buckets = 2 to_ids_fn = word_prediction_preprocessing.build_to_ids_fn( vocab, max_seq_len, num_out_of_vocab_buckets=num_out_of_vocab_buckets) out_of_vocab_tokens = word_prediction_preprocessing.get_special_tokens( len(vocab), num_out_of_vocab_buckets=num_out_of_vocab_buckets).out_of_vocab data = {'tokens': 'A B D'} processed = to_ids_fn(data) self.assertLen(out_of_vocab_tokens, num_out_of_vocab_buckets) self.assertIn(self.evaluate(processed)[3], out_of_vocab_tokens) class BatchAndSplitTest(tf.test.TestCase): def test_batch_and_split_fn_returns_dataset_with_correct_type_spec(self): token = tf.constant([[0, 1, 2, 3, 4]], dtype=tf.int64) ds = tf.data.Dataset.from_tensor_slices(token) padded_and_batched = word_prediction_preprocessing.batch_and_split( ds, sequence_length=6, batch_size=1) self.assertIsInstance(padded_and_batched, tf.data.Dataset) self.assertEqual(padded_and_batched.element_spec, (tf.TensorSpec( [None, 6], dtype=tf.int64), tf.TensorSpec([None, 6], dtype=tf.int64))) def test_batch_and_split_fn_returns_dataset_yielding_expected_elements(self): token = tf.constant([[0, 1, 2, 3, 4]], dtype=tf.int64) ds = tf.data.Dataset.from_tensor_slices(token) padded_and_batched = word_prediction_preprocessing.batch_and_split( ds, sequence_length=6, batch_size=1) num_elems = 0 for elem in padded_and_batched: self.assertAllEqual( self.evaluate(elem[0]), tf.constant([[0, 1, 2, 3, 4, 0]], dtype=tf.int64)) self.assertAllEqual( self.evaluate(elem[1]), tf.constant([[1, 2, 3, 4, 0, 0]], dtype=tf.int64)) num_elems += 1 self.assertEqual(num_elems, 1) class PreprocessFnTest(tf.test.TestCase, parameterized.TestCase): def test_preprocess_fn_with_empty_vocab_raises(self): preprocess_spec = client_spec.ClientSpec(num_epochs=1, batch_size=1) with self.assertRaisesRegex(ValueError, 'vocab must be non-empty'): word_prediction_preprocessing.create_preprocess_fn( preprocess_spec, vocab=[], sequence_length=10) @parameterized.named_parameters(('zero_value', 0), ('negative_value1', -1), ('negative_value2', -2)) def test_nonpositive_sequence_length_raises(self, sequence_length): del sequence_length # Unused. preprocess_spec = client_spec.ClientSpec(num_epochs=1, batch_size=1) with self.assertRaisesRegex(ValueError, 'sequence_length must be a positive integer'): word_prediction_preprocessing.create_preprocess_fn( preprocess_spec, vocab=['A'], sequence_length=0) @parameterized.named_parameters(('zero_value', 0), ('negative_value1', -1), ('negative_value2', -2)) def test_nonpositive_num_out_of_vocab_buckets_length_raises( self, num_out_of_vocab_buckets): preprocess_spec = client_spec.ClientSpec(num_epochs=1, batch_size=1) with self.assertRaisesRegex( ValueError, 'num_out_of_vocab_buckets must be a positive integer'): word_prediction_preprocessing.create_preprocess_fn( preprocess_spec, vocab=['A'], sequence_length=10, num_out_of_vocab_buckets=num_out_of_vocab_buckets) @parameterized.named_parameters(('param1', 1, 1), ('param2', 4, 2), ('param3', 100, 3)) def test_preprocess_fn_returns_correct_dataset_element_spec( self, sequence_length, num_out_of_vocab_buckets): ds = tf.data.Dataset.from_tensor_slices(TEST_DATA) preprocess_spec = client_spec.ClientSpec( num_epochs=1, batch_size=32, max_elements=100) preprocess_fn = word_prediction_preprocessing.create_preprocess_fn( preprocess_spec, sequence_length=sequence_length, vocab=['one', 'must'], num_out_of_vocab_buckets=num_out_of_vocab_buckets) preprocessed_ds = preprocess_fn(ds) self.assertEqual( preprocessed_ds.element_spec, (tf.TensorSpec(shape=[None, sequence_length], dtype=tf.int64), tf.TensorSpec(shape=[None, sequence_length], dtype=tf.int64))) def test_preprocess_fn_returns_correct_sequence_with_1_out_of_vocab_bucket( self): ds = tf.data.Dataset.from_tensor_slices(TEST_DATA) preprocess_spec = client_spec.ClientSpec( num_epochs=1, batch_size=32, max_elements=100) preprocess_fn = word_prediction_preprocessing.create_preprocess_fn( preprocess_spec, sequence_length=6, vocab=['one', 'must'], num_out_of_vocab_buckets=1) preprocessed_ds = preprocess_fn(ds) element = next(iter(preprocessed_ds)) # BOS is len(vocab)+2, EOS is len(vocab)+3, pad is 0, OOV is len(vocab)+1 self.assertAllEqual( self.evaluate(element[0]), tf.constant([[4, 1, 2, 3, 5, 0]], dtype=tf.int64)) def test_preprocess_fn_returns_correct_sequence_with_3_out_of_vocab_buckets( self): ds = tf.data.Dataset.from_tensor_slices(TEST_DATA) preprocess_spec = client_spec.ClientSpec( num_epochs=1, batch_size=32, max_elements=100) preprocess_fn = word_prediction_preprocessing.create_preprocess_fn( preprocess_spec, sequence_length=6, vocab=['one', 'must'], num_out_of_vocab_buckets=3) preprocessed_ds = preprocess_fn(ds) element = next(iter(preprocessed_ds)) # BOS is len(vocab)+3+1 self.assertEqual(self.evaluate(element[0])[0][0], 6) self.assertEqual(self.evaluate(element[0])[0][1], 1) self.assertEqual(self.evaluate(element[0])[0][2], 2) # OOV is [len(vocab)+1, len(vocab)+2, len(vocab)+3] self.assertIn(self.evaluate(element[0])[0][3], [3, 4, 5]) # EOS is len(vocab)+3+2 self.assertEqual(self.evaluate(element[0])[0][4], 7) # pad is 0 self.assertEqual(self.evaluate(element[0])[0][5], 0) @parameterized.named_parameters( ('num_epochs_1_batch_size_1', 1, 1), ('num_epochs_4_batch_size_2', 4, 2), ('num_epochs_9_batch_size_3', 9, 3), ('num_epochs_12_batch_size_1', 12, 1), ('num_epochs_3_batch_size_5', 3, 5), ('num_epochs_7_batch_size_2', 7, 2), ) def test_ds_length_is_ceil_num_epochs_over_batch_size(self, num_epochs, batch_size): ds = tf.data.Dataset.from_tensor_slices(TEST_DATA) preprocess_spec = client_spec.ClientSpec( num_epochs=num_epochs, batch_size=batch_size) preprocess_fn = word_prediction_preprocessing.create_preprocess_fn( preprocess_spec, vocab=['A'], sequence_length=10) preprocessed_ds = preprocess_fn(ds) self.assertEqual( _compute_length_of_dataset(preprocessed_ds), tf.cast(tf.math.ceil(num_epochs / batch_size), tf.int32)) @parameterized.named_parameters( ('max_elements1', 1), ('max_elements3', 3), ('max_elements7', 7), ('max_elements11', 11), ('max_elements18', 18), ) def test_ds_length_with_max_elements(self, max_elements): repeat_size = 10 ds = tf.data.Dataset.from_tensor_slices(TEST_DATA) preprocess_spec = client_spec.ClientSpec( num_epochs=repeat_size, batch_size=1, max_elements=max_elements) preprocess_fn = word_prediction_preprocessing.create_preprocess_fn( preprocess_spec, vocab=['A']) preprocessed_ds = preprocess_fn(ds) self.assertEqual( _compute_length_of_dataset(preprocessed_ds), min(repeat_size, max_elements)) if __name__ == '__main__': execution_contexts.set_local_python_execution_context() tf.test.main()
"""Base class for sparse matrices""" from __future__ import division, print_function, absolute_import __all__ = ['spmatrix', 'isspmatrix', 'issparse', 'SparseWarning','SparseEfficiencyWarning'] import sys import numpy as np from scipy._lib.six import xrange from .sputils import isdense, isscalarlike, isintlike class SparseWarning(Warning): pass class SparseFormatWarning(SparseWarning): pass class SparseEfficiencyWarning(SparseWarning): pass # The formats that we might potentially understand. _formats = {'csc':[0, "Compressed Sparse Column"], 'csr':[1, "Compressed Sparse Row"], 'dok':[2, "Dictionary Of Keys"], 'lil':[3, "LInked List"], 'dod':[4, "Dictionary of Dictionaries"], 'sss':[5, "Symmetric Sparse Skyline"], 'coo':[6, "COOrdinate"], 'lba':[7, "Linpack BAnded"], 'egd':[8, "Ellpack-itpack Generalized Diagonal"], 'dia':[9, "DIAgonal"], 'bsr':[10, "Block Sparse Row"], 'msr':[11, "Modified compressed Sparse Row"], 'bsc':[12, "Block Sparse Column"], 'msc':[13, "Modified compressed Sparse Column"], 'ssk':[14, "Symmetric SKyline"], 'nsk':[15, "Nonsymmetric SKyline"], 'jad':[16, "JAgged Diagonal"], 'uss':[17, "Unsymmetric Sparse Skyline"], 'vbr':[18, "Variable Block Row"], 'und':[19, "Undefined"] } # These univariate ufuncs preserve zeros. _ufuncs_with_fixed_point_at_zero = frozenset([ np.sin, np.tan, np.arcsin, np.arctan, np.sinh, np.tanh, np.arcsinh, np.arctanh, np.rint, np.sign, np.expm1, np.log1p, np.deg2rad, np.rad2deg, np.floor, np.ceil, np.trunc, np.sqrt]) MAXPRINT = 50 class spmatrix(object): """ This class provides a base class for all sparse matrices. It cannot be instantiated. Most of the work is provided by subclasses. """ __array_priority__ = 10.1 ndim = 2 def __init__(self, maxprint=MAXPRINT): self.format = self.__class__.__name__[:3] self._shape = None if self.format == 'spm': raise ValueError("This class is not intended" " to be instantiated directly.") self.maxprint = maxprint def set_shape(self,shape): shape = tuple(shape) if len(shape) != 2: raise ValueError("Only two-dimensional sparse arrays " "are supported.") try: shape = int(shape[0]),int(shape[1]) # floats, other weirdness except: raise TypeError('invalid shape') if not (shape[0] >= 0 and shape[1] >= 0): raise ValueError('invalid shape') if (self._shape != shape) and (self._shape is not None): try: self = self.reshape(shape) except NotImplementedError: raise NotImplementedError("Reshaping not implemented for %s." % self.__class__.__name__) self._shape = shape def get_shape(self): return self._shape shape = property(fget=get_shape, fset=set_shape) def reshape(self, shape): raise NotImplementedError("Reshaping not implemented for %s." % self.__class__.__name__) def astype(self, t): return self.tocsr().astype(t).asformat(self.format) def asfptype(self): """Upcast matrix to a floating point format (if necessary)""" fp_types = ['f','d','F','D'] if self.dtype.char in fp_types: return self else: for fp_type in fp_types: if self.dtype <= np.dtype(fp_type): return self.astype(fp_type) raise TypeError('cannot upcast [%s] to a floating ' 'point format' % self.dtype.name) def __iter__(self): for r in xrange(self.shape[0]): yield self[r,:] def getmaxprint(self): try: maxprint = self.maxprint except AttributeError: maxprint = MAXPRINT return maxprint # def typecode(self): # try: # typ = self.dtype.char # except AttributeError: # typ = None # return typ def getnnz(self): try: return self.nnz except AttributeError: raise AttributeError("nnz not defined") def getformat(self): try: format = self.format except AttributeError: format = 'und' return format def __repr__(self): nnz = self.getnnz() format = self.getformat() return "<%dx%d sparse matrix of type '%s'\n" \ "\twith %d stored elements in %s format>" % \ (self.shape + (self.dtype.type, nnz, _formats[format][1])) def __str__(self): maxprint = self.getmaxprint() A = self.tocoo() nnz = self.getnnz() # helper function, outputs "(i,j) v" def tostr(row,col,data): triples = zip(list(zip(row,col)),data) return '\n'.join([(' %s\t%s' % t) for t in triples]) if nnz > maxprint: half = maxprint // 2 out = tostr(A.row[:half], A.col[:half], A.data[:half]) out += "\n :\t:\n" half = maxprint - maxprint//2 out += tostr(A.row[-half:], A.col[-half:], A.data[-half:]) else: out = tostr(A.row, A.col, A.data) return out def __bool__(self): # Simple -- other ideas? if self.shape == (1, 1): return True if self.nnz == 1 else False else: raise ValueError("The truth value of an array with more than one " "element is ambiguous. Use a.any() or a.all().") __nonzero__ = __bool__ # What should len(sparse) return? For consistency with dense matrices, # perhaps it should be the number of rows? But for some uses the number of # non-zeros is more important. For now, raise an exception! def __len__(self): # return self.getnnz() raise TypeError("sparse matrix length is ambiguous; use getnnz()" " or shape[0]") def asformat(self, format): """Return this matrix in a given sparse format Parameters ---------- format : {string, None} desired sparse matrix format - None for no format conversion - "csr" for csr_matrix format - "csc" for csc_matrix format - "lil" for lil_matrix format - "dok" for dok_matrix format and so on """ if format is None or format == self.format: return self else: return getattr(self,'to' + format)() ################################################################### # NOTE: All arithmetic operations use csr_matrix by default. # Therefore a new sparse matrix format just needs to define a # .tocsr() method to provide arithmetic support. Any of these # methods can be overridden for efficiency. #################################################################### def multiply(self, other): """Point-wise multiplication by another matrix """ return self.tocsr().multiply(other) def maximum(self, other): return self.tocsr().maximum(other) def minimum(self, other): return self.tocsr().minimum(other) def dot(self, other): """Ordinary dot product Examples -------- >>> import numpy as np >>> from scipy.sparse import csr_matrix >>> A = csr_matrix([[1, 2, 0], [0, 0, 3], [4, 0, 5]]) >>> v = np.array([1, 0, -1]) >>> A.dot(v) array([ 1, -3, -1], dtype=int64) """ return self * other def power(self, n, dtype=None): return self.tocsr().power(n, dtype=dtype) def __eq__(self, other): return self.tocsr().__eq__(other) def __ne__(self, other): return self.tocsr().__ne__(other) def __lt__(self,other): return self.tocsr().__lt__(other) def __gt__(self,other): return self.tocsr().__gt__(other) def __le__(self,other): return self.tocsr().__le__(other) def __ge__(self,other): return self.tocsr().__ge__(other) def __abs__(self): return abs(self.tocsr()) def __add__(self, other): # self + other return self.tocsr().__add__(other) def __radd__(self, other): # other + self return self.tocsr().__radd__(other) def __sub__(self, other): # self - other # note: this can't be replaced by self + (-other) for unsigned types return self.tocsr().__sub__(other) def __rsub__(self, other): # other - self return self.tocsr().__rsub__(other) def __mul__(self, other): """interpret other and call one of the following self._mul_scalar() self._mul_vector() self._mul_multivector() self._mul_sparse_matrix() """ M,N = self.shape if other.__class__ is np.ndarray: # Fast path for the most common case if other.shape == (N,): return self._mul_vector(other) elif other.shape == (N, 1): return self._mul_vector(other.ravel()).reshape(M, 1) elif other.ndim == 2 and other.shape[0] == N: return self._mul_multivector(other) if isscalarlike(other): # scalar value return self._mul_scalar(other) if issparse(other): if self.shape[1] != other.shape[0]: raise ValueError('dimension mismatch') return self._mul_sparse_matrix(other) try: other.shape except AttributeError: # If it's a list or whatever, treat it like a matrix other_a = np.asanyarray(other) if other_a.ndim == 0 and other_a.dtype == np.object_: # Not interpretable as an array; return NotImplemented so that # other's __rmul__ can kick in if that's implemented. return NotImplemented other = other_a if other.ndim == 1 or other.ndim == 2 and other.shape[1] == 1: # dense row or column vector if other.shape != (N,) and other.shape != (N,1): raise ValueError('dimension mismatch') result = self._mul_vector(np.ravel(other)) if isinstance(other, np.matrix): result = np.asmatrix(result) if other.ndim == 2 and other.shape[1] == 1: # If 'other' was an (nx1) column vector, reshape the result result = result.reshape(-1,1) return result elif other.ndim == 2: ## # dense 2D array or matrix ("multivector") if other.shape[0] != self.shape[1]: raise ValueError('dimension mismatch') result = self._mul_multivector(np.asarray(other)) if isinstance(other, np.matrix): result = np.asmatrix(result) return result else: raise ValueError('could not interpret dimensions') # by default, use CSR for __mul__ handlers def _mul_scalar(self, other): return self.tocsr()._mul_scalar(other) def _mul_vector(self, other): return self.tocsr()._mul_vector(other) def _mul_multivector(self, other): return self.tocsr()._mul_multivector(other) def _mul_sparse_matrix(self, other): return self.tocsr()._mul_sparse_matrix(other) def __rmul__(self, other): # other * self if isscalarlike(other): return self.__mul__(other) else: # Don't use asarray unless we have to try: tr = other.transpose() except AttributeError: tr = np.asarray(other).transpose() return (self.transpose() * tr).transpose() #################### # Other Arithmetic # #################### def _divide(self, other, true_divide=False, rdivide=False): if isscalarlike(other): if rdivide: if true_divide: return np.true_divide(other, self.todense()) else: return np.divide(other, self.todense()) if true_divide and np.can_cast(self.dtype, np.float_): return self.astype(np.float_)._mul_scalar(1./other) else: r = self._mul_scalar(1./other) scalar_dtype = np.asarray(other).dtype if (np.issubdtype(self.dtype, np.integer) and np.issubdtype(scalar_dtype, np.integer)): return r.astype(self.dtype) else: return r elif isdense(other): if not rdivide: if true_divide: return np.true_divide(self.todense(), other) else: return np.divide(self.todense(), other) else: if true_divide: return np.true_divide(other, self.todense()) else: return np.divide(other, self.todense()) elif isspmatrix(other): if rdivide: return other._divide(self, true_divide, rdivide=False) self_csr = self.tocsr() if true_divide and np.can_cast(self.dtype, np.float_): return self_csr.astype(np.float_)._divide_sparse(other) else: return self_csr._divide_sparse(other) else: return NotImplemented def __truediv__(self, other): return self._divide(other, true_divide=True) def __div__(self, other): # Always do true division return self._divide(other, true_divide=True) def __rtruediv__(self, other): # Implementing this as the inverse would be too magical -- bail out return NotImplemented def __rdiv__(self, other): # Implementing this as the inverse would be too magical -- bail out return NotImplemented def __neg__(self): return -self.tocsr() def __iadd__(self, other): return NotImplemented def __isub__(self, other): return NotImplemented def __imul__(self, other): return NotImplemented def __idiv__(self, other): return self.__itruediv__(other) def __itruediv__(self, other): return NotImplemented def __pow__(self, other): if self.shape[0] != self.shape[1]: raise TypeError('matrix is not square') if isintlike(other): other = int(other) if other < 0: raise ValueError('exponent must be >= 0') if other == 0: from .construct import eye return eye(self.shape[0], dtype=self.dtype) elif other == 1: return self.copy() else: tmp = self.__pow__(other//2) if (other % 2): return self * tmp * tmp else: return tmp * tmp elif isscalarlike(other): raise ValueError('exponent must be an integer') else: return NotImplemented def __getattr__(self, attr): if attr == 'A': return self.toarray() elif attr == 'T': return self.transpose() elif attr == 'H': return self.getH() elif attr == 'real': return self._real() elif attr == 'imag': return self._imag() elif attr == 'size': return self.getnnz() else: raise AttributeError(attr + " not found") def transpose(self): return self.tocsr().transpose() def conj(self): return self.tocsr().conj() def conjugate(self): return self.conj() # Renamed conjtranspose() -> getH() for compatibility with dense matrices def getH(self): return self.transpose().conj() def _real(self): return self.tocsr()._real() def _imag(self): return self.tocsr()._imag() def nonzero(self): """nonzero indices Returns a tuple of arrays (row,col) containing the indices of the non-zero elements of the matrix. Examples -------- >>> from scipy.sparse import csr_matrix >>> A = csr_matrix([[1,2,0],[0,0,3],[4,0,5]]) >>> A.nonzero() (array([0, 0, 1, 2, 2]), array([0, 1, 2, 0, 2])) """ # convert to COOrdinate format A = self.tocoo() nz_mask = A.data != 0 return (A.row[nz_mask],A.col[nz_mask]) def getcol(self, j): """Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector). """ # Spmatrix subclasses should override this method for efficiency. # Post-multiply by a (n x 1) column vector 'a' containing all zeros # except for a_j = 1 from .csc import csc_matrix n = self.shape[1] if j < 0: j += n if j < 0 or j >= n: raise IndexError("index out of bounds") col_selector = csc_matrix(([1], [[j], [0]]), shape=(n,1), dtype=self.dtype) return self * col_selector def getrow(self, i): """Returns a copy of row i of the matrix, as a (1 x n) sparse matrix (row vector). """ # Spmatrix subclasses should override this method for efficiency. # Pre-multiply by a (1 x m) row vector 'a' containing all zeros # except for a_i = 1 from .csr import csr_matrix m = self.shape[0] if i < 0: i += m if i < 0 or i >= m: raise IndexError("index out of bounds") row_selector = csr_matrix(([1], [[0], [i]]), shape=(1,m), dtype=self.dtype) return row_selector * self # def __array__(self): # return self.toarray() def todense(self, order=None, out=None): """ Return a dense matrix representation of this matrix. Parameters ---------- order : {'C', 'F'}, optional Whether to store multi-dimensional data in C (row-major) or Fortran (column-major) order in memory. The default is 'None', indicating the NumPy default of C-ordered. Cannot be specified in conjunction with the `out` argument. out : ndarray, 2-dimensional, optional If specified, uses this array (or `numpy.matrix`) as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method. Returns ------- arr : numpy.matrix, 2-dimensional A NumPy matrix object with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If `out` was passed and was an array (rather than a `numpy.matrix`), it will be filled with the appropriate values and returned wrapped in a `numpy.matrix` object that shares the same memory. """ return np.asmatrix(self.toarray(order=order, out=out)) def toarray(self, order=None, out=None): """ Return a dense ndarray representation of this matrix. Parameters ---------- order : {'C', 'F'}, optional Whether to store multi-dimensional data in C (row-major) or Fortran (column-major) order in memory. The default is 'None', indicating the NumPy default of C-ordered. Cannot be specified in conjunction with the `out` argument. out : ndarray, 2-dimensional, optional If specified, uses this array as the output buffer instead of allocating a new array to return. The provided array must have the same shape and dtype as the sparse matrix on which you are calling the method. For most sparse types, `out` is required to be memory contiguous (either C or Fortran ordered). Returns ------- arr : ndarray, 2-dimensional An array with the same shape and containing the same data represented by the sparse matrix, with the requested memory order. If `out` was passed, the same object is returned after being modified in-place to contain the appropriate values. """ return self.tocoo().toarray(order=order, out=out) def todok(self): return self.tocoo().todok() def tocoo(self): return self.tocsr().tocoo() def tolil(self): return self.tocsr().tolil() def todia(self): return self.tocoo().todia() def tobsr(self, blocksize=None): return self.tocsr().tobsr(blocksize=blocksize) def copy(self): return self.__class__(self,copy=True) def sum(self, axis=None): """Sum the matrix over the given axis. If the axis is None, sum over both rows and columns, returning a scalar. """ # We use multiplication by an array of ones to achieve this. # For some sparse matrix formats more efficient methods are # possible -- these should override this function. m, n = self.shape # Mimic numpy's casting. if np.issubdtype(self.dtype, np.float_): res_dtype = np.float_ elif (np.issubdtype(self.dtype, np.int_) or np.issubdtype(self.dtype, np.bool_)): res_dtype = np.int_ elif np.issubdtype(self.dtype, np.complex_): res_dtype = np.complex_ else: res_dtype = self.dtype if axis is None: # sum over rows and columns return (self * np.asmatrix(np.ones((n, 1), dtype=res_dtype))).sum() if axis < 0: axis += 2 if axis == 0: # sum over columns return np.asmatrix(np.ones((1, m), dtype=res_dtype)) * self elif axis == 1: # sum over rows return self * np.asmatrix(np.ones((n, 1), dtype=res_dtype)) else: raise ValueError("axis out of bounds") def mean(self, axis=None): """Average the matrix over the given axis. If the axis is None, average over both rows and columns, returning a scalar. """ # Mimic numpy's casting. if (np.issubdtype(self.dtype, np.float_) or np.issubdtype(self.dtype, np.integer) or np.issubdtype(self.dtype, np.bool_)): res_dtype = np.float_ elif np.issubdtype(self.dtype, np.complex_): res_dtype = np.complex_ else: res_dtype = self.dtype if axis is None: return self.sum(None) * 1.0 / (self.shape[0]*self.shape[1]) if axis < 0: axis += 2 if axis == 0: mean = self.astype(res_dtype).sum(0) mean *= 1.0 / self.shape[0] return mean elif axis == 1: mean = self.astype(res_dtype).sum(1) mean *= 1.0 / self.shape[1] return mean else: raise ValueError("axis out of bounds") def diagonal(self): """Returns the main diagonal of the matrix """ # TODO support k != 0 return self.tocsr().diagonal() def setdiag(self, values, k=0): """ Set diagonal or off-diagonal elements of the array. Parameters ---------- values : array_like New values of the diagonal elements. Values may have any length. If the diagonal is longer than values, then the remaining diagonal entries will not be set. If values if longer than the diagonal, then the remaining values are ignored. If a scalar value is given, all of the diagonal is set to it. k : int, optional Which off-diagonal to set, corresponding to elements a[i,i+k]. Default: 0 (the main diagonal). """ M, N = self.shape if (k > 0 and k >= N) or (k < 0 and -k >= M): raise ValueError("k exceeds matrix dimensions") self._setdiag(np.asarray(values), k) def _setdiag(self, values, k): M, N = self.shape if k < 0: if values.ndim == 0: # broadcast max_index = min(M+k, N) for i in xrange(max_index): self[i - k, i] = values else: max_index = min(M+k, N, len(values)) if max_index <= 0: return for i,v in enumerate(values[:max_index]): self[i - k, i] = v else: if values.ndim == 0: # broadcast max_index = min(M, N-k) for i in xrange(max_index): self[i, i + k] = values else: max_index = min(M, N-k, len(values)) if max_index <= 0: return for i,v in enumerate(values[:max_index]): self[i, i + k] = v def _process_toarray_args(self, order, out): if out is not None: if order is not None: raise ValueError('order cannot be specified if out ' 'is not None') if out.shape != self.shape or out.dtype != self.dtype: raise ValueError('out array must be same dtype and shape as ' 'sparse matrix') out[...] = 0. return out else: return np.zeros(self.shape, dtype=self.dtype, order=order) def __numpy_ufunc__(self, func, method, pos, inputs, **kwargs): """Method for compatibility with NumPy's ufuncs and dot functions. """ if any(not isinstance(x, spmatrix) and np.asarray(x).dtype == object for x in inputs): # preserve previous behavior with object arrays with_self = list(inputs) with_self[pos] = np.asarray(self, dtype=object) return getattr(func, method)(*with_self, **kwargs) out = kwargs.pop('out', None) if method != '__call__' or kwargs: return NotImplemented without_self = list(inputs) del without_self[pos] without_self = tuple(without_self) if func is np.multiply: result = self.multiply(*without_self) elif func is np.add: result = self.__add__(*without_self) elif func is np.dot: if pos == 0: result = self.__mul__(inputs[1]) else: result = self.__rmul__(inputs[0]) elif func is np.subtract: if pos == 0: result = self.__sub__(inputs[1]) else: result = self.__rsub__(inputs[0]) elif func is np.divide: true_divide = (sys.version_info[0] >= 3) rdivide = (pos == 1) result = self._divide(*without_self, true_divide=true_divide, rdivide=rdivide) elif func is np.true_divide: rdivide = (pos == 1) result = self._divide(*without_self, true_divide=True, rdivide=rdivide) elif func is np.maximum: result = self.maximum(*without_self) elif func is np.minimum: result = self.minimum(*without_self) elif func is np.absolute: result = abs(self) elif func in _ufuncs_with_fixed_point_at_zero: func_name = func.__name__ if hasattr(self, func_name): result = getattr(self, func_name)() else: result = getattr(self.tocsr(), func_name)() else: return NotImplemented if out is not None: if not isinstance(out, spmatrix) and isinstance(result, spmatrix): out[...] = result.todense() else: out[...] = result result = out return result def isspmatrix(x): return isinstance(x, spmatrix) issparse = isspmatrix
""" Python client for BaseX. Works with BaseX 7.x (but not with BaseX 8.0 and later) Documentation: http://docs.basex.org/wiki/Clients (C) BaseX Team 2005-12, Arjen van Elteren BSD License """ import hashlib, socket, array import threading class SocketInputReader(object): def __init__(self, sock): self.__s = sock self.__buf = array.array('B', chr(0) * 0x1000) self.init() def init(self): self.__bpos = 0 self.__bsize = 0 # Returns a single byte from the socket. def read(self): # Cache next bytes if self.__bpos >= self.__bsize: self.__bsize = self.__s.recv_into(self.__buf) self.__bpos = 0 b = self.__buf[self.__bpos] self.__bpos += 1 return b # Reads until byte is found. def read_until(self, byte): # Cache next bytes if self.__bpos >= self.__bsize: self.__bsize = self.__s.recv_into(self.__buf) self.__bpos = 0 found = False substr = "" try: pos = self.__buf[self.__bpos:self.__bsize].index(byte) found = True substr = self.__buf[self.__bpos:pos+self.__bpos].tostring() self.__bpos = self.__bpos + pos + 1 except ValueError: substr = self.__buf[self.__bpos:self.__bsize].tostring() self.__bpos = self.__bsize return (found, substr) def readString(self): strings = [] found = False while not found: found, substr = self.read_until(0) strings.append(substr) return ''.join(strings) class Session(object): def __init__(self, host, port, user, pw): self.__info = None # create server connection self.__s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.__s.connect((host, port)) self.__sreader = SocketInputReader(self.__s) self.__event_socket = None self.__event_host = host self.__event_listening_thread = None self.__event_callbacks = {} # receive timestamp ts = self.readString() # send username and hashed password/timestamp m = hashlib.md5() m.update(hashlib.md5(pw).hexdigest()) m.update(ts) self.send(user + chr(0) + m.hexdigest()) # evaluate success flag if self.__s.recv(1) != chr(0): raise IOError('Access Denied.') def execute(self, com): # send command to server self.send(com) # receive result result = self.receive() self.__info = self.readString() if not self.ok(): raise IOError(self.__info) return result def query(self, q): return Query(self, q) def create(self, name, content): self.sendInput(8, name, content) def add(self, path, content): self.sendInput(9, path, content) def replace(self, path, content): self.sendInput(12, path, content) def store(self, path, content): self.sendInput(13, path, content) def info(self): return self.__info def close(self): self.send('exit') self.__s.close() if not self.__event_socket is None: self.__event_socket.close() def init(self): """Initialize byte transfer""" self.__sreader.init() def register_and_start_listener(self): self.__s.sendall(chr(10)) event_port = int(self.readString()) self.__event_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.__event_socket.settimeout(5000) self.__event_socket.connect((self.__event_host, event_port)) token = self.readString() self.__event_socket.sendall(token + chr(0)) if not self.__event_socket.recv(1) == chr(0): raise IOError("Could not register event listener") self.__event_listening_thread = threading.Thread( target=self.event_listening_loop ) self.__event_listening_thread.daemon = True self.__event_listening_thread.start() def event_listening_loop(self): reader = SocketInputReader(self.__event_socket) reader.init() while True: name = reader.readString() data = reader.readString() self.__event_callbacks[name](data) def is_listening(self): return not self.__event_socket is None def watch(self, name, callback): if not self.is_listening(): self.register_and_start_listener() else: self.__s.sendall(chr(10)) self.send(name) info = self.readString() if not self.ok(): raise IOError(info) self.__event_callbacks[name] = callback def unwatch(self, name): self.send(chr(11) + name) info = self.readString() if not self.ok(): raise IOError(info) del self.__event_callbacks[name] def readString(self): """Retrieve a string from the socket""" return self.__sreader.readString() def read(self): """Return a single byte from socket""" return self.__sreader.read() def read_until(self, byte): """Read until byte is found""" return self.__sreader.read_until(byte) def send(self, value): """Send the defined string""" self.__s.sendall(value + chr(0)) def sendInput(self, code, arg, content): self.__s.sendall(chr(code) + arg + chr(0) + content + chr(0)) self.__info = self.readString() if not self.ok(): raise IOError(self.info()) def ok(self): """Return success check""" return self.read() == 0 def receive(self): """Return received string""" self.init() return self.readString() def iter_receive(self): self.init() typecode = self.read() while typecode > 0: string = self.readString() yield string typecode = self.read() if not self.ok(): raise IOError(self.readString()) class Query(): def __init__(self, session, q): self.__session = session self.__id = self.exc(chr(0), q) def bind(self, name, value, datatype=''): self.exc(chr(3), self.__id + chr(0) + name + chr(0) + value + chr(0) + datatype) def context(self, value, datatype=''): self.exc(chr(14), self.__id + chr(0) + value + chr(0) + datatype) def iter(self): self.__session.send(chr(4) + self.__id) return self.__session.iter_receive() def execute(self): return self.exc(chr(5), self.__id) def info(self): return self.exc(chr(6), self.__id) def options(self): return self.exc(chr(7), self.__id) def close(self): self.exc(chr(2), self.__id) def exc(self, cmd, arg): self.__session.send(cmd + arg) s = self.__session.receive() if not self.__session.ok(): raise IOError(self.__session.readString()) return s
from math import sqrt import warnings import numbers import numpy as np from sklearn.utils.extmath import randomized_svd, squared_norm import scipy.sparse as sp class Sparse_NMF(): def __init__(self, n_components=2, init=None, tol=1e-4, max_iter=200, alpha=0.01, beta=0.01): self.n_components = n_components #number of features self.init = init #the init way of self.tol = tol #the error tolerance self.max_iter = max_iter #the maximum iteration self.alpha = alpha #learning rate self.beta = beta #L2 coefficient def fit(self, X): #given X, return W and H W, H, n_iter_ = matrix_factorization( X=X, n_components=self.n_components, init=self.init, update_H=True, tol=self.tol, max_iter=self.max_iter, alpha=self.alpha, beta=self.beta) self.n_components_ = H.shape[0] self.components_ = H self.n_iter_ = n_iter_ return W, H def transform(self, X): #given X, calculate W with the H got during fit procedure W, _, n_iter_ = matrix_factorization( X=X, H=self.components_, n_components=self.n_components_, init=self.init, update_H=False, tol=self.tol, max_iter=self.max_iter, alpha=self.alpha, beta=self.beta) self.n_iter_ = n_iter_ return W def matrix_factorization(X, H=None, n_components=None, init=None, update_H=True, tol=1e-4, max_iter=200, alpha=0.01, beta=0.02): n_samples, n_features = X.shape if n_components is None: n_components = n_features # check W and H, or initialize them if not update_H: W = np.zeros((n_samples, n_components)) else: W, H = _initialize_nmf(X, n_components, init=init, eps=1e-6) print W print H n_iter = 0 e_before = 0 for step in xrange(max_iter): n_iter = step + 1 print n_iter xs, ys = X.nonzero() # the x index and y index of nonzero W_temp = W ER = X - np.dot(W,H) # the error matrix for i in xrange(n_samples): for k in xrange(n_components): sum = 0 for j in ys[xs==i]: sum += ER[i][j] * H[k][j] t = W[i][k] + alpha * (sum - beta * W[i][k]) if t < 0: a = alpha for l in xrange(10): a /= 2 t = W[i][k] + a * (sum - beta * W[i][k]) if t >= 0: break if t < 0: t = W[i][k] W[i][k] = t if update_H: for j in xrange(n_features): for k in xrange(n_components): sum = 0 for i in xs[ys==j]: sum += ER[i][j] * W_temp[i][k] t = H[k][j] + alpha * (sum - beta * H[k][j]) if t < 0: a = alpha for l in xrange(10): a /= 2 t = H[k][j] + a * (sum - beta * H[k][j]) if t >= 0: break if t < 0: t = H[k][j] H[k][j] = t E = (X - np.dot(W,H)) * (X>0) e = squared_norm(E) + beta * ( squared_norm(W) + squared_norm(H) ) # if step > 0: # if abs(e/e_before - 1) < tol: # break # e_before = e print e if e < tol: break if n_iter == max_iter: print ("Maximum number of iteration %d reached. Increase it to" " improve convergence." % max_iter) return W, H, n_iter # def matrix_factorization(X, H=None, n_components=None, # init='random', update_H=True, # tol=1e-4, max_iter=200, alpha=0.01, # beta=0.02): # # n_samples, n_features = X.shape # if n_components is None: # n_components = n_features # # # check W and H, or initialize them # if not update_H: # W = np.zeros((n_samples, n_components)) # else: # W, H = _initialize_nmf(X, n_components, init=init, eps=1e-6) # # n_iter = 0 # e_before = 0 # xs, ys = X.nonzero() # # for step in xrange(max_iter): # n_iter = step + 1 # # V = np.dot(W,H) # W_temp = W # # for i in xrange(n_samples): # for k in xrange(n_components): # sum = 0 # whht = 0 # for j in ys[xs==i]: # eij = X[i][j] - V[i][j] # sum += eij * H[k][j] # whht += V[i][j] * H[k][j] # W[i][k] = W[i][k] + sum * W[i][k] / whht # print W[i][k] / whht # # if update_H: # for j in xrange(n_features): # for k in xrange(n_components): # sum = 0 # wtwh= 0 # for i in xs[ys==j]: # eij = X[i][j] - V[i][j] # sum += eij * W_temp[i][k] # wtwh += W_temp[i][k] * V[i][j] # H[k][j] = H[k][j] + sum * H[k][j] / wtwh # print H[k][j] / wtwh # # e = 0 # for i in xrange(n_samples): # for j in ys[xs==i]: # e = e + (X[i][j] - V[i][j])**2 / 2 # # # e = e + (beta/2) * ( (W*W).sum() + (H*H).sum() ) # if step > 0: # if abs(e/e_before - 1) < tol: # break # e_before = e # # if n_iter == max_iter: # print ("Maximum number of iteration %d reached. Increase it to" # " improve convergence." % max_iter) # # return W, H, n_iter # def matrix_factorization(X, H=None, n_components=None, # init='random', update_H=True, # tol=1e-4, max_iter=200, alpha=0.01, # beta=0.02): # # n_samples, n_features = X.shape # if n_components is None: # n_components = n_features # # # check W and H, or initialize them # if not update_H: # W = np.zeros((n_samples, n_components)) # else: # W, H = _initialize_nmf(X, n_components, init=init, eps=1e-6) # # n_iter = 0 # e_before = 0 # xs, ys = X.nonzero() # # for step in xrange(max_iter): # n_iter = step + 1 # # V = np.dot(W,H) # W_temp = W # # for i in xrange(n_samples): # for k in xrange(n_components): # sum = 0 # whht = 0 # for j in ys[xs==i]: # sum += X[i][j] * H[k][j] # whht += V[i][j] * H[k][j] # W[i][k] = sum * W[i][k] / whht # # if update_H: # for j in xrange(n_features): # for k in xrange(n_components): # sum = 0 # wtwh= 0 # for i in xs[ys==j]: # sum += W_temp[i][k] * X[i][j] # wtwh += W_temp[i][k] * V[i][j] # H[k][j] = sum * H[k][j] / wtwh # # e = 0 # for i in xrange(n_samples): # for j in ys[xs==i]: # e = e + (X[i][j] - V[i][j])**2 / 2 # # # e = e + (beta/2) * ( (W*W).sum() + (H*H).sum() ) # if step > 0: # if abs(e/e_before - 1) < tol: # break # e_before = e # # if n_iter == max_iter: # print ("Maximum number of iteration %d reached. Increase it to" # " improve convergence." % max_iter) # # return W, H, n_iter # def matrix_factorization(X, H=None, n_components=None, # init='random', update_H=True, # tol=1e-4, max_iter=200, alpha=0.01, # beta=0.02): # # n_samples, n_features = X.shape # if n_components is None: # n_components = n_features # # # check W and H, or initialize them # if not update_H: # W = np.zeros((n_samples, n_components)) # else: # W, H = _initialize_nmf(X, n_components, init=init, eps=1e-6) # # n_iter = 0 # e_before = 0 # xs, ys = X.nonzero() # # for step in xrange(max_iter): # n_iter = step + 1 # # V = np.dot(W,H) # W_temp = W # # for i in xrange(n_samples): # for k in xrange(n_components): # s1 = 0 # s2 = 0 # for j in xrange(n_features): # s1 += X[i][j] * H[k][j] / V[i][j] # s2 += H[k][j] # W[i][k] = s1 * W[i][k] / s2 # # if update_H: # for j in xrange(n_features): # for k in xrange(n_components): # s1 = 0 # s2 = 0 # for i in xrange(n_samples): # s1 += W[i][k] * X[i][j] / V[i][j] # s2 += W_temp[i][k] # H[k][j] = s1 * H[k][j] / s2 # # e = 0 # for i in xrange(n_samples): # for j in ys[xs==i]: # e = e + (X[i][j] - V[i][j])**2 / 2 # # # e = e + (beta/2) * ( (W*W).sum() + (H*H).sum() ) # if step > 0: # if abs(e/e_before - 1) < tol: # break # e_before = e # # if n_iter == max_iter: # print ("Maximum number of iteration %d reached. Increase it to" # " improve convergence." % max_iter) # # return W, H, n_iter def _initialize_nmf(X, n_components, init=None, eps=1e-6): n_samples, n_features = X.shape if init is None: if n_components < n_features and n_components < n_samples: init = 'nndsvd' else: init = 'random' # Random initialization if init == 'random': avg = np.sqrt(X.mean() / n_components) W = avg * np.random.randn(n_samples, n_components) H = avg * np.random.randn(n_components, n_features) # we do not write np.abs(H, out=H) to stay compatible with # numpy 1.5 and earlier where the 'out' keyword is not # supported as a kwarg on ufuncs np.abs(H, H) np.abs(W, W) return W, H # NNDSVD initialization U, S, V = randomized_svd(X, n_components) W, H = np.zeros(U.shape), np.zeros(V.shape) # The leading singular triplet is non-negative # so it can be used as is for initialization. W[:, 0] = np.sqrt(S[0]) * np.abs(U[:, 0]) H[0, :] = np.sqrt(S[0]) * np.abs(V[0, :]) for j in range(1, n_components): x, y = U[:, j], V[j, :] # extract positive and negative parts of column vectors x_p, y_p = np.maximum(x, 0), np.maximum(y, 0) x_n, y_n = np.abs(np.minimum(x, 0)), np.abs(np.minimum(y, 0)) # and their norms x_p_nrm, y_p_nrm = norm(x_p), norm(y_p) x_n_nrm, y_n_nrm = norm(x_n), norm(y_n) m_p, m_n = x_p_nrm * y_p_nrm, x_n_nrm * y_n_nrm # choose update if m_p > m_n: u = x_p / x_p_nrm v = y_p / y_p_nrm sigma = m_p else: u = x_n / x_n_nrm v = y_n / y_n_nrm sigma = m_n lbd = np.sqrt(S[j] * sigma) W[:, j] = lbd * u H[j, :] = lbd * v W[W < eps] = 0 H[H < eps] = 0 if init == "nndsvd": pass elif init == "nndsvda": avg = X.mean() W[W == 0] = avg H[H == 0] = avg elif init == "nndsvdar": avg = X.mean() W[W == 0] = abs(avg * np.random.randn(len(W[W == 0])) / 100) H[H == 0] = abs(avg * np.random.randn(len(H[H == 0])) / 100) else: raise ValueError( 'Invalid init parameter: got %r instead of one of %r' % (init, (None, 'random', 'nndsvd', 'nndsvda', 'nndsvdar'))) return W, H def norm(x): return sqrt(squared_norm(x))
"""Module that reads BGEN files.""" # This file is part of pybgen. # # The MIT License (MIT) # # Copyright (c) 2017 Louis-Philippe Lemieux Perreault # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from __future__ import division import os import sys import zlib import logging import sqlite3 from math import ceil from struct import unpack from io import UnsupportedOperation import numpy as np from six.moves import range try: import zstandard as zstd HAS_ZSTD = True except ImportError: HAS_ZSTD = False __author__ = "Louis-Philippe Lemieux Perreault" __copyright__ = "Copyright 2017 Louis-Philippe Lemieux Perreault" __license__ = "MIT" __all__ = ["PyBGEN"] # The logger logger = logging.getLogger(__name__) # The python version PYTHON_VERSION = sys.version_info.major class _Variant(object): __slots__ = ("name", "chrom", "pos", "a1", "a2") def __init__(self, name, chrom, pos, a1, a2): self.name = name self.chrom = chrom self.pos = pos self.a1 = a1 self.a2 = a2 def __repr__(self): return "<Variant {} chr{}:{}_{}/{}>".format( self.name, self.chrom, self.pos, self.a1, self.a2, ) class PyBGEN(object): """Reads and store a set of BGEN files. Args: fn (str): The name of the BGEN file. mode (str): The open mode for the BGEN file. prob_t (float): The probability threshold (optional). probs_only (boolean): Return only the probabilities instead of dosage. Reads or write BGEN files. .. code-block:: python from pybgen import PyBGEN # Reading a BGEN file with PyBGEN("bgen_file_name") as bgen: pass """ def __init__(self, fn, mode="r", prob_t=0.9, _skip_index=False, probs_only=False): """Initializes a new PyBGEN instance.""" # The mode self._mode = mode # What to return self._return_probs = probs_only if self._mode == "r": # Parsing the file self._bgen = open(fn, "rb") self._parse_header() # Did the samples were parsed? if not self._has_sample: self._samples = None # Connecting to the index self._skip_index = _skip_index if not _skip_index: if not os.path.isfile(fn + ".bgi"): raise IOError("{}: no such file".format(fn + ".bgi")) self._connect_index() # The probability self.prob_t = prob_t # Seeking to the first variant of the file self._bgen.seek(self._first_variant_block) elif self._mode == "w": raise NotImplementedError("'w' mode not yet implemented") else: raise ValueError("invalid mode: '{}'".format(self._mode)) def __repr__(self): """The representation of the PyBGEN object.""" if self._mode == "r": return "PyBGEN({:,d} samples; {:,d} variants)".format( self._nb_samples, self._nb_variants, ) return 'PyBGEN(mode="w")' def __iter__(self): """The __iter__ function.""" if self._mode != "r": raise UnsupportedOperation("not available in 'w' mode") return self def __next__(self): """The __next__ function.""" return self.next() def __enter__(self): """Entering the context manager.""" return self def __exit__(self, *args): """Exiting the context manager.""" self.close() def close(self): """Closes the BGEN object.""" # Closing the BGEN file self._bgen.close() # Closing the index file (if in read mode) if self._mode == "r" and not self._skip_index: self._bgen_db.close() @property def nb_variants(self): """Returns the number of markers. Returns: int: The number of markers in the dataset. """ if self._mode != "r": raise UnsupportedOperation("not available in 'w' mode") return self._nb_variants @property def nb_samples(self): """Returns the number of samples. Returns: int: The number of samples in the dataset. """ if self._mode != "r": raise UnsupportedOperation("not available in 'w' mode") return self._nb_samples @property def samples(self): """Returns the samples. Returns: tuple: The samples. """ return self._samples def next(self): """Returns the next variant. Returns: tuple: The variant's information and its genotypes (dosage) as :py:class:`numpy.ndarray`. """ if self._mode != "r": raise UnsupportedOperation("not available in 'w' mode") if self._bgen.tell() > self._last_variant_block: raise StopIteration() return self._read_current_variant() def iter_variants(self): """Iterates over variants from the beginning of the BGEN file. Returns: tuple: A variant and the dosage. """ if self._mode != "r": raise UnsupportedOperation("not available in 'w' mode") # Seeking back to the first variant block self._bgen.seek(self._first_variant_block) # Return itself (the generator) return self def iter_variants_in_region(self, chrom, start, end): """Iterates over variants in a specific region. Args: chrom (str): The name of the chromosome. start (int): The starting position of the region. end (int): The ending position of the region. """ # Getting the region from the index file self._bgen_index.execute( "SELECT file_start_position " "FROM Variant " "WHERE chromosome = ? AND position >= ? AND position <= ?", (chrom, start, end), ) # Fetching all the seek positions seek_positions = [_[0] for _ in self._bgen_index.fetchall()] return self._iter_seeks(seek_positions) def iter_variants_by_names(self, names): """Iterates over variants using a list of names. Args: names (list): A list of names to extract specific variants. """ # Fetching all the seek positions seek_positions = self._get_seeks_for_names(names) return self._iter_seeks(seek_positions) def get_specific_variant(self, chrom, pos, ref, alt): """Get specific variant with allele lookup Args: chrom (str): The name of the chromosome. pos (int): The starting position of the region. ref (str): The reference allele. alt (str): The alternative allele. Returns: list: A list containing all the value for a given variant. The list has more than one item if there are duplicated variants. """ # Getting the region from the index file self._bgen_index.execute( "SELECT file_start_position " "FROM Variant " "WHERE chromosome = ? AND position = ? AND allele1 = ? AND " " allele2 = ?", (chrom, pos, ref, alt), ) # Fetching all the seek positions seek_positions = [_[0] for _ in self._bgen_index.fetchall()] # Fetching seek positions, we return the variant results = list(self._iter_seeks(seek_positions)) if not results: raise ValueError("{}:{} {}/{}: variant not found" "".format(chrom, pos, ref, alt)) return results def iter_variant_info(self): """Iterate over marker information.""" self._bgen_index.execute( "SELECT chromosome, position, rsid, allele1, allele2 FROM Variant", ) # The array size array_size = 1000 # Fetching the results results = self._bgen_index.fetchmany(array_size) while results: for chrom, pos, rsid, a1, a2 in results: yield _Variant(rsid, chrom, pos, a1, a2) results = self._bgen_index.fetchmany(array_size) def _iter_seeks(self, seeks): """Iterate over seek positions.""" for seek in seeks: self._bgen.seek(seek) yield self._read_current_variant() def _get_seeks_for_names(self, names): """Gets the seek values for each names.""" # Generating a temporary table that will contain the markers to extract self._bgen_index.execute("CREATE TEMPORARY TABLE tnames (name text)") self._bgen_index.executemany( "INSERT INTO tnames VALUES (?)", [(n, ) for n in names], ) # Fetching the seek positions self._bgen_index.execute( "SELECT file_start_position " "FROM Variant " "WHERE rsid IN (SELECT name FROM tnames)", ) return tuple(_[0] for _ in self._bgen_index.fetchall()) def get_variant(self, name): """Gets the values for a given variant. Args: name (str): The name of the variant. Returns: list: A list containing all the value for a given variant. The list has more than one item if there are duplicated variants. """ if self._mode != "r": raise UnsupportedOperation("not available in 'w' mode") # Fetching the variant self._bgen_index.execute( "SELECT file_start_position FROM Variant WHERE rsid = ?", (name, ) ) # Fetching all the seek positions seek_positions = [_[0] for _ in self._bgen_index.fetchall()] # Constructing the results results = list(self._iter_seeks(seek_positions)) if not results: raise ValueError("{}: name not found".format(name)) return results def _read_current_variant(self): """Reads the current variant.""" # Getting the variant's information var_id, rs_id, chrom, pos, alleles = self._get_curr_variant_info() # Getting the variant's dosage dosage = self._get_curr_variant_data() return _Variant(rs_id, chrom, pos, *alleles), dosage def _get_curr_variant_info(self): """Gets the current variant's information.""" if self._layout == 1: n = unpack("<I", self._bgen.read(4))[0] if n != self._nb_samples: raise ValueError( "{}: invalid BGEN file".format(self._bgen.name), ) # Reading the variant id var_id = self._bgen.read(unpack("<H", self._bgen.read(2))[0]).decode() # Reading the variant rsid rs_id = self._bgen.read(unpack("<H", self._bgen.read(2))[0]).decode() # Reading the chromosome chrom = self._bgen.read(unpack("<H", self._bgen.read(2))[0]).decode() # Reading the position pos = unpack("<I", self._bgen.read(4))[0] # Getting the number of alleles nb_alleles = 2 if self._layout == 2: nb_alleles = unpack("<H", self._bgen.read(2))[0] # Getting the alleles alleles = [] for _ in range(nb_alleles): alleles.append(self._bgen.read( unpack("<I", self._bgen.read(4))[0] ).decode()) return var_id, rs_id, chrom, pos, tuple(alleles) def _get_curr_variant_probs_layout_1(self): """Gets the current variant's probabilities (layout 1).""" c = self._nb_samples if self._is_compressed: c = unpack("<I", self._bgen.read(4))[0] # Getting the probabilities probs = np.frombuffer( self._decompress(self._bgen.read(c)), dtype="u2", ) / 32768 probs.shape = (self._nb_samples, 3) return probs def _get_curr_variant_probs_layout_2(self): """Gets the current variant's probabilities (layout 2).""" # The total length C of the rest of the data for this variant c = unpack("<I", self._bgen.read(4))[0] # The number of bytes to read to_read = c # D = C if no compression d = c if self._is_compressed: # The total length D of the probability data after # decompression d = unpack("<I", self._bgen.read(4))[0] to_read = c - 4 # Reading the data and checking data = self._decompress(self._bgen.read(to_read)) if len(data) != d: raise ValueError( "{}: invalid BGEN file".format(self._bgen.name) ) # Checking the number of samples n = unpack("<I", data[:4])[0] if n != self._nb_samples: raise ValueError( "{}: invalid BGEN file".format(self._bgen.name) ) data = data[4:] # Checking the number of alleles (we only accept 2 alleles) nb_alleles = unpack("<H", data[:2])[0] if nb_alleles != 2: raise ValueError( "{}: only two alleles are " "supported".format(self._bgen.name) ) data = data[2:] # TODO: Check ploidy for sexual chromosomes # The minimum and maximum for ploidy (we only accept ploidy of 2) min_ploidy = _byte_to_int(data[0]) max_ploidy = _byte_to_int(data[1]) if min_ploidy != 2 or max_ploidy != 2: raise ValueError( "{}: only accepting ploidy of " "2".format(self._bgen.name) ) data = data[2:] # Check the list of N bytes for missingness (since we assume only # diploid values for each sample) ploidy_info = np.frombuffer(data[:n], dtype=np.uint8) ploidy_info = np.unpackbits( ploidy_info.reshape(1, ploidy_info.shape[0]).T, axis=1, ) missing_data = ploidy_info[:, 0] == 1 data = data[n:] # TODO: Permit phased data # Is the data phased? is_phased = data[0] == 1 if is_phased: raise ValueError( "{}: only accepting unphased data".format(self._bgen.name) ) data = data[1:] # The number of bits used to encode each probabilities b = _byte_to_int(data[0]) data = data[1:] # Reading the probabilities (don't forget we allow only for diploid # values) probs = None if b == 8: probs = np.frombuffer(data, dtype=np.uint8) elif b == 16: probs = np.frombuffer(data, dtype=np.uint16) elif b == 32: probs = np.frombuffer(data, dtype=np.uint32) else: probs = _pack_bits(data, b) # Changing shape and computing dosage probs.shape = (self._nb_samples, 2) return probs / (2**b - 1), missing_data def _get_curr_variant_data(self): """Gets the current variant's dosage or probabilities.""" if self._layout == 1: # Getting the probabilities probs = self._get_curr_variant_probs_layout_1() if self._return_probs: # Returning the probabilities return probs else: # Returning the dosage return self._layout_1_probs_to_dosage(probs) else: # Getting the probabilities probs, missing_data = self._get_curr_variant_probs_layout_2() if self._return_probs: # Getting the alternative allele homozygous probabilities last_probs = self._get_layout_2_last_probs(probs) # Stacking the probabilities last_probs.shape = (last_probs.shape[0], 1) full_probs = np.hstack((probs, last_probs)) # Setting the missing to NaN full_probs[missing_data] = np.nan # Returning the probabilities return full_probs else: # Computing the dosage dosage = self._layout_2_probs_to_dosage(probs) # Setting the missing to NaN dosage[missing_data] = np.nan # Returning the dosage return dosage def _layout_1_probs_to_dosage(self, probs): """Transforms probability values to dosage (from layout 1)""" # Constructing the dosage dosage = 2 * probs[:, 2] + probs[:, 1] if self.prob_t > 0: dosage[~np.any(probs >= self.prob_t, axis=1)] = np.nan return dosage @staticmethod def _get_layout_2_last_probs(probs): """Gets the layout 2 last probabilities (homo alternative).""" return 1 - np.sum(probs, axis=1) def _layout_2_probs_to_dosage(self, probs): """Transforms probability values to dosage (from layout 2).""" # Computing the last genotype's probabilities last_probs = self._get_layout_2_last_probs(probs) # Constructing the dosage dosage = 2 * last_probs + probs[:, 1] # Setting low quality to NaN if self.prob_t > 0: good_probs = ( np.any(probs >= self.prob_t, axis=1) | (last_probs >= self.prob_t) ) dosage[~good_probs] = np.nan return dosage def _parse_header(self): """Parses the header (header and sample blocks).""" # Parsing the header block self._parse_header_block() # Parsing the sample block (if any) if self._has_sample: self._parse_sample_block() def _parse_header_block(self): """Parses the header block.""" # Getting the data offset (the start point of the data self._offset = unpack("<I", self._bgen.read(4))[0] self._first_variant_block = self._offset + 4 # Getting the header size self._header_size = unpack("<I", self._bgen.read(4))[0] # Getting the number of samples and variants self._nb_variants = unpack("<I", self._bgen.read(4))[0] self._nb_samples = unpack("<I", self._bgen.read(4))[0] # Checking the magic number magic = self._bgen.read(4) if magic != b"bgen": # The magic number might be 0, then if unpack("<I", magic)[0] != 0: raise ValueError( "{}: invalid BGEN file.".format(self._bgen.name) ) # Passing through the "free data area" self._bgen.read(self._header_size - 20) # Reading the flag flag = np.frombuffer(self._bgen.read(4), dtype=np.uint8) flag = np.unpackbits(flag.reshape(1, flag.shape[0]).T, axis=1) # Getting the compression type from the layout compression = _bits_to_int(flag[0, -2:]) self._is_compressed = False if compression == 0: # No decompression required self._decompress = self._no_decompress elif compression == 1: # ZLIB decompression self._decompress = zlib.decompress self._is_compressed = True elif compression == 2: if not HAS_ZSTD: raise ValueError("zstandard module is not installed") # ZSTANDARD decompression (needs to be check) self._decompress = zstd.ZstdDecompressor().decompress self._is_compressed = True # Getting the layout layout = _bits_to_int(flag[0, -6:-2]) if layout == 0: raise ValueError( "{}: invalid BGEN file".format(self._bgen.name) ) elif layout == 1: self._layout = 1 elif layout == 2: self._layout = 2 else: raise ValueError( "{}: {} invalid layout type".format(self._bgen.name, layout) ) # Checking if samples are in the file self._has_sample = flag[-1, 0] == 1 def _parse_sample_block(self): """Parses the sample block.""" # Getting the block size block_size = unpack("<I", self._bgen.read(4))[0] if block_size + self._header_size > self._offset: raise ValueError( "{}: invalid BGEN file".format(self._bgen.name) ) # Checking the number of samples n = unpack("<I", self._bgen.read(4))[0] if n != self._nb_samples: raise ValueError( "{}: invalid BGEN file".format(self._bgen.name) ) # Getting the sample information samples = [] for i in range(self._nb_samples): size = unpack("<H", self._bgen.read(2))[0] samples.append(self._bgen.read(size).decode()) self._samples = tuple(samples) # Just a check with the header if len(self.samples) != self._nb_samples: raise ValueError("{}: number of samples different between header " "and sample block".format(self._bgen.name)) def _connect_index(self): """Connect to the index (which is an SQLITE database).""" self._bgen_db = sqlite3.connect(self._bgen.name + ".bgi") self._bgen_index = self._bgen_db.cursor() # Fetching the number of variants and the first and last seek position self._bgen_index.execute( "SELECT COUNT (rsid), " " MIN (file_start_position), " " MAX (file_start_position) " "FROM Variant" ) result = self._bgen_index.fetchone() nb_markers = result[0] first_variant_block = result[1] self._last_variant_block = result[2] # Checking the number of markers if nb_markers != self._nb_variants: raise ValueError( "{}: number of markers different between header ({:,d}) " "and index file ({:,d})".format( self._bgen.name, self._nb_variants, nb_markers, ) ) # Checking the first variant seek position if first_variant_block != self._first_variant_block: raise ValueError("{}: invalid index".format(self._bgen.name)) @staticmethod def _no_decompress(data): return data def _bits_to_int(bits): """Converts bits to int.""" result = 0 for bit in bits: result = (result << 1) | bit return result def _byte_to_int_python3(byte): """Converts a byte to a int for python 3.""" return byte def _byte_to_int_python2(byte): """Converts a byte to a int for python 2.""" return unpack("<B", byte)[0] _byte_to_int = _byte_to_int_python3 if PYTHON_VERSION < 3: _byte_to_int = _byte_to_int_python2 def _pack_bits(data, b): """Unpacks BGEN probabilities (as bits).""" # Getting the data from the bytes data = np.fromiter( ((_byte_to_int(byte) >> i) & 1 for byte in data for i in range(8)), dtype=bool, ) data.shape = (data.shape[0] // b, b) # Finding the closest full bytes (if required) # TODO: Improve this so that it is more efficient full_bytes = data[:, ::-1] if data.shape[1] % 8 != 0: nb_bits = int(ceil(b / 8)) * 8 full_bytes = np.zeros((data.shape[0], nb_bits), dtype=bool) full_bytes[:, -b:] += data[:, ::-1] # Packing the bits packed = np.packbits(full_bytes, axis=1) # Left-shifting for final value final = packed[:, 0] for i in range(1, packed.shape[1]): final = np.left_shift(final, 8, dtype=np.uint) | packed[:, i] return final
# orm/descriptor_props.py # Copyright (C) 2005-2013 the SQLAlchemy authors and contributors <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """Descriptor properties are more "auxiliary" properties that exist as configurational elements, but don't participate as actively in the load/persist ORM loop. """ from .interfaces import MapperProperty, PropComparator from .util import _none_set from . import attributes from .. import util, sql, exc as sa_exc, event, schema from ..sql import expression from . import properties class DescriptorProperty(MapperProperty): """:class:`.MapperProperty` which proxies access to a user-defined descriptor.""" doc = None def instrument_class(self, mapper): prop = self class _ProxyImpl(object): accepts_scalar_loader = False expire_missing = True collection = False def __init__(self, key): self.key = key if hasattr(prop, 'get_history'): def get_history(self, state, dict_, passive=attributes.PASSIVE_OFF): return prop.get_history(state, dict_, passive) if self.descriptor is None: desc = getattr(mapper.class_, self.key, None) if mapper._is_userland_descriptor(desc): self.descriptor = desc if self.descriptor is None: def fset(obj, value): setattr(obj, self.name, value) def fdel(obj): delattr(obj, self.name) def fget(obj): return getattr(obj, self.name) self.descriptor = property( fget=fget, fset=fset, fdel=fdel, ) proxy_attr = attributes.\ create_proxied_attribute(self.descriptor)\ ( self.parent.class_, self.key, self.descriptor, lambda: self._comparator_factory(mapper), doc=self.doc, original_property=self ) proxy_attr.impl = _ProxyImpl(self.key) mapper.class_manager.instrument_attribute(self.key, proxy_attr) @util.langhelpers.dependency_for("sqlalchemy.orm.properties") class CompositeProperty(DescriptorProperty): """Defines a "composite" mapped attribute, representing a collection of columns as one attribute. :class:`.CompositeProperty` is constructed using the :func:`.composite` function. See also: :ref:`mapper_composite` """ def __init__(self, class_, *attrs, **kwargs): """Return a composite column-based property for use with a Mapper. See the mapping documentation section :ref:`mapper_composite` for a full usage example. The :class:`.MapperProperty` returned by :func:`.composite` is the :class:`.CompositeProperty`. :param class\_: The "composite type" class. :param \*cols: List of Column objects to be mapped. :param active_history=False: When ``True``, indicates that the "previous" value for a scalar attribute should be loaded when replaced, if not already loaded. See the same flag on :func:`.column_property`. .. versionchanged:: 0.7 This flag specifically becomes meaningful - previously it was a placeholder. :param group: A group name for this property when marked as deferred. :param deferred: When True, the column property is "deferred", meaning that it does not load immediately, and is instead loaded when the attribute is first accessed on an instance. See also :func:`~sqlalchemy.orm.deferred`. :param comparator_factory: a class which extends :class:`.CompositeProperty.Comparator` which provides custom SQL clause generation for comparison operations. :param doc: optional string that will be applied as the doc on the class-bound descriptor. :param info: Optional data dictionary which will be populated into the :attr:`.MapperProperty.info` attribute of this object. .. versionadded:: 0.8 :param extension: an :class:`.AttributeExtension` instance, or list of extensions, which will be prepended to the list of attribute listeners for the resulting descriptor placed on the class. **Deprecated.** Please see :class:`.AttributeEvents`. """ self.attrs = attrs self.composite_class = class_ self.active_history = kwargs.get('active_history', False) self.deferred = kwargs.get('deferred', False) self.group = kwargs.get('group', None) self.comparator_factory = kwargs.pop('comparator_factory', self.__class__.Comparator) if 'info' in kwargs: self.info = kwargs.pop('info') util.set_creation_order(self) self._create_descriptor() def instrument_class(self, mapper): super(CompositeProperty, self).instrument_class(mapper) self._setup_event_handlers() def do_init(self): """Initialization which occurs after the :class:`.CompositeProperty` has been associated with its parent mapper. """ self._init_props() self._setup_arguments_on_columns() def _create_descriptor(self): """Create the Python descriptor that will serve as the access point on instances of the mapped class. """ def fget(instance): dict_ = attributes.instance_dict(instance) state = attributes.instance_state(instance) if self.key not in dict_: # key not present. Iterate through related # attributes, retrieve their values. This # ensures they all load. values = [ getattr(instance, key) for key in self._attribute_keys ] # current expected behavior here is that the composite is # created on access if the object is persistent or if # col attributes have non-None. This would be better # if the composite were created unconditionally, # but that would be a behavioral change. if self.key not in dict_ and ( state.key is not None or not _none_set.issuperset(values) ): dict_[self.key] = self.composite_class(*values) state.manager.dispatch.refresh(state, None, [self.key]) return dict_.get(self.key, None) def fset(instance, value): dict_ = attributes.instance_dict(instance) state = attributes.instance_state(instance) attr = state.manager[self.key] previous = dict_.get(self.key, attributes.NO_VALUE) for fn in attr.dispatch.set: value = fn(state, value, previous, attr.impl) dict_[self.key] = value if value is None: for key in self._attribute_keys: setattr(instance, key, None) else: for key, value in zip( self._attribute_keys, value.__composite_values__()): setattr(instance, key, value) def fdel(instance): state = attributes.instance_state(instance) dict_ = attributes.instance_dict(instance) previous = dict_.pop(self.key, attributes.NO_VALUE) attr = state.manager[self.key] attr.dispatch.remove(state, previous, attr.impl) for key in self._attribute_keys: setattr(instance, key, None) self.descriptor = property(fget, fset, fdel) @util.memoized_property def _comparable_elements(self): return [ getattr(self.parent.class_, prop.key) for prop in self.props ] def _init_props(self): self.props = props = [] for attr in self.attrs: if isinstance(attr, str): prop = self.parent.get_property(attr) elif isinstance(attr, schema.Column): prop = self.parent._columntoproperty[attr] elif isinstance(attr, attributes.InstrumentedAttribute): prop = attr.property props.append(prop) @property def columns(self): return [a for a in self.attrs if isinstance(a, schema.Column)] def _setup_arguments_on_columns(self): """Propagate configuration arguments made on this composite to the target columns, for those that apply. """ for prop in self.props: prop.active_history = self.active_history if self.deferred: prop.deferred = self.deferred prop.strategy_class = prop._strategy_lookup( deferred=True, instrument=True) prop.group = self.group def _setup_event_handlers(self): """Establish events that populate/expire the composite attribute.""" def load_handler(state, *args): dict_ = state.dict if self.key in dict_: return # if column elements aren't loaded, skip. # __get__() will initiate a load for those # columns for k in self._attribute_keys: if k not in dict_: return #assert self.key not in dict_ dict_[self.key] = self.composite_class( *[state.dict[key] for key in self._attribute_keys] ) def expire_handler(state, keys): if keys is None or set(self._attribute_keys).intersection(keys): state.dict.pop(self.key, None) def insert_update_handler(mapper, connection, state): """After an insert or update, some columns may be expired due to server side defaults, or re-populated due to client side defaults. Pop out the composite value here so that it recreates. """ state.dict.pop(self.key, None) event.listen(self.parent, 'after_insert', insert_update_handler, raw=True) event.listen(self.parent, 'after_update', insert_update_handler, raw=True) event.listen(self.parent, 'load', load_handler, raw=True, propagate=True) event.listen(self.parent, 'refresh', load_handler, raw=True, propagate=True) event.listen(self.parent, 'expire', expire_handler, raw=True, propagate=True) # TODO: need a deserialize hook here @util.memoized_property def _attribute_keys(self): return [ prop.key for prop in self.props ] def get_history(self, state, dict_, passive=attributes.PASSIVE_OFF): """Provided for userland code that uses attributes.get_history().""" added = [] deleted = [] has_history = False for prop in self.props: key = prop.key hist = state.manager[key].impl.get_history(state, dict_) if hist.has_changes(): has_history = True non_deleted = hist.non_deleted() if non_deleted: added.extend(non_deleted) else: added.append(None) if hist.deleted: deleted.extend(hist.deleted) else: deleted.append(None) if has_history: return attributes.History( [self.composite_class(*added)], (), [self.composite_class(*deleted)] ) else: return attributes.History( (), [self.composite_class(*added)], () ) def _comparator_factory(self, mapper): return self.comparator_factory(self, mapper) class Comparator(PropComparator): """Produce boolean, comparison, and other operators for :class:`.CompositeProperty` attributes. See the example in :ref:`composite_operations` for an overview of usage , as well as the documentation for :class:`.PropComparator`. See also: :class:`.PropComparator` :class:`.ColumnOperators` :ref:`types_operators` :attr:`.TypeEngine.comparator_factory` """ def __clause_element__(self): return expression.ClauseList(group=False, *self._comparable_elements) __hash__ = None @util.memoized_property def _comparable_elements(self): if self._adapt_to_entity: return [ getattr( self._adapt_to_entity.entity, prop.key ) for prop in self.prop._comparable_elements ] else: return self.prop._comparable_elements def __eq__(self, other): if other is None: values = [None] * len(self.prop._comparable_elements) else: values = other.__composite_values__() comparisons = [ a == b for a, b in zip(self.prop._comparable_elements, values) ] if self._adapt_to_entity: comparisons = [self.adapter(x) for x in comparisons] return sql.and_(*comparisons) def __ne__(self, other): return sql.not_(self.__eq__(other)) def __str__(self): return str(self.parent.class_.__name__) + "." + self.key @util.langhelpers.dependency_for("sqlalchemy.orm.properties") class ConcreteInheritedProperty(DescriptorProperty): """A 'do nothing' :class:`.MapperProperty` that disables an attribute on a concrete subclass that is only present on the inherited mapper, not the concrete classes' mapper. Cases where this occurs include: * When the superclass mapper is mapped against a "polymorphic union", which includes all attributes from all subclasses. * When a relationship() is configured on an inherited mapper, but not on the subclass mapper. Concrete mappers require that relationship() is configured explicitly on each subclass. """ def _comparator_factory(self, mapper): comparator_callable = None for m in self.parent.iterate_to_root(): p = m._props[self.key] if not isinstance(p, ConcreteInheritedProperty): comparator_callable = p.comparator_factory break return comparator_callable def __init__(self): def warn(): raise AttributeError("Concrete %s does not implement " "attribute %r at the instance level. Add this " "property explicitly to %s." % (self.parent, self.key, self.parent)) class NoninheritedConcreteProp(object): def __set__(s, obj, value): warn() def __delete__(s, obj): warn() def __get__(s, obj, owner): if obj is None: return self.descriptor warn() self.descriptor = NoninheritedConcreteProp() @util.langhelpers.dependency_for("sqlalchemy.orm.properties") class SynonymProperty(DescriptorProperty): def __init__(self, name, map_column=None, descriptor=None, comparator_factory=None, doc=None): """Denote an attribute name as a synonym to a mapped property. .. versionchanged:: 0.7 :func:`.synonym` is superseded by the :mod:`~sqlalchemy.ext.hybrid` extension. See the documentation for hybrids at :ref:`hybrids_toplevel`. Used with the ``properties`` dictionary sent to :func:`~sqlalchemy.orm.mapper`:: class MyClass(object): def _get_status(self): return self._status def _set_status(self, value): self._status = value status = property(_get_status, _set_status) mapper(MyClass, sometable, properties={ "status":synonym("_status", map_column=True) }) Above, the ``status`` attribute of MyClass will produce expression behavior against the table column named ``status``, using the Python attribute ``_status`` on the mapped class to represent the underlying value. :param name: the name of the existing mapped property, which can be any other ``MapperProperty`` including column-based properties and relationships. :param map_column: if ``True``, an additional ``ColumnProperty`` is created on the mapper automatically, using the synonym's name as the keyname of the property, and the keyname of this ``synonym()`` as the name of the column to map. """ self.name = name self.map_column = map_column self.descriptor = descriptor self.comparator_factory = comparator_factory self.doc = doc or (descriptor and descriptor.__doc__) or None util.set_creation_order(self) # TODO: when initialized, check _proxied_property, # emit a warning if its not a column-based property @util.memoized_property def _proxied_property(self): return getattr(self.parent.class_, self.name).property def _comparator_factory(self, mapper): prop = self._proxied_property if self.comparator_factory: comp = self.comparator_factory(prop, mapper) else: comp = prop.comparator_factory(prop, mapper) return comp def set_parent(self, parent, init): if self.map_column: # implement the 'map_column' option. if self.key not in parent.mapped_table.c: raise sa_exc.ArgumentError( "Can't compile synonym '%s': no column on table " "'%s' named '%s'" % (self.name, parent.mapped_table.description, self.key)) elif parent.mapped_table.c[self.key] in \ parent._columntoproperty and \ parent._columntoproperty[ parent.mapped_table.c[self.key] ].key == self.name: raise sa_exc.ArgumentError( "Can't call map_column=True for synonym %r=%r, " "a ColumnProperty already exists keyed to the name " "%r for column %r" % (self.key, self.name, self.name, self.key) ) p = properties.ColumnProperty(parent.mapped_table.c[self.key]) parent._configure_property( self.name, p, init=init, setparent=True) p._mapped_by_synonym = self.key self.parent = parent @util.langhelpers.dependency_for("sqlalchemy.orm.properties") class ComparableProperty(DescriptorProperty): """Instruments a Python property for use in query expressions.""" def __init__(self, comparator_factory, descriptor=None, doc=None): """Provides a method of applying a :class:`.PropComparator` to any Python descriptor attribute. .. versionchanged:: 0.7 :func:`.comparable_property` is superseded by the :mod:`~sqlalchemy.ext.hybrid` extension. See the example at :ref:`hybrid_custom_comparators`. Allows any Python descriptor to behave like a SQL-enabled attribute when used at the class level in queries, allowing redefinition of expression operator behavior. In the example below we redefine :meth:`.PropComparator.operate` to wrap both sides of an expression in ``func.lower()`` to produce case-insensitive comparison:: from sqlalchemy.orm import comparable_property from sqlalchemy.orm.interfaces import PropComparator from sqlalchemy.sql import func from sqlalchemy import Integer, String, Column from sqlalchemy.ext.declarative import declarative_base class CaseInsensitiveComparator(PropComparator): def __clause_element__(self): return self.prop def operate(self, op, other): return op( func.lower(self.__clause_element__()), func.lower(other) ) Base = declarative_base() class SearchWord(Base): __tablename__ = 'search_word' id = Column(Integer, primary_key=True) word = Column(String) word_insensitive = comparable_property(lambda prop, mapper: CaseInsensitiveComparator(mapper.c.word, mapper) ) A mapping like the above allows the ``word_insensitive`` attribute to render an expression like:: >>> print SearchWord.word_insensitive == "Trucks" lower(search_word.word) = lower(:lower_1) :param comparator_factory: A PropComparator subclass or factory that defines operator behavior for this property. :param descriptor: Optional when used in a ``properties={}`` declaration. The Python descriptor or property to layer comparison behavior on top of. The like-named descriptor will be automatically retrieved from the mapped class if left blank in a ``properties`` declaration. """ self.descriptor = descriptor self.comparator_factory = comparator_factory self.doc = doc or (descriptor and descriptor.__doc__) or None util.set_creation_order(self) def _comparator_factory(self, mapper): return self.comparator_factory(self, mapper)
from mongoengine import * import datetime import urllib import simplejson as json import urllib.request as request from time import mktime from django.contrib.auth.models import User from reader.learn import predict_articles class Source(Document): title = StringField(required=True) alias = StringField(required=True, unique=True) description = StringField() def __str__(self): return self.title def update_articles(self): pass meta = {'allow_inheritance': True} class Reader(Document): user_id = IntField(required=True, unique=True) brain = BinaryField() subscriptions = ListField(ReferenceField(Source, reverse_delete_rule=NULLIFY)) preferred_article_view = StringField(choices=('frame', 'article'), default='frame') reading_list = ListField(DictField()) def subscribe(self, source): self.update(add_to_set__subscriptions=[source]) def unsubscribe(self, source): self.update(pull_all__subscriptions=[source]) def is_subscribed(self, source): return source in self.subscriptions def extend_reading_list(self): if len(self.reading_list) > 10: return if len(ReadRecord.objects(reader=self)) == 0: self.update(add_to_set__reading_list=[{"score": 0, "article_id": x.id} for x in Article.objects[:5]]) return predicted = predict_articles(self, Article.objects.filter( source__in=self.subscriptions, id__nin=[x.article.id for x in ReadRecord.objects(reader=self)] + [x['article_id'] for x in self.reading_list])) self.update(add_to_set__reading_list=[{"score": x[1], "article_id": x[0].id} for x in predicted]) @staticmethod def reader_for(user): try: return Reader.objects.get(user_id=user.id) except Reader.DoesNotExist: reader = Reader(user_id=user.id) reader.save() try: hackernews = Source.objects.get(alias="hackernews") except Source.DoesNotExist: hackernews = HackerNewsSource(alias="hackernews", title="Hacker News") hackernews.save() reader.subscribe(hackernews) reader.extend_reading_list() return reader class Article(Document): title = StringField(required=True) content_text = StringField(required=True) content_html = StringField(required=True) url = StringField(required=True, unique=True) date_published = DateTimeField(required=True, default=datetime.datetime.now) is_framing_allowed = BooleanField(default=True, required=True) source = ReferenceField(Source, required=True, reverse_delete_rule=CASCADE) meta = {'allow_inheritance': True} def update_content_by_url(self): from boilerpipe.extract import Extractor extractor = Extractor(extractor='ArticleExtractor', url=self.url) self.content_html = extractor.getHTML() self.content_text = extractor.getText() def check_framing_allowed(self): from django.conf import settings request = urllib.request.Request(self.url) request.add_header("Referer", settings.BASE_URL) try: opener = urllib.request.urlopen(request) except Exception: self.is_framing_allowed = False return framing_allowed = not ('x-frame-options' in opener.headers) self.is_framing_allowed = framing_allowed def __str__(self): return (self.title + " [" + self.url + "]") @staticmethod def get_or_new(**kwargs): try: return Article.objects.get(**kwargs), False except Article.DoesNotExist: return Article(**kwargs), True # Additional Documents for Reader class ReadRecord(Document): reader = ReferenceField(Reader, required=True, unique_with="article") article = ReferenceField(Article, required=True, unique_with="reader") date_read = ListField(DateTimeField(default=datetime.datetime.now)) is_liked = BooleanField(default=False, required=True) is_learned = BooleanField(default=False, required=True) # Additional Documents for Articles class HackerNewsArticle(Article): hackernews_id = StringField(required=True) hackernews_type = StringField(required=True) hackernews_score = IntField(required=True) hackernews_submitter = StringField(required=True) @staticmethod def get_or_new(**kwargs): try: return HackerNewsArticle.objects.get(**kwargs), False except HackerNewsArticle.DoesNotExist: return HackerNewsArticle(**kwargs), True # Additional Documents for Source class HackerNewsSource(Source): def fetch_top_story_ids(self): top_stories_url = "https://hacker-news.firebaseio.com/v0/topstories.json" try: story_ids_raw = request.urlopen(top_stories_url) return json.loads(story_ids_raw.readlines()[0]) except Exception: return [] def fetch_story(self, story_id): story_url = "https://hacker-news.firebaseio.com/v0/item/{}.json".format(story_id) try: story_raw = request.urlopen(story_url) s = json.loads(story_raw.readlines()[0]) return s if s['title'] and s['url'] and s['time'] and s['id'] and s['score'] and s['by'] and s['type'] else None except Exception: return None def update_articles(self): for story_id in self.fetch_top_story_ids(): story = self.fetch_story(story_id) if not story: continue article, newed = HackerNewsArticle.get_or_new(url=story['url']) article.title = story['title'] article.date_published = datetime.datetime.fromtimestamp(story['time']) article.source = self article.hackernews_id = str(story['id']) article.hackernews_score = story['score'] article.hackernews_submitter = story['by'] article.hackernews_type = story['type'] try: article.update_content_by_url() except Exception: continue article.check_framing_allowed() article.save() class RSSSource(Source): url = StringField(required=True) categories = ListField(StringField()) def update_articles(self): import feedparser try: rss = feedparser.parse(self.url) except Exception: return self.title = rss.feed.title if hasattr(rss.feed, 'description'): self.description = rss.feed.description self.save() for entry in rss.entries: article, newed = Article.get_or_new(url=entry.link) article.title = entry.title if hasattr(entry, 'published_parsed'): article.date_published = datetime.datetime.fromtimestamp(mktime(entry.published_parsed)) article.source = self try: article.update_content_by_url() except Exception: continue article.check_framing_allowed() article.save()
# Default Django settings. Override these with settings in the module # pointed-to by the DJANGO_SETTINGS_MODULE environment variable. # This is defined here as a do-nothing function because we can't import # django.utils.translation -- that module depends on the settings. gettext_noop = lambda s: s #################### # CORE # #################### DEBUG = False TEMPLATE_DEBUG = False # Whether the framework should propagate raw exceptions rather than catching # them. This is useful under some testing siutations and should never be used # on a live site. DEBUG_PROPAGATE_EXCEPTIONS = False # Whether to use the "Etag" header. This saves bandwidth but slows down performance. USE_ETAGS = False # People who get code error notifications. # In the format (('Full Name', '[email protected]'), ('Full Name', '[email protected]')) ADMINS = () # Tuple of IP addresses, as strings, that: # * See debug comments, when DEBUG is true # * Receive x-headers INTERNAL_IPS = () # Local time zone for this installation. All choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name (although not all # systems may support all possibilities). TIME_ZONE = 'America/Chicago' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' # Languages we provide translations for, out of the box. The language name # should be the utf-8 encoded local name for the language. LANGUAGES = ( ('ar', gettext_noop('Arabic')), ('bg', gettext_noop('Bulgarian')), ('bn', gettext_noop('Bengali')), ('bs', gettext_noop('Bosnian')), ('ca', gettext_noop('Catalan')), ('cs', gettext_noop('Czech')), ('cy', gettext_noop('Welsh')), ('da', gettext_noop('Danish')), ('de', gettext_noop('German')), ('el', gettext_noop('Greek')), ('en', gettext_noop('English')), ('en-gb', gettext_noop('British English')), ('es', gettext_noop('Spanish')), ('es-ar', gettext_noop('Argentinean Spanish')), ('et', gettext_noop('Estonian')), ('eu', gettext_noop('Basque')), ('fa', gettext_noop('Persian')), ('fi', gettext_noop('Finnish')), ('fr', gettext_noop('French')), ('fy-nl', gettext_noop('Frisian')), ('ga', gettext_noop('Irish')), ('gl', gettext_noop('Galician')), ('he', gettext_noop('Hebrew')), ('hi', gettext_noop('Hindi')), ('hr', gettext_noop('Croatian')), ('hu', gettext_noop('Hungarian')), ('id', gettext_noop('Indonesian')), ('is', gettext_noop('Icelandic')), ('it', gettext_noop('Italian')), ('ja', gettext_noop('Japanese')), ('ka', gettext_noop('Georgian')), ('km', gettext_noop('Khmer')), ('kn', gettext_noop('Kannada')), ('ko', gettext_noop('Korean')), ('lt', gettext_noop('Lithuanian')), ('lv', gettext_noop('Latvian')), ('mk', gettext_noop('Macedonian')), ('mn', gettext_noop('Mongolian')), ('nl', gettext_noop('Dutch')), ('no', gettext_noop('Norwegian')), ('nb', gettext_noop('Norwegian Bokmal')), ('nn', gettext_noop('Norwegian Nynorsk')), ('pl', gettext_noop('Polish')), ('pt', gettext_noop('Portuguese')), ('pt-br', gettext_noop('Brazilian Portuguese')), ('ro', gettext_noop('Romanian')), ('ru', gettext_noop('Russian')), ('sk', gettext_noop('Slovak')), ('sl', gettext_noop('Slovenian')), ('sq', gettext_noop('Albanian')), ('sr', gettext_noop('Serbian')), ('sr-latn', gettext_noop('Serbian Latin')), ('sv', gettext_noop('Swedish')), ('ta', gettext_noop('Tamil')), ('te', gettext_noop('Telugu')), ('th', gettext_noop('Thai')), ('tr', gettext_noop('Turkish')), ('uk', gettext_noop('Ukrainian')), ('vi', gettext_noop('Vietnamese')), ('zh-cn', gettext_noop('Simplified Chinese')), ('zh-tw', gettext_noop('Traditional Chinese')), ) # Languages using BiDi (right-to-left) layout LANGUAGES_BIDI = ("he", "ar", "fa") # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True LOCALE_PATHS = () LANGUAGE_COOKIE_NAME = 'django_language' # If you set this to True, Django will format dates, numbers and calendars # according to user current locale USE_L10N = False # Not-necessarily-technical managers of the site. They get broken link # notifications and other various e-mails. MANAGERS = ADMINS # Default content type and charset to use for all HttpResponse objects, if a # MIME type isn't manually specified. These are used to construct the # Content-Type header. DEFAULT_CONTENT_TYPE = 'text/html' DEFAULT_CHARSET = 'utf-8' # Encoding of files read from disk (template and initial SQL files). FILE_CHARSET = 'utf-8' # E-mail address that error messages come from. SERVER_EMAIL = 'root@localhost' # Whether to send broken-link e-mails. SEND_BROKEN_LINK_EMAILS = False # Database connection info. # Legacy format DATABASE_ENGINE = '' # 'postgresql_psycopg2', 'postgresql', 'mysql', 'sqlite3' or 'oracle'. DATABASE_NAME = '' # Or path to database file if using sqlite3. DATABASE_USER = '' # Not used with sqlite3. DATABASE_PASSWORD = '' # Not used with sqlite3. DATABASE_HOST = '' # Set to empty string for localhost. Not used with sqlite3. DATABASE_PORT = '' # Set to empty string for default. Not used with sqlite3. DATABASE_OPTIONS = {} # Set to empty dictionary for default. # New format DATABASES = { } # Classes used to implement db routing behaviour DATABASE_ROUTERS = [] # The email backend to use. For possible shortcuts see django.core.mail. # The default is to use the SMTP backend. # Third-party backends can be specified by providing a Python path # to a module that defines an EmailBackend class. EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' # Host for sending e-mail. EMAIL_HOST = 'localhost' # Port for sending e-mail. EMAIL_PORT = 25 # Optional SMTP authentication information for EMAIL_HOST. EMAIL_HOST_USER = '' EMAIL_HOST_PASSWORD = '' EMAIL_USE_TLS = False # List of strings representing installed apps. INSTALLED_APPS = () # List of locations of the template source files, in search order. TEMPLATE_DIRS = () # List of callables that know how to import templates from various sources. # See the comments in django/core/template/loader.py for interface # documentation. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) # List of processors used by RequestContext to populate the context. # Each one should be a callable that takes the request object as its # only parameter and returns a dictionary to add to the context. TEMPLATE_CONTEXT_PROCESSORS = ( 'django.contrib.auth.context_processors.auth', 'django.core.context_processors.debug', 'django.core.context_processors.i18n', 'django.core.context_processors.media', # 'django.core.context_processors.request', 'django.contrib.messages.context_processors.messages', ) # Output to use in template system for invalid (e.g. misspelled) variables. TEMPLATE_STRING_IF_INVALID = '' # URL prefix for admin media -- CSS, JavaScript and images. Make sure to use a # trailing slash. # Examples: "http://foo.com/media/", "/media/". ADMIN_MEDIA_PREFIX = '/media/' # Default e-mail address to use for various automated correspondence from # the site managers. DEFAULT_FROM_EMAIL = 'webmaster@localhost' # Subject-line prefix for email messages send with django.core.mail.mail_admins # or ...mail_managers. Make sure to include the trailing space. EMAIL_SUBJECT_PREFIX = '[Django] ' # Whether to append trailing slashes to URLs. APPEND_SLASH = True # Whether to prepend the "www." subdomain to URLs that don't have it. PREPEND_WWW = False # Override the server-derived value of SCRIPT_NAME FORCE_SCRIPT_NAME = None # List of compiled regular expression objects representing User-Agent strings # that are not allowed to visit any page, systemwide. Use this for bad # robots/crawlers. Here are a few examples: # import re # DISALLOWED_USER_AGENTS = ( # re.compile(r'^NaverBot.*'), # re.compile(r'^EmailSiphon.*'), # re.compile(r'^SiteSucker.*'), # re.compile(r'^sohu-search') # ) DISALLOWED_USER_AGENTS = () ABSOLUTE_URL_OVERRIDES = {} # Tuple of strings representing allowed prefixes for the {% ssi %} tag. # Example: ('/home/html', '/var/www') ALLOWED_INCLUDE_ROOTS = () # If this is a admin settings module, this should be a list of # settings modules (in the format 'foo.bar.baz') for which this admin # is an admin. ADMIN_FOR = () # 404s that may be ignored. IGNORABLE_404_STARTS = ('/cgi-bin/', '/_vti_bin', '/_vti_inf') IGNORABLE_404_ENDS = ('mail.pl', 'mailform.pl', 'mail.cgi', 'mailform.cgi', 'favicon.ico', '.php') # A secret key for this particular Django installation. Used in secret-key # hashing algorithms. Set this in your settings, or Django will complain # loudly. SECRET_KEY = '' # Default file storage mechanism that holds media. DEFAULT_FILE_STORAGE = 'django.core.files.storage.FileSystemStorage' # Absolute path to the directory that holds media. # Example: "/home/media/media.lawrence.com/" MEDIA_ROOT = '' # URL that handles the media served from MEDIA_ROOT. # Example: "http://media.lawrence.com" MEDIA_URL = '' # List of upload handler classes to be applied in order. FILE_UPLOAD_HANDLERS = ( 'django.core.files.uploadhandler.MemoryFileUploadHandler', 'django.core.files.uploadhandler.TemporaryFileUploadHandler', ) # Maximum size, in bytes, of a request before it will be streamed to the # file system instead of into memory. FILE_UPLOAD_MAX_MEMORY_SIZE = 2621440 # i.e. 2.5 MB # Directory in which upload streamed files will be temporarily saved. A value of # `None` will make Django use the operating system's default temporary directory # (i.e. "/tmp" on *nix systems). FILE_UPLOAD_TEMP_DIR = None # The numeric mode to set newly-uploaded files to. The value should be a mode # you'd pass directly to os.chmod; see http://docs.python.org/lib/os-file-dir.html. FILE_UPLOAD_PERMISSIONS = None # Python module path where user will place custom format definition. # The directory where this setting is pointing should contain subdirectories # named as the locales, containing a formats.py file # (i.e. "myproject.locale" for myproject/locale/en/formats.py etc. use) FORMAT_MODULE_PATH = None # Default formatting for date objects. See all available format strings here: # http://docs.djangoproject.com/en/dev/ref/templates/builtins/#now DATE_FORMAT = 'N j, Y' # Default formatting for datetime objects. See all available format strings here: # http://docs.djangoproject.com/en/dev/ref/templates/builtins/#now DATETIME_FORMAT = 'N j, Y, P' # Default formatting for time objects. See all available format strings here: # http://docs.djangoproject.com/en/dev/ref/templates/builtins/#now TIME_FORMAT = 'P' # Default formatting for date objects when only the year and month are relevant. # See all available format strings here: # http://docs.djangoproject.com/en/dev/ref/templates/builtins/#now YEAR_MONTH_FORMAT = 'F Y' # Default formatting for date objects when only the month and day are relevant. # See all available format strings here: # http://docs.djangoproject.com/en/dev/ref/templates/builtins/#now MONTH_DAY_FORMAT = 'F j' # Default short formatting for date objects. See all available format strings here: # http://docs.djangoproject.com/en/dev/ref/templates/builtins/#now SHORT_DATE_FORMAT = 'm/d/Y' # Default short formatting for datetime objects. # See all available format strings here: # http://docs.djangoproject.com/en/dev/ref/templates/builtins/#now SHORT_DATETIME_FORMAT = 'm/d/Y P' # Default formats to be used when parsing dates from input boxes, in order # See all available format string here: # http://docs.python.org/library/datetime.html#strftime-behavior # * Note that these format strings are different from the ones to display dates DATE_INPUT_FORMATS = ( '%Y-%m-%d', '%m/%d/%Y', '%m/%d/%y', # '2006-10-25', '10/25/2006', '10/25/06' '%b %d %Y', '%b %d, %Y', # 'Oct 25 2006', 'Oct 25, 2006' '%d %b %Y', '%d %b, %Y', # '25 Oct 2006', '25 Oct, 2006' '%B %d %Y', '%B %d, %Y', # 'October 25 2006', 'October 25, 2006' '%d %B %Y', '%d %B, %Y', # '25 October 2006', '25 October, 2006' ) # Default formats to be used when parsing times from input boxes, in order # See all available format string here: # http://docs.python.org/library/datetime.html#strftime-behavior # * Note that these format strings are different from the ones to display dates TIME_INPUT_FORMATS = ( '%H:%M:%S', # '14:30:59' '%H:%M', # '14:30' ) # Default formats to be used when parsing dates and times from input boxes, # in order # See all available format string here: # http://docs.python.org/library/datetime.html#strftime-behavior # * Note that these format strings are different from the ones to display dates DATETIME_INPUT_FORMATS = ( '%Y-%m-%d %H:%M:%S', # '2006-10-25 14:30:59' '%Y-%m-%d %H:%M', # '2006-10-25 14:30' '%Y-%m-%d', # '2006-10-25' '%m/%d/%Y %H:%M:%S', # '10/25/2006 14:30:59' '%m/%d/%Y %H:%M', # '10/25/2006 14:30' '%m/%d/%Y', # '10/25/2006' '%m/%d/%y %H:%M:%S', # '10/25/06 14:30:59' '%m/%d/%y %H:%M', # '10/25/06 14:30' '%m/%d/%y', # '10/25/06' ) # First day of week, to be used on calendars # 0 means Sunday, 1 means Monday... FIRST_DAY_OF_WEEK = 0 # Decimal separator symbol DECIMAL_SEPARATOR = '.' # Boolean that sets whether to add thousand separator when formatting numbers USE_THOUSAND_SEPARATOR = False # Number of digits that will be togheter, when spliting them by THOUSAND_SEPARATOR # 0 means no grouping, 3 means splitting by thousands... NUMBER_GROUPING = 0 # Thousand separator symbol THOUSAND_SEPARATOR = ',' # Do you want to manage transactions manually? # Hint: you really don't! TRANSACTIONS_MANAGED = False # The User-Agent string to use when checking for URL validity through the # isExistingURL validator. from django import get_version URL_VALIDATOR_USER_AGENT = "Django/%s (http://www.djangoproject.com)" % get_version() # The tablespaces to use for each model when not specified otherwise. DEFAULT_TABLESPACE = '' DEFAULT_INDEX_TABLESPACE = '' ############## # MIDDLEWARE # ############## # List of middleware classes to use. Order is important; in the request phase, # this middleware classes will be applied in the order given, and in the # response phase the middleware will be applied in reverse order. MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', # 'django.middleware.http.ConditionalGetMiddleware', # 'django.middleware.gzip.GZipMiddleware', ) ############ # SESSIONS # ############ SESSION_COOKIE_NAME = 'sessionid' # Cookie name. This can be whatever you want. SESSION_COOKIE_AGE = 60 * 60 * 24 * 7 * 2 # Age of cookie, in seconds (default: 2 weeks). SESSION_COOKIE_DOMAIN = None # A string like ".lawrence.com", or None for standard domain cookie. SESSION_COOKIE_SECURE = False # Whether the session cookie should be secure (https:// only). SESSION_COOKIE_PATH = '/' # The path of the session cookie. SESSION_SAVE_EVERY_REQUEST = False # Whether to save the session data on every request. SESSION_EXPIRE_AT_BROWSER_CLOSE = False # Whether a user's session cookie expires when the Web browser is closed. SESSION_ENGINE = 'django.contrib.sessions.backends.db' # The module to store session data SESSION_FILE_PATH = None # Directory to store session files if using the file session module. If None, the backend will use a sensible default. ######### # CACHE # ######### # The cache backend to use. See the docstring in django.core.cache for the # possible values. CACHE_BACKEND = 'locmem://' CACHE_MIDDLEWARE_KEY_PREFIX = '' CACHE_MIDDLEWARE_SECONDS = 600 #################### # COMMENTS # #################### COMMENTS_ALLOW_PROFANITIES = False # The profanities that will trigger a validation error in the # 'hasNoProfanities' validator. All of these should be in lowercase. PROFANITIES_LIST = ('asshat', 'asshead', 'asshole', 'cunt', 'fuck', 'gook', 'nigger', 'shit') # The group ID that designates which users are banned. # Set to None if you're not using it. COMMENTS_BANNED_USERS_GROUP = None # The group ID that designates which users can moderate comments. # Set to None if you're not using it. COMMENTS_MODERATORS_GROUP = None # The group ID that designates the users whose comments should be e-mailed to MANAGERS. # Set to None if you're not using it. COMMENTS_SKETCHY_USERS_GROUP = None # The system will e-mail MANAGERS the first COMMENTS_FIRST_FEW comments by each # user. Set this to 0 if you want to disable it. COMMENTS_FIRST_FEW = 0 # A tuple of IP addresses that have been banned from participating in various # Django-powered features. BANNED_IPS = () ################## # AUTHENTICATION # ################## AUTHENTICATION_BACKENDS = ('django.contrib.auth.backends.ModelBackend',) LOGIN_URL = '/accounts/login/' LOGOUT_URL = '/accounts/logout/' LOGIN_REDIRECT_URL = '/accounts/profile/' # The number of days a password reset link is valid for PASSWORD_RESET_TIMEOUT_DAYS = 3 ######## # CSRF # ######## # Dotted path to callable to be used as view when a request is # rejected by the CSRF middleware. CSRF_FAILURE_VIEW = 'django.views.csrf.csrf_failure' # Name and domain for CSRF cookie. CSRF_COOKIE_NAME = 'csrftoken' CSRF_COOKIE_DOMAIN = None ############ # MESSAGES # ############ # Class to use as messges backend MESSAGE_STORAGE = 'django.contrib.messages.storage.user_messages.LegacyFallbackStorage' # Default values of MESSAGE_LEVEL and MESSAGE_TAGS are defined within # django.contrib.messages to avoid imports in this settings file. ########### # TESTING # ########### # The name of the class to use to run the test suite TEST_RUNNER = 'django.test.simple.DjangoTestSuiteRunner' # The name of the database to use for testing purposes. # If None, a name of 'test_' + DATABASE_NAME will be assumed TEST_DATABASE_NAME = None # Strings used to set the character set and collation order for the test # database. These values are passed literally to the server, so they are # backend-dependent. If None, no special settings are sent (system defaults are # used). TEST_DATABASE_CHARSET = None TEST_DATABASE_COLLATION = None ############ # FIXTURES # ############ # The list of directories to search for fixtures FIXTURE_DIRS = ()
''' Build a simple neural machine translation model ''' import theano import theano.tensor as tensor from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams import cPickle as pkl import numpy import copy import os import warnings import sys import time from scipy import optimize, stats from collections import OrderedDict from sklearn.cross_validation import KFold from data_iterator import TextIterator profile = False # push parameters to Theano shared variables def zipp(params, tparams): for kk, vv in params.iteritems(): tparams[kk].set_value(vv) # pull parameters from Theano shared variables def unzip(zipped): new_params = OrderedDict() for kk, vv in zipped.iteritems(): new_params[kk] = vv.get_value() return new_params # get the list of parameters: Note that tparams must be OrderedDict def itemlist(tparams): return [vv for kk, vv in tparams.iteritems()] # dropout def dropout_layer(state_before, use_noise, trng): proj = tensor.switch(use_noise, state_before * trng.binomial(state_before.shape, p=0.5, n=1, dtype=state_before.dtype), state_before * 0.5) return proj # make prefix-appended name def _p(pp, name): return '%s_%s'%(pp, name) # initialize Theano shared variables according to the initial parameters def init_tparams(params): tparams = OrderedDict() for kk, pp in params.iteritems(): tparams[kk] = theano.shared(params[kk], name=kk) return tparams # load parameters def load_params(path, params): pp = numpy.load(path) for kk, vv in params.iteritems(): if kk not in pp: warnings.warn('%s is not in the archive'%kk) continue params[kk] = pp[kk] return params # layers: 'name': ('parameter initializer', 'feedforward') layers = {'ff': ('param_init_fflayer', 'fflayer'), 'gru': ('param_init_gru', 'gru_layer'), 'gru_cond': ('param_init_gru_cond', 'gru_cond_layer'), } def get_layer(name): fns = layers[name] return (eval(fns[0]), eval(fns[1])) # some utilities def ortho_weight(ndim): W = numpy.random.randn(ndim, ndim) u, s, v = numpy.linalg.svd(W) return u.astype('float32') def norm_weight(nin,nout=None, scale=0.01, ortho=True): if nout == None: nout = nin if nout == nin and ortho: W = ortho_weight(nin) else: W = scale * numpy.random.randn(nin, nout) return W.astype('float32') def tanh(x): return tensor.tanh(x) def linear(x): return x def concatenate(tensor_list, axis=0): """ Alternative implementation of `theano.tensor.concatenate`. This function does exactly the same thing, but contrary to Theano's own implementation, the gradient is implemented on the GPU. Backpropagating through `theano.tensor.concatenate` yields slowdowns because the inverse operation (splitting) needs to be done on the CPU. This implementation does not have that problem. :usage: >>> x, y = theano.tensor.matrices('x', 'y') >>> c = concatenate([x, y], axis=1) :parameters: - tensor_list : list list of Theano tensor expressions that should be concatenated. - axis : int the tensors will be joined along this axis. :returns: - out : tensor the concatenated tensor expression. """ concat_size = sum(tt.shape[axis] for tt in tensor_list) output_shape = () for k in range(axis): output_shape += (tensor_list[0].shape[k],) output_shape += (concat_size,) for k in range(axis + 1, tensor_list[0].ndim): output_shape += (tensor_list[0].shape[k],) out = tensor.zeros(output_shape) offset = 0 for tt in tensor_list: indices = () for k in range(axis): indices += (slice(None),) indices += (slice(offset, offset + tt.shape[axis]),) for k in range(axis + 1, tensor_list[0].ndim): indices += (slice(None),) out = tensor.set_subtensor(out[indices], tt) offset += tt.shape[axis] return out # batch preparation def prepare_data(seqs_x, seqs_y, maxlen=None, n_words_src=30000, n_words=30000): # x: a list of sentences lengths_x = [len(s) for s in seqs_x] lengths_y = [len(s) for s in seqs_y] if maxlen != None: new_seqs_x = [] new_seqs_y = [] new_lengths_x = [] new_lengths_y = [] for l_x, s_x, l_y, s_y in zip(lengths_x, seqs_x, lengths_y, seqs_y): if l_x < maxlen and l_y < maxlen: new_seqs_x.append(s_x) new_lengths_x.append(l_x) new_seqs_y.append(s_y) new_lengths_y.append(l_y) lengths_x = new_lengths_x seqs_x = new_seqs_x lengths_y = new_lengths_y seqs_y = new_seqs_y if len(lengths_x) < 1 or len(lengths_y) < 1: return None, None, None, None n_samples = len(seqs_x) maxlen_x = numpy.max(lengths_x) + 1 maxlen_y = numpy.max(lengths_y) + 1 x = numpy.zeros((maxlen_x, n_samples)).astype('int64') y = numpy.zeros((maxlen_y, n_samples)).astype('int64') x_mask = numpy.zeros((maxlen_x, n_samples)).astype('float32') y_mask = numpy.zeros((maxlen_y, n_samples)).astype('float32') for idx, [s_x, s_y] in enumerate(zip(seqs_x,seqs_y)): x[:lengths_x[idx],idx] = s_x x_mask[:lengths_x[idx]+1,idx] = 1. y[:lengths_y[idx],idx] = s_y y_mask[:lengths_y[idx]+1,idx] = 1. return x, x_mask, y, y_mask # feedforward layer: affine transformation + point-wise nonlinearity def param_init_fflayer(options, params, prefix='ff', nin=None, nout=None, ortho=True): if nin == None: nin = options['dim_proj'] if nout == None: nout = options['dim_proj'] params[_p(prefix,'W')] = norm_weight(nin, nout, scale=0.01, ortho=ortho) params[_p(prefix,'b')] = numpy.zeros((nout,)).astype('float32') return params def fflayer(tparams, state_below, options, prefix='rconv', activ='lambda x: tensor.tanh(x)', **kwargs): return eval(activ)(tensor.dot(state_below, tparams[_p(prefix,'W')])+tparams[_p(prefix,'b')]) # GRU layer def param_init_gru(options, params, prefix='gru', nin=None, dim=None, hiero=False): if nin == None: nin = options['dim_proj'] if dim == None: dim = options['dim_proj'] if not hiero: W = numpy.concatenate([norm_weight(nin,dim), norm_weight(nin,dim)], axis=1) params[_p(prefix,'W')] = W params[_p(prefix,'b')] = numpy.zeros((2 * dim,)).astype('float32') U = numpy.concatenate([ortho_weight(dim), ortho_weight(dim)], axis=1) params[_p(prefix,'U')] = U Wx = norm_weight(nin, dim) params[_p(prefix,'Wx')] = Wx Ux = ortho_weight(dim) params[_p(prefix,'Ux')] = Ux params[_p(prefix,'bx')] = numpy.zeros((dim,)).astype('float32') return params def gru_layer(tparams, state_below, options, prefix='gru', mask=None, **kwargs): nsteps = state_below.shape[0] if state_below.ndim == 3: n_samples = state_below.shape[1] else: n_samples = 1 dim = tparams[_p(prefix,'Ux')].shape[1] if mask == None: mask = tensor.alloc(1., state_below.shape[0], 1) def _slice(_x, n, dim): if _x.ndim == 3: return _x[:, :, n*dim:(n+1)*dim] return _x[:, n*dim:(n+1)*dim] state_below_ = tensor.dot(state_below, tparams[_p(prefix, 'W')]) + tparams[_p(prefix, 'b')] state_belowx = tensor.dot(state_below, tparams[_p(prefix, 'Wx')]) + tparams[_p(prefix, 'bx')] U = tparams[_p(prefix, 'U')] Ux = tparams[_p(prefix, 'Ux')] def _step_slice(m_, x_, xx_, h_, U, Ux): preact = tensor.dot(h_, U) preact += x_ r = tensor.nnet.sigmoid(_slice(preact, 0, dim)) u = tensor.nnet.sigmoid(_slice(preact, 1, dim)) preactx = tensor.dot(h_, Ux) preactx = preactx * r preactx = preactx + xx_ h = tensor.tanh(preactx) h = u * h_ + (1. - u) * h h = m_[:,None] * h + (1. - m_)[:,None] * h_ return h#, r, u, preact, preactx seqs = [mask, state_below_, state_belowx] _step = _step_slice rval, updates = theano.scan(_step, sequences=seqs, outputs_info = [tensor.alloc(0., n_samples, dim)], #None, None, None, None], non_sequences = [tparams[_p(prefix, 'U')], tparams[_p(prefix, 'Ux')]], name=_p(prefix, '_layers'), n_steps=nsteps, profile=profile, strict=True) rval = [rval] return rval # Conditional GRU layer with Attention def param_init_gru_cond(options, params, prefix='gru_cond', nin=None, dim=None, dimctx=None): if nin == None: nin = options['dim'] if dim == None: dim = options['dim'] if dimctx == None: dimctx = options['dim'] params = param_init_gru(options, params, prefix, nin=nin, dim=dim) # context to LSTM Wc = norm_weight(dimctx,dim*2) params[_p(prefix,'Wc')] = Wc Wcx = norm_weight(dimctx,dim) params[_p(prefix,'Wcx')] = Wcx # attention: prev -> hidden Wi_att = norm_weight(nin,dimctx) params[_p(prefix,'Wi_att')] = Wi_att # attention: context -> hidden Wc_att = norm_weight(dimctx) params[_p(prefix,'Wc_att')] = Wc_att # attention: LSTM -> hidden Wd_att = norm_weight(dim,dimctx) params[_p(prefix,'Wd_att')] = Wd_att # attention: hidden bias b_att = numpy.zeros((dimctx,)).astype('float32') params[_p(prefix,'b_att')] = b_att # attention: U_att = norm_weight(dimctx,1) params[_p(prefix,'U_att')] = U_att c_att = numpy.zeros((1,)).astype('float32') params[_p(prefix, 'c_tt')] = c_att return params def gru_cond_layer(tparams, state_below, options, prefix='gru', mask=None, context=None, one_step=False, init_memory=None, init_state=None, context_mask=None, **kwargs): assert context, 'Context must be provided' if one_step: assert init_state, 'previous state must be provided' nsteps = state_below.shape[0] if state_below.ndim == 3: n_samples = state_below.shape[1] else: n_samples = 1 # mask if mask == None: mask = tensor.alloc(1., state_below.shape[0], 1) dim = tparams[_p(prefix, 'Wcx')].shape[1] # initial/previous state if init_state == None: init_state = tensor.alloc(0., n_samples, dim) # projected context assert context.ndim == 3, 'Context must be 3-d: #annotation x #sample x dim' pctx_ = tensor.dot(context, tparams[_p(prefix,'Wc_att')]) + tparams[_p(prefix,'b_att')] def _slice(_x, n, dim): if _x.ndim == 3: return _x[:, :, n*dim:(n+1)*dim] return _x[:, n*dim:(n+1)*dim] # projected x state_belowx = tensor.dot(state_below, tparams[_p(prefix, 'Wx')]) + tparams[_p(prefix, 'bx')] state_below_ = tensor.dot(state_below, tparams[_p(prefix, 'W')]) + tparams[_p(prefix, 'b')] state_belowc = tensor.dot(state_below, tparams[_p(prefix, 'Wi_att')]) def _step_slice(m_, x_, xx_, xc_, h_, ctx_, alpha_, pctx_, cc_, U, Wc, Wd_att, U_att, c_tt, Ux, Wcx): # attention pstate_ = tensor.dot(h_, Wd_att) pctx__ = pctx_ + pstate_[None,:,:] pctx__ += xc_ pctx__ = tensor.tanh(pctx__) alpha = tensor.dot(pctx__, U_att)+c_tt alpha = alpha.reshape([alpha.shape[0], alpha.shape[1]]) alpha = tensor.exp(alpha) if context_mask: alpha = alpha * context_mask alpha = alpha / alpha.sum(0, keepdims=True) ctx_ = (cc_ * alpha[:,:,None]).sum(0) # current context preact = tensor.dot(h_, U) preact += x_ preact += tensor.dot(ctx_, Wc) preact = tensor.nnet.sigmoid(preact) r = _slice(preact, 0, dim) u = _slice(preact, 1, dim) preactx = tensor.dot(h_, Ux) preactx *= r preactx += xx_ preactx += tensor.dot(ctx_, Wcx) h = tensor.tanh(preactx) h = u * h_ + (1. - u) * h h = m_[:,None] * h + (1. - m_)[:,None] * h_ return h, ctx_, alpha.T #, pstate_, preact, preactx, r, u seqs = [mask, state_below_, state_belowx, state_belowc] _step = _step_slice shared_vars = [tparams[_p(prefix, 'U')], tparams[_p(prefix, 'Wc')], tparams[_p(prefix,'Wd_att')], tparams[_p(prefix,'U_att')], tparams[_p(prefix, 'c_tt')], tparams[_p(prefix, 'Ux')], tparams[_p(prefix, 'Wcx')]] if one_step: rval = _step(*(seqs+[init_state, None, None, pctx_, context]+shared_vars)) else: rval, updates = theano.scan(_step, sequences=seqs, outputs_info = [init_state, tensor.alloc(0., n_samples, context.shape[2]), tensor.alloc(0., n_samples, context.shape[0])], non_sequences=[pctx_, context]+shared_vars, name=_p(prefix, '_layers'), n_steps=nsteps, profile=profile, strict=True) return rval # initialize all parameters def init_params(options): params = OrderedDict() # embedding params['Wemb'] = norm_weight(options['n_words_src'], options['dim_word']) params['Wemb_dec'] = norm_weight(options['n_words'], options['dim_word']) # encoder: bidirectional RNN params = get_layer(options['encoder'])[0](options, params, prefix='encoder', nin=options['dim_word'], dim=options['dim']) params = get_layer(options['encoder'])[0](options, params, prefix='encoder_r', nin=options['dim_word'], dim=options['dim']) ctxdim = 2 * options['dim'] # init_state, init_cell params = get_layer('ff')[0](options, params, prefix='ff_state', nin=ctxdim, nout=options['dim']) # decoder params = get_layer(options['decoder'])[0](options, params, prefix='decoder', nin=options['dim_word'], dim=options['dim'], dimctx=ctxdim) # readout params = get_layer('ff')[0](options, params, prefix='ff_logit_lstm', nin=options['dim'], nout=options['dim_word'], ortho=False) params = get_layer('ff')[0](options, params, prefix='ff_logit_prev', nin=options['dim_word'], nout=options['dim_word'], ortho=False) params = get_layer('ff')[0](options, params, prefix='ff_logit_ctx', nin=ctxdim, nout=options['dim_word'], ortho=False) params = get_layer('ff')[0](options, params, prefix='ff_logit', nin=options['dim_word'], nout=options['n_words']) return params # build a training model def build_model(tparams, options): opt_ret = dict() trng = RandomStreams(1234) use_noise = theano.shared(numpy.float32(0.)) # description string: #words x #samples x = tensor.matrix('x', dtype='int64') x_mask = tensor.matrix('x_mask', dtype='float32') y = tensor.matrix('y', dtype='int64') y_mask = tensor.matrix('y_mask', dtype='float32') xr = x[::-1] xr_mask = x_mask[::-1] n_timesteps = x.shape[0] n_timesteps_trg = y.shape[0] n_samples = x.shape[1] emb = tparams['Wemb'][x.flatten()] emb = emb.reshape([n_timesteps, n_samples, options['dim_word']]) proj = get_layer(options['encoder'])[1](tparams, emb, options, prefix='encoder', mask=x_mask) embr = tparams['Wemb'][xr.flatten()] embr = embr.reshape([n_timesteps, n_samples, options['dim_word']]) projr = get_layer(options['encoder'])[1](tparams, embr, options, prefix='encoder_r', mask=xr_mask) ctx = concatenate([proj[0], projr[0][::-1]], axis=proj[0].ndim-1) ctx_mean = (ctx * x_mask[:,:,None]).sum(0) / x_mask.sum(0)[:,None] #ctx_mean = concatenate([proj[0][-1], projr[0][-1]], axis=proj[0].ndim-2) # initial decoder state init_state = get_layer('ff')[1](tparams, ctx_mean, options, prefix='ff_state', activ='tanh') # word embedding (target) emb = tparams['Wemb_dec'][y.flatten()] emb = emb.reshape([n_timesteps_trg, n_samples, options['dim_word']]) emb_shifted = tensor.zeros_like(emb) emb_shifted = tensor.set_subtensor(emb_shifted[1:], emb[:-1]) emb = emb_shifted # decoder proj = get_layer(options['decoder'])[1](tparams, emb, options, prefix='decoder', mask=y_mask, context=ctx, context_mask=x_mask, one_step=False, init_state=init_state) proj_h = proj[0] ctxs = proj[1] opt_ret['dec_alphas'] = proj[2] # compute word probabilities logit_lstm = get_layer('ff')[1](tparams, proj_h, options, prefix='ff_logit_lstm', activ='linear') logit_prev = get_layer('ff')[1](tparams, emb, options, prefix='ff_logit_prev', activ='linear') logit_ctx = get_layer('ff')[1](tparams, ctxs, options, prefix='ff_logit_ctx', activ='linear') logit = tensor.tanh(logit_lstm+logit_prev+logit_ctx) logit = get_layer('ff')[1](tparams, logit, options, prefix='ff_logit', activ='linear') logit_shp = logit.shape probs = tensor.nnet.softmax(logit.reshape([logit_shp[0]*logit_shp[1], logit_shp[2]])) # cost y_flat = y.flatten() y_flat_idx = tensor.arange(y_flat.shape[0]) * options['n_words'] + y_flat cost = -tensor.log(probs.flatten()[y_flat_idx]) cost = cost.reshape([y.shape[0],y.shape[1]]) cost = (cost * y_mask).sum(0) return trng, use_noise, x, x_mask, y, y_mask, opt_ret, cost # build a sampler def build_sampler(tparams, options, trng): x = tensor.matrix('x', dtype='int64') xr = x[::-1] n_timesteps = x.shape[0] n_samples = x.shape[1] # word embedding (source) emb = tparams['Wemb'][x.flatten()] emb = emb.reshape([n_timesteps, n_samples, options['dim_word']]) embr = tparams['Wemb'][xr.flatten()] embr = embr.reshape([n_timesteps, n_samples, options['dim_word']]) # encoder proj = get_layer(options['encoder'])[1](tparams, emb, options, prefix='encoder') projr = get_layer(options['encoder'])[1](tparams, embr, options, prefix='encoder_r') ctx = concatenate([proj[0],projr[0][::-1]], axis=proj[0].ndim-1) ctx_mean = ctx.mean(0) #ctx_mean = concatenate([proj[0][-1],projr[0][-1]], axis=proj[0].ndim-2) init_state = get_layer('ff')[1](tparams, ctx_mean, options, prefix='ff_state', activ='tanh') print 'Building f_init...', outs = [init_state, ctx] f_init = theano.function([x], outs, name='f_init', profile=profile) print 'Done' # x: 1 x 1 y = tensor.vector('y_sampler', dtype='int64') init_state = tensor.matrix('init_state', dtype='float32') # if it's the first word, emb should be all zero emb = tensor.switch(y[:,None] < 0, tensor.alloc(0., 1, tparams['Wemb_dec'].shape[1]), tparams['Wemb_dec'][y]) proj = get_layer(options['decoder'])[1](tparams, emb, options, prefix='decoder', mask=None, context=ctx, one_step=True, init_state=init_state) next_state = proj[0] ctxs = proj[1] logit_lstm = get_layer('ff')[1](tparams, next_state, options, prefix='ff_logit_lstm', activ='linear') logit_prev = get_layer('ff')[1](tparams, emb, options, prefix='ff_logit_prev', activ='linear') logit_ctx = get_layer('ff')[1](tparams, ctxs, options, prefix='ff_logit_ctx', activ='linear') logit = tensor.tanh(logit_lstm+logit_prev+logit_ctx) logit = get_layer('ff')[1](tparams, logit, options, prefix='ff_logit', activ='linear') next_probs = tensor.nnet.softmax(logit) next_sample = trng.multinomial(pvals=next_probs).argmax(1) # next word probability print 'Building f_next..', inps = [y, ctx, init_state] outs = [next_probs, next_sample, next_state] f_next = theano.function(inps, outs, name='f_next', profile=profile) print 'Done' return f_init, f_next # generate sample def gen_sample(tparams, f_init, f_next, x, options, trng=None, k=1, maxlen=30, stochastic=True, argmax=False): if k > 1: assert not stochastic, 'Beam search does not support stochastic sampling' sample = [] sample_score = [] if stochastic: sample_score = 0 live_k = 1 dead_k = 0 hyp_samples = [[]] * live_k hyp_scores = numpy.zeros(live_k).astype('float32') hyp_states = [] ret = f_init(x) next_state, ctx0 = ret[0], ret[1] next_w = -1 * numpy.ones((1,)).astype('int64') for ii in xrange(maxlen): ctx = numpy.tile(ctx0, [live_k, 1]) inps = [next_w, ctx, next_state] ret = f_next(*inps) next_p, next_w, next_state = ret[0], ret[1], ret[2] if stochastic: if argmax: nw = next_p[0].argmax() else: nw = next_w[0] sample.append(nw) sample_score += next_p[0,nw] if nw == 0: break else: cand_scores = hyp_scores[:,None] - numpy.log(next_p) cand_flat = cand_scores.flatten() ranks_flat = cand_flat.argsort()[:(k-dead_k)] voc_size = next_p.shape[1] trans_indices = ranks_flat / voc_size word_indices = ranks_flat % voc_size costs = cand_flat[ranks_flat] new_hyp_samples = [] new_hyp_scores = numpy.zeros(k-dead_k).astype('float32') new_hyp_states = [] for idx, [ti, wi] in enumerate(zip(trans_indices, word_indices)): new_hyp_samples.append(hyp_samples[ti]+[wi]) new_hyp_scores[idx] = copy.copy(costs[ti]) new_hyp_states.append(copy.copy(next_state[ti])) # check the finished samples new_live_k = 0 hyp_samples = [] hyp_scores = [] hyp_states = [] for idx in xrange(len(new_hyp_samples)): if new_hyp_samples[idx][-1] == 0: sample.append(new_hyp_samples[idx]) sample_score.append(new_hyp_scores[idx]) dead_k += 1 else: new_live_k += 1 hyp_samples.append(new_hyp_samples[idx]) hyp_scores.append(new_hyp_scores[idx]) hyp_states.append(new_hyp_states[idx]) hyp_scores = numpy.array(hyp_scores) live_k = new_live_k if new_live_k < 1: break if dead_k >= k: break next_w = numpy.array([w[-1] for w in hyp_samples]) next_state = numpy.array(hyp_states) if not stochastic: # dump every remaining one if live_k > 0: for idx in xrange(live_k): sample.append(hyp_samples[idx]) sample_score.append(hyp_scores[idx]) return sample, sample_score def pred_probs(f_log_probs, prepare_data, options, iterator, verbose=True): probs = [] n_done = 0 for x, y in iterator: n_done += len(x) x, x_mask, y, y_mask = prepare_data(x, y, n_words_src=options['n_words_src'], n_words=options['n_words']) pprobs = f_log_probs(x,x_mask,y,y_mask) for pp in pprobs: probs.append(pp) if numpy.isnan(numpy.mean(probs)): import ipdb; ipdb.set_trace() if verbose: print >>sys.stderr, '%d samples computed'%(n_done) return numpy.array(probs) # optimizers # name(hyperp, tparams, grads, inputs (list), cost) = f_grad_shared, f_update def adam(lr, tparams, grads, inp, cost): gshared = [theano.shared(p.get_value() * 0., name='%s_grad'%k) for k, p in tparams.iteritems()] gsup = [(gs, g) for gs, g in zip(gshared, grads)] f_grad_shared = theano.function(inp, cost, updates=gsup, profile=profile) lr0 = 0.0002 b1 = 0.1 b2 = 0.001 e = 1e-8 updates = [] i = theano.shared(numpy.float32(0.)) i_t = i + 1. fix1 = 1. - b1**(i_t) fix2 = 1. - b2**(i_t) lr_t = lr0 * (tensor.sqrt(fix2) / fix1) for p, g in zip(tparams.values(), gshared): m = theano.shared(p.get_value() * 0.) v = theano.shared(p.get_value() * 0.) m_t = (b1 * g) + ((1. - b1) * m) v_t = (b2 * tensor.sqr(g)) + ((1. - b2) * v) g_t = m_t / (tensor.sqrt(v_t) + e) p_t = p - (lr_t * g_t) updates.append((m, m_t)) updates.append((v, v_t)) updates.append((p, p_t)) updates.append((i, i_t)) f_update = theano.function([lr], [], updates=updates, on_unused_input='ignore', profile=profile) return f_grad_shared, f_update def adadelta(lr, tparams, grads, inp, cost): zipped_grads = [theano.shared(p.get_value() * numpy.float32(0.), name='%s_grad'%k) for k, p in tparams.iteritems()] running_up2 = [theano.shared(p.get_value() * numpy.float32(0.), name='%s_rup2'%k) for k, p in tparams.iteritems()] running_grads2 = [theano.shared(p.get_value() * numpy.float32(0.), name='%s_rgrad2'%k) for k, p in tparams.iteritems()] zgup = [(zg, g) for zg, g in zip(zipped_grads, grads)] rg2up = [(rg2, 0.95 * rg2 + 0.05 * (g ** 2)) for rg2, g in zip(running_grads2, grads)] f_grad_shared = theano.function(inp, cost, updates=zgup+rg2up, profile=profile) updir = [-tensor.sqrt(ru2 + 1e-6) / tensor.sqrt(rg2 + 1e-6) * zg for zg, ru2, rg2 in zip(zipped_grads, running_up2, running_grads2)] ru2up = [(ru2, 0.95 * ru2 + 0.05 * (ud ** 2)) for ru2, ud in zip(running_up2, updir)] param_up = [(p, p + ud) for p, ud in zip(itemlist(tparams), updir)] f_update = theano.function([lr], [], updates=ru2up+param_up, on_unused_input='ignore', profile=profile) return f_grad_shared, f_update def rmsprop(lr, tparams, grads, inp, cost): zipped_grads = [theano.shared(p.get_value() * numpy.float32(0.), name='%s_grad'%k) for k, p in tparams.iteritems()] running_grads = [theano.shared(p.get_value() * numpy.float32(0.), name='%s_rgrad'%k) for k, p in tparams.iteritems()] running_grads2 = [theano.shared(p.get_value() * numpy.float32(0.), name='%s_rgrad2'%k) for k, p in tparams.iteritems()] zgup = [(zg, g) for zg, g in zip(zipped_grads, grads)] rgup = [(rg, 0.95 * rg + 0.05 * g) for rg, g in zip(running_grads, grads)] rg2up = [(rg2, 0.95 * rg2 + 0.05 * (g ** 2)) for rg2, g in zip(running_grads2, grads)] f_grad_shared = theano.function(inp, cost, updates=zgup+rgup+rg2up, profile=profile) updir = [theano.shared(p.get_value() * numpy.float32(0.), name='%s_updir'%k) for k, p in tparams.iteritems()] updir_new = [(ud, 0.9 * ud - 1e-4 * zg / tensor.sqrt(rg2 - rg ** 2 + 1e-4)) for ud, zg, rg, rg2 in zip(updir, zipped_grads, running_grads, running_grads2)] param_up = [(p, p + udn[1]) for p, udn in zip(itemlist(tparams), updir_new)] f_update = theano.function([lr], [], updates=updir_new+param_up, on_unused_input='ignore', profile=profile) return f_grad_shared, f_update def sgd(lr, tparams, grads, x, mask, y, cost): gshared = [theano.shared(p.get_value() * 0., name='%s_grad'%k) for k, p in tparams.iteritems()] gsup = [(gs, g) for gs, g in zip(gshared, grads)] f_grad_shared = theano.function([x, mask, y], cost, updates=gsup, profile=profile) pup = [(p, p - lr * g) for p, g in zip(itemlist(tparams), gshared)] f_update = theano.function([lr], [], updates=pup, profile=profile) return f_grad_shared, f_update def train(dim_word=100, # word vector dimensionality dim=1000, # the number of LSTM units encoder='gru', decoder='gru_cond', patience=10, max_epochs=5000, dispFreq=100, decay_c=0., alpha_c=0., diag_c=0., clip_c=-1., lrate=0.01, n_words_src=100000, n_words=100000, maxlen=100, # maximum length of the description optimizer='rmsprop', batch_size = 16, valid_batch_size = 16, saveto='model.npz', validFreq=1000, saveFreq=1000, # save the parameters after every saveFreq updates sampleFreq=100, # generate some samples after every sampleFreq updates datasets=['/data/lisatmp3/chokyun/europarl/europarl-v7.fr-en.en.tok', '/data/lisatmp3/chokyun/europarl/europarl-v7.fr-en.fr.tok'], valid_datasets=['../data/dev/newstest2011.en.tok', '../data/dev/newstest2011.fr.tok'], dictionaries=['/data/lisatmp3/chokyun/europarl/europarl-v7.fr-en.en.tok.pkl', '/data/lisatmp3/chokyun/europarl/europarl-v7.fr-en.fr.tok.pkl'], use_dropout=False, reload_=False): # Model options model_options = locals().copy() worddicts = [None] * len(dictionaries) worddicts_r = [None] * len(dictionaries) for ii, dd in enumerate(dictionaries): with open(dd, 'rb') as f: worddicts[ii] = pkl.load(f) worddicts_r[ii] = dict() for kk, vv in worddicts[ii].iteritems(): worddicts_r[ii][vv] = kk # reload options if reload_ and os.path.exists(saveto): with open('%s.pkl'%saveto, 'rb') as f: models_options = pkl.load(f) print 'Loading data' train = TextIterator(datasets[0], datasets[1], dictionaries[0], dictionaries[1], n_words_source=n_words_src, n_words_target=n_words, batch_size=batch_size, maxlen=maxlen) valid = TextIterator(valid_datasets[0], valid_datasets[1], dictionaries[0], dictionaries[1], n_words_source=n_words_src, n_words_target=n_words, batch_size=valid_batch_size, maxlen=maxlen) print 'Building model' params = init_params(model_options) # reload parameters if reload_ and os.path.exists(saveto): params = load_params(saveto, params) tparams = init_tparams(params) trng, use_noise, \ x, x_mask, y, y_mask, \ opt_ret, \ cost = \ build_model(tparams, model_options) inps = [x, x_mask, y, y_mask] print 'Buliding sampler' f_init, f_next = build_sampler(tparams, model_options, trng) # before any regularizer print 'Building f_log_probs...', f_log_probs = theano.function(inps, cost, profile=profile) print 'Done' cost = cost.mean() if decay_c > 0.: decay_c = theano.shared(numpy.float32(decay_c), name='decay_c') weight_decay = 0. for kk, vv in tparams.iteritems(): weight_decay += (vv ** 2).sum() weight_decay *= decay_c cost += weight_decay if alpha_c > 0. and not model_options['decoder'].endswith('simple'): alpha_c = theano.shared(numpy.float32(alpha_c), name='alpha_c') alpha_reg = alpha_c * ((tensor.cast(y_mask.sum(0)//x_mask.sum(0), 'float32')[:,None]- opt_ret['dec_alphas'].sum(0))**2).sum(1).mean() cost += alpha_reg # after any regularizer print 'Building f_cost...', f_cost = theano.function(inps, cost, profile=profile) print 'Done' print 'Computing gradient...', grads = tensor.grad(cost, wrt=itemlist(tparams)) print 'Done' print 'Building f_grad...', f_grad = theano.function(inps, grads, profile=profile) print 'Done' if clip_c > 0.: g2 = 0. for g in grads: g2 += (g**2).sum() new_grads = [] for g in grads: new_grads.append(tensor.switch(g2 > (clip_c**2), g / tensor.sqrt(g2) * clip_c, g)) grads = new_grads lr = tensor.scalar(name='lr') print 'Building optimizers...', f_grad_shared, f_update = eval(optimizer)(lr, tparams, grads, inps, cost) print 'Done' print 'Optimization' history_errs = [] # reload history if reload_ and os.path.exists(saveto): history_errs = list(numpy.load(saveto)['history_errs']) best_p = None bad_count = 0 if validFreq == -1: validFreq = len(train[0])/batch_size if saveFreq == -1: saveFreq = len(train[0])/batch_size if sampleFreq == -1: sampleFreq = len(train[0])/batch_size uidx = 0 estop = False for eidx in xrange(max_epochs): n_samples = 0 for x, y in train: n_samples += len(x) uidx += 1 use_noise.set_value(1.) x, x_mask, y, y_mask = prepare_data(x, y, maxlen=maxlen, n_words_src=n_words_src, n_words=n_words) if x == None: print 'Minibatch with zero sample under length ', maxlen uidx -= 1 continue ud_start = time.time() cost = f_grad_shared(x, x_mask, y, y_mask) f_update(lrate) ud = time.time() - ud_start if numpy.isnan(cost) or numpy.isinf(cost): print 'NaN detected' return 1., 1., 1. if numpy.mod(uidx, dispFreq) == 0: print 'Epoch ', eidx, 'Update ', uidx, 'Cost ', cost, 'UD ', ud if numpy.mod(uidx, saveFreq) == 0: print 'Saving...', #import ipdb; ipdb.set_trace() if best_p != None: params = best_p else: params = unzip(tparams) numpy.savez(saveto, history_errs=history_errs, **params) pkl.dump(model_options, open('%s.pkl'%saveto, 'wb')) print 'Done' if numpy.mod(uidx, sampleFreq) == 0: # FIXME: random selection? for jj in xrange(numpy.minimum(5,x.shape[1])): stochastic = True sample, score = gen_sample(tparams, f_init, f_next, x[:,jj][:,None], model_options, trng=trng, k=1, maxlen=30, stochastic=stochastic, argmax=False) print 'Source ',jj,': ', for vv in x[:,jj]: if vv == 0: break if vv in worddicts_r[0]: print worddicts_r[0][vv], else: print 'UNK', print print 'Truth ',jj,' : ', for vv in y[:,jj]: if vv == 0: break if vv in worddicts_r[1]: print worddicts_r[1][vv], else: print 'UNK', print print 'Sample ', jj, ': ', if stochastic: ss = sample else: score = score / numpy.array([len(s) for s in sample]) ss = sample[score.argmin()] for vv in ss: if vv == 0: break if vv in worddicts_r[1]: print worddicts_r[1][vv], else: print 'UNK', print if numpy.mod(uidx, validFreq) == 0: use_noise.set_value(0.) valid_errs = pred_probs(f_log_probs, prepare_data, model_options, valid) valid_err = valid_errs.mean() history_errs.append(valid_err) if uidx == 0 or valid_err <= numpy.array(history_errs).min(): best_p = unzip(tparams) bad_counter = 0 if len(history_errs) > patience and valid_err >= numpy.array(history_errs)[:-patience].min(): bad_counter += 1 if bad_counter > patience: print 'Early Stop!' estop = True break if numpy.isnan(valid_err): import ipdb; ipdb.set_trace() print 'Valid ', valid_err print 'Seen %d samples'%n_samples if estop: break if best_p is not None: zipp(best_p, tparams) use_noise.set_value(0.) valid_err = pred_probs(f_log_probs, prepare_data, model_options, valid).mean() print 'Valid ', valid_err params = copy.copy(best_p) numpy.savez(saveto, zipped_params=best_p, history_errs=history_errs, **params) return valid_err if __name__ == '__main__': pass
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Pooling layers. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools from tensorflow.python.framework import tensor_shape from tensorflow.python.keras import backend from tensorflow.python.keras.engine.base_layer import Layer from tensorflow.python.keras.engine.input_spec import InputSpec from tensorflow.python.keras.utils import conv_utils from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.util.tf_export import keras_export class Pooling1D(Layer): """Pooling layer for arbitrary pooling functions, for 1D inputs. This class only exists for code reuse. It will never be an exposed API. Arguments: pool_function: The pooling function to apply, e.g. `tf.nn.max_pool`. pool_size: An integer or tuple/list of a single integer, representing the size of the pooling window. strides: An integer or tuple/list of a single integer, specifying the strides of the pooling operation. padding: A string. The padding method, either 'valid' or 'same'. Case-insensitive. data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, steps, features)` while `channels_first` corresponds to inputs with shape `(batch, features, steps)`. name: A string, the name of the layer. """ def __init__(self, pool_function, pool_size, strides, padding='valid', data_format='channels_last', name=None, **kwargs): super(Pooling1D, self).__init__(name=name, **kwargs) if data_format is None: data_format = backend.image_data_format() if strides is None: strides = pool_size self.pool_function = pool_function self.pool_size = conv_utils.normalize_tuple(pool_size, 1, 'pool_size') self.strides = conv_utils.normalize_tuple(strides, 1, 'strides') self.padding = conv_utils.normalize_padding(padding) self.data_format = conv_utils.normalize_data_format(data_format) self.input_spec = InputSpec(ndim=3) def call(self, inputs): pad_axis = 2 if self.data_format == 'channels_last' else 3 inputs = array_ops.expand_dims(inputs, pad_axis) outputs = self.pool_function( inputs, self.pool_size + (1,), strides=self.strides + (1,), padding=self.padding, data_format=self.data_format) return array_ops.squeeze(outputs, pad_axis) def compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() if self.data_format == 'channels_first': steps = input_shape[2] features = input_shape[1] else: steps = input_shape[1] features = input_shape[2] length = conv_utils.conv_output_length(steps, self.pool_size[0], self.padding, self.strides[0]) if self.data_format == 'channels_first': return tensor_shape.TensorShape([input_shape[0], features, length]) else: return tensor_shape.TensorShape([input_shape[0], length, features]) def get_config(self): config = { 'strides': self.strides, 'pool_size': self.pool_size, 'padding': self.padding, 'data_format': self.data_format, } base_config = super(Pooling1D, self).get_config() return dict(list(base_config.items()) + list(config.items())) @keras_export('keras.layers.MaxPool1D', 'keras.layers.MaxPooling1D') class MaxPooling1D(Pooling1D): """Max pooling operation for temporal data. Arguments: pool_size: Integer, size of the max pooling windows. strides: Integer, or None. Factor by which to downscale. E.g. 2 will halve the input. If None, it will default to `pool_size`. padding: One of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, steps, features)` while `channels_first` corresponds to inputs with shape `(batch, features, steps)`. Input shape: - If `data_format='channels_last'`: 3D tensor with shape `(batch_size, steps, features)`. - If `data_format='channels_first'`: 3D tensor with shape `(batch_size, features, steps)`. Output shape: - If `data_format='channels_last'`: 3D tensor with shape `(batch_size, downsampled_steps, features)`. - If `data_format='channels_first'`: 3D tensor with shape `(batch_size, features, downsampled_steps)`. """ def __init__(self, pool_size=2, strides=None, padding='valid', data_format='channels_last', **kwargs): super(MaxPooling1D, self).__init__( functools.partial(backend.pool2d, pool_mode='max'), pool_size=pool_size, strides=strides, padding=padding, data_format=data_format, **kwargs) @keras_export('keras.layers.AveragePooling1D', 'keras.layers.AvgPool1D') class AveragePooling1D(Pooling1D): """Average pooling for temporal data. Arguments: pool_size: Integer, size of the max pooling windows. strides: Integer, or None. Factor by which to downscale. E.g. 2 will halve the input. If None, it will default to `pool_size`. padding: One of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, steps, features)` while `channels_first` corresponds to inputs with shape `(batch, features, steps)`. Input shape: - If `data_format='channels_last'`: 3D tensor with shape `(batch_size, steps, features)`. - If `data_format='channels_first'`: 3D tensor with shape `(batch_size, features, steps)`. Output shape: - If `data_format='channels_last'`: 3D tensor with shape `(batch_size, downsampled_steps, features)`. - If `data_format='channels_first'`: 3D tensor with shape `(batch_size, features, downsampled_steps)`. """ def __init__(self, pool_size=2, strides=None, padding='valid', data_format='channels_last', **kwargs): super(AveragePooling1D, self).__init__( functools.partial(backend.pool2d, pool_mode='avg'), pool_size=pool_size, strides=strides, padding=padding, data_format=data_format, **kwargs) class Pooling2D(Layer): """Pooling layer for arbitrary pooling functions, for 2D inputs (e.g. images). This class only exists for code reuse. It will never be an exposed API. Arguments: pool_function: The pooling function to apply, e.g. `tf.nn.max_pool`. pool_size: An integer or tuple/list of 2 integers: (pool_height, pool_width) specifying the size of the pooling window. Can be a single integer to specify the same value for all spatial dimensions. strides: An integer or tuple/list of 2 integers, specifying the strides of the pooling operation. Can be a single integer to specify the same value for all spatial dimensions. padding: A string. The padding method, either 'valid' or 'same'. Case-insensitive. data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. name: A string, the name of the layer. """ def __init__(self, pool_function, pool_size, strides, padding='valid', data_format=None, name=None, **kwargs): super(Pooling2D, self).__init__(name=name, **kwargs) if data_format is None: data_format = backend.image_data_format() if strides is None: strides = pool_size self.pool_function = pool_function self.pool_size = conv_utils.normalize_tuple(pool_size, 2, 'pool_size') self.strides = conv_utils.normalize_tuple(strides, 2, 'strides') self.padding = conv_utils.normalize_padding(padding) self.data_format = conv_utils.normalize_data_format(data_format) self.input_spec = InputSpec(ndim=4) def call(self, inputs): if self.data_format == 'channels_last': pool_shape = (1,) + self.pool_size + (1,) strides = (1,) + self.strides + (1,) else: pool_shape = (1, 1) + self.pool_size strides = (1, 1) + self.strides outputs = self.pool_function( inputs, ksize=pool_shape, strides=strides, padding=self.padding.upper(), data_format=conv_utils.convert_data_format(self.data_format, 4)) return outputs def compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() if self.data_format == 'channels_first': rows = input_shape[2] cols = input_shape[3] else: rows = input_shape[1] cols = input_shape[2] rows = conv_utils.conv_output_length(rows, self.pool_size[0], self.padding, self.strides[0]) cols = conv_utils.conv_output_length(cols, self.pool_size[1], self.padding, self.strides[1]) if self.data_format == 'channels_first': return tensor_shape.TensorShape( [input_shape[0], input_shape[1], rows, cols]) else: return tensor_shape.TensorShape( [input_shape[0], rows, cols, input_shape[3]]) def get_config(self): config = { 'pool_size': self.pool_size, 'padding': self.padding, 'strides': self.strides, 'data_format': self.data_format } base_config = super(Pooling2D, self).get_config() return dict(list(base_config.items()) + list(config.items())) @keras_export('keras.layers.MaxPool2D', 'keras.layers.MaxPooling2D') class MaxPooling2D(Pooling2D): """Max pooling operation for spatial data. Arguments: pool_size: integer or tuple of 2 integers, factors by which to downscale (vertical, horizontal). `(2, 2)` will halve the input in both spatial dimension. If only one integer is specified, the same window length will be used for both dimensions. strides: Integer, tuple of 2 integers, or None. Strides values. If None, it will default to `pool_size`. padding: One of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". Input shape: - If `data_format='channels_last'`: 4D tensor with shape `(batch_size, rows, cols, channels)`. - If `data_format='channels_first'`: 4D tensor with shape `(batch_size, channels, rows, cols)`. Output shape: - If `data_format='channels_last'`: 4D tensor with shape `(batch_size, pooled_rows, pooled_cols, channels)`. - If `data_format='channels_first'`: 4D tensor with shape `(batch_size, channels, pooled_rows, pooled_cols)`. """ def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format=None, **kwargs): super(MaxPooling2D, self).__init__( nn.max_pool, pool_size=pool_size, strides=strides, padding=padding, data_format=data_format, **kwargs) @keras_export('keras.layers.AveragePooling2D', 'keras.layers.AvgPool2D') class AveragePooling2D(Pooling2D): """Average pooling operation for spatial data. Arguments: pool_size: integer or tuple of 2 integers, factors by which to downscale (vertical, horizontal). `(2, 2)` will halve the input in both spatial dimension. If only one integer is specified, the same window length will be used for both dimensions. strides: Integer, tuple of 2 integers, or None. Strides values. If None, it will default to `pool_size`. padding: One of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". Input shape: - If `data_format='channels_last'`: 4D tensor with shape `(batch_size, rows, cols, channels)`. - If `data_format='channels_first'`: 4D tensor with shape `(batch_size, channels, rows, cols)`. Output shape: - If `data_format='channels_last'`: 4D tensor with shape `(batch_size, pooled_rows, pooled_cols, channels)`. - If `data_format='channels_first'`: 4D tensor with shape `(batch_size, channels, pooled_rows, pooled_cols)`. """ def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format=None, **kwargs): super(AveragePooling2D, self).__init__( nn.avg_pool, pool_size=pool_size, strides=strides, padding=padding, data_format=data_format, **kwargs) class Pooling3D(Layer): """Pooling layer for arbitrary pooling functions, for 3D inputs. This class only exists for code reuse. It will never be an exposed API. Arguments: pool_function: The pooling function to apply, e.g. `tf.nn.max_pool`. pool_size: An integer or tuple/list of 3 integers: (pool_depth, pool_height, pool_width) specifying the size of the pooling window. Can be a single integer to specify the same value for all spatial dimensions. strides: An integer or tuple/list of 3 integers, specifying the strides of the pooling operation. Can be a single integer to specify the same value for all spatial dimensions. padding: A string. The padding method, either 'valid' or 'same'. Case-insensitive. data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, depth, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, depth, height, width)`. name: A string, the name of the layer. """ def __init__(self, pool_function, pool_size, strides, padding='valid', data_format='channels_last', name=None, **kwargs): super(Pooling3D, self).__init__(name=name, **kwargs) if data_format is None: data_format = backend.image_data_format() if strides is None: strides = pool_size self.pool_function = pool_function self.pool_size = conv_utils.normalize_tuple(pool_size, 3, 'pool_size') self.strides = conv_utils.normalize_tuple(strides, 3, 'strides') self.padding = conv_utils.normalize_padding(padding) self.data_format = conv_utils.normalize_data_format(data_format) self.input_spec = InputSpec(ndim=5) def call(self, inputs): pool_shape = (1,) + self.pool_size + (1,) strides = (1,) + self.strides + (1,) if self.data_format == 'channels_first': # TF does not support `channels_first` with 3D pooling operations, # so we must handle this case manually. # TODO(fchollet): remove this when TF pooling is feature-complete. inputs = array_ops.transpose(inputs, (0, 2, 3, 4, 1)) outputs = self.pool_function( inputs, ksize=pool_shape, strides=strides, padding=self.padding.upper()) if self.data_format == 'channels_first': outputs = array_ops.transpose(outputs, (0, 4, 1, 2, 3)) return outputs def compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() if self.data_format == 'channels_first': len_dim1 = input_shape[2] len_dim2 = input_shape[3] len_dim3 = input_shape[4] else: len_dim1 = input_shape[1] len_dim2 = input_shape[2] len_dim3 = input_shape[3] len_dim1 = conv_utils.conv_output_length(len_dim1, self.pool_size[0], self.padding, self.strides[0]) len_dim2 = conv_utils.conv_output_length(len_dim2, self.pool_size[1], self.padding, self.strides[1]) len_dim3 = conv_utils.conv_output_length(len_dim3, self.pool_size[2], self.padding, self.strides[2]) if self.data_format == 'channels_first': return tensor_shape.TensorShape( [input_shape[0], input_shape[1], len_dim1, len_dim2, len_dim3]) else: return tensor_shape.TensorShape( [input_shape[0], len_dim1, len_dim2, len_dim3, input_shape[4]]) def get_config(self): config = { 'pool_size': self.pool_size, 'padding': self.padding, 'strides': self.strides, 'data_format': self.data_format } base_config = super(Pooling3D, self).get_config() return dict(list(base_config.items()) + list(config.items())) @keras_export('keras.layers.MaxPool3D', 'keras.layers.MaxPooling3D') class MaxPooling3D(Pooling3D): """Max pooling operation for 3D data (spatial or spatio-temporal). Arguments: pool_size: Tuple of 3 integers, factors by which to downscale (dim1, dim2, dim3). `(2, 2, 2)` will halve the size of the 3D input in each dimension. strides: tuple of 3 integers, or None. Strides values. padding: One of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". Input shape: - If `data_format='channels_last'`: 5D tensor with shape: `(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)` - If `data_format='channels_first'`: 5D tensor with shape: `(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)` Output shape: - If `data_format='channels_last'`: 5D tensor with shape: `(batch_size, pooled_dim1, pooled_dim2, pooled_dim3, channels)` - If `data_format='channels_first'`: 5D tensor with shape: `(batch_size, channels, pooled_dim1, pooled_dim2, pooled_dim3)` """ def __init__(self, pool_size=(2, 2, 2), strides=None, padding='valid', data_format=None, **kwargs): super(MaxPooling3D, self).__init__( nn.max_pool3d, pool_size=pool_size, strides=strides, padding=padding, data_format=data_format, **kwargs) @keras_export('keras.layers.AveragePooling3D', 'keras.layers.AvgPool3D') class AveragePooling3D(Pooling3D): """Average pooling operation for 3D data (spatial or spatio-temporal). Arguments: pool_size: tuple of 3 integers, factors by which to downscale (dim1, dim2, dim3). `(2, 2, 2)` will halve the size of the 3D input in each dimension. strides: tuple of 3 integers, or None. Strides values. padding: One of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". Input shape: - If `data_format='channels_last'`: 5D tensor with shape: `(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)` - If `data_format='channels_first'`: 5D tensor with shape: `(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)` Output shape: - If `data_format='channels_last'`: 5D tensor with shape: `(batch_size, pooled_dim1, pooled_dim2, pooled_dim3, channels)` - If `data_format='channels_first'`: 5D tensor with shape: `(batch_size, channels, pooled_dim1, pooled_dim2, pooled_dim3)` """ def __init__(self, pool_size=(2, 2, 2), strides=None, padding='valid', data_format=None, **kwargs): super(AveragePooling3D, self).__init__( nn.avg_pool3d, pool_size=pool_size, strides=strides, padding=padding, data_format=data_format, **kwargs) class GlobalPooling1D(Layer): """Abstract class for different global pooling 1D layers.""" def __init__(self, data_format='channels_last', **kwargs): super(GlobalPooling1D, self).__init__(**kwargs) self.input_spec = InputSpec(ndim=3) self.data_format = conv_utils.normalize_data_format(data_format) def compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() if self.data_format == 'channels_first': return tensor_shape.TensorShape([input_shape[0], input_shape[1]]) else: return tensor_shape.TensorShape([input_shape[0], input_shape[2]]) def call(self, inputs): raise NotImplementedError def get_config(self): config = {'data_format': self.data_format} base_config = super(GlobalPooling1D, self).get_config() return dict(list(base_config.items()) + list(config.items())) @keras_export('keras.layers.GlobalAveragePooling1D', 'keras.layers.GlobalAvgPool1D') class GlobalAveragePooling1D(GlobalPooling1D): """Global average pooling operation for temporal data. Arguments: data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, steps, features)` while `channels_first` corresponds to inputs with shape `(batch, features, steps)`. Call arguments: inputs: A 3D tensor. mask: Binary tensor of shape `(batch_size, steps)` indicating whether a given step should be masked (excluded from the average). Input shape: - If `data_format='channels_last'`: 3D tensor with shape: `(batch_size, steps, features)` - If `data_format='channels_first'`: 3D tensor with shape: `(batch_size, features, steps)` Output shape: 2D tensor with shape `(batch_size, features)`. """ def __init__(self, data_format='channels_last', **kwargs): super(GlobalAveragePooling1D, self).__init__(data_format=data_format, **kwargs) self.supports_masking = True def call(self, inputs, mask=None): steps_axis = 1 if self.data_format == 'channels_last' else 2 if mask is not None: mask = math_ops.cast(mask, backend.floatx()) input_shape = inputs.shape.as_list() broadcast_shape = [-1, input_shape[steps_axis], 1] mask = array_ops.reshape(mask, broadcast_shape) inputs *= mask return backend.sum(inputs, axis=steps_axis) / math_ops.reduce_sum( mask, axis=steps_axis) else: return backend.mean(inputs, axis=steps_axis) def compute_mask(self, inputs, mask=None): return None @keras_export('keras.layers.GlobalMaxPool1D', 'keras.layers.GlobalMaxPooling1D') class GlobalMaxPooling1D(GlobalPooling1D): """Global max pooling operation for temporal data. Arguments: data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, steps, features)` while `channels_first` corresponds to inputs with shape `(batch, features, steps)`. Input shape: - If `data_format='channels_last'`: 3D tensor with shape: `(batch_size, steps, features)` - If `data_format='channels_first'`: 3D tensor with shape: `(batch_size, features, steps)` Output shape: 2D tensor with shape `(batch_size, features)`. """ def call(self, inputs): steps_axis = 1 if self.data_format == 'channels_last' else 2 return backend.max(inputs, axis=steps_axis) class GlobalPooling2D(Layer): """Abstract class for different global pooling 2D layers. """ def __init__(self, data_format=None, **kwargs): super(GlobalPooling2D, self).__init__(**kwargs) self.data_format = conv_utils.normalize_data_format(data_format) self.input_spec = InputSpec(ndim=4) def compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() if self.data_format == 'channels_last': return tensor_shape.TensorShape([input_shape[0], input_shape[3]]) else: return tensor_shape.TensorShape([input_shape[0], input_shape[1]]) def call(self, inputs): raise NotImplementedError def get_config(self): config = {'data_format': self.data_format} base_config = super(GlobalPooling2D, self).get_config() return dict(list(base_config.items()) + list(config.items())) @keras_export('keras.layers.GlobalAveragePooling2D', 'keras.layers.GlobalAvgPool2D') class GlobalAveragePooling2D(GlobalPooling2D): """Global average pooling operation for spatial data. Arguments: data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". Input shape: - If `data_format='channels_last'`: 4D tensor with shape `(batch_size, rows, cols, channels)`. - If `data_format='channels_first'`: 4D tensor with shape `(batch_size, channels, rows, cols)`. Output shape: 2D tensor with shape `(batch_size, channels)`. """ def call(self, inputs): if self.data_format == 'channels_last': return backend.mean(inputs, axis=[1, 2]) else: return backend.mean(inputs, axis=[2, 3]) @keras_export('keras.layers.GlobalMaxPool2D', 'keras.layers.GlobalMaxPooling2D') class GlobalMaxPooling2D(GlobalPooling2D): """Global max pooling operation for spatial data. Arguments: data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". Input shape: - If `data_format='channels_last'`: 4D tensor with shape `(batch_size, rows, cols, channels)`. - If `data_format='channels_first'`: 4D tensor with shape `(batch_size, channels, rows, cols)`. Output shape: 2D tensor with shape `(batch_size, channels)`. """ def call(self, inputs): if self.data_format == 'channels_last': return backend.max(inputs, axis=[1, 2]) else: return backend.max(inputs, axis=[2, 3]) class GlobalPooling3D(Layer): """Abstract class for different global pooling 3D layers.""" def __init__(self, data_format=None, **kwargs): super(GlobalPooling3D, self).__init__(**kwargs) self.data_format = conv_utils.normalize_data_format(data_format) self.input_spec = InputSpec(ndim=5) def compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() if self.data_format == 'channels_last': return tensor_shape.TensorShape([input_shape[0], input_shape[4]]) else: return tensor_shape.TensorShape([input_shape[0], input_shape[1]]) def call(self, inputs): raise NotImplementedError def get_config(self): config = {'data_format': self.data_format} base_config = super(GlobalPooling3D, self).get_config() return dict(list(base_config.items()) + list(config.items())) @keras_export('keras.layers.GlobalAveragePooling3D', 'keras.layers.GlobalAvgPool3D') class GlobalAveragePooling3D(GlobalPooling3D): """Global Average pooling operation for 3D data. Arguments: data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". Input shape: - If `data_format='channels_last'`: 5D tensor with shape: `(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)` - If `data_format='channels_first'`: 5D tensor with shape: `(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)` Output shape: 2D tensor with shape `(batch_size, channels)`. """ def call(self, inputs): if self.data_format == 'channels_last': return backend.mean(inputs, axis=[1, 2, 3]) else: return backend.mean(inputs, axis=[2, 3, 4]) @keras_export('keras.layers.GlobalMaxPool3D', 'keras.layers.GlobalMaxPooling3D') class GlobalMaxPooling3D(GlobalPooling3D): """Global Max pooling operation for 3D data. Arguments: data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". Input shape: - If `data_format='channels_last'`: 5D tensor with shape: `(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)` - If `data_format='channels_first'`: 5D tensor with shape: `(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)` Output shape: 2D tensor with shape `(batch_size, channels)`. """ def call(self, inputs): if self.data_format == 'channels_last': return backend.max(inputs, axis=[1, 2, 3]) else: return backend.max(inputs, axis=[2, 3, 4]) # Aliases AvgPool1D = AveragePooling1D MaxPool1D = MaxPooling1D AvgPool2D = AveragePooling2D MaxPool2D = MaxPooling2D AvgPool3D = AveragePooling3D MaxPool3D = MaxPooling3D GlobalMaxPool1D = GlobalMaxPooling1D GlobalMaxPool2D = GlobalMaxPooling2D GlobalMaxPool3D = GlobalMaxPooling3D GlobalAvgPool1D = GlobalAveragePooling1D GlobalAvgPool2D = GlobalAveragePooling2D GlobalAvgPool3D = GlobalAveragePooling3D
""" fs.mountfs ========== Contains MountFS class which is a virtual filesystem which can have other filesystems linked as branched directories. For example, lets say we have two filesystems containing config files and resources respectively:: [config_fs] |-- config.cfg `-- defaults.cfg [resources_fs] |-- images | |-- logo.jpg | `-- photo.jpg `-- data.dat We can combine these filesystems in to a single filesystem with the following code:: from fs.mountfs import MountFS combined_fs = MountFS combined_fs.mountdir('config', config_fs) combined_fs.mountdir('resources', resources_fs) This will create a single filesystem where paths under `config` map to `config_fs`, and paths under `resources` map to `resources_fs`:: [combined_fs] |-- config | |-- config.cfg | `-- defaults.cfg `-- resources |-- images | |-- logo.jpg | `-- photo.jpg `-- data.dat Now both filesystems can be accessed with the same path structure:: print combined_fs.getcontents('/config/defaults.cfg') read_jpg(combined_fs.open('/resources/images/logo.jpg') """ from fs.base import * from fs.errors import * from fs.path import * from fs import _thread_synchronize_default class DirMount(object): def __init__(self, path, fs): self.path = path self.fs = fs def __str__(self): return "Mount point: <%s,%s>" % (self.path,self.fs,) __repr__ = __str__ def __unicode__(self): return unicode(str(self)) class FileMount(object): def __init__(self, path, open_callable, info_callable=None): self.open_callable = open_callable def no_info_callable(path): return {} self.info_callable = info_callable or no_info_callable class MountFS(FS): """A filesystem that delegates to other filesystems.""" _meta = { 'virtual': True, 'read_only' : False, 'unicode_paths' : True, 'case_insensitive_paths' : False, } DirMount = DirMount FileMount = FileMount def __init__(self, thread_synchronize=_thread_synchronize_default): super(MountFS, self).__init__(thread_synchronize=thread_synchronize) self.mount_tree = PathMap() def __str__(self): return "<%s [%s]>" % (self.__class__.__name__,self.mount_tree.items(),) __repr__ = __str__ def __unicode__(self): return unicode(self.__str__()) def _delegate(self, path): path = abspath(normpath(path)) object = None head_path = "/" tail_path = path for prefix in recursepath(path): try: object = self.mount_tree[prefix] except KeyError: pass else: head_path = prefix tail_path = path[len(head_path):] if type(object) is MountFS.DirMount: return object.fs, head_path, tail_path if type(object) is MountFS.FileMount: return self, "/", path try: self.mount_tree.iternames(path).next() except StopIteration: return None, None, None else: return self, "/", path def getsyspath(self, path, allow_none=False): fs, _mount_path, delegate_path = self._delegate(path) if fs is self or fs is None: if allow_none: return None else: raise NoSysPathError(path=path) return fs.getsyspath(delegate_path, allow_none=allow_none) def getpathurl(self, path, allow_none=False): fs, _mount_path, delegate_path = self._delegate(path) if fs is self or fs is None: if allow_none: return None else: raise NoPathURLError(path=path) return fs.getpathurl(delegate_path, allow_none=allow_none) @synchronize def desc(self, path): fs, _mount_path, delegate_path = self._delegate(path) if fs is self: if fs.isdir(path): return "Mount dir" else: return "Mounted file" return "Mounted dir, maps to path %s on %s" % (delegate_path, str(fs)) @synchronize def isdir(self, path): fs, _mount_path, delegate_path = self._delegate(path) if fs is None: return False if fs is self: object = self.mount_tree.get(path, None) return not isinstance(object,MountFS.FileMount) return fs.isdir(delegate_path) @synchronize def isfile(self, path): fs, _mount_path, delegate_path = self._delegate(path) if fs is None: return False if fs is self: object = self.mount_tree.get(path, None) return isinstance(object,MountFS.FileMount) return fs.isfile(delegate_path) @synchronize def exists(self, path): fs, _mount_path, delegate_path = self._delegate(path) if fs is None: return False if fs is self: return True return fs.exists(delegate_path) @synchronize def listdir(self, path="/", wildcard=None, full=False, absolute=False, dirs_only=False, files_only=False): fs, _mount_path, delegate_path = self._delegate(path) if fs is None: raise ResourceNotFoundError(path) if fs is self: paths = self.mount_tree.names(path) return self._listdir_helper(path, paths, wildcard, full, absolute, dirs_only, files_only) else: paths = fs.listdir(delegate_path, wildcard=wildcard, full=False, absolute=False, dirs_only=dirs_only, files_only=files_only) for nm in self.mount_tree.names(path): if nm not in paths: if dirs_only: if self.isdir(pathjoin(path,nm)): paths.append(nm) elif files_only: if self.isfile(pathjoin(path,nm)): paths.append(nm) else: paths.append(nm) if full or absolute: if full: path = relpath(normpath(path)) else: path = abspath(normpath(path)) paths = [pathjoin(path, p) for p in paths] return paths @synchronize def ilistdir(self, path="/", wildcard=None, full=False, absolute=False, dirs_only=False, files_only=False): fs, _mount_path, delegate_path = self._delegate(path) if fs is None: raise ResourceNotFoundError(path) if fs is self: paths = self.mount_tree.names(path) for path in self._listdir_helper(path,paths,wildcard,full,absolute,dirs_only,files_only): yield path else: paths = fs.ilistdir(delegate_path, wildcard=wildcard, full=False, absolute=False, dirs_only=dirs_only) extra_paths = set(self.mount_tree.names(path)) if full: pathhead = relpath(normpath(path)) def mkpath(p): return pathjoin(pathhead,p) elif absolute: pathhead = abspath(normpath(path)) def mkpath(p): return pathjoin(pathhead,p) else: def mkpath(p): return p for p in paths: if p not in extra_paths: yield mkpath(p) for p in extra_paths: if dirs_only: if self.isdir(pathjoin(path,p)): yield mkpath(p) elif files_only: if self.isfile(pathjoin(path,p)): yield mkpath(p) else: yield mkpath(p) @synchronize def makedir(self, path, recursive=False, allow_recreate=False): fs, _mount_path, delegate_path = self._delegate(path) if fs is self or fs is None: raise UnsupportedError("make directory", msg="Can only makedir for mounted paths" ) if not delegate_path: if allow_recreate: return else: raise DestinationExistsError(path, msg="Can not create a directory that already exists (try allow_recreate=True): %(path)s") return fs.makedir(delegate_path, recursive=recursive, allow_recreate=allow_recreate) @synchronize def open(self, path, mode="r", **kwargs): object = self.mount_tree.get(path, None) if type(object) is MountFS.FileMount: callable = object.open_callable return callable(path, mode, **kwargs) fs, _mount_path, delegate_path = self._delegate(path) if fs is self or fs is None: raise ResourceNotFoundError(path) return fs.open(delegate_path, mode, **kwargs) @synchronize def setcontents(self, path, data, chunk_size=64*1024): object = self.mount_tree.get(path, None) if type(object) is MountFS.FileMount: return super(MountFS,self).setcontents(path, data, chunk_size=chunk_size) fs, _mount_path, delegate_path = self._delegate(path) if fs is self or fs is None: raise ParentDirectoryMissingError(path) return fs.setcontents(delegate_path, data, chunk_size) @synchronize def createfile(self, path, wipe=False): object = self.mount_tree.get(path, None) if type(object) is MountFS.FileMount: return super(MountFS,self).createfile(path, wipe=wipe) fs, _mount_path, delegate_path = self._delegate(path) if fs is self or fs is None: raise ParentDirectoryMissingError(path) return fs.createfile(delegate_path, wipe=wipe) @synchronize def remove(self, path): fs, _mount_path, delegate_path = self._delegate(path) if fs is self or fs is None: raise UnsupportedError("remove file", msg="Can only remove paths within a mounted dir") return fs.remove(delegate_path) @synchronize def removedir(self, path, recursive=False, force=False): path = normpath(path) fs, _mount_path, delegate_path = self._delegate(path) if fs is self or fs is None: raise ResourceInvalidError(path, msg="Can not removedir for an un-mounted path") return fs.removedir(delegate_path, recursive, force) @synchronize def rename(self, src, dst): fs1, _mount_path1, delegate_path1 = self._delegate(src) fs2, _mount_path2, delegate_path2 = self._delegate(dst) if fs1 is not fs2: raise OperationFailedError("rename resource", path=src) if fs1 is not self: return fs1.rename(delegate_path1, delegate_path2) object = self.mount_tree.get(src, None) _object2 = self.mount_tree.get(dst, None) if object is None: raise ResourceNotFoundError(src) # TODO! raise UnsupportedError("rename resource", path=src) @synchronize def move(self,src,dst,**kwds): fs1, _mount_path1, delegate_path1 = self._delegate(src) fs2, _mount_path2, delegate_path2 = self._delegate(dst) if fs1 is fs2 and fs1 is not self: fs1.move(delegate_path1,delegate_path2,**kwds) else: super(MountFS,self).move(src,dst,**kwds) @synchronize def movedir(self,src,dst,**kwds): fs1, _mount_path1, delegate_path1 = self._delegate(src) fs2, _mount_path2, delegate_path2 = self._delegate(dst) if fs1 is fs2 and fs1 is not self: fs1.movedir(delegate_path1,delegate_path2,**kwds) else: super(MountFS,self).movedir(src,dst,**kwds) @synchronize def copy(self,src,dst,**kwds): fs1, _mount_path1, delegate_path1 = self._delegate(src) fs2, _mount_path2, delegate_path2 = self._delegate(dst) if fs1 is fs2 and fs1 is not self: fs1.copy(delegate_path1,delegate_path2,**kwds) else: super(MountFS,self).copy(src,dst,**kwds) @synchronize def copydir(self,src,dst,**kwds): fs1, _mount_path1, delegate_path1 = self._delegate(src) fs2, _mount_path2, delegate_path2 = self._delegate(dst) if fs1 is fs2 and fs1 is not self: fs1.copydir(delegate_path1,delegate_path2,**kwds) else: super(MountFS,self).copydir(src,dst,**kwds) @synchronize def mountdir(self, path, fs): """Mounts a host FS object on a given path. :param path: A path within the MountFS :param fs: A filesystem object to mount """ self.mount_tree[path] = MountFS.DirMount(path, fs) mount = mountdir @synchronize def mountfile(self, path, open_callable=None, info_callable=None): """Mounts a single file path. :param path: A path within the MountFS :param open_callable: A callable that returns a file-like object :param info_callable: A callable that returns a dictionary with information regarding the file-like object """ self.mount_tree[path] = MountFS.FileMount(path, callable, info_callable) @synchronize def unmount(self, path): """Unmounts a path. :param path: Path to unmount """ del self.mount_tree[path] @synchronize def settimes(self, path, accessed_time=None, modified_time=None): path = normpath(path) fs, _mount_path, delegate_path = self._delegate(path) if fs is None: raise ResourceNotFoundError(path) if fs is self: raise UnsupportedError("settimes") fs.settimes(delegate_path, accessed_time, modified_time) @synchronize def getinfo(self, path): path = normpath(path) fs, _mount_path, delegate_path = self._delegate(path) if fs is None: raise ResourceNotFoundError(path) if fs is self: if self.isfile(path): return self.mount_tree[path].info_callable(path) return {} return fs.getinfo(delegate_path) @synchronize def getsize(self, path): path = normpath(path) fs, _mount_path, delegate_path = self._delegate(path) if fs is None: raise ResourceNotFoundError(path) if fs is self: object = self.mount_tree.get(path, None) if object is None: raise ResourceNotFoundError(path) if not isinstance(object,MountFS.FileMount): raise ResourceInvalidError(path) size = object.info_callable(path).get("size", None) return size return fs.getinfo(delegate_path).get("size", None) @synchronize def getxattr(self,path,name,default=None): path = normpath(path) fs, _mount_path, delegate_path = self._delegate(path) if fs is None: raise ResourceNotFoundError(path) if fs is self: return default return fs.getxattr(delegate_path,name,default) @synchronize def setxattr(self,path,name,value): path = normpath(path) fs, _mount_path, delegate_path = self._delegate(path) if fs is None: raise ResourceNotFoundError(path) if fs is self: raise UnsupportedError("setxattr") return fs.setxattr(delegate_path,name,value) @synchronize def delxattr(self,path,name): path = normpath(path) fs, _mount_path, delegate_path = self._delegate(path) if fs is None: raise ResourceNotFoundError(path) if fs is self: return True return fs.delxattr(delegate_path, name) @synchronize def listxattrs(self,path): path = normpath(path) fs, _mount_path, delegate_path = self._delegate(path) if fs is None: raise ResourceNotFoundError(path) if fs is self: return [] return fs.listxattrs(delegate_path)
#!/usr/bin/env python # Solution to http://www.gchq.gov.uk/press_and_media/news_and_features/Pages/Directors-Christmas-puzzle-2015.aspx from z3 import * from PIL import Image size=25 rules = [ [7,3,1,1,7], [1,1,2,2,1,1], [1,3,1,3,1,1,3,1], [1,3,1,1,6,1,3,1], [1,3,1,5,2,1,3,1], [1,1,2,1,1], [7,1,1,1,1,1,7], [3,3], [1,2,3,1,1,3,1,1,2], [1,1,3,2,1,1], [4,1,4,2,1,2], [1,1,1,1,1,4,1,3], [2,1,1,1,2,5], [3,2,2,6,3,1], [1,9,1,1,2,1], [2,1,2,2,3,1], [3,1,1,1,1,5,1], [1,2,2,5], [7,1,2,1,1,1,3], [1,1,2,1,2,2,1], [1,3,1,4,5,1], [1,3,1,3,10,2], [1,3,1,1,6,6], [1,1,2,1,1,2], [7,2,1,2,5] ] rules2 = [ [7,2,1,1,7], [1,1,2,2,1,1], [1,3,1,3,1,3,1,3,1], [1,3,1,1,5,1,3,1], [1,3,1,1,4,1,3,1], [1,1,1,2,1,1], [7,1,1,1,1,1,7], [1,1,3], [2,1,2,1,8,2,1], [2,2,1,2,1,1,1,2], [1,7,3,2,1], [1,2,3,1,1,1,1,1], [4,1,1,2,6], [3,3,1,1,1,3,1], [1,2,5,2,2], [2,2,1,1,1,1,1,2,1], [1,3,3,2,1,8,1], [6,2,1], [7,1,4,1,1,3], [1,1,1,1,4], [1,3,1,3,7,1], [1,3,1,1,1,2,1,1,4], [1,3,1,4,3,3], [1,1,2,2,2,6,1], [7,1,3,2,1,1] ] black = [ (3,3),(3,4), (3,12),(3,13), (3,21), (8,6),(8,7), (8,10), (8,14),(8,15), (8,18), (16,6),(16,11),(16,16),(16,20), (21,3),(21,4),(21,9),(21,10),(21,15),(21,20),(21,21) ] # Print solution def solve(s, dots): if s.check() == sat: m = s.model() im = Image.new('L', (size+2,size+2), 255) for y in range(size): row=[] for x in range(size): pixel = m.evaluate(dots[y][x]).as_long() if pixel == 0: im.putpixel((x+1,y+1), 255) else: im.putpixel((x+1,y+1), 0) row.append(str(pixel)) print(''.join(row)) im=im.resize((16*(size+2),16*(size+2))) im.show() im.save('result.png') else: print('Fail') # Create rulesets rule_dots_cover=[] rule_partials=[] rule_dot_vals=[] rule_partials_vals=[] rule_spacer_vals=[] # Create pixels dots = [] for y in range(size): dots.append([]) for x in range(size): dots[-1].append(Int('dot_%d_%d' % (y,x))) rule_dot_vals.append(Or(dots[-1][-1] == 0, dots[-1][-1] == 1)) # Force blacks for y,x in black: rule_dot_vals.append(dots[y][x] == 1) # Parse vertical rules spacers2 = [] partials2 = [] for x in range(len(rules2)): col = rules2[x] # Cumalative size partials2.append([Int('part2_%d_y0' % (x))]) spacers2.append([]) rule_partials_vals.append(partials2[-1][-1] == 0) for y in range(len(col)+1): # Spacer sizes spacers2[-1].append(Int('space2_%d_%d' % (y,x))) # Edges can be xero size if y > 0 and y < len(col): rule_spacer_vals.append(spacers2[-1][-1] >= 1) else: rule_spacer_vals.append(spacers2[-1][-1] >= 0) # Partial size of last space partials2[-1].append(Int('part2_space_%d_%d' % (y,x))) rule_partials_vals.append(partials2[-1][-1] >= 0) rule_partials.append(partials2[-1][-2] + spacers2[-1][-1] == partials2[-1][-1]) # Add white constraint for y2 in range(size): rule_dots_cover.append(If(And(partials2[-1][-2] <= y2, y2 < partials2[-1][-1]), dots[y2][x]==0, dots[y2][x]>=0)) # Block sizes if y < len(col): # Partial size of last block partials2[-1].append(Int('part2_block_%d_%d' % (y,x))) rule_partials_vals.append(partials2[-1][-1] >= 0) rule_partials.append(partials2[-1][-2] + col[y] == partials2[-1][-1]) # Add black constraint for y2 in range(size): rule_dots_cover.append(If(And(partials2[-1][-2] <= y2, y2 < partials2[-1][-1]), dots[y2][x]==1, dots[y2][x]>=0)) # Add up to col height rule_partials.append(partials2[-1][-1] == size) # Parse horizintal rules spacers = [] partials = [] for y in range(len(rules)): row = rules[y] # Cumalative size partials.append([Int('part_%d_x0' % (y))]) spacers.append([]) rule_partials_vals.append(partials[-1][-1] == 0) for x in range(len(row)+1): # Spacer sizes spacers[-1].append(Int('space_%d_%d' % (y,x))) # Edges can be zero size if x > 0 and x < len(row): rule_spacer_vals.append(spacers[-1][-1] >= 1) else: rule_spacer_vals.append(spacers[-1][-1] >= 0) # Partial size of last space partials[-1].append(Int('part_space_%d_%d' % (y,x))) rule_partials_vals.append(partials[-1][-1] >= 0) rule_partials.append(partials[-1][-2] + spacers[-1][-1] == partials[-1][-1]) # Add white constraint for x2 in range(size): rule_dots_cover.append(If(And(partials[-1][-2] <= x2, x2 < partials[-1][-1]), dots[y][x2]==0, dots[y][x2]>=0)) # Block sizes if x < len(row): # Partial size of last block partials[-1].append(Int('part_block_%d_%d' % (y,x))) rule_partials_vals.append(partials[-1][-1] >= 0) rule_partials.append(partials[-1][-2] + row[x] == partials[-1][-1]) # Add black constraint for x2 in range(size): rule_dots_cover.append(If(And(partials[-1][-2] <= x2, x2 < partials[-1][-1]), dots[y][x2]==1, dots[y][x2]>=0)) # Add up to row width rule_partials.append(partials[-1][-1] == size) # Add rulesets to solver s = Solver() s.add(rule_spacer_vals) s.add(rule_partials_vals) s.add(rule_dot_vals) s.add(rule_partials) s.add(rule_dots_cover) # Show solution print('Solving...') solve(s, dots)
import pytest from pytest import approx import os import pandas as pd import numpy as np import calliope import calliope.exceptions as exceptions from calliope.core.attrdict import AttrDict from calliope.preprocess import time from calliope.test.common.util import build_test_model as build_model from calliope.test.common.util import defaults, check_error_or_warning class TestModelRun: def test_model_from_dict(self): """ Test creating a model from dict/AttrDict instead of from YAML """ this_path = os.path.dirname(__file__) model_location = os.path.join(this_path, "common", "test_model", "model.yaml") model_dict = AttrDict.from_yaml(model_location) node_dict = AttrDict( { "nodes": { "a": {"techs": {"test_supply_elec": {}, "test_demand_elec": {}}}, "b": {"techs": {"test_supply_elec": {}, "test_demand_elec": {}}}, } } ) model_dict.union(node_dict) model_dict.model["timeseries_data_path"] = os.path.join( this_path, "common", "test_model", model_dict.model["timeseries_data_path"] ) # test as AttrDict calliope.Model(model_dict) # test as dict calliope.Model(model_dict.as_dict()) @pytest.mark.filterwarnings( "ignore:(?s).*Not building the link a,b:calliope.exceptions.ModelWarning" ) def test_valid_scenarios(self): """ Test that valid scenario definition from overrides raises no error and results in applied scenario. """ override = AttrDict.from_yaml_string( """ scenarios: scenario_1: ['one', 'two'] overrides: one: techs.test_supply_gas.constraints.energy_cap_max: 20 two: techs.test_supply_elec.constraints.energy_cap_max: 20 nodes: a: techs: test_supply_gas: test_supply_elec: test_demand_elec: """ ) model = build_model(override_dict=override, scenario="scenario_1") assert ( model._model_run.nodes["a"].techs.test_supply_gas.constraints.energy_cap_max == 20 ) assert ( model._model_run.nodes[ "a" ].techs.test_supply_elec.constraints.energy_cap_max == 20 ) @pytest.mark.filterwarnings( "ignore:(?s).*Not building the link 0,1:calliope.exceptions.ModelWarning" ) def test_valid_scenario_of_scenarios(self): """ Test that valid scenario definition which groups scenarios and overrides raises no error and results in applied scenario. """ override = AttrDict.from_yaml_string( """ scenarios: scenario_1: ['one', 'two'] scenario_2: ['scenario_1', 'new_location'] overrides: one: techs.test_supply_gas.constraints.energy_cap_max: 20 two: techs.test_supply_elec.constraints.energy_cap_max: 20 new_location: nodes.b.techs: test_supply_elec: nodes: a: techs: test_supply_gas: test_supply_elec: test_demand_elec: """ ) model = build_model(override_dict=override, scenario="scenario_2") assert ( model._model_run.nodes[ "a" ].techs.test_supply_gas.constraints.energy_cap_max == 20 ) assert ( model._model_run.nodes[ "b" ].techs.test_supply_elec.constraints.energy_cap_max == 20 ) def test_invalid_scenarios_dict(self): """ Test that invalid scenario definition raises appropriate error """ override = AttrDict.from_yaml_string( """ scenarios: scenario_1: techs.foo.bar: 1 """ ) with pytest.raises(exceptions.ModelError) as error: build_model(override_dict=override, scenario="scenario_1") assert check_error_or_warning( error, "Scenario definition must be a list of override or other scenario names.", ) def test_invalid_scenarios_str(self): """ Test that invalid scenario definition raises appropriate error """ override = AttrDict.from_yaml_string( """ scenarios: scenario_1: 'foo' """ ) with pytest.raises(exceptions.ModelError) as error: build_model(override_dict=override, scenario="scenario_1") assert check_error_or_warning( error, "Scenario definition must be a list of override or other scenario names.", ) def test_scenario_name_overlaps_overrides(self): """ Test that a scenario name which is a list of possibly overrides is not parsed as overrides. """ override = AttrDict.from_yaml_string( """ scenarios: 'simple_supply,one_day': ['simple_supply', 'one_day'] """ ) with pytest.warns(exceptions.ModelWarning) as warn_info: build_model( override_dict=override, scenario="simple_supply,one_day", ) assert check_error_or_warning( warn_info, "Scenario name `simple_supply,one_day` includes commas that won't be parsed as a list of overrides", ) def test_undefined_carriers(self): """ Test that user has input either carrier or carrier_in/_out for each tech """ override = AttrDict.from_yaml_string( """ techs: test_undefined_carrier: essentials: parent: supply name: test constraints: resource: .inf energy_cap_max: .inf nodes.1.techs.test_undefined_carrier: """ ) with pytest.raises(exceptions.ModelError): build_model(override_dict=override, scenario="simple_supply,one_day") def test_conversion_plus_primary_carriers(self): """ Test that user has input input/output primary carriers for conversion_plus techs """ override1 = { "techs.test_conversion_plus.essentials.carrier_in": ["gas", "coal"] } override2 = {"techs.test_conversion_plus.essentials.primary_carrier_in": "coal"} override3 = { "techs.test_conversion_plus.essentials.primary_carrier_out": "coal" } model = build_model({}, scenario="simple_conversion_plus,two_hours") assert ( model._model_run.techs.test_conversion_plus.essentials.get_key( "primary_carrier_in", None ) == "gas" ) # should fail: multiple carriers in, but no primary_carrier_in assigned with pytest.raises(exceptions.ModelError) as error: build_model(override1, scenario="simple_conversion_plus,two_hours") assert check_error_or_warning(error, "Primary_carrier_in must be assigned") # should fail: primary_carrier_in not one of the carriers_in with pytest.raises(exceptions.ModelError) as error: build_model(override2, scenario="simple_conversion_plus,two_hours") assert check_error_or_warning(error, "Primary_carrier_in `coal` not one") # should fail: primary_carrier_out not one of the carriers_out with pytest.raises(exceptions.ModelError) as error: build_model(override3, scenario="simple_conversion_plus,two_hours") assert check_error_or_warning(error, "Primary_carrier_out `coal` not one") def test_incorrect_subset_time(self): """ If subset_time is a list, it must have two entries (start_time, end_time) If subset_time is not a list, it should successfully subset on the given string/integer """ override = lambda param: AttrDict.from_yaml_string( "model.subset_time: {}".format(param) ) # should fail: one string in list with pytest.raises(exceptions.ModelError): build_model(override_dict=override(["2005-01"]), scenario="simple_supply") # should fail: three strings in list with pytest.raises(exceptions.ModelError): build_model( override_dict=override(["2005-01-01", "2005-01-02", "2005-01-03"]), scenario="simple_supply", ) # should pass: two string in list as slice model = build_model( override_dict=override(["2005-01-01", "2005-01-07"]), scenario="simple_supply", ) assert all( model.inputs.timesteps.to_index() == pd.date_range("2005-01", "2005-01-07 23:00:00", freq="H") ) # should fail: must be a list, not a string with pytest.raises(exceptions.ModelError): model = build_model( override_dict=override("2005-01"), scenario="simple_supply" ) # should fail: time subset out of range of input data with pytest.raises(exceptions.ModelError) as error: build_model( override_dict=override(["2005-03", "2005-04"]), scenario="simple_supply" ) assert check_error_or_warning( error, "subset time range ['2005-03', '2005-04'] is outside the input data time range [2005-01-01, 2005-02-01]", ) # should fail: time subset out of range of input data with pytest.raises(exceptions.ModelError): build_model( override_dict=override(["2005-02-01", "2005-02-05"]), scenario="simple_supply", ) def test_incorrect_date_format(self): """ Test the date parser catches a different date format from file than user input/default (inc. if it is just one line of a file that is incorrect) """ # should pass: changing datetime format from default override1 = { "model.timeseries_dateformat": "%d/%m/%Y %H:%M:%S", "techs.test_demand_heat.constraints.resource": "file=demand_heat_diff_dateformat.csv", "techs.test_demand_elec.constraints.resource": "file=demand_heat_diff_dateformat.csv", } model = build_model(override_dict=override1, scenario="simple_conversion") assert all( model.inputs.timesteps.to_index() == pd.date_range("2005-01", "2005-02-01 23:00:00", freq="H") ) # should fail: wrong dateformat input for one file override2 = { "techs.test_demand_heat.constraints.resource": "file=demand_heat_diff_dateformat.csv" } with pytest.raises(exceptions.ModelError): build_model(override_dict=override2, scenario="simple_conversion") # should fail: wrong dateformat input for all files override3 = {"model.timeseries_dateformat": "%d/%m/%Y %H:%M:%S"} with pytest.raises(exceptions.ModelError): build_model(override_dict=override3, scenario="simple_supply") # should fail: one value wrong in file override4 = { "techs.test_demand_heat.constraints.resource": "file=demand_heat_wrong_dateformat.csv" } # check in output error that it points to: 07/01/2005 10:00:00 with pytest.raises(exceptions.ModelError): build_model(override_dict=override4, scenario="simple_conversion") def test_inconsistent_time_indeces(self): """ Test that, including after any time subsetting, the indeces of all time varying input data are consistent with each other """ # should fail: wrong length of demand_heat csv vs demand_elec override1 = { "techs.test_demand_heat.constraints.resource": "file=demand_heat_wrong_length.csv" } # check in output error that it points to: 07/01/2005 10:00:00 with pytest.raises(exceptions.ModelError): build_model(override_dict=override1, scenario="simple_conversion") # should pass: wrong length of demand_heat csv, but time subsetting removes the difference build_model(override_dict=override1, scenario="simple_conversion,one_day") def test_single_timestep(self): """ Test that warning is raised on using 1 timestep, that timestep resolution will be inferred to be 1 hour """ override1 = { "model.subset_time": ["2005-01-01 00:00:00", "2005-01-01 00:00:00"] } # check in output error that it points to: 07/01/2005 10:00:00 with pytest.warns(exceptions.ModelWarning) as warn_info: model = build_model(override_dict=override1, scenario="simple_supply") assert check_error_or_warning( warn_info, "Only one timestep defined. Inferring timestep resolution to be 1 hour", ) assert model.inputs.timestep_resolution == [1] def test_empty_key_on_explode(self): """ On exploding nodes (from ``'1--3'`` or ``'1,2,3'`` to ``['1', '2', '3']``), raise error on the resulting list being empty """ list1 = calliope.preprocess.nodes.explode_nodes("1--3") list2 = calliope.preprocess.nodes.explode_nodes("1,2,3") assert list1 == list2 == ["1", "2", "3"] def test_key_clash_on_set_loc_key(self): """ Raise error on attempted overwrite of information regarding a recently exploded location """ override = { "nodes.a.techs.test_supply_elec.constraints.resource": 10, "nodes.a,b.techs.test_supply_elec.constraints.resource": 15, } with pytest.raises(KeyError): build_model(override_dict=override, scenario="simple_supply,one_day") def test_calculate_depreciation(self): """ Technologies which define investment costs *must* define lifetime and interest rate, so that a depreciation rate can be calculated. If lifetime == inf and interested > 0, depreciation rate will be inf, so we want to avoid that too. """ override1 = {"techs.test_supply_elec.costs.monetary.energy_cap": 10} with pytest.raises(exceptions.ModelError) as error: build_model(override_dict=override1, scenario="simple_supply,one_day") assert check_error_or_warning( error, "Must specify constraints.lifetime and costs.monetary.interest_rate" ) override2 = { "techs.test_supply_elec.constraints.lifetime": 10, "techs.test_supply_elec.costs.monetary.energy_cap": 10, } with pytest.raises(exceptions.ModelError) as error: build_model(override_dict=override2, scenario="simple_supply,one_day") assert check_error_or_warning( error, "Must specify constraints.lifetime and costs.monetary.interest_rate" ) override3 = { "techs.test_supply_elec.costs.monetary.interest_rate": 0.1, "techs.test_supply_elec.costs.monetary.energy_cap": 10, } with pytest.raises(exceptions.ModelError) as error: build_model(override_dict=override3, scenario="simple_supply,one_day") assert check_error_or_warning( error, "Must specify constraints.lifetime and costs.monetary.interest_rate" ) override4 = { "techs.test_supply_elec.constraints.lifetime": 10, "techs.test_supply_elec.costs.monetary.interest_rate": 0, "techs.test_supply_elec.costs.monetary.energy_cap": 10, } with pytest.warns(exceptions.ModelWarning) as excinfo: build_model(override_dict=override4, scenario="simple_supply,one_day") assert check_error_or_warning(excinfo, "`monetary` interest rate of zero") override5 = { "techs.test_supply_elec.constraints.lifetime": np.inf, "techs.test_supply_elec.costs.monetary.interest_rate": 0, "techs.test_supply_elec.costs.monetary.energy_cap": 10, } with pytest.warns(exceptions.ModelWarning) as excinfo: build_model(override_dict=override5, scenario="simple_supply,one_day") assert check_error_or_warning( excinfo, "No investment monetary cost will be incurred for `test_supply_elec`", ) override6 = { "techs.test_supply_elec.constraints.lifetime": np.inf, "techs.test_supply_elec.costs.monetary.interest_rate": 0.1, "techs.test_supply_elec.costs.monetary.energy_cap": 10, } with pytest.warns(exceptions.ModelWarning) as excinfo: build_model(override_dict=override6, scenario="simple_supply,one_day") assert check_error_or_warning( excinfo, "No investment monetary cost will be incurred for `test_supply_elec`", ) override7 = { "techs.test_supply_elec.constraints.lifetime": 10, "techs.test_supply_elec.costs.monetary.interest_rate": 0.1, "techs.test_supply_elec.costs.monetary.energy_cap": 10, } build_model(override_dict=override7, scenario="simple_supply,one_day") def test_delete_interest_rate(self): """ If only 'interest_rate' is given in the cost class for a technology, we should be able to handle deleting it without leaving an empty cost key. """ override1 = {"techs.test_supply_elec.costs.monetary.interest_rate": 0.1} m = build_model(override_dict=override1, scenario="simple_supply,one_day") assert "loc_techs_cost" not in m._model_data.dims def test_empty_cost_class(self): """ If cost is defined, but its value is not a dictionary, ensure it is deleted """ override1 = {"techs.test_supply_elec.costs.carbon": None} with pytest.warns(exceptions.ModelWarning) as warn_info: m = build_model( override_dict=override1, scenario="simple_supply,one_day,investment_costs", ) assert check_error_or_warning( warn_info, "Deleting empty cost class `carbon` for technology `test_supply_elec` at `a`.", ) assert ( "carbon" not in m._model_run.nodes["b"].techs.test_supply_elec.costs.keys() ) assert "carbon" not in m._model_data.coords["costs"].values def test_strip_link(self): override = { "links.a, c.techs": {"test_transmission_elec": None}, "nodes.c.techs": {"test_supply_elec": None}, } m = build_model(override_dict=override, scenario="simple_supply,one_day") assert "c" in m._model_run.nodes["a"].links.keys() def test_dataframes_passed(self): """ If model config specifies dataframes to be loaded in (via df=...), these time series must be passed as arguments in calliope.Model(...). """ override = {"techs.test_demand_elec.constraints.resource": "df=demand_elec"} with pytest.raises(exceptions.ModelError) as error: build_model( model_file="model_minimal.yaml", override_dict=override, timeseries_dataframes=None, ) assert check_error_or_warning( error, "no timeseries passed " "as arguments in calliope.Model(...)." ) def test_dataframe_keys(self): """ Any timeseries specified via df=... must correspond to a key in timeseries_dataframes. An error should be thrown. """ override = {"techs.test_demand_elec.constraints.resource": "df=key_1"} ts_df = {"key_2": pd.DataFrame(np.arange(10))} with pytest.raises(exceptions.ModelError) as error: build_model( model_file="model_minimal.yaml", override_dict=override, timeseries_dataframes=ts_df, ) assert check_error_or_warning( error, "Model attempted to load dataframe with key" ) def test_invalid_dataframes_passed(self): """ `timeseries_dataframes` should be dict of pandas DataFrames. """ override = {"techs.test_demand_elec.constraints.resource": "df=demand_elec"} ts_df_nodict = pd.DataFrame(np.arange(10)) # Not a dict ts_df_numpy_arrays = {"demand_elec": np.arange(10)} # No pd DataFrames for timeseries_dataframes in [ts_df_nodict, ts_df_numpy_arrays]: with pytest.raises(exceptions.ModelError) as error: build_model( model_file="model_minimal.yaml", override_dict=override, timeseries_dataframes=timeseries_dataframes, ) assert check_error_or_warning( error, "`timeseries_dataframes` must be dict of pandas DataFrames." ) class TestChecks: def test_unrecognised_config_keys(self): """ Check that the only top level keys can be 'model', 'run', 'nodes', 'techs', 'tech_groups' (+ 'config_path', but that is an internal addition) """ override = {"nonsensical_key": "random_string"} with pytest.warns(exceptions.ModelWarning) as excinfo: build_model(override_dict=override, scenario="simple_supply") assert check_error_or_warning( excinfo, "Unrecognised top-level configuration item: nonsensical_key" ) def test_missing_config_key(self): """ Check that missing 'nodes' raises an error """ with pytest.raises(exceptions.ModelError) as excinfo: build_model() # Not selecting any scenario means no nodes are defined assert check_error_or_warning( excinfo, "Model is missing required top-level configuration item: nodes" ) def test_unrecognised_model_run_keys(self): """ Check that the only keys allowed in 'model' and 'run' are those in the model defaults """ override1 = {"model.nonsensical_key": "random_string"} with pytest.warns(exceptions.ModelWarning) as excinfo: build_model(override_dict=override1, scenario="simple_supply") assert check_error_or_warning( excinfo, "Unrecognised setting in model configuration: nonsensical_key" ) override2 = {"run.nonsensical_key": "random_string"} with pytest.warns(exceptions.ModelWarning) as excinfo: build_model(override_dict=override2, scenario="simple_supply") assert check_error_or_warning( excinfo, "Unrecognised setting in run configuration: nonsensical_key" ) # A key that should be in run but is given in model override3 = {"model.solver": "glpk"} with pytest.warns(exceptions.ModelWarning) as excinfo: build_model(override_dict=override3, scenario="simple_supply") assert check_error_or_warning( excinfo, "Unrecognised setting in model configuration: solver" ) # A key that should be in model but is given in run override4 = {"run.subset_time": None} with pytest.warns(exceptions.ModelWarning) as excinfo: build_model(override_dict=override4, scenario="simple_supply") assert check_error_or_warning( excinfo, "Unrecognised setting in run configuration: subset_time" ) @pytest.mark.xfail(reason="SPORES mode will fail until the cost max group constraint can be reproduced") def test_warn_null_number_of_spores(self): """ Check that spores number is greater than 0 if spores run mode is selected """ override = {"run.spores_options.spores_number": 0} with pytest.warns(exceptions.ModelWarning) as warn: build_model(scenario="spores,simple_supply", override_dict=override) assert check_error_or_warning( warn, "spores run mode is selected, but a number of 0 spores is requested" ) @pytest.mark.xfail(reason="SPORES mode will fail until the cost max group constraint can be reproduced") def test_non_string_score_cost_class(self): """ Check that the score_cost_class for spores scoring is a string """ override = {"run.spores_options.score_cost_class": 0} with pytest.raises(exceptions.ModelError) as excinfo: build_model(scenario="spores,simple_supply", override_dict=override) assert check_error_or_warning( excinfo, "`run.spores_options.score_cost_class` must be a string" ) @pytest.mark.parametrize( "invalid_key", [("monetary"), ("emissions"), ("name"), ("anything_else_really")] ) def test_unrecognised_tech_keys(self, invalid_key): """ Check that no invalid keys are defined for technologies. """ override1 = {"techs.test_supply_gas.{}".format(invalid_key): "random_string"} with pytest.warns(exceptions.ModelWarning): build_model(override_dict=override1, scenario="simple_supply") def test_model_version_mismatch(self): """ Model config says model.calliope_version = 0.1, which is not what we are running, so we want a warning. """ override = {"model.calliope_version": 0.1} with pytest.warns(exceptions.ModelWarning) as excinfo: build_model(override_dict=override, scenario="simple_supply,one_day") assert check_error_or_warning( excinfo, "Model configuration specifies calliope_version" ) def test_unknown_carrier_tier(self): """ User can only use 'carrier_' + ['in', 'out', 'in_2', 'out_2', 'in_3', 'out_3', 'ratios'] """ override1 = AttrDict.from_yaml_string( """ techs.test_supply_elec.essentials.carrier_1: power """ ) with pytest.raises(exceptions.ModelError): build_model(override_dict=override1, scenario="simple_supply,one_day") override2 = AttrDict.from_yaml_string( """ techs.test_conversion_plus.essentials.carrier_out_4: power """ ) with pytest.raises(exceptions.ModelError): build_model( override_dict=override2, scenario="simple_conversion_plus,one_day" ) def test_name_overlap(self): """ No tech may have the same identifier as a tech group """ override = AttrDict.from_yaml_string( """ techs: supply: essentials: name: Supply tech carrier: gas parent: supply constraints: energy_cap_max: 10 resource: .inf nodes: 1.techs.supply: 0.techs.supply: """ ) with pytest.raises(exceptions.ModelError): build_model(override_dict=override, scenario="one_day") @pytest.mark.parametrize( "loc_tech", ( ({"nodes": ["1", "foo"]}), ({"techs": ["test_supply_elec", "bar"]}), ({"nodes": ["1", "foo"], "techs": ["test_supply_elec", "bar"]}), ), ) @pytest.mark.xfail(reason="Planning to remove group constraints") def test_inexistent_group_constraint_loc_tech(self, loc_tech): override = {"group_constraints.mygroup": {"energy_cap_max": 100, **loc_tech}} with pytest.warns(exceptions.ModelWarning) as excinfo: m = build_model(override_dict=override, scenario="simple_supply") assert check_error_or_warning( excinfo, "Possible misspelling in group constraints:" ) loc_techs = m._model_data.group_constraint_loc_techs_mygroup.values assert "foo:test_supply_elec" not in loc_techs assert "1:bar" not in loc_techs assert "foo:bar" not in loc_techs @pytest.mark.xfail(reason="Planning to remove group constraints") def test_inexistent_group_constraint_empty_loc_tech(self): override = { "group_constraints.mygroup": {"energy_cap_max": 100, "locs": ["foo"]} } with pytest.warns(exceptions.ModelWarning) as excinfo: m = build_model(override_dict=override, scenario="simple_supply") assert check_error_or_warning( excinfo, "Constraint group `mygroup` will be completely ignored" ) assert m._model_run.group_constraints.mygroup.get("exists", True) is False @pytest.mark.filterwarnings( "ignore:(?s).*Not building the link a,b:calliope.exceptions.ModelWarning" ) def test_abstract_base_tech_group_override(self): """ Abstract base technology groups can be overridden """ override = AttrDict.from_yaml_string( """ tech_groups: supply: constraints: lifetime: 25 nodes: b.techs.test_supply_elec: b.techs.test_demand_elec: """ ) build_model(override_dict=override, scenario="one_day") def test_unspecified_parent(self): """ All technologies and technology groups must specify a parent """ override = AttrDict.from_yaml_string( """ techs.test_supply_no_parent: essentials: name: Supply tech carrier: gas constraints: energy_cap_max: 10 resource: .inf nodes.b.techs.test_supply_no_parent: """ ) with pytest.raises(KeyError): build_model(override_dict=override, scenario="simple_supply,one_day") def test_tech_as_parent(self): """ All technologies and technology groups must specify a parent """ override1 = AttrDict.from_yaml_string( """ techs.test_supply_tech_parent: essentials: name: Supply tech carrier: gas parent: test_supply_elec constraints: energy_cap_max: 10 resource: .inf nodes.b.techs.test_supply_tech_parent: """ ) with pytest.raises(exceptions.ModelError) as error: build_model(override_dict=override1, scenario="simple_supply,one_day") check_error_or_warning( error, "tech `test_supply_tech_parent` has another tech as a parent" ) override2 = AttrDict.from_yaml_string( """ tech_groups.test_supply_group: essentials: carrier: gas parent: test_supply_elec constraints: energy_cap_max: 10 resource: .inf techs.test_supply_tech_parent.essentials: name: Supply tech parent: test_supply_group nodes.b.techs.test_supply_tech_parent: """ ) with pytest.raises(exceptions.ModelError) as error: build_model(override_dict=override2, scenario="simple_supply,one_day") check_error_or_warning( error, "tech_group `test_supply_group` has a tech as a parent" ) def test_resource_as_carrier(self): """ No carrier in technology or technology group can be called `resource` """ override1 = AttrDict.from_yaml_string( """ techs: test_supply_elec: essentials: name: Supply tech carrier: resource parent: supply """ ) with pytest.raises(exceptions.ModelError): build_model(override_dict=override1, scenario="simple_supply,one_day") override2 = AttrDict.from_yaml_string( """ tech_groups: test_supply_group: essentials: name: Supply tech carrier: resource parent: supply techs.test_supply_elec.essentials.parent: test_supply_group """ ) with pytest.raises(exceptions.ModelError): build_model(override_dict=override2, scenario="simple_supply,one_day") @pytest.mark.filterwarnings( "ignore:(?s).*defines force_resource but not a finite resource:calliope.exceptions.ModelWarning" ) def test_missing_required_constraints(self): """ A technology within an abstract base technology must define a subset of hardcoded constraints in order to function """ # should fail: missing one of ['energy_cap_max', 'energy_cap_equals', 'energy_cap_per_unit'] override_supply1 = AttrDict.from_yaml_string( """ techs: demand_missing_constraint: essentials: parent: demand carrier: electricity name: demand missing constraint switches: resource_unit: power nodes.b.techs.demand_missing_constraint: """ ) with pytest.raises(exceptions.ModelError): build_model( override_dict=override_supply1, scenario="simple_supply,one_day" ) # should pass: giving one of ['energy_cap_max', 'energy_cap_equals', 'energy_cap_per_unit'] override_supply2 = AttrDict.from_yaml_string( """ techs: supply_missing_constraint: essentials: parent: supply carrier: electricity name: supply missing constraint constraints.energy_cap_max: 10 nodes.b.techs.supply_missing_constraint: """ ) build_model(override_dict=override_supply2, scenario="simple_supply,one_day") def test_defining_non_allowed_constraints(self): """ A technology within an abstract base technology can only define a subset of hardcoded constraints, anything else will not be implemented, so are not allowed for that technology. This includes misspellings """ # should fail: storage_cap_max not allowed for supply tech override_supply1 = AttrDict.from_yaml_string( """ techs.test_supply_elec.constraints.storage_cap_max: 10 """ ) with pytest.raises(exceptions.ModelError): build_model( override_dict=override_supply1, scenario="simple_supply,one_day" ) def test_defining_non_allowed_costs(self): """ A technology within an abstract base technology can only define a subset of hardcoded costs, anything else will not be implemented, so are not allowed for that technology. This includes misspellings """ # should fail: storage_cap_max not allowed for supply tech override = AttrDict.from_yaml_string( """ techs.test_supply_elec.costs.monetary.storage_cap: 10 """ ) with pytest.raises(exceptions.ModelError): build_model(override_dict=override, scenario="simple_supply,one_day") # should fail: om_prod not allowed for demand tech override = AttrDict.from_yaml_string( """ techs.test_demand_elec.costs.monetary.om_prod: 10 """ ) with pytest.raises(exceptions.ModelError): build_model(override_dict=override, scenario="simple_supply,one_day") def test_defining_cost_class_with_name_of_cost(self): """ A cost class with the same name as one of the possible cost types was defined, suggesting a user mistake with indentation. """ override = AttrDict.from_yaml_string( """ techs.test_supply_elec.costs.storage_cap: 10 """ ) with pytest.warns(exceptions.ModelWarning) as excinfo: build_model(override_dict=override, scenario="simple_supply,one_day") assert check_error_or_warning( excinfo, "`test_supply_elec` at `b` defines storage_cap as a cost class." ) def test_exporting_unspecified_carrier(self): """ User can only define an export carrier if it is defined in ['carrier_out', 'carrier_out_2', 'carrier_out_3'] """ override_supply = lambda param: AttrDict.from_yaml_string( "techs.test_supply_elec.constraints.export_carrier: {}".format(param) ) override_converison_plus = lambda param: AttrDict.from_yaml_string( "techs.test_conversion_plus.constraints.export_carrier: {}".format(param) ) # should fail: exporting `heat` not allowed for electricity supply tech with pytest.raises(exceptions.ModelError): build_model( override_dict=override_supply("heat"), scenario="simple_supply,one_day" ) # should fail: exporting `random` not allowed for conversion_plus tech with pytest.raises(exceptions.ModelError): build_model( override_dict=override_converison_plus("random"), scenario="simple_conversion_plus,one_day", ) # should pass: exporting electricity for supply tech build_model( override_dict=override_supply("electricity"), scenario="simple_supply,one_day", ) # should pass: exporting heat for conversion tech build_model( override_dict=override_converison_plus("heat"), scenario="simple_conversion_plus,one_day", ) def test_tech_directly_in_nodes(self): """ A tech defined directly within a location rather than within techs inside that location is probably an oversight. """ override = {"nodes.b.test_supply_elec.costs.storage_cap": 10} with pytest.raises(exceptions.ModelError) as excinfo: build_model(override_dict=override, scenario="simple_supply,one_day") assert check_error_or_warning( excinfo, "Node `b` contains unrecognised keys ['test_supply_elec']" ) def test_tech_defined_twice_in_links(self): """ A technology can only be defined once for a link, even if that link is defined twice (i.e. `A,B` and `B,A`). """ override = { "links.a,b.techs.test_transmission_elec": None, "links.b,a.techs.test_transmission_elec": None, } with pytest.raises(exceptions.ModelError) as excinfo: build_model(override_dict=override, scenario="simple_supply,one_day") assert check_error_or_warning( excinfo, "Technology test_transmission_elec defined twice on a link defined " "in both directions (e.g. `A,B` and `B,A`)", ) override = { "links.a,b.techs": { "test_transmission_elec": None, "test_transmission_heat": None, }, "links.b,a.techs": { "test_transmission_elec": None, "test_transmission_heat": None, }, } with pytest.raises(exceptions.ModelError) as excinfo: build_model(override_dict=override, scenario="simple_supply,one_day") assert check_error_or_warning( excinfo, ["test_transmission_elec", "test_transmission_heat"] ) # We do allow a link to be defined twice, so long as the same tech isn't in both override = { "techs.test_transmission_heat_2": { "essentials.name": "Transmission heat tech", "essentials.carrier": "heat", "essentials.parent": "transmission", }, "links.a,b.techs": {"test_transmission_elec": None}, "links.b,a.techs": {"test_transmission_heat_2": None}, } build_model(override_dict=override, scenario="simple_supply,one_day") def test_allowed_time_varying_constraints(self): """ `file=` is only allowed on a hardcoded list of constraints, unless `_time_varying` is appended to the constraint (i.e. user input) """ allowed_constraints_no_file = list( set(defaults.tech_groups.storage.allowed_constraints).difference( defaults.model.file_allowed ) ) allowed_constraints_file = list( set(defaults.tech_groups.storage.allowed_constraints).intersection( defaults.model.file_allowed ) ) override = lambda param: AttrDict.from_yaml_string( "techs.test_storage.constraints.{}: file=binary_one_day.csv".format(param) ) # should fail: Cannot have `file=` on the following constraints for param in allowed_constraints_no_file: with pytest.raises(exceptions.ModelError) as errors: build_model( override_dict=override(param), scenario="simple_storage,one_day" ) assert check_error_or_warning( errors, "Cannot load data from file for configuration" " `techs.test_storage.constraints.{}`".format(param), ) # should pass: can have `file=` on the following constraints for param in allowed_constraints_file: build_model( override_dict=override(param), scenario="simple_storage,one_day" ) def test_incorrect_node_coordinates(self): """ Either all or no nodes must have `coordinates` defined and, if all defined, they must be in the same coordinate system (lat/lon or x/y) """ def _override(param0, param1): override = {} if param0 is not None: override.update({"nodes.a.coordinates": param0}) if param1 is not None: override.update({"nodes.b.coordinates": param1}) return override cartesian0 = {"x": 0, "y": 1} cartesian1 = {"x": 1, "y": 1} geographic0 = {"lat": 0, "lon": 1} geographic1 = {"lat": 1, "lon": 1} fictional0 = {"a": 0, "b": 1} fictional1 = {"a": 1, "b": 1} # should fail: cannot have nodes in one place and not in another with pytest.raises(exceptions.ModelError) as error: build_model( override_dict=_override(cartesian0, None), scenario="simple_supply,one_day", ) check_error_or_warning( error, "Either all or no nodes must have `coordinates` defined" ) # should fail: cannot have cartesian coordinates in one place and geographic in another with pytest.raises(exceptions.ModelError) as error: build_model( override_dict=_override(cartesian0, geographic1), scenario="simple_supply,one_day", ) check_error_or_warning(error, "All nodes must use the same coordinate format") # should fail: cannot use a non-cartesian or non-geographic coordinate system with pytest.raises(exceptions.ModelError) as error: build_model( override_dict=_override(fictional0, fictional1), scenario="simple_supply,one_day", ) check_error_or_warning(error, "Unidentified coordinate system") # should fail: coordinates must be given as key:value pairs with pytest.raises(exceptions.ModelError) as error: build_model( override_dict=_override([0, 1], [1, 1]), scenario="simple_supply,one_day", ) check_error_or_warning(error, "Coordinates must be given in the format") # should pass: cartesian coordinates in both places build_model( override_dict=_override(cartesian0, cartesian1), scenario="simple_supply,one_day", ) # should pass: geographic coordinates in both places build_model( override_dict=_override(geographic0, geographic1), scenario="simple_supply,one_day", ) def test_one_way(self): """ With one_way transmission, we remove one direction of a link from loc_tech_carriers_prod and the other from loc_tech_carriers_con. """ override = { "links.X1,N1.techs.heat_pipes.switches.one_way": True, "links.N1,X2.techs.heat_pipes.switches.one_way": True, "links.N1,X3.techs.heat_pipes.switches.one_way": True, "model.subset_time": ["2005-01-01", "2005-01-01"], } m = calliope.examples.urban_scale(override_dict=override) m.run(build_only=True) removed_prod_links = [ ("X1", "heat_pipes:N1"), ("N1", "heat_pipes:X2"), ("N1", "heat_pipes:X3"), ] removed_con_links = [ ("N1", "heat_pipes:X1"), ("X2", "heat_pipes:N1"), ("X3", "heat_pipes:N1"), ] for link in removed_prod_links: assert link not in set(i[1:3] for i in m._backend_model.carrier_prod._index) for link in removed_con_links: assert link not in set(i[1:3] for i in m._backend_model.carrier_con._index) def test_carrier_ratio_for_inexistent_carrier(self): """ A tech should not define a carrier ratio for a carrier it does not actually use. """ override = AttrDict.from_yaml_string( """ nodes.1.techs.test_conversion_plus.constraints.carrier_ratios: carrier_in: some_carrier: 1.0 carrier_out_2: another_carrier: 2.0 """ ) with pytest.warns(exceptions.ModelWarning) as excinfo: build_model( override_dict=override, scenario="simple_conversion_plus,one_day" ) assert check_error_or_warning( excinfo, "Tech `test_conversion_plus` gives a carrier ratio for `another_carrier`, but does not actually", ) def test_carrier_ratio_for_specified_carrier(self): """ The warning for not defining a carrier ratio for a carrier a tech does not actually use should not be triggered if the carrier is defined. """ override = AttrDict.from_yaml_string( """ nodes.b.techs.test_conversion_plus.constraints.carrier_ratios: carrier_in: heat: 1.0 """ ) with pytest.warns(None) as excinfo: build_model( override_dict=override, scenario="simple_conversion_plus,one_day" ) assert "Tech `test_conversion_plus` gives a carrier ratio" not in [ str(i) for i in excinfo.list ] def test_carrier_ratio_from_file(self): """ It is possible to load a timeseries carrier_ratio from file """ override = AttrDict.from_yaml_string( """ nodes.b.techs.test_conversion_plus.constraints.carrier_ratios: carrier_out.heat: file=carrier_ratio.csv """ ) with pytest.warns(None) as excinfo: build_model( override_dict=override, scenario="simple_conversion_plus,one_day" ) assert "Cannot load data from file for configuration" not in [ str(i) for i in excinfo.list ] @pytest.mark.filterwarnings("ignore:(?s).*Integer:calliope.exceptions.ModelWarning") def test_milp_constraints(self): """ If `units` is defined, but not `energy_cap_per_unit`, throw an error """ # should fail: no energy_cap_per_unit override1 = AttrDict.from_yaml_string( "techs.test_supply_elec.constraints.units_max: 4" ) with pytest.raises(exceptions.ModelError): build_model(override_dict=override1, scenario="simple_supply,one_day") # should pass: energy_cap_per_unit given override2 = AttrDict.from_yaml_string( """ techs.test_supply_elec.constraints: units_max: 4 energy_cap_per_unit: 5 """ ) build_model(override_dict=override2, scenario="simple_supply,one_day") def test_force_resource_ignored(self): """ If a technology is defines force_resource but is not in loc_techs_finite_resource it will have no effect """ override = { "techs.test_supply_elec.constraints.resource": np.inf, "techs.test_supply_elec.switches.force_resource": True, } with pytest.raises(exceptions.ModelError) as excinfo: build_model(override_dict=override, scenario="simple_supply,one_day") assert check_error_or_warning( excinfo, "Cannot have `force_resource` = True", ) def test_override_coordinates(self): """ Check that warning is raised if we are completely overhauling the coordinate system with an override """ override = { "nodes": { "X1.coordinates": {"lat": 51.4596158, "lon": -0.1613446}, "X2.coordinates": {"lat": 51.4652373, "lon": -0.1141548}, "X3.coordinates": {"lat": 51.4287016, "lon": -0.1310635}, "N1.coordinates": {"lat": 51.4450766, "lon": -0.1247183}, }, "links": { "X1,X2.techs.power_lines.distance": 10, "X1,X3.techs.power_lines.distance": 5, "X1,N1.techs.heat_pipes.distance": 3, "N1,X2.techs.heat_pipes.distance": 3, "N1,X3.techs.heat_pipes.distance": 4, }, } with pytest.warns(exceptions.ModelWarning) as excinfo: calliope.examples.urban_scale(override_dict=override) assert check_error_or_warning(excinfo, "Updated from coordinate system") def test_clustering_and_cyclic_storage(self): """ Don't allow time clustering with cyclic storage if not also using storage_inter_cluster """ override = { "model.subset_time": ["2005-01-01", "2005-01-04"], "model.time": { "function": "apply_clustering", "function_options": { "clustering_func": "file=cluster_days.csv:0", "how": "mean", "storage_inter_cluster": False, }, }, "run.cyclic_storage": True, } with pytest.raises(exceptions.ModelError) as error: build_model(override, scenario="simple_supply") assert check_error_or_warning(error, "cannot have cyclic storage") def test_incorrect_resource_unit(self): """ Only `energy`, `energy_per_cap`, or `energy_per_area` is allowed under `resource unit`. """ def _override(resource_unit): return {"techs.test_supply_elec.switches.resource_unit": resource_unit} with pytest.raises(exceptions.ModelError) as error: build_model(_override("power"), scenario="simple_supply") build_model(_override("energy"), scenario="simple_supply") build_model(_override("energy_per_cap"), scenario="simple_supply") build_model(_override("energy_per_area"), scenario="simple_supply") assert check_error_or_warning( error, "`power` is an unknown resource unit for `test_supply_elec`" ) @pytest.mark.parametrize( "constraints,costs", ( ({"units_max": 2, "energy_cap_per_unit": 5}, None), ({"units_equals": 2, "energy_cap_per_unit": 5}, None), ({"units_min": 2, "energy_cap_per_unit": 5}, None), (None, {"purchase": 2}), ), ) @pytest.mark.xfail( reason="Expected fail because now the setting of integer/binary variables is more explicit, so users should be aware without the need of a warning" ) def test_milp_supply_warning(self, constraints, costs): override_constraints = {} override_costs = {} if constraints is not None: override_constraints.update( {"techs.test_supply_elec.constraints": constraints} ) if costs is not None: override_costs.update({"techs.test_supply_elec.costs.monetary": costs}) override = {**override_constraints, **override_costs} with pytest.warns(exceptions.ModelWarning) as warn: build_model( override_dict=override, scenario="simple_supply,one_day,investment_costs", ) assert check_error_or_warning( warn, "Integer and / or binary decision variables are included in this model", ) @pytest.mark.parametrize( "constraints,costs", ( ( {"units_max": 2, "storage_cap_per_unit": 5, "energy_cap_per_unit": 5}, None, ), ( { "units_equals": 2, "storage_cap_per_unit": 5, "energy_cap_per_unit": 5, }, None, ), ( {"units_min": 2, "storage_cap_per_unit": 5, "energy_cap_per_unit": 5}, None, ), (None, {"purchase": 2}), ), ) @pytest.mark.xfail( reason="Expected fail because now the setting of integer/binary variables is more explicit, so users should be aware without the need of a warning" ) def test_milp_storage_warning(self, constraints, costs): override_constraints = {} override_costs = {} if constraints is not None: override_constraints.update({"techs.test_storage.constraints": constraints}) if costs is not None: override_costs.update({"techs.test_storage.costs.monetary": costs}) override = {**override_constraints, **override_costs} with pytest.warns(exceptions.ModelWarning) as warn: build_model( override_dict=override, scenario="simple_storage,one_day,investment_costs", ) assert check_error_or_warning( warn, "Integer and / or binary decision variables are included in this model", ) def test_fail_on_string(self): with pytest.raises(calliope.exceptions.ModelError) as exception: build_model( model_file="weighted_obj_func.yaml", scenario="illegal_string_cost_class", ) assert check_error_or_warning( exception, "`run.objective_options.cost_class` must be a dictionary." ) def test_warn_on_using_default(self): with pytest.warns(exceptions.ModelWarning) as warn: build_model( model_file="weighted_obj_func.yaml", scenario="emissions_objective_without_removing_monetary_default", ) assert check_error_or_warning( warn, "Monetary cost class with a weight of 1 is still included" ) @pytest.mark.parametrize( "override", [ ({"run.objective_options.cost_class": {"monetary": None}}), ( { "run.objective_options.cost_class": { "monetary": None, "emissions": None, } } ), ], ) def test_warn_on_no_weight(self, override): with pytest.warns(exceptions.ModelWarning) as warn: model = build_model( model_file="weighted_obj_func.yaml", override_dict=override ) assert check_error_or_warning( warn, "cost class monetary has weight = None, setting weight to 1" ) assert all( model.run_config["objective_options"]["cost_class"][i] == 1 for i in override["run.objective_options.cost_class"].keys() ) @pytest.mark.skip(reason="check is now taken care of in typedconfig") def test_storage_initial_fractional_value(self): """ Check that the storage_initial value is a fraction """ with pytest.raises(exceptions.ModelError) as error: build_model( {"techs.test_storage.constraints.storage_initial": 5}, "simple_storage,two_hours,investment_costs", ) assert check_error_or_warning( error, "storage_initial values larger than 1 are not allowed." ) @pytest.mark.skip(reason="check is now taken care of in typedconfig") def test_storage_initial_smaller_than_discharge_depth(self): """ Check that the storage_initial value is at least equalt to the storage_discharge_depth """ with pytest.raises(exceptions.ModelError) as error: build_model( {"techs.test_storage.constraints.storage_initial": 0}, "simple_storage,two_hours,investment_costs,storage_discharge_depth", ) assert check_error_or_warning( error, "storage_initial is smaller than storage_discharge_depth." ) @pytest.mark.skip(reason="check is now taken care of in typedconfig") def test_storage_inter_cluster_vs_storage_discharge_depth(self): """ Check that the storage_inter_cluster is not used together with storage_discharge_depth """ with pytest.raises(exceptions.ModelError) as error: override = {"model.subset_time": ["2005-01-01", "2005-01-04"]} build_model(override, "clustering,simple_storage,storage_discharge_depth") assert check_error_or_warning( error, "storage_discharge_depth is currently not allowed when time clustering is active.", ) @pytest.mark.skip(reason="check is now taken care of in typedconfig") def test_warn_on_undefined_cost_classes(self): with pytest.warns(exceptions.ModelWarning) as warn: build_model( model_file="weighted_obj_func.yaml", scenario="undefined_class_objective", ) assert check_error_or_warning( warn, "Cost classes `{'random_class'}` are defined in the objective options but not ", ) class TestUtil: def test_vincenty(self): # London to Paris: about 344 km coords = [(51.507222, -0.1275), (48.8567, 2.3508)] distance = calliope.preprocess.util.vincenty(coords[0], coords[1]) assert distance == pytest.approx(343834) # in meters class TestTime: @pytest.fixture def model_national(self, load_timeseries_from_dataframes): """ Return national scale example model. If load_timeseries_from_dataframes is True, timeseries are read into dataframes and model is called using them. If not, the timeseries are read in from CSV. """ if load_timeseries_from_dataframes: # Create dictionary with dataframes timeseries_data_path = os.path.join( calliope.examples._PATHS["national_scale"], "timeseries_data/" ) timeseries_dataframes = {} timeseries_dataframes["csp_resource"] = pd.read_csv( os.path.join(timeseries_data_path, "csp_resource.csv"), index_col=0 ) timeseries_dataframes["demand_1"] = pd.read_csv( os.path.join(timeseries_data_path, "demand-1.csv"), index_col=0 ) timeseries_dataframes["demand_2"] = pd.read_csv( os.path.join(timeseries_data_path, "demand-2.csv"), index_col=0 ) # Create override dict telling calliope to load timeseries from df override_dict = { "techs.csp.constraints.resource": "df=csp_resource", "nodes.region1.techs.demand_power.constraints.resource": "df=demand_1:demand", "nodes.region2.techs.demand_power.constraints.resource": "df=demand_2:demand", } return calliope.examples.national_scale( timeseries_dataframes=timeseries_dataframes, override_dict=override_dict ) else: return calliope.examples.national_scale() @pytest.fixture def model_urban(self): return calliope.examples.urban_scale( override_dict={"model.subset_time": ["2005-01-01", "2005-01-10"]} ) def test_add_max_demand_timesteps(self, model_urban): data = model_urban._model_data_pre_clustering.copy() data = time.add_max_demand_timesteps(data) assert data["max_demand_timesteps"].loc[ dict(carriers="heat") ].values == np.datetime64("2005-01-05T07:00:00") assert data["max_demand_timesteps"].loc[ dict(carriers="electricity") ].values == np.datetime64("2005-01-10T09:00:00") @pytest.mark.parametrize("load_timeseries_from_dataframes", [False, True]) def test_timeseries_from_csv(self, model_national): """ Timeseries data should be successfully loaded into national_scale example model. This test checks whether this happens with timeseries loaded both from CSV (`load_timeseries_from_dataframes`=False, called via file=...) and from dataframes (`load_timeseries_from_dataframes`=True, called via df=...). """ model = model_national assert model.inputs.resource.loc[("region1", "demand_power")].values[ 0 ] == approx(-25284.48) assert model.inputs.resource.loc[("region2", "demand_power")].values[ 0 ] == approx(-2254.098) assert model.inputs.resource.loc[("region1-1", "csp")].values[8] == approx( 0.263805 ) assert model.inputs.resource.loc[("region1-2", "csp")].values[8] == approx( 0.096755 ) assert model.inputs.resource.loc[("region1-3", "csp")].values[8] == approx(0.0)
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import re import time from unittest import mock from oslo_config import cfg from oslo_utils import timeutils as tu from senlin.common import consts from senlin.common import context from senlin.common import exception as exc from senlin.common import utils from senlin.engine import health_manager as hm from senlin.engine import node as node_mod from senlin.engine.notifications import nova_endpoint from senlin import objects from senlin.objects import cluster as obj_cluster from senlin.objects import node as obj_node from senlin.objects import profile as obj_profile from senlin.rpc import client as rpc_client from senlin.tests.unit.common import base class TestChaseUp(base.SenlinTestCase): def test_less_than_one_interval(self): start = tu.utcnow(True) # we assume that the delay before next line is < 5 seconds res = hm.chase_up(start, 5) self.assertLessEqual(res, 5) def test_more_than_one_interval(self): start = tu.utcnow(True) time.sleep(2) # we assume that the delay before next line is < 5 seconds res = hm.chase_up(start, 1) self.assertLessEqual(res, 1) @mock.patch('oslo_messaging.NotificationFilter') class TestNovaNotificationEndpoint(base.SenlinTestCase): @mock.patch('senlin.rpc.client.get_engine_client') def test_init(self, mock_rpc, mock_filter): x_filter = mock_filter.return_value event_map = { 'compute.instance.pause.end': 'PAUSE', 'compute.instance.power_off.end': 'POWER_OFF', 'compute.instance.rebuild.error': 'REBUILD', 'compute.instance.shutdown.end': 'SHUTDOWN', 'compute.instance.soft_delete.end': 'SOFT_DELETE', } recover_action = {'operation': 'REBUILD'} endpoint = nova_endpoint.NovaNotificationEndpoint( 'PROJECT', 'CLUSTER_ID', recover_action ) mock_filter.assert_called_once_with( publisher_id='^compute.*', event_type='^compute\.instance\..*', context={'project_id': '^PROJECT$'}) mock_rpc.assert_called_once_with() self.assertEqual(x_filter, endpoint.filter_rule) self.assertEqual(mock_rpc.return_value, endpoint.rpc) for e in event_map: self.assertIn(e, endpoint.VM_FAILURE_EVENTS) self.assertEqual(event_map[e], endpoint.VM_FAILURE_EVENTS[e]) self.assertEqual('PROJECT', endpoint.project_id) self.assertEqual('CLUSTER_ID', endpoint.cluster_id) @mock.patch.object(context.RequestContext, 'from_dict') @mock.patch('senlin.rpc.client.get_engine_client') def test_info(self, mock_rpc, mock_context, mock_filter): x_rpc = mock_rpc.return_value recover_action = {'operation': 'REBUILD'} endpoint = nova_endpoint.NovaNotificationEndpoint( 'PROJECT', 'CLUSTER_ID', recover_action ) ctx = mock.Mock() payload = { 'metadata': { 'cluster_id': 'CLUSTER_ID', 'cluster_node_id': 'FAKE_NODE', 'cluster_node_index': '123', }, 'instance_id': 'PHYSICAL_ID', 'user_id': 'USER', 'state': 'shutoff', } metadata = {'timestamp': 'TIMESTAMP'} call_ctx = mock.Mock() mock_context.return_value = call_ctx res = endpoint.info(ctx, 'PUBLISHER', 'compute.instance.shutdown.end', payload, metadata) self.assertIsNone(res) x_rpc.call.assert_called_once_with(call_ctx, 'node_recover', mock.ANY) req = x_rpc.call.call_args[0][2] self.assertIsInstance(req, objects.NodeRecoverRequest) self.assertEqual('FAKE_NODE', req.identity) expected_params = { 'event': 'SHUTDOWN', 'state': 'shutoff', 'instance_id': 'PHYSICAL_ID', 'timestamp': 'TIMESTAMP', 'publisher': 'PUBLISHER', 'operation': 'REBUILD' } self.assertEqual(expected_params, req.params) @mock.patch('senlin.rpc.client.get_engine_client') def test_info_no_metadata(self, mock_rpc, mock_filter): x_rpc = mock_rpc.return_value recover_action = {'operation': 'REBUILD'} endpoint = nova_endpoint.NovaNotificationEndpoint( 'PROJECT', 'CLUSTER_ID', recover_action ) ctx = mock.Mock() payload = {'metadata': {}} metadata = {'timestamp': 'TIMESTAMP'} res = endpoint.info(ctx, 'PUBLISHER', 'compute.instance.delete.end', payload, metadata) self.assertIsNone(res) self.assertEqual(0, x_rpc.node_recover.call_count) @mock.patch('senlin.rpc.client.get_engine_client') def test_info_no_cluster_in_metadata(self, mock_rpc, mock_filter): x_rpc = mock_rpc.return_value recover_action = {'operation': 'REBUILD'} endpoint = nova_endpoint.NovaNotificationEndpoint( 'PROJECT', 'CLUSTER_ID', recover_action ) ctx = mock.Mock() payload = {'metadata': {'foo': 'bar'}} metadata = {'timestamp': 'TIMESTAMP'} res = endpoint.info(ctx, 'PUBLISHER', 'compute.instance.delete.end', payload, metadata) self.assertIsNone(res) self.assertEqual(0, x_rpc.node_recover.call_count) @mock.patch('senlin.rpc.client.get_engine_client') def test_info_cluster_id_not_match(self, mock_rpc, mock_filter): x_rpc = mock_rpc.return_value recover_action = {'operation': 'REBUILD'} endpoint = nova_endpoint.NovaNotificationEndpoint( 'PROJECT', 'CLUSTER_ID', recover_action ) ctx = mock.Mock() payload = {'metadata': {'cluster_id': 'FOOBAR'}} metadata = {'timestamp': 'TIMESTAMP'} res = endpoint.info(ctx, 'PUBLISHER', 'compute.instance.delete.end', payload, metadata) self.assertIsNone(res) self.assertEqual(0, x_rpc.node_recover.call_count) @mock.patch('senlin.rpc.client.get_engine_client') def test_info_event_type_not_interested(self, mock_rpc, mock_filter): x_rpc = mock_rpc.return_value recover_action = {'operation': 'REBUILD'} endpoint = nova_endpoint.NovaNotificationEndpoint( 'PROJECT', 'CLUSTER_ID', recover_action ) ctx = mock.Mock() payload = {'metadata': {'cluster_id': 'CLUSTER_ID'}} metadata = {'timestamp': 'TIMESTAMP'} res = endpoint.info(ctx, 'PUBLISHER', 'compute.instance.delete.start', payload, metadata) self.assertIsNone(res) self.assertEqual(0, x_rpc.node_recover.call_count) @mock.patch('senlin.rpc.client.get_engine_client') def test_info_no_node_id(self, mock_rpc, mock_filter): x_rpc = mock_rpc.return_value recover_action = {'operation': 'REBUILD'} endpoint = nova_endpoint.NovaNotificationEndpoint( 'PROJECT', 'CLUSTER_ID', recover_action ) ctx = mock.Mock() payload = {'metadata': {'cluster_id': 'CLUSTER_ID'}} metadata = {'timestamp': 'TIMESTAMP'} res = endpoint.info(ctx, 'PUBLISHER', 'compute.instance.delete.end', payload, metadata) self.assertIsNone(res) self.assertEqual(0, x_rpc.node_recover.call_count) @mock.patch.object(context.RequestContext, 'from_dict') @mock.patch('senlin.rpc.client.get_engine_client') def test_info_default_values(self, mock_rpc, mock_context, mock_filter): x_rpc = mock_rpc.return_value recover_action = {'operation': 'REBUILD'} endpoint = nova_endpoint.NovaNotificationEndpoint( 'PROJECT', 'CLUSTER_ID', recover_action ) ctx = mock.Mock() payload = { 'metadata': { 'cluster_id': 'CLUSTER_ID', 'cluster_node_id': 'NODE_ID' }, 'user_id': 'USER', } metadata = {'timestamp': 'TIMESTAMP'} call_ctx = mock.Mock() mock_context.return_value = call_ctx res = endpoint.info(ctx, 'PUBLISHER', 'compute.instance.shutdown.end', payload, metadata) self.assertIsNone(res) x_rpc.call.assert_called_once_with(call_ctx, 'node_recover', mock.ANY) req = x_rpc.call.call_args[0][2] self.assertIsInstance(req, objects.NodeRecoverRequest) self.assertEqual('NODE_ID', req.identity) expected_params = { 'event': 'SHUTDOWN', 'state': 'Unknown', 'instance_id': 'Unknown', 'timestamp': 'TIMESTAMP', 'publisher': 'PUBLISHER', 'operation': 'REBUILD', } self.assertEqual(expected_params, req.params) @mock.patch( 'senlin.engine.notifications.heat_endpoint.HeatNotificationEndpoint') @mock.patch( 'senlin.engine.notifications.nova_endpoint.NovaNotificationEndpoint') @mock.patch('oslo_messaging.get_notification_transport') @mock.patch('oslo_messaging.get_notification_listener') class TestListenerProc(base.SenlinTestCase): def test_listener_proc_nova(self, mock_listener, mock_transport, mock_novaendpoint, mock_heatendpoint): cfg.CONF.set_override('nova_control_exchange', 'FAKE_EXCHANGE', group='health_manager') x_listener = mock.Mock() mock_listener.return_value = x_listener x_transport = mock.Mock() mock_transport.return_value = x_transport x_endpoint = mock.Mock() mock_novaendpoint.return_value = x_endpoint recover_action = {'operation': 'REBUILD'} res = hm.ListenerProc('FAKE_EXCHANGE', 'PROJECT_ID', 'CLUSTER_ID', recover_action) self.assertIsNone(res) mock_transport.assert_called_once_with(cfg.CONF) mock_novaendpoint.assert_called_once_with('PROJECT_ID', 'CLUSTER_ID', recover_action) mock_listener.assert_called_once_with( x_transport, [mock_novaendpoint().target], [x_endpoint], executor='threading', pool="senlin-listeners") x_listener.start.assert_called_once_with() def test_listener_proc_heat(self, mock_listener, mock_transport, mock_novaendpoint, mock_heatendpoint): x_listener = mock.Mock() mock_listener.return_value = x_listener x_transport = mock.Mock() mock_transport.return_value = x_transport x_endpoint = mock.Mock() mock_heatendpoint.return_value = x_endpoint recover_action = {'operation': 'REBUILD'} res = hm.ListenerProc('heat', 'PROJECT_ID', 'CLUSTER_ID', recover_action) self.assertIsNone(res) mock_transport.assert_called_once_with(cfg.CONF) mock_heatendpoint.assert_called_once_with('PROJECT_ID', 'CLUSTER_ID', recover_action) mock_listener.assert_called_once_with( x_transport, [mock_heatendpoint().target], [x_endpoint], executor='threading', pool="senlin-listeners") x_listener.start.assert_called_once_with() class TestHealthCheckType(base.SenlinTestCase): def setUp(self): super(TestHealthCheckType, self).setUp() self.hc = hm.NodePollStatusHealthCheck( cluster_id='CLUSTER_ID', interval=1, node_update_timeout=1, params='' ) def test_factory(self): cid = 'CLUSTER_ID' interval = 1 params = { 'detection_modes': [ { 'type': 'NODE_STATUS_POLLING', 'poll_url': '', 'poll_url_ssl_verify': True, 'poll_url_conn_error_as_unhealthy': True, 'poll_url_healthy_response': '', 'poll_url_retry_limit': '', 'poll_url_retry_interval': '' }, { 'type': 'HYPERVISOR_STATUS_POLLING', 'poll_url': '', 'poll_url_ssl_verify': True, 'poll_url_conn_error_as_unhealthy': True, 'poll_url_healthy_response': '', 'poll_url_retry_limit': '', 'poll_url_retry_interval': '' }, { 'type': 'NODE_STATUS_POLL_URL', 'poll_url': '', 'poll_url_ssl_verify': True, 'poll_url_conn_error_as_unhealthy': True, 'poll_url_healthy_response': '', 'poll_url_retry_limit': '', 'poll_url_retry_interval': '' } ], 'node_update_timeout': 300, } for d in params['detection_modes']: hc = hm.HealthCheckType.factory(d['type'], cid, interval, params) self.assertEqual(cid, hc.cluster_id) self.assertEqual(interval, hc.interval) self.assertEqual(d, hc.params) self.assertEqual( params['node_update_timeout'], hc.node_update_timeout) def test_factory_invalid_type(self): cid = 'CLUSTER_ID' interval = 1 params = { 'detection_modes': [ { 'type': 'blah', 'poll_url': '', 'poll_url_ssl_verify': True, 'poll_url_conn_error_as_unhealthy': True, 'poll_url_healthy_response': '', 'poll_url_retry_limit': '', 'poll_url_retry_interval': '' }, ], 'node_update_timeout': 300, } with self.assertRaisesRegex(Exception, 'Invalid detection type: blah'): hm.HealthCheckType.factory('blah', cid, interval, params) def test_factory_same_type_twice(self): cid = 'CLUSTER_ID' interval = 1 params = { 'detection_modes': [ { 'type': 'NODE_STATUS_POLLING', 'poll_url': '', 'poll_url_ssl_verify': True, 'poll_url_conn_error_as_unhealthy': True, 'poll_url_healthy_response': '', 'poll_url_retry_limit': '', 'poll_url_retry_interval': '' }, { 'type': 'NODE_STATUS_POLLING', 'poll_url': '', 'poll_url_ssl_verify': True, 'poll_url_conn_error_as_unhealthy': True, 'poll_url_healthy_response': '', 'poll_url_retry_limit': '', 'poll_url_retry_interval': '' } ], 'node_update_timeout': 300, } with self.assertRaisesRegex( Exception, '.*Encountered 2 instances of type NODE_STATUS_POLLING'): hm.HealthCheckType.factory( 'NODE_STATUS_POLLING', cid, interval, params) class TestNodePollStatusHealthCheck(base.SenlinTestCase): def setUp(self): super(TestNodePollStatusHealthCheck, self).setUp() self.hc = hm.NodePollStatusHealthCheck( cluster_id='CLUSTER_ID', interval=1, node_update_timeout=1, params='' ) @mock.patch.object(node_mod.Node, '_from_object') @mock.patch.object(tu, 'is_older_than') def test_run_health_check_healthy(self, mock_tu, mock_node_obj): x_entity = mock.Mock() x_entity.do_healthcheck.return_value = True mock_node_obj.return_value = x_entity ctx = mock.Mock() node = mock.Mock(id='FAKE_NODE1', status="ERROR", updated_at='2018-08-13 18:00:00', init_at='2018-08-13 17:00:00') # do it res = self.hc.run_health_check(ctx, node) self.assertTrue(res) mock_tu.assert_not_called() @mock.patch.object(node_mod.Node, '_from_object') @mock.patch.object(tu, 'is_older_than') def test_run_health_check_healthy_internal_error( self, mock_tu, mock_node_obj): x_entity = mock.Mock() x_entity.do_healthcheck.side_effect = exc.InternalError( message='error') mock_node_obj.return_value = x_entity ctx = mock.Mock() node = mock.Mock(id='FAKE_NODE1', status="ERROR", updated_at='2018-08-13 18:00:00', init_at='2018-08-13 17:00:00') # do it res = self.hc.run_health_check(ctx, node) self.assertTrue(res) mock_tu.assert_not_called() @mock.patch.object(node_mod.Node, '_from_object') @mock.patch.object(tu, 'is_older_than') def test_run_health_check_unhealthy(self, mock_tu, mock_node_obj): x_entity = mock.Mock() x_entity.do_healthcheck.return_value = False mock_node_obj.return_value = x_entity mock_tu.return_value = True ctx = mock.Mock() node = mock.Mock(id='FAKE_NODE1', status="ERROR", updated_at='2018-08-13 18:00:00', init_at='2018-08-13 17:00:00') # do it res = self.hc.run_health_check(ctx, node) self.assertFalse(res) mock_tu.assert_called_once_with(node.updated_at, 1) @mock.patch.object(node_mod.Node, '_from_object') @mock.patch.object(tu, 'is_older_than') def test_run_health_check_unhealthy_within_timeout( self, mock_tu, mock_node_obj): x_entity = mock.Mock() x_entity.do_healthcheck.return_value = False mock_node_obj.return_value = x_entity mock_tu.return_value = False ctx = mock.Mock() node = mock.Mock(id='FAKE_NODE1', status="ERROR", updated_at='2018-08-13 18:00:00', init_at='2018-08-13 17:00:00') # do it res = self.hc.run_health_check(ctx, node) self.assertTrue(res) mock_tu.assert_called_once_with(node.updated_at, 1) class TestHypervisorPollStatusHealthCheck(base.SenlinTestCase): def setUp(self): super(TestHypervisorPollStatusHealthCheck, self).setUp() self.hc = hm.HypervisorPollStatusHealthCheck( cluster_id='CLUSTER_ID', interval=1, node_update_timeout=1, params='' ) @mock.patch.object(node_mod.Node, '_from_object') @mock.patch.object(tu, 'is_older_than') def test_run_health_check_healthy(self, mock_tu, mock_node_obj): x_entity = mock.Mock() x_entity.do_healthcheck.return_value = True mock_node_obj.return_value = x_entity ctx = mock.Mock() node = mock.Mock(id='FAKE_NODE1', status="ERROR", updated_at='2018-08-13 18:00:00', init_at='2018-08-13 17:00:00') # do it res = self.hc.run_health_check(ctx, node) self.assertTrue(res) mock_tu.assert_not_called() @mock.patch.object(node_mod.Node, '_from_object') @mock.patch.object(tu, 'is_older_than') def test_run_health_check_healthy_internal_error( self, mock_tu, mock_node_obj): x_entity = mock.Mock() x_entity.do_healthcheck.side_effect = exc.InternalError( message='error') mock_node_obj.return_value = x_entity ctx = mock.Mock() node = mock.Mock(id='FAKE_NODE1', status="ERROR", updated_at='2018-08-13 18:00:00', init_at='2018-08-13 17:00:00') # do it res = self.hc.run_health_check(ctx, node) self.assertTrue(res) mock_tu.assert_not_called() @mock.patch.object(node_mod.Node, '_from_object') @mock.patch.object(tu, 'is_older_than') def test_run_health_check_unhealthy(self, mock_tu, mock_node_obj): x_entity = mock.Mock() x_entity.do_healthcheck.return_value = False mock_node_obj.return_value = x_entity mock_tu.return_value = True ctx = mock.Mock() node = mock.Mock(id='FAKE_NODE1', status="ERROR", updated_at='2018-08-13 18:00:00', init_at='2018-08-13 17:00:00') # do it res = self.hc.run_health_check(ctx, node) self.assertFalse(res) mock_tu.assert_called_once_with(node.updated_at, 1) @mock.patch.object(node_mod.Node, '_from_object') @mock.patch.object(tu, 'is_older_than') def test_run_health_check_unhealthy_within_timeout( self, mock_tu, mock_node_obj): x_entity = mock.Mock() x_entity.do_healthcheck.return_value = False mock_node_obj.return_value = x_entity mock_tu.return_value = False ctx = mock.Mock() node = mock.Mock(id='FAKE_NODE1', status="ERROR", updated_at='2018-08-13 18:00:00', init_at='2018-08-13 17:00:00') # do it res = self.hc.run_health_check(ctx, node) self.assertTrue(res) mock_tu.assert_called_once_with(node.updated_at, 1) class TestNodePollUrlHealthCheck(base.SenlinTestCase): def setUp(self): super(TestNodePollUrlHealthCheck, self).setUp() default_params = { 'poll_url': 'FAKE_POLL_URL', 'poll_url_ssl_verify': True, 'poll_url_conn_error_as_unhealthy': True, 'poll_url_healthy_response': 'FAKE_HEALTHY_PATTERN', 'poll_url_retry_limit': 2, 'poll_url_retry_interval': 1, 'node_update_timeout': 5 } self.hc = hm.NodePollUrlHealthCheck( cluster_id='CLUSTER_ID', interval=1, node_update_timeout=1, params=default_params ) def test_expand_url_template(self): url_template = 'https://abc123/foo/bar' node = mock.Mock() # do it res = self.hc._expand_url_template(url_template, node) self.assertEqual(res, url_template) def test_expand_url_template_nodename(self): node = mock.Mock() node.name = 'name' url_template = 'https://abc123/{nodename}/bar' expanded_url = 'https://abc123/{}/bar'.format(node.name) # do it res = self.hc._expand_url_template(url_template, node) self.assertEqual(res, expanded_url) @mock.patch.object(tu, "is_older_than") @mock.patch.object(hm.NodePollUrlHealthCheck, "_expand_url_template") @mock.patch.object(utils, 'url_fetch') def test_run_health_check_healthy( self, mock_url_fetch, mock_expand_url, mock_time): ctx = mock.Mock() node = mock.Mock() node.status = consts.NS_ACTIVE mock_time.return_value = True mock_expand_url.return_value = 'FAKE_EXPANDED_URL' mock_url_fetch.return_value = ("Healthy because this return value " "contains FAKE_HEALTHY_PATTERN") # do it res = self.hc.run_health_check(ctx, node) self.assertTrue(res) mock_url_fetch.assert_called_once_with('FAKE_EXPANDED_URL', timeout=1, verify=True) @mock.patch.object(tu, "is_older_than") @mock.patch.object(hm.NodePollUrlHealthCheck, "_expand_url_template") @mock.patch.object(utils, 'url_fetch') def test_run_health_check_healthy_min_timeout( self, mock_url_fetch, mock_expand_url, mock_time): ctx = mock.Mock() node = mock.Mock() node.status = consts.NS_ACTIVE mock_time.return_value = True mock_expand_url.return_value = 'FAKE_EXPANDED_URL' mock_url_fetch.return_value = ("Healthy because this return value " "contains FAKE_HEALTHY_PATTERN") self.hc.params['poll_url_retry_interval'] = 0 # do it res = self.hc.run_health_check(ctx, node) self.assertTrue(res) mock_url_fetch.assert_called_once_with('FAKE_EXPANDED_URL', timeout=1, verify=True) @mock.patch.object(tu, "is_older_than") @mock.patch.object(hm.NodePollUrlHealthCheck, "_expand_url_template") @mock.patch.object(utils, 'url_fetch') def test_run_health_check_healthy_timeout( self, mock_url_fetch, mock_expand_url, mock_time): ctx = mock.Mock() node = mock.Mock() node.status = consts.NS_ACTIVE mock_time.return_value = True mock_expand_url.return_value = 'FAKE_EXPANDED_URL' mock_url_fetch.return_value = ("Healthy because this return value " "contains FAKE_HEALTHY_PATTERN") self.hc.params['poll_url_retry_interval'] = 100 # do it res = self.hc.run_health_check(ctx, node) self.assertTrue(res) mock_url_fetch.assert_called_once_with('FAKE_EXPANDED_URL', timeout=10, verify=True) @mock.patch.object(tu, "is_older_than") @mock.patch.object(hm.NodePollUrlHealthCheck, "_expand_url_template") @mock.patch.object(utils, 'url_fetch') def test_run_health_check_unhealthy_inactive( self, mock_url_fetch, mock_expand_url, mock_time): ctx = mock.Mock() node = mock.Mock() node.status = consts.NS_RECOVERING mock_time.return_value = True mock_expand_url.return_value = 'FAKE_EXPANDED_URL' mock_url_fetch.return_value = "" # do it res = self.hc.run_health_check(ctx, node) self.assertTrue(res) mock_url_fetch.assert_not_called() @mock.patch.object(tu, "is_older_than") @mock.patch.object(hm.NodePollUrlHealthCheck, "_expand_url_template") @mock.patch.object(utils, 'url_fetch') def test_run_health_check_unhealthy_update_timeout( self, mock_url_fetch, mock_expand_url, mock_time): ctx = mock.Mock() node = mock.Mock() node.id = 'FAKE_NODE_ID' node.updated_at = 'FAKE_UPDATE_TIME' node.status = consts.NS_ACTIVE mock_time.return_value = False mock_expand_url.return_value = 'FAKE_EXPANDED_URL' mock_url_fetch.return_value = "" # do it res = self.hc.run_health_check(ctx, node) self.assertTrue(res) mock_url_fetch.assert_has_calls( [mock.call('FAKE_EXPANDED_URL', timeout=1, verify=True)]) @mock.patch.object(tu, "is_older_than") @mock.patch.object(hm.NodePollUrlHealthCheck, "_expand_url_template") @mock.patch.object(utils, 'url_fetch') def test_run_health_check_unhealthy_init_timeout( self, mock_url_fetch, mock_expand_url, mock_time): ctx = mock.Mock() node = mock.Mock() node.id = 'FAKE_NODE_ID' node.updated_at = None node.init_at = 'FAKE_INIT_TIME' node.status = consts.NS_ACTIVE mock_time.return_value = False mock_expand_url.return_value = 'FAKE_EXPANDED_URL' mock_url_fetch.return_value = "" # do it res = self.hc.run_health_check(ctx, node) self.assertTrue(res) mock_url_fetch.assert_has_calls( [mock.call('FAKE_EXPANDED_URL', timeout=1, verify=True)]) @mock.patch.object(tu, "is_older_than") @mock.patch.object(hm.NodePollUrlHealthCheck, "_expand_url_template") @mock.patch.object(utils, 'url_fetch') def test_run_health_check_unhealthy(self, mock_url_fetch, mock_expand_url, mock_time): ctx = mock.Mock() node = mock.Mock() node.status = consts.NS_ACTIVE node.id = 'FAKE_ID' mock_time.return_value = True mock_expand_url.return_value = 'FAKE_EXPANDED_URL' mock_url_fetch.return_value = "" # do it res = self.hc.run_health_check(ctx, node) self.assertFalse(res) mock_url_fetch.assert_has_calls( [ mock.call('FAKE_EXPANDED_URL', timeout=1, verify=True), mock.call('FAKE_EXPANDED_URL', timeout=1, verify=True) ] ) @mock.patch.object(tu, "is_older_than") @mock.patch.object(hm.NodePollUrlHealthCheck, "_expand_url_template") @mock.patch.object(utils, 'url_fetch') def test_run_health_check_conn_error(self, mock_url_fetch, mock_expand_url, mock_time): ctx = mock.Mock() node = mock.Mock() node.status = consts.NS_ACTIVE node.id = 'FAKE_ID' mock_time.return_value = True mock_expand_url.return_value = 'FAKE_EXPANDED_URL' mock_url_fetch.side_effect = utils.URLFetchError("Error") # do it res = self.hc.run_health_check(ctx, node) self.assertFalse(res) mock_url_fetch.assert_has_calls( [ mock.call('FAKE_EXPANDED_URL', timeout=1, verify=True), mock.call('FAKE_EXPANDED_URL', timeout=1, verify=True) ] ) @mock.patch.object(tu, "is_older_than") @mock.patch.object(hm.NodePollUrlHealthCheck, "_expand_url_template") @mock.patch.object(utils, 'url_fetch') def test_run_health_check_conn_other_error(self, mock_url_fetch, mock_expand_url, mock_time): ctx = mock.Mock() node = mock.Mock() node.status = consts.NS_ACTIVE node.id = 'FAKE_ID' mock_time.return_value = True mock_expand_url.side_effect = Exception('blah') # do it res = self.hc.run_health_check(ctx, node) self.assertTrue(res) mock_url_fetch.assert_not_called() @mock.patch.object(tu, "is_older_than") @mock.patch.object(hm.NodePollUrlHealthCheck, "_expand_url_template") @mock.patch.object(utils, 'url_fetch') def test_run_health_check_conn_error_noop( self, mock_url_fetch, mock_expand_url, mock_time): ctx = mock.Mock() node = mock.Mock() node.status = consts.NS_ACTIVE node.id = 'FAKE_ID' mock_time.return_value = True mock_expand_url.return_value = 'FAKE_EXPANDED_URL' mock_url_fetch.side_effect = utils.URLFetchError("Error") self.hc.params['poll_url_conn_error_as_unhealthy'] = False # do it res = self.hc.run_health_check(ctx, node) self.assertTrue(res) mock_url_fetch.assert_has_calls( [ mock.call('FAKE_EXPANDED_URL', timeout=1, verify=True), ] ) class TestHealthCheck(base.SenlinTestCase): def setUp(self): super(TestHealthCheck, self).setUp() ctx = mock.Mock() self.fake_rpc = mock.Mock() with mock.patch.object(rpc_client, 'get_engine_client', return_value=self.fake_rpc): self.hc = hm.HealthCheck( ctx=ctx, engine_id='ENGINE_ID', cluster_id='CID', check_type=consts.NODE_STATUS_POLLING, interval=60, node_update_timeout=60, params={ 'node_update_timeout': 60, 'detection_modes': [ {'type': consts.NODE_STATUS_POLLING} ], 'recovery_conditional': consts.ANY_FAILED }, enabled=True) def test_get_health_check_types_polling(self): self.hc.get_health_check_types() self.assertEqual(consts.POLLING, self.hc.type) def test_get_health_check_types_events(self): self.hc.check_type = consts.LIFECYCLE_EVENTS self.hc.get_health_check_types() self.assertEqual(consts.EVENTS, self.hc.type) def test_get_recover_actions(self): self.hc.params = { 'node_delete_timeout': 60, 'node_force_recreate': True, 'recover_action': [{'name': 'FAKE_RECOVER_ACTION'}] } self.hc.get_recover_actions() self.assertEqual(self.hc.params['node_delete_timeout'], self.hc.recover_action['delete_timeout']) self.assertEqual(self.hc.params['node_force_recreate'], self.hc.recover_action['force_recreate']) self.assertEqual(self.hc.params['recover_action'][0]['name'], self.hc.recover_action['operation']) @mock.patch.object(obj_node.Node, 'get_all_by_cluster') @mock.patch.object(hm.HealthCheck, "_recover_node") @mock.patch.object(hm.HealthCheck, "_wait_for_action") @mock.patch.object(obj_cluster.Cluster, 'get') @mock.patch.object(context, 'get_service_context') def test_execute_health_check_any_mode_healthy( self, mock_ctx, mock_get, mock_wait, mock_recover, mock_nodes): x_cluster = mock.Mock(user='USER_ID', project='PROJECT_ID', id='CID') mock_get.return_value = x_cluster ctx = mock.Mock() mock_ctx.return_value = ctx mock_wait.return_value = (True, "") x_node1 = mock.Mock(id='FAKE_NODE1', status="ERROR") x_node2 = mock.Mock(id='FAKE_NODE2', status="ERROR") mock_nodes.return_value = [x_node1, x_node2] hc_true = {'run_health_check.return_value': True} hc_test_values = [ [ mock.Mock(**hc_true), mock.Mock(**hc_true), mock.Mock(**hc_true), ], ] for hc_mocks in hc_test_values: self.hc.health_check_types = hc_mocks mock_get.reset_mock() mock_ctx.reset_mock() mock_recover.reset_mock() mock_wait.reset_mock() # do it self.hc.execute_health_check() mock_get.assert_called_once_with(self.hc.ctx, 'CID', project_safe=False) mock_ctx.assert_called_once_with(user_id=x_cluster.user, project_id=x_cluster.project) for mock_hc in hc_mocks: mock_hc.run_health_check.assert_has_calls( [ mock.call(ctx, x_node1), mock.call(ctx, x_node2) ] ) mock_recover.assert_not_called() mock_wait.assert_not_called() @mock.patch.object(obj_node.Node, 'get_all_by_cluster') @mock.patch.object(hm.HealthCheck, "_recover_node") @mock.patch.object(hm.HealthCheck, "_wait_for_action") @mock.patch.object(obj_cluster.Cluster, 'get') @mock.patch.object(context, 'get_service_context') def test_execute_health_check_all_mode_unhealthy( self, mock_ctx, mock_get, mock_wait, mock_recover, mock_nodes): self.hc.cluster_id = 'CLUSTER_ID' self.hc.interval = 1 self.hc.recovery_cond = consts.ALL_FAILED self.hc.node_update_timeout = 1 self.hc.recovery_action = {'operation': 'REBUILD'} x_cluster = mock.Mock(user='USER_ID', project='PROJECT_ID', id='CLUSTER_ID') mock_get.return_value = x_cluster ctx = mock.Mock() mock_ctx.return_value = ctx mock_wait.return_value = (True, "") x_node = mock.Mock(id='FAKE_NODE', status="ERROR") mock_nodes.return_value = [x_node] mock_recover.return_value = {'action': 'FAKE_ACTION_ID'} hc_false = {'run_health_check.return_value': False} hc_test_values = [ [ mock.Mock(**hc_false), ] ] for hc_mocks in hc_test_values: self.hc.health_check_types = hc_mocks mock_get.reset_mock() mock_ctx.reset_mock() mock_recover.reset_mock() mock_wait.reset_mock() # do it self.hc.execute_health_check() mock_get.assert_called_once_with(self.hc.ctx, 'CLUSTER_ID', project_safe=False) mock_ctx.assert_called_once_with(user_id=x_cluster.user, project_id=x_cluster.project) for mock_hc in hc_mocks: mock_hc.run_health_check.assert_has_calls( [ mock.call(ctx, x_node) ] ) mock_recover.assert_called_once_with(ctx, 'FAKE_NODE') mock_wait.assert_called_once_with( ctx, 'FAKE_ACTION_ID', self.hc.node_update_timeout) @mock.patch.object(obj_cluster.Cluster, 'get') @mock.patch.object(context, 'get_service_context') def test_execute_health_check_cluster_not_found(self, mock_ctx, mock_get): mock_get.return_value = None self.hc.execute_health_check() mock_ctx.assert_not_called() @mock.patch.object(hm.HealthCheck, "_recover_node") def test_check_node_health_any_failed(self, mock_recover): x_cluster = mock.Mock(user='USER_ID', project='PROJECT_ID', id='CLUSTER_ID') x_node = mock.Mock(id='FAKE_NODE', status="ERROR") ctx = mock.Mock() self.hc.params['recovery_conditional'] = consts.ANY_FAILED mock_hc_1 = mock.Mock() mock_hc_1.run_health_check.return_value = True mock_hc_2 = mock.Mock() mock_hc_2.run_health_check.return_value = False self.hc.health_check_types = [mock_hc_1, mock_hc_2] self.hc._check_node_health(ctx, x_node, x_cluster) mock_hc_1.run_health_check.assert_called_once_with(ctx, x_node) mock_hc_2.run_health_check.assert_called_once_with(ctx, x_node) mock_recover.assert_called_once_with(ctx, x_node.id) @mock.patch.object(hm.HealthCheck, "_recover_node") def test_check_node_health_all_failed(self, mock_recover): x_cluster = mock.Mock(user='USER_ID', project='PROJECT_ID', id='CLUSTER_ID') x_node = mock.Mock(id='FAKE_NODE', status="ERROR") ctx = mock.Mock() self.hc.params['recovery_conditional'] = consts.ALL_FAILED mock_hc_1 = mock.Mock() mock_hc_1.run_health_check.return_value = False mock_hc_2 = mock.Mock() mock_hc_2.run_health_check.return_value = False self.hc.health_check_types = [mock_hc_1, mock_hc_2] self.hc._check_node_health(ctx, x_node, x_cluster) mock_hc_1.run_health_check.assert_called_once_with(ctx, x_node) mock_hc_2.run_health_check.assert_called_once_with(ctx, x_node) mock_recover.assert_called_once_with(ctx, x_node.id) @mock.patch.object(hm.HealthCheck, "_recover_node") def test_check_node_health_all_failed_negative(self, mock_recover): x_cluster = mock.Mock(user='USER_ID', project='PROJECT_ID', id='CLUSTER_ID') x_node = mock.Mock(id='FAKE_NODE', status="ERROR") ctx = mock.Mock() self.hc.params['recovery_conditional'] = consts.ALL_FAILED mock_hc_1 = mock.Mock() mock_hc_1.run_health_check.return_value = False mock_hc_2 = mock.Mock() mock_hc_2.run_health_check.return_value = True self.hc.health_check_types = [mock_hc_1, mock_hc_2] self.hc._check_node_health(ctx, x_node, x_cluster) mock_hc_1.run_health_check.assert_called_once_with(ctx, x_node) mock_hc_2.run_health_check.assert_called_once_with(ctx, x_node) mock_recover.assert_not_called() @mock.patch('senlin.objects.ActionGetRequest') def test_wait_for_action(self, mock_action_req): x_req = mock.Mock() mock_action_req.return_value = x_req x_action = {'status': consts.ACTION_SUCCEEDED} self.fake_rpc.call.return_value = x_action ctx = mock.Mock() action_id = 'FAKE_ACTION_ID' timeout = 5 # do it res, err = self.hc._wait_for_action(ctx, action_id, timeout) self.assertTrue(res) self.assertEqual(err, '') self.fake_rpc.call.assert_called_with(ctx, 'action_get', x_req) @mock.patch('senlin.objects.ActionGetRequest') def test_wait_for_action_success_before_timeout(self, mock_action_req): x_req = mock.Mock() mock_action_req.return_value = x_req x_action1 = {'status': consts.ACTION_RUNNING} x_action2 = {'status': consts.ACTION_SUCCEEDED} self.fake_rpc.call.side_effect = [x_action1, x_action2] ctx = mock.Mock() action_id = 'FAKE_ACTION_ID' timeout = 5 # do it res, err = self.hc._wait_for_action(ctx, action_id, timeout) self.assertTrue(res) self.assertEqual(err, '') self.fake_rpc.call.assert_has_calls( [ mock.call(ctx, 'action_get', x_req), mock.call(ctx, 'action_get', x_req) ] ) @mock.patch('senlin.objects.ActionGetRequest') def test_wait_for_action_timeout(self, mock_action_req): x_req = mock.Mock() mock_action_req.return_value = x_req x_action = {'status': consts.ACTION_RUNNING} self.fake_rpc.call.return_value = x_action ctx = mock.Mock() action_id = 'FAKE_ACTION_ID' timeout = 5 # do it res, err = self.hc._wait_for_action(ctx, action_id, timeout) self.assertFalse(res) self.assertTrue(re.search('timeout', err, re.IGNORECASE)) self.fake_rpc.call.assert_has_calls( [ mock.call(ctx, 'action_get', x_req) ] ) @mock.patch('senlin.objects.ActionGetRequest') def test_wait_for_action_failed(self, mock_action_req): x_req = mock.Mock() mock_action_req.return_value = x_req x_action = {'status': consts.ACTION_FAILED} self.fake_rpc.call.return_value = x_action ctx = mock.Mock() action_id = 'FAKE_ACTION_ID' timeout = 5 # do it res, err = self.hc._wait_for_action(ctx, action_id, timeout) self.assertFalse(res) self.assertEqual(err, 'Cluster check action failed or cancelled') self.fake_rpc.call.assert_called_with(ctx, 'action_get', x_req) @mock.patch('senlin.objects.ActionGetRequest') def test_wait_for_action_cancelled(self, mock_action_req): x_req = mock.Mock() mock_action_req.return_value = x_req x_action = {'status': consts.ACTION_CANCELLED} self.fake_rpc.call.return_value = x_action ctx = mock.Mock() action_id = 'FAKE_ACTION_ID' timeout = 5 # do it res, err = self.hc._wait_for_action(ctx, action_id, timeout) self.assertFalse(res) self.assertEqual(err, 'Cluster check action failed or cancelled') self.fake_rpc.call.assert_called_with(ctx, 'action_get', x_req) @mock.patch('senlin.objects.NodeRecoverRequest', autospec=True) def test_recover_node(self, mock_req): ctx = mock.Mock() node_id = 'FAKE_NODE' self.hc.recover_action = {'operation': 'REBUILD'} x_req = mock.Mock mock_req.return_value = x_req x_action = {'action': 'RECOVER_ID1'} self.fake_rpc.call.return_value = x_action # do it res = self.hc._recover_node(ctx, node_id) self.assertEqual(x_action, res) mock_req.assert_called_once_with( identity=node_id, params=self.hc.recover_action) self.fake_rpc.call.assert_called_once_with(ctx, 'node_recover', x_req) @mock.patch('senlin.objects.NodeRecoverRequest', autospec=True) def test_recover_node_failed(self, mock_req): ctx = mock.Mock() node_id = 'FAKE_NODE' self.hc.recover_action = {'operation': 'REBUILD'} x_req = mock.Mock mock_req.return_value = x_req self.fake_rpc.call.side_effect = Exception('boom') # do it res = self.hc._recover_node(ctx, node_id) self.assertIsNone(res) mock_req.assert_called_once_with( identity=node_id, params=self.hc.recover_action) self.fake_rpc.call.assert_called_once_with(ctx, 'node_recover', x_req) @mock.patch('senlin.objects.HealthRegistry', autospec=True) def test_db_create(self, mock_hrdb): self.hc.db_create() mock_hrdb.create.assert_called_once_with( self.hc.ctx, self.hc.cluster_id, self.hc.check_type, self.hc.interval, self.hc.params, self.hc.engine_id, self.hc.enabled) @mock.patch('senlin.objects.HealthRegistry', autospec=True) def test_db_delete(self, mock_hrdb): self.hc.db_delete() mock_hrdb.delete.assert_called_once_with(self.hc.ctx, self.hc.cluster_id) @mock.patch('senlin.objects.HealthRegistry', autospec=True) def test_enable(self, mock_hrdb): self.hc.enable() mock_hrdb.update.assert_called_once_with( self.hc.ctx, self.hc.cluster_id, {'enabled': True}) @mock.patch('senlin.objects.HealthRegistry', autospec=True) def test_disable(self, mock_hrdb): self.hc.disable() mock_hrdb.update.assert_called_once_with( self.hc.ctx, self.hc.cluster_id, {'enabled': False}) class TestRuntimeHealthRegistry(base.SenlinTestCase): def setUp(self): super(TestRuntimeHealthRegistry, self).setUp() mock_ctx = mock.Mock() self.mock_tg = mock.Mock() self.rhr = hm.RuntimeHealthRegistry(mock_ctx, 'ENGINE_ID', self.mock_tg) def create_mock_entry(self, ctx=None, engine_id='ENGINE_ID', cluster_id='CID', check_type=None, interval=60, node_update_timeout=60, params=None, enabled=True, timer=None, listener=None, type=consts.POLLING): mock_entry = mock.Mock( ctx=ctx, engine_id=engine_id, cluster_id=cluster_id, check_type=check_type, interval=interval, node_update_timeout=node_update_timeout, params=params, enabled=enabled, timer=timer, listener=listener, execute_health_check=mock.Mock(), type=type) return mock_entry @mock.patch.object(hm, 'HealthCheck') def test_register_cluster(self, mock_hc): mock_entry = self.create_mock_entry( check_type=[consts.NODE_STATUS_POLLING]) mock_entry.db_create = mock.Mock() mock_hc.return_value = mock_entry self.rhr.register_cluster('CID', 60, 60, {}) self.assertEqual(mock_entry, self.rhr.registries['CID']) self.mock_tg.add_dynamic_timer.assert_called_once_with( mock_entry.execute_health_check, None, None) self.mock_tg.add_thread.assert_not_called() mock_entry.db_create.assert_called_once_with() @mock.patch.object(hm, 'HealthCheck') def test_register_cluster_failed(self, mock_hc): mock_entry = self.create_mock_entry( check_type=[consts.NODE_STATUS_POLLING]) mock_entry.db_create = mock.Mock() mock_entry.db_delete = mock.Mock() mock_hc.return_value = mock_entry self.rhr.add_health_check = mock.Mock() self.rhr.add_health_check.side_effect = Exception self.rhr.register_cluster('CID', 60, 60, {}) self.assertEqual(mock_entry, self.rhr.registries['CID']) self.mock_tg.add_dynamic_timer.assert_not_called() self.mock_tg.add_thread.assert_not_called() mock_entry.db_create.assert_called_once_with() mock_entry.db_delete.assert_called_once_with() def test_unregister_cluster_with_timer(self): timer = mock.Mock() mock_entry = self.create_mock_entry( check_type=[consts.NODE_STATUS_POLLING], timer=timer) self.rhr.registries['CID'] = mock_entry mock_entry.db_delete = mock.Mock() self.rhr.unregister_cluster('CID') mock_entry.db_delete.assert_called_once_with() timer.stop.assert_called_once_with() self.mock_tg.timer_done.assert_called_once_with(timer) self.assertIsNone(mock_entry.timer) def test_unregister_cluster_with_listener(self): listener = mock.Mock() mock_entry = self.create_mock_entry( check_type=[consts.NODE_STATUS_POLLING], listener=listener) self.rhr.registries['CID'] = mock_entry mock_entry.db_delete = mock.Mock() self.rhr.unregister_cluster('CID') mock_entry.db_delete.assert_called_once_with() listener.stop.assert_called_once_with() self.mock_tg.thread_done.assert_called_once_with(listener) self.assertIsNone(mock_entry.listener) def test_unregister_cluster_failed(self): listener = mock.Mock() mock_entry = self.create_mock_entry( check_type=[consts.NODE_STATUS_POLLING], listener=listener) self.rhr.registries['CID'] = mock_entry mock_entry.db_delete.side_effect = Exception self.rhr.unregister_cluster('CID') listener.stop.assert_called_once_with() self.mock_tg.thread_done.assert_called_once_with(listener) self.assertIsNone(mock_entry.listener) def test_enable_cluster(self): mock_entry = self.create_mock_entry( check_type=[consts.NODE_STATUS_POLLING], enabled=False) def mock_enable(): mock_entry.enabled = True return True mock_entry.enable = mock_enable self.rhr.registries['CID'] = mock_entry self.rhr.enable_cluster('CID') self.assertTrue(mock_entry.enabled) self.mock_tg.add_dynamic_timer.assert_called_once_with( mock_entry.execute_health_check, None, None) self.mock_tg.add_thread.assert_not_called() def test_enable_cluster_failed(self): timer = mock.Mock() mock_entry = self.create_mock_entry( check_type=[consts.NODE_STATUS_POLLING], enabled=False, timer=timer) mock_entry.enable = mock.Mock() mock_entry.enable.side_effect = Exception self.rhr.registries['CID'] = mock_entry self.rhr.enable_cluster('CID') self.mock_tg.add_dynamic_timer.assert_not_called() self.mock_tg.add_thread.assert_not_called() timer.stop.assert_called_once_with() self.mock_tg.timer_done.assert_called_once_with(timer) def test_disable_cluster(self): timer = mock.Mock() mock_entry = self.create_mock_entry( check_type=[consts.NODE_STATUS_POLLING], enabled=True, timer=timer) def mock_disable(): mock_entry.enabled = False mock_entry.disable = mock_disable self.rhr.registries['CID'] = mock_entry self.rhr.disable_cluster('CID') self.assertEqual(False, mock_entry.enabled) self.mock_tg.add_dynamic_timer.assert_not_called() self.mock_tg.add_thread.assert_not_called() timer.stop.assert_called_once_with() self.mock_tg.timer_done.assert_called_once_with(timer) def test_disable_cluster_failed(self): timer = mock.Mock() mock_entry = self.create_mock_entry( check_type=[consts.NODE_STATUS_POLLING], enabled=True, timer=timer) mock_entry.enable.side_effect = Exception self.rhr.registries['CID'] = mock_entry self.rhr.disable_cluster('CID') self.mock_tg.add_dynamic_timer.assert_not_called() self.mock_tg.add_thread.assert_not_called() timer.stop.assert_called_once_with() self.mock_tg.timer_done.assert_called_once_with(timer) def test_add_timer(self): mock_entry = self.create_mock_entry( check_type=[consts.NODE_STATUS_POLLING]) self.rhr.registries['CID'] = mock_entry fake_timer = mock.Mock() self.mock_tg.add_dynamic_timer = mock.Mock() self.mock_tg.add_dynamic_timer.return_value = fake_timer self.rhr._add_timer('CID') self.assertEqual(fake_timer, mock_entry.timer) self.mock_tg.add_dynamic_timer.assert_called_once_with( mock_entry.execute_health_check, None, None) def test_add_timer_failed(self): fake_timer = mock.Mock() mock_entry = self.create_mock_entry( check_type=[consts.NODE_STATUS_POLLING], timer=fake_timer) self.rhr.registries['CID'] = mock_entry self.mock_tg.add_dynamic_timer = mock.Mock() self.rhr._add_timer('CID') self.assertEqual(fake_timer, mock_entry.timer) self.mock_tg.add_dynamic_timer.assert_not_called() @mock.patch.object(obj_profile.Profile, 'get') @mock.patch.object(obj_cluster.Cluster, 'get') def test_add_listener_nova(self, mock_cluster, mock_profile): cfg.CONF.set_override('nova_control_exchange', 'FAKE_NOVA_EXCHANGE', group='health_manager') mock_entry = self.create_mock_entry( check_type=[consts.LIFECYCLE_EVENTS]) self.rhr.registries['CID'] = mock_entry fake_listener = mock.Mock() x_cluster = mock.Mock(project='PROJECT_ID', profile_id='PROFILE_ID') mock_cluster.return_value = x_cluster x_profile = mock.Mock(type='os.nova.server-1.0') mock_profile.return_value = x_profile self.mock_tg.add_thread = mock.Mock() self.mock_tg.add_thread.return_value = fake_listener self.rhr._add_listener('CID') mock_cluster.assert_called_once_with(self.rhr.ctx, 'CID', project_safe=False) mock_profile.assert_called_once_with(self.rhr.ctx, 'PROFILE_ID', project_safe=False) self.mock_tg.add_thread.assert_called_once_with( hm.ListenerProc, 'FAKE_NOVA_EXCHANGE', 'PROJECT_ID', 'CID', mock_entry.recover_action) @mock.patch.object(obj_profile.Profile, 'get') @mock.patch.object(obj_cluster.Cluster, 'get') def test_add_listener_heat(self, mock_cluster, mock_profile): cfg.CONF.set_override('heat_control_exchange', 'FAKE_HEAT_EXCHANGE', group='health_manager') mock_entry = self.create_mock_entry( check_type=[consts.LIFECYCLE_EVENTS]) self.rhr.registries['CID'] = mock_entry fake_listener = mock.Mock() x_cluster = mock.Mock(project='PROJECT_ID', profile_id='PROFILE_ID') mock_cluster.return_value = x_cluster x_profile = mock.Mock(type='os.heat.stack-1.0') mock_profile.return_value = x_profile self.mock_tg.add_thread = mock.Mock() self.mock_tg.add_thread.return_value = fake_listener self.rhr._add_listener('CID') mock_cluster.assert_called_once_with(self.rhr.ctx, 'CID', project_safe=False) mock_profile.assert_called_once_with(self.rhr.ctx, 'PROFILE_ID', project_safe=False) self.mock_tg.add_thread.assert_called_once_with( hm.ListenerProc, 'FAKE_HEAT_EXCHANGE', 'PROJECT_ID', 'CID', mock_entry.recover_action) @mock.patch.object(obj_profile.Profile, 'get') @mock.patch.object(obj_cluster.Cluster, 'get') def test_add_listener_failed(self, mock_cluster, mock_profile): cfg.CONF.set_override('heat_control_exchange', 'FAKE_HEAT_EXCHANGE', group='health_manager') fake_listener = mock.Mock() mock_entry = self.create_mock_entry( check_type=[consts.LIFECYCLE_EVENTS], listener=fake_listener) self.rhr.registries['CID'] = mock_entry x_cluster = mock.Mock(project='PROJECT_ID', profile_id='PROFILE_ID') mock_cluster.return_value = x_cluster x_profile = mock.Mock(type='os.heat.stack-1.0') mock_profile.return_value = x_profile self.mock_tg.add_thread = mock.Mock() self.rhr._add_listener('CID') mock_cluster.assert_not_called() mock_profile.assert_not_called() self.mock_tg.add_thread.assert_not_called() def test_add_health_check_polling(self): mock_entry = self.create_mock_entry( check_type=[consts.NODE_STATUS_POLLING]) self.rhr.registries['CID'] = mock_entry self.rhr._add_timer = mock.Mock() self.rhr._add_listener = mock.Mock() self.rhr.add_health_check(mock_entry) self.rhr._add_timer.assert_called_once_with('CID') self.rhr._add_listener.assert_not_called() def test_add_health_check_events(self): mock_entry = self.create_mock_entry( check_type=[consts.LIFECYCLE_EVENTS], type=consts.EVENTS) self.rhr.registries['CID'] = mock_entry self.rhr._add_timer = mock.Mock() self.rhr._add_listener = mock.Mock() self.rhr.add_health_check(mock_entry) self.rhr._add_timer.assert_not_called() self.rhr._add_listener.assert_called_once_with('CID') def test_add_health_check_disabled(self): mock_entry = self.create_mock_entry( check_type=[consts.NODE_STATUS_POLLING], enabled=False) self.rhr.registries['CID'] = mock_entry self.rhr._add_timer = mock.Mock() self.rhr._add_listener = mock.Mock() self.rhr.add_health_check(mock_entry) self.rhr._add_timer.assert_not_called() self.rhr._add_listener.assert_not_called() def test_add_health_check_timer_exists(self): fake_timer = mock.Mock() mock_entry = self.create_mock_entry( check_type=[consts.NODE_STATUS_POLLING], timer=fake_timer) self.rhr.registries['CID'] = mock_entry self.rhr._add_timer = mock.Mock() self.rhr._add_listener = mock.Mock() self.rhr.add_health_check(mock_entry) self.rhr._add_timer.assert_not_called() self.rhr._add_listener.assert_not_called() def test_remove_health_check_timer(self): fake_timer = mock.Mock() mock_entry = self.create_mock_entry( check_type=[consts.NODE_STATUS_POLLING], timer=fake_timer) self.rhr.registries['CID'] = mock_entry self.rhr.remove_health_check(mock_entry) fake_timer.stop.assert_called_once_with() self.mock_tg.timer_done.assert_called_once_with(fake_timer) self.mock_tg.thread_done.assert_not_called() self.assertIsNone(mock_entry.timer) def test_remove_health_check_listener(self): fake_listener = mock.Mock() mock_entry = self.create_mock_entry( check_type=[consts.NODE_STATUS_POLLING], listener=fake_listener) self.rhr.registries['CID'] = mock_entry self.rhr.remove_health_check(mock_entry) fake_listener.stop.assert_called_once_with() self.mock_tg.timer_done.assert_not_called() self.mock_tg.thread_done.assert_called_once_with(fake_listener) self.assertIsNone(mock_entry.listener)
"""Identity related views.""" from __future__ import unicode_literals from django.shortcuts import render from django.template.loader import render_to_string from django.utils.translation import ugettext as _, ungettext from django.views import generic from django.views.decorators.csrf import ensure_csrf_cookie from django.contrib.auth import mixins as auth_mixins from django.contrib.auth.decorators import ( login_required, permission_required, user_passes_test ) from reversion import revisions as reversion from modoboa.core.models import User from modoboa.lib.exceptions import ( PermDeniedException, BadRequest ) from modoboa.lib.listing import ( get_sort_order, get_listing_page ) from modoboa.lib.web_utils import render_to_json_response from ..forms import AccountForm, AccountWizard from ..lib import get_identities from ..models import Mailbox, Domain from .. import signals @login_required @user_passes_test( lambda u: u.has_perm("core.add_user") or u.has_perm("admin.add_alias") ) def _identities(request): filters = dict((fname, request.GET.get(fname, None)) for fname in ['searchquery', 'idtfilter', 'grpfilter']) request.session['identities_filters'] = filters idents_list = get_identities(request.user, **filters) sort_order, sort_dir = get_sort_order(request.GET, "identity", ["identity", "name_or_rcpt", "tags"]) if sort_order in ["identity", "name_or_rcpt"]: objects = sorted(idents_list, key=lambda o: getattr(o, sort_order), reverse=sort_dir == '-') else: objects = sorted(idents_list, key=lambda o: o.tags[0], reverse=sort_dir == '-') context = { "handle_mailboxes": request.localconfig.parameters.get_value( "handle_mailboxes", raise_exception=False) } page = get_listing_page(objects, request.GET.get("page", 1)) if page is None: context["length"] = 0 else: context["headers"] = render_to_string( "admin/identity_headers.html", {}, request) context["rows"] = render_to_string( "admin/identities_table.html", { "identities": page.object_list }, request ) context["pages"] = [page.number] return render_to_json_response(context) @login_required @permission_required("admin.add_mailbox") def list_quotas(request): from modoboa.lib.db_utils import db_type sort_order, sort_dir = get_sort_order(request.GET, "address") mboxes = Mailbox.objects.get_for_admin( request.user, request.GET.get("searchquery", None) ) mboxes = mboxes.exclude(quota=0) if sort_order in ["address", "quota"]: mboxes = mboxes.order_by("%s%s" % (sort_dir, sort_order)) elif sort_order == "quota_value__bytes": where = "admin_mailbox.address||'@'||admin_domain.name" mboxes = mboxes.extra( select={"quota_value__bytes": "admin_quota.bytes"}, where=["admin_quota.username=%s" % where], tables=["admin_quota", "admin_domain"], order_by=["%s%s" % (sort_dir, sort_order)] ) elif sort_order == "quota_usage": where = "admin_mailbox.address||'@'||admin_domain.name" db_type = db_type() if db_type == "postgres": select = ( "(admin_quota.bytes::float / (CAST(admin_mailbox.quota " "AS BIGINT) * 1048576)) * 100" ) else: select = ( "admin_quota.bytes / (admin_mailbox.quota " "* 1048576) * 100" ) if db_type == "mysql": where = "CONCAT(admin_mailbox.address,'@',admin_domain.name)" mboxes = mboxes.extra( select={'quota_usage': select}, where=["admin_quota.username=%s" % where], tables=["admin_quota", "admin_domain"], order_by=["%s%s" % (sort_dir, sort_order)] ) else: raise BadRequest(_("Invalid request")) page = get_listing_page(mboxes, request.GET.get("page", 1)) context = { "headers": render_to_string( "admin/quota_headers.html", {}, request ) } if page is None: context["length"] = 0 else: context["rows"] = render_to_string( "admin/quotas.html", {"mboxes": page}, request ) context["pages"] = [page.number] return render_to_json_response(context) @login_required @user_passes_test( lambda u: u.has_perm("admin.add_user") or u.has_perm("admin.add_alias") or u.has_perm("admin.add_mailbox") ) def get_next_page(request): """Return the next page of the identity list.""" if request.GET.get("objtype", "identity") == "identity": return _identities(request) return list_quotas(request) @login_required @user_passes_test( lambda u: u.has_perm("admin.add_user") or u.has_perm("admin.add_alias") ) @ensure_csrf_cookie def identities(request, tplname="admin/identities.html"): return render(request, tplname, { "selection": "identities", "deflocation": "list/" }) @login_required @permission_required("core.add_user") def accounts_list(request): accs = User.objects.filter(is_superuser=False) \ .exclude(groups__name='SimpleUsers') res = [a.username for a in accs.all()] return render_to_json_response(res) @login_required @permission_required("core.add_user") @reversion.create_revision() def newaccount(request): """Create a new account.""" return AccountWizard(request).process() @login_required @permission_required("core.change_user") @reversion.create_revision() def editaccount(request, pk): account = User.objects.get(pk=pk) if not request.user.can_access(account): raise PermDeniedException mb = account.mailbox if hasattr(account, "mailbox") else None instances = dict(general=account, mail=mb, perms=account) results = signals.get_account_form_instances.send( sender="editaccount", user=request.user, account=account) for result in results: instances.update(result[1]) return AccountForm(request, instances=instances).process() @login_required @permission_required("core.delete_user") def delaccount(request, pk): User.objects.get(pk=pk).delete() return render_to_json_response( ungettext("Account deleted", "Accounts deleted", 1) ) @login_required @permission_required("admin.add_domain") def remove_permission(request): domid = request.GET.get("domid", None) daid = request.GET.get("daid", None) if domid is None or daid is None: raise BadRequest(_("Invalid request")) try: account = User.objects.get(pk=daid) domain = Domain.objects.get(pk=domid) except (User.DoesNotExist, Domain.DoesNotExist): raise BadRequest(_("Invalid request")) if not request.user.can_access(account) or \ not request.user.can_access(domain): raise PermDeniedException domain.remove_admin(account) return render_to_json_response({}) class AccountDetailView( auth_mixins.PermissionRequiredMixin, generic.DetailView): """DetailView for Account.""" model = User permission_required = "core.add_user" template_name = "admin/account_detail.html" def has_permission(self): """Check object-level access.""" result = super(AccountDetailView, self).has_permission() if not result: return result return self.request.user.can_access(self.get_object()) def get_context_data(self, **kwargs): """Add information to context.""" context = super(AccountDetailView, self).get_context_data(**kwargs) del context["user"] result = signals.extra_account_dashboard_widgets.send( self.__class__, user=self.request.user, account=self.object) context["templates"] = {"left": [], "right": []} for receiver, widgets in result: for widget in widgets: context["templates"][widget["column"]].append( widget["template"]) context.update(widget["context"]) if self.object.role in ["Resellers", "DomainAdmins"]: context["domains"] = Domain.objects.get_for_admin(self.object) context["selection"] = "identities" return context
# Copyright 2013-2014 MongoDB, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test mongo using the synchronizer, i.e. as it would be used by an user """ import time import os import sys if sys.version_info[:2] == (2, 6): import unittest2 as unittest else: import unittest sys.path[0:0] = [""] from pymongo import MongoClient from tests import mongo_host, STRESS_COUNT from tests.setup_cluster import (start_replica_set, kill_replica_set, start_mongo_proc, restart_mongo_proc, kill_mongo_proc) from mongo_connector.doc_managers.mongo_doc_manager import DocManager from mongo_connector.connector import Connector from mongo_connector.util import retry_until_ok from pymongo.errors import OperationFailure, AutoReconnect from tests.util import assert_soon class TestSynchronizer(unittest.TestCase): """ Tests the mongo instance """ @classmethod def setUpClass(cls): try: os.unlink("config.txt") except OSError: pass open("config.txt", "w").close() cls.standalone_port = start_mongo_proc(options=['--nojournal', '--noprealloc']) cls.mongo_doc = DocManager('%s:%d' % (mongo_host, cls.standalone_port)) cls.mongo_doc._remove() _, cls.secondary_p, cls.primary_p = start_replica_set('test-mongo') cls.conn = MongoClient(mongo_host, cls.primary_p, replicaSet='test-mongo') @classmethod def tearDownClass(cls): """ Kills cluster instance """ kill_mongo_proc(cls.standalone_port) kill_replica_set('test-mongo') def tearDown(self): self.connector.join() def setUp(self): self.connector = Connector( address='%s:%s' % (mongo_host, self.primary_p), oplog_checkpoint="config.txt", target_url='%s:%d' % (mongo_host, self.standalone_port), ns_set=['test.test'], u_key='_id', auth_key=None, doc_manager='mongo_connector/doc_managers/mongo_doc_manager.py' ) self.connector.start() assert_soon(lambda: len(self.connector.shard_set) > 0) self.conn['test']['test'].remove() assert_soon(lambda: sum(1 for _ in self.mongo_doc._search()) == 0) def test_shard_length(self): """Tests the shard_length to see if the shard set was recognized properly """ self.assertEqual(len(self.connector.shard_set), 1) def test_insert(self): """Tests insert """ self.conn['test']['test'].insert({'name': 'paulie'}) assert_soon(lambda: sum(1 for _ in self.mongo_doc._search()) == 1) result_set_1 = self.mongo_doc._search() self.assertEqual(sum(1 for _ in result_set_1), 1) result_set_2 = self.conn['test']['test'].find_one() for item in result_set_1: self.assertEqual(item['_id'], result_set_2['_id']) self.assertEqual(item['name'], result_set_2['name']) def test_remove(self): """Tests remove """ self.conn['test']['test'].insert({'name': 'paulie'}) assert_soon(lambda: sum(1 for _ in self.mongo_doc._search()) == 1) self.conn['test']['test'].remove({'name': 'paulie'}) assert_soon(lambda: sum(1 for _ in self.mongo_doc._search()) != 1) self.assertEqual(sum(1 for _ in self.mongo_doc._search()), 0) def test_rollback(self): """Tests rollback. We force a rollback by adding a doc, killing the primary, adding another doc, killing the new primary, and then restarting both. """ primary_conn = MongoClient(mongo_host, self.primary_p) self.conn['test']['test'].insert({'name': 'paul'}) condition = lambda: self.conn['test']['test'].find_one( {'name': 'paul'}) is not None assert_soon(condition) assert_soon(lambda: sum(1 for _ in self.mongo_doc._search()) == 1) kill_mongo_proc(self.primary_p, destroy=False) new_primary_conn = MongoClient(mongo_host, self.secondary_p) admin = new_primary_conn['admin'] condition = lambda: admin.command("isMaster")['ismaster'] assert_soon(lambda: retry_until_ok(condition)) retry_until_ok(self.conn.test.test.insert, {'name': 'pauline'}) assert_soon(lambda: sum(1 for _ in self.mongo_doc._search()) == 2) result_set_1 = list(self.mongo_doc._search()) result_set_2 = self.conn['test']['test'].find_one({'name': 'pauline'}) self.assertEqual(len(result_set_1), 2) #make sure pauline is there for item in result_set_1: if item['name'] == 'pauline': self.assertEqual(item['_id'], result_set_2['_id']) kill_mongo_proc(self.secondary_p, destroy=False) restart_mongo_proc(self.primary_p) assert_soon( lambda: primary_conn['admin'].command("isMaster")['ismaster']) restart_mongo_proc(self.secondary_p) time.sleep(2) result_set_1 = list(self.mongo_doc._search()) self.assertEqual(len(result_set_1), 1) for item in result_set_1: self.assertEqual(item['name'], 'paul') find_cursor = retry_until_ok(self.conn['test']['test'].find) self.assertEqual(retry_until_ok(find_cursor.count), 1) def test_stress(self): """Test stress by inserting and removing the number of documents specified in global variable """ for i in range(0, STRESS_COUNT): self.conn['test']['test'].insert({'name': 'Paul ' + str(i)}) time.sleep(5) search = self.mongo_doc._search condition = lambda: sum(1 for _ in search()) == STRESS_COUNT assert_soon(condition) for i in range(0, STRESS_COUNT): result_set_1 = self.mongo_doc._search() for item in result_set_1: if(item['name'] == 'Paul' + str(i)): self.assertEqual(item['_id'], item['_id']) def test_stressed_rollback(self): """Test stressed rollback with number of documents equal to specified in global variable. Strategy for rollback is the same as before. """ for i in range(0, STRESS_COUNT): self.conn['test']['test'].insert({'name': 'Paul ' + str(i)}) search = self.mongo_doc._search condition = lambda: sum(1 for _ in search()) == STRESS_COUNT assert_soon(condition) primary_conn = MongoClient(mongo_host, self.primary_p) kill_mongo_proc(self.primary_p, destroy=False) new_primary_conn = MongoClient(mongo_host, self.secondary_p) admin = new_primary_conn['admin'] assert_soon(lambda: admin.command("isMaster")['ismaster']) time.sleep(5) count = -1 while count + 1 < STRESS_COUNT: try: count += 1 self.conn['test']['test'].insert( {'name': 'Pauline ' + str(count)}) except (OperationFailure, AutoReconnect): time.sleep(1) assert_soon(lambda: sum(1 for _ in self.mongo_doc._search()) == self.conn['test']['test'].find().count()) result_set_1 = self.mongo_doc._search() for item in result_set_1: if 'Pauline' in item['name']: result_set_2 = self.conn['test']['test'].find_one( {'name': item['name']}) self.assertEqual(item['_id'], result_set_2['_id']) kill_mongo_proc(self.secondary_p, destroy=False) restart_mongo_proc(self.primary_p) db_admin = primary_conn['admin'] assert_soon(lambda: db_admin.command("isMaster")['ismaster']) restart_mongo_proc(self.secondary_p) search = self.mongo_doc._search condition = lambda: sum(1 for _ in search()) == STRESS_COUNT assert_soon(condition) result_set_1 = list(self.mongo_doc._search()) self.assertEqual(len(result_set_1), STRESS_COUNT) for item in result_set_1: self.assertTrue('Paul' in item['name']) find_cursor = retry_until_ok(self.conn['test']['test'].find) self.assertEqual(retry_until_ok(find_cursor.count), STRESS_COUNT) if __name__ == '__main__': unittest.main()
"""Class to hold all cover accessories.""" import logging from pyhap.const import ( CATEGORY_GARAGE_DOOR_OPENER, CATEGORY_WINDOW, CATEGORY_WINDOW_COVERING, ) from homeassistant.components.cover import ( ATTR_CURRENT_POSITION, ATTR_CURRENT_TILT_POSITION, ATTR_POSITION, ATTR_TILT_POSITION, DOMAIN, SUPPORT_SET_TILT_POSITION, SUPPORT_STOP, ) from homeassistant.const import ( ATTR_ENTITY_ID, ATTR_SUPPORTED_FEATURES, SERVICE_CLOSE_COVER, SERVICE_OPEN_COVER, SERVICE_SET_COVER_POSITION, SERVICE_SET_COVER_TILT_POSITION, SERVICE_STOP_COVER, STATE_CLOSED, STATE_CLOSING, STATE_ON, STATE_OPEN, STATE_OPENING, ) from homeassistant.core import callback from homeassistant.helpers.event import async_track_state_change_event from .accessories import TYPES, HomeAccessory from .const import ( ATTR_OBSTRUCTION_DETECTED, CHAR_CURRENT_DOOR_STATE, CHAR_CURRENT_POSITION, CHAR_CURRENT_TILT_ANGLE, CHAR_HOLD_POSITION, CHAR_OBSTRUCTION_DETECTED, CHAR_POSITION_STATE, CHAR_TARGET_DOOR_STATE, CHAR_TARGET_POSITION, CHAR_TARGET_TILT_ANGLE, CONF_LINKED_OBSTRUCTION_SENSOR, HK_DOOR_CLOSED, HK_DOOR_CLOSING, HK_DOOR_OPEN, HK_DOOR_OPENING, HK_POSITION_GOING_TO_MAX, HK_POSITION_GOING_TO_MIN, HK_POSITION_STOPPED, SERV_GARAGE_DOOR_OPENER, SERV_WINDOW, SERV_WINDOW_COVERING, ) DOOR_CURRENT_HASS_TO_HK = { STATE_OPEN: HK_DOOR_OPEN, STATE_CLOSED: HK_DOOR_CLOSED, STATE_OPENING: HK_DOOR_OPENING, STATE_CLOSING: HK_DOOR_CLOSING, } # HomeKit only has two states for # Target Door State: # 0: Open # 1: Closed # Opening is mapped to 0 since the target is Open # Closing is mapped to 1 since the target is Closed DOOR_TARGET_HASS_TO_HK = { STATE_OPEN: HK_DOOR_OPEN, STATE_CLOSED: HK_DOOR_CLOSED, STATE_OPENING: HK_DOOR_OPEN, STATE_CLOSING: HK_DOOR_CLOSED, } _LOGGER = logging.getLogger(__name__) @TYPES.register("GarageDoorOpener") class GarageDoorOpener(HomeAccessory): """Generate a Garage Door Opener accessory for a cover entity. The cover entity must be in the 'garage' device class and support no more than open, close, and stop. """ def __init__(self, *args): """Initialize a GarageDoorOpener accessory object.""" super().__init__(*args, category=CATEGORY_GARAGE_DOOR_OPENER) state = self.hass.states.get(self.entity_id) serv_garage_door = self.add_preload_service(SERV_GARAGE_DOOR_OPENER) self.char_current_state = serv_garage_door.configure_char( CHAR_CURRENT_DOOR_STATE, value=0 ) self.char_target_state = serv_garage_door.configure_char( CHAR_TARGET_DOOR_STATE, value=0, setter_callback=self.set_state ) self.char_obstruction_detected = serv_garage_door.configure_char( CHAR_OBSTRUCTION_DETECTED, value=False ) self.linked_obstruction_sensor = self.config.get(CONF_LINKED_OBSTRUCTION_SENSOR) if self.linked_obstruction_sensor: self._async_update_obstruction_state( self.hass.states.get(self.linked_obstruction_sensor) ) self.async_update_state(state) async def run(self): """Handle accessory driver started event. Run inside the Home Assistant event loop. """ if self.linked_obstruction_sensor: async_track_state_change_event( self.hass, [self.linked_obstruction_sensor], self._async_update_obstruction_event, ) await super().run() @callback def _async_update_obstruction_event(self, event): """Handle state change event listener callback.""" self._async_update_obstruction_state(event.data.get("new_state")) @callback def _async_update_obstruction_state(self, new_state): """Handle linked obstruction sensor state change to update HomeKit value.""" if not new_state: return detected = new_state.state == STATE_ON if self.char_obstruction_detected.value == detected: return self.char_obstruction_detected.set_value(detected) _LOGGER.debug( "%s: Set linked obstruction %s sensor to %d", self.entity_id, self.linked_obstruction_sensor, detected, ) def set_state(self, value): """Change garage state if call came from HomeKit.""" _LOGGER.debug("%s: Set state to %d", self.entity_id, value) params = {ATTR_ENTITY_ID: self.entity_id} if value == HK_DOOR_OPEN: if self.char_current_state.value != value: self.char_current_state.set_value(HK_DOOR_OPENING) self.async_call_service(DOMAIN, SERVICE_OPEN_COVER, params) elif value == HK_DOOR_CLOSED: if self.char_current_state.value != value: self.char_current_state.set_value(HK_DOOR_CLOSING) self.async_call_service(DOMAIN, SERVICE_CLOSE_COVER, params) @callback def async_update_state(self, new_state): """Update cover state after state changed.""" hass_state = new_state.state target_door_state = DOOR_TARGET_HASS_TO_HK.get(hass_state) current_door_state = DOOR_CURRENT_HASS_TO_HK.get(hass_state) if ATTR_OBSTRUCTION_DETECTED in new_state.attributes: obstruction_detected = ( new_state.attributes[ATTR_OBSTRUCTION_DETECTED] is True ) if self.char_obstruction_detected.value != obstruction_detected: self.char_obstruction_detected.set_value(obstruction_detected) if ( target_door_state is not None and self.char_target_state.value != target_door_state ): self.char_target_state.set_value(target_door_state) if ( current_door_state is not None and self.char_current_state.value != current_door_state ): self.char_current_state.set_value(current_door_state) class OpeningDeviceBase(HomeAccessory): """Generate a base Window accessory for a cover entity. This class is used for WindowCoveringBasic and WindowCovering """ def __init__(self, *args, category, service): """Initialize a OpeningDeviceBase accessory object.""" super().__init__(*args, category=category) state = self.hass.states.get(self.entity_id) self.features = state.attributes.get(ATTR_SUPPORTED_FEATURES, 0) self._supports_stop = self.features & SUPPORT_STOP self.chars = [] if self._supports_stop: self.chars.append(CHAR_HOLD_POSITION) self._supports_tilt = self.features & SUPPORT_SET_TILT_POSITION if self._supports_tilt: self.chars.extend([CHAR_TARGET_TILT_ANGLE, CHAR_CURRENT_TILT_ANGLE]) self.serv_cover = self.add_preload_service(service, self.chars) if self._supports_stop: self.char_hold_position = self.serv_cover.configure_char( CHAR_HOLD_POSITION, setter_callback=self.set_stop ) if self._supports_tilt: self.char_target_tilt = self.serv_cover.configure_char( CHAR_TARGET_TILT_ANGLE, setter_callback=self.set_tilt ) self.char_current_tilt = self.serv_cover.configure_char( CHAR_CURRENT_TILT_ANGLE, value=0 ) def set_stop(self, value): """Stop the cover motion from HomeKit.""" if value != 1: return self.async_call_service( DOMAIN, SERVICE_STOP_COVER, {ATTR_ENTITY_ID: self.entity_id} ) def set_tilt(self, value): """Set tilt to value if call came from HomeKit.""" _LOGGER.info("%s: Set tilt to %d", self.entity_id, value) # HomeKit sends values between -90 and 90. # We'll have to normalize to [0,100] value = round((value + 90) / 180.0 * 100.0) params = {ATTR_ENTITY_ID: self.entity_id, ATTR_TILT_POSITION: value} self.async_call_service(DOMAIN, SERVICE_SET_COVER_TILT_POSITION, params, value) @callback def async_update_state(self, new_state): """Update cover position and tilt after state changed.""" # update tilt current_tilt = new_state.attributes.get(ATTR_CURRENT_TILT_POSITION) if isinstance(current_tilt, (float, int)): # HomeKit sends values between -90 and 90. # We'll have to normalize to [0,100] current_tilt = (current_tilt / 100.0 * 180.0) - 90.0 current_tilt = int(current_tilt) if self.char_current_tilt.value != current_tilt: self.char_current_tilt.set_value(current_tilt) if self.char_target_tilt.value != current_tilt: self.char_target_tilt.set_value(current_tilt) class OpeningDevice(OpeningDeviceBase, HomeAccessory): """Generate a Window/WindowOpening accessory for a cover entity. The cover entity must support: set_cover_position. """ def __init__(self, *args, category, service): """Initialize a WindowCovering accessory object.""" super().__init__(*args, category=category, service=service) state = self.hass.states.get(self.entity_id) self.char_current_position = self.serv_cover.configure_char( CHAR_CURRENT_POSITION, value=0 ) self.char_target_position = self.serv_cover.configure_char( CHAR_TARGET_POSITION, value=0, setter_callback=self.move_cover ) self.char_position_state = self.serv_cover.configure_char( CHAR_POSITION_STATE, value=HK_POSITION_STOPPED ) self.async_update_state(state) def move_cover(self, value): """Move cover to value if call came from HomeKit.""" _LOGGER.debug("%s: Set position to %d", self.entity_id, value) params = {ATTR_ENTITY_ID: self.entity_id, ATTR_POSITION: value} self.async_call_service(DOMAIN, SERVICE_SET_COVER_POSITION, params, value) @callback def async_update_state(self, new_state): """Update cover position and tilt after state changed.""" current_position = new_state.attributes.get(ATTR_CURRENT_POSITION) if isinstance(current_position, (float, int)): current_position = int(current_position) if self.char_current_position.value != current_position: self.char_current_position.set_value(current_position) if self.char_target_position.value != current_position: self.char_target_position.set_value(current_position) position_state = _hass_state_to_position_start(new_state.state) if self.char_position_state.value != position_state: self.char_position_state.set_value(position_state) super().async_update_state(new_state) @TYPES.register("Window") class Window(OpeningDevice): """Generate a Window accessory for a cover entity with DEVICE_CLASS_WINDOW. The entity must support: set_cover_position. """ def __init__(self, *args): """Initialize a Window accessory object.""" super().__init__(*args, category=CATEGORY_WINDOW, service=SERV_WINDOW) @TYPES.register("WindowCovering") class WindowCovering(OpeningDevice): """Generate a WindowCovering accessory for a cover entity. The entity must support: set_cover_position. """ def __init__(self, *args): """Initialize a WindowCovering accessory object.""" super().__init__( *args, category=CATEGORY_WINDOW_COVERING, service=SERV_WINDOW_COVERING ) @TYPES.register("WindowCoveringBasic") class WindowCoveringBasic(OpeningDeviceBase, HomeAccessory): """Generate a Window accessory for a cover entity. The cover entity must support: open_cover, close_cover, stop_cover (optional). """ def __init__(self, *args): """Initialize a WindowCoveringBasic accessory object.""" super().__init__( *args, category=CATEGORY_WINDOW_COVERING, service=SERV_WINDOW_COVERING ) state = self.hass.states.get(self.entity_id) self.char_current_position = self.serv_cover.configure_char( CHAR_CURRENT_POSITION, value=0 ) self.char_target_position = self.serv_cover.configure_char( CHAR_TARGET_POSITION, value=0, setter_callback=self.move_cover ) self.char_position_state = self.serv_cover.configure_char( CHAR_POSITION_STATE, value=HK_POSITION_STOPPED ) self.async_update_state(state) def move_cover(self, value): """Move cover to value if call came from HomeKit.""" _LOGGER.debug("%s: Set position to %d", self.entity_id, value) if ( self._supports_stop and value > 70 or not self._supports_stop and value >= 50 ): service, position = (SERVICE_OPEN_COVER, 100) elif value < 30 or not self._supports_stop: service, position = (SERVICE_CLOSE_COVER, 0) else: service, position = (SERVICE_STOP_COVER, 50) params = {ATTR_ENTITY_ID: self.entity_id} self.async_call_service(DOMAIN, service, params) # Snap the current/target position to the expected final position. self.char_current_position.set_value(position) self.char_target_position.set_value(position) @callback def async_update_state(self, new_state): """Update cover position after state changed.""" position_mapping = {STATE_OPEN: 100, STATE_CLOSED: 0} hk_position = position_mapping.get(new_state.state) if hk_position is not None: if self.char_current_position.value != hk_position: self.char_current_position.set_value(hk_position) if self.char_target_position.value != hk_position: self.char_target_position.set_value(hk_position) position_state = _hass_state_to_position_start(new_state.state) if self.char_position_state.value != position_state: self.char_position_state.set_value(position_state) super().async_update_state(new_state) def _hass_state_to_position_start(state): """Convert hass state to homekit position state.""" if state == STATE_OPENING: return HK_POSITION_GOING_TO_MAX if state == STATE_CLOSING: return HK_POSITION_GOING_TO_MIN return HK_POSITION_STOPPED
# We can test part of the module without zlib. try: import zlib except ImportError: zlib = None import zipfile, os, unittest, sys, shutil, struct from StringIO import StringIO from tempfile import TemporaryFile from random import randint, random import test.test_support as support from test.test_support import TESTFN, run_unittest, findfile TESTFN2 = TESTFN + "2" TESTFNDIR = TESTFN + "d" FIXEDTEST_SIZE = 1000 SMALL_TEST_DATA = [('_ziptest1', '1q2w3e4r5t'), ('ziptest2dir/_ziptest2', 'qawsedrftg'), ('/ziptest2dir/ziptest3dir/_ziptest3', 'azsxdcfvgb'), ('ziptest2dir/ziptest3dir/ziptest4dir/_ziptest3', '6y7u8i9o0p')] class TestsWithSourceFile(unittest.TestCase): def setUp(self): self.line_gen = ["Zipfile test line %d. random float: %f" % (i, random()) for i in xrange(FIXEDTEST_SIZE)] self.data = '\n'.join(self.line_gen) + '\n' # Make a source file with some lines fp = open(TESTFN, "wb") fp.write(self.data) fp.close() def makeTestArchive(self, f, compression): # Create the ZIP archive zipfp = zipfile.ZipFile(f, "w", compression) zipfp.write(TESTFN, "another"+os.extsep+"name") zipfp.write(TESTFN, TESTFN) zipfp.writestr("strfile", self.data) zipfp.close() def zipTest(self, f, compression): self.makeTestArchive(f, compression) # Read the ZIP archive zipfp = zipfile.ZipFile(f, "r", compression) self.assertEqual(zipfp.read(TESTFN), self.data) self.assertEqual(zipfp.read("another"+os.extsep+"name"), self.data) self.assertEqual(zipfp.read("strfile"), self.data) # Print the ZIP directory fp = StringIO() stdout = sys.stdout try: sys.stdout = fp zipfp.printdir() finally: sys.stdout = stdout directory = fp.getvalue() lines = directory.splitlines() self.assertEquals(len(lines), 4) # Number of files + header self.assert_('File Name' in lines[0]) self.assert_('Modified' in lines[0]) self.assert_('Size' in lines[0]) fn, date, time, size = lines[1].split() self.assertEquals(fn, 'another.name') # XXX: timestamp is not tested self.assertEquals(size, str(len(self.data))) # Check the namelist names = zipfp.namelist() self.assertEquals(len(names), 3) self.assert_(TESTFN in names) self.assert_("another"+os.extsep+"name" in names) self.assert_("strfile" in names) # Check infolist infos = zipfp.infolist() names = [ i.filename for i in infos ] self.assertEquals(len(names), 3) self.assert_(TESTFN in names) self.assert_("another"+os.extsep+"name" in names) self.assert_("strfile" in names) for i in infos: self.assertEquals(i.file_size, len(self.data)) # check getinfo for nm in (TESTFN, "another"+os.extsep+"name", "strfile"): info = zipfp.getinfo(nm) self.assertEquals(info.filename, nm) self.assertEquals(info.file_size, len(self.data)) # Check that testzip doesn't raise an exception zipfp.testzip() zipfp.close() def testStored(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.zipTest(f, zipfile.ZIP_STORED) def zipOpenTest(self, f, compression): self.makeTestArchive(f, compression) # Read the ZIP archive zipfp = zipfile.ZipFile(f, "r", compression) zipdata1 = [] zipopen1 = zipfp.open(TESTFN) while 1: read_data = zipopen1.read(256) if not read_data: break zipdata1.append(read_data) zipdata2 = [] zipopen2 = zipfp.open("another"+os.extsep+"name") while 1: read_data = zipopen2.read(256) if not read_data: break zipdata2.append(read_data) self.assertEqual(''.join(zipdata1), self.data) self.assertEqual(''.join(zipdata2), self.data) zipfp.close() def testOpenStored(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.zipOpenTest(f, zipfile.ZIP_STORED) def testOpenViaZipInfo(self): # Create the ZIP archive zipfp = zipfile.ZipFile(TESTFN2, "w", zipfile.ZIP_STORED) zipfp.writestr("name", "foo") zipfp.writestr("name", "bar") zipfp.close() zipfp = zipfile.ZipFile(TESTFN2, "r") infos = zipfp.infolist() data = "" for info in infos: data += zipfp.open(info).read() self.assert_(data == "foobar" or data == "barfoo") data = "" for info in infos: data += zipfp.read(info) self.assert_(data == "foobar" or data == "barfoo") zipfp.close() def zipRandomOpenTest(self, f, compression): self.makeTestArchive(f, compression) # Read the ZIP archive zipfp = zipfile.ZipFile(f, "r", compression) zipdata1 = [] zipopen1 = zipfp.open(TESTFN) while 1: read_data = zipopen1.read(randint(1, 1024)) if not read_data: break zipdata1.append(read_data) self.assertEqual(''.join(zipdata1), self.data) zipfp.close() def testRandomOpenStored(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.zipRandomOpenTest(f, zipfile.ZIP_STORED) def zipReadlineTest(self, f, compression): self.makeTestArchive(f, compression) # Read the ZIP archive zipfp = zipfile.ZipFile(f, "r") zipopen = zipfp.open(TESTFN) for line in self.line_gen: linedata = zipopen.readline() self.assertEqual(linedata, line + '\n') zipfp.close() def zipReadlinesTest(self, f, compression): self.makeTestArchive(f, compression) # Read the ZIP archive zipfp = zipfile.ZipFile(f, "r") ziplines = zipfp.open(TESTFN).readlines() for line, zipline in zip(self.line_gen, ziplines): self.assertEqual(zipline, line + '\n') zipfp.close() def zipIterlinesTest(self, f, compression): self.makeTestArchive(f, compression) # Read the ZIP archive zipfp = zipfile.ZipFile(f, "r") for line, zipline in zip(self.line_gen, zipfp.open(TESTFN)): self.assertEqual(zipline, line + '\n') zipfp.close() def testReadlineStored(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.zipReadlineTest(f, zipfile.ZIP_STORED) def testReadlinesStored(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.zipReadlinesTest(f, zipfile.ZIP_STORED) def testIterlinesStored(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.zipIterlinesTest(f, zipfile.ZIP_STORED) if zlib: def testDeflated(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.zipTest(f, zipfile.ZIP_DEFLATED) def testOpenDeflated(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.zipOpenTest(f, zipfile.ZIP_DEFLATED) def testRandomOpenDeflated(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.zipRandomOpenTest(f, zipfile.ZIP_DEFLATED) def testReadlineDeflated(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.zipReadlineTest(f, zipfile.ZIP_DEFLATED) def testReadlinesDeflated(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.zipReadlinesTest(f, zipfile.ZIP_DEFLATED) def testIterlinesDeflated(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.zipIterlinesTest(f, zipfile.ZIP_DEFLATED) def testLowCompression(self): # Checks for cases where compressed data is larger than original # Create the ZIP archive zipfp = zipfile.ZipFile(TESTFN2, "w", zipfile.ZIP_DEFLATED) zipfp.writestr("strfile", '12') zipfp.close() # Get an open object for strfile zipfp = zipfile.ZipFile(TESTFN2, "r", zipfile.ZIP_DEFLATED) openobj = zipfp.open("strfile") self.assertEqual(openobj.read(1), '1') self.assertEqual(openobj.read(1), '2') def testAbsoluteArcnames(self): zipfp = zipfile.ZipFile(TESTFN2, "w", zipfile.ZIP_STORED) zipfp.write(TESTFN, "/absolute") zipfp.close() zipfp = zipfile.ZipFile(TESTFN2, "r", zipfile.ZIP_STORED) self.assertEqual(zipfp.namelist(), ["absolute"]) zipfp.close() def testAppendToZipFile(self): # Test appending to an existing zipfile zipfp = zipfile.ZipFile(TESTFN2, "w", zipfile.ZIP_STORED) zipfp.write(TESTFN, TESTFN) zipfp.close() zipfp = zipfile.ZipFile(TESTFN2, "a", zipfile.ZIP_STORED) zipfp.writestr("strfile", self.data) self.assertEqual(zipfp.namelist(), [TESTFN, "strfile"]) zipfp.close() def testAppendToNonZipFile(self): # Test appending to an existing file that is not a zipfile # NOTE: this test fails if len(d) < 22 because of the first # line "fpin.seek(-22, 2)" in _EndRecData d = 'I am not a ZipFile!'*10 f = file(TESTFN2, 'wb') f.write(d) f.close() zipfp = zipfile.ZipFile(TESTFN2, "a", zipfile.ZIP_STORED) zipfp.write(TESTFN, TESTFN) zipfp.close() f = file(TESTFN2, 'rb') f.seek(len(d)) zipfp = zipfile.ZipFile(f, "r") self.assertEqual(zipfp.namelist(), [TESTFN]) zipfp.close() f.close() def test_WriteDefaultName(self): # Check that calling ZipFile.write without arcname specified produces the expected result zipfp = zipfile.ZipFile(TESTFN2, "w") zipfp.write(TESTFN) self.assertEqual(zipfp.read(TESTFN), file(TESTFN).read()) zipfp.close() def test_PerFileCompression(self): # Check that files within a Zip archive can have different compression options zipfp = zipfile.ZipFile(TESTFN2, "w") zipfp.write(TESTFN, 'storeme', zipfile.ZIP_STORED) zipfp.write(TESTFN, 'deflateme', zipfile.ZIP_DEFLATED) sinfo = zipfp.getinfo('storeme') dinfo = zipfp.getinfo('deflateme') self.assertEqual(sinfo.compress_type, zipfile.ZIP_STORED) self.assertEqual(dinfo.compress_type, zipfile.ZIP_DEFLATED) zipfp.close() def test_WriteToReadonly(self): # Check that trying to call write() on a readonly ZipFile object # raises a RuntimeError zipf = zipfile.ZipFile(TESTFN2, mode="w") zipf.writestr("somefile.txt", "bogus") zipf.close() zipf = zipfile.ZipFile(TESTFN2, mode="r") self.assertRaises(RuntimeError, zipf.write, TESTFN) zipf.close() def testExtract(self): zipfp = zipfile.ZipFile(TESTFN2, "w", zipfile.ZIP_STORED) for fpath, fdata in SMALL_TEST_DATA: zipfp.writestr(fpath, fdata) zipfp.close() zipfp = zipfile.ZipFile(TESTFN2, "r") for fpath, fdata in SMALL_TEST_DATA: writtenfile = zipfp.extract(fpath) # make sure it was written to the right place if os.path.isabs(fpath): correctfile = os.path.join(os.getcwd(), fpath[1:]) else: correctfile = os.path.join(os.getcwd(), fpath) correctfile = os.path.normpath(correctfile) self.assertEqual(writtenfile, correctfile) # make sure correct data is in correct file self.assertEqual(fdata, file(writtenfile, "rb").read()) os.remove(writtenfile) zipfp.close() # remove the test file subdirectories shutil.rmtree(os.path.join(os.getcwd(), 'ziptest2dir')) def testExtractAll(self): zipfp = zipfile.ZipFile(TESTFN2, "w", zipfile.ZIP_STORED) for fpath, fdata in SMALL_TEST_DATA: zipfp.writestr(fpath, fdata) zipfp.close() zipfp = zipfile.ZipFile(TESTFN2, "r") zipfp.extractall() for fpath, fdata in SMALL_TEST_DATA: if os.path.isabs(fpath): outfile = os.path.join(os.getcwd(), fpath[1:]) else: outfile = os.path.join(os.getcwd(), fpath) self.assertEqual(fdata, file(outfile, "rb").read()) os.remove(outfile) zipfp.close() # remove the test file subdirectories shutil.rmtree(os.path.join(os.getcwd(), 'ziptest2dir')) def zip_test_writestr_permissions(self, f, compression): # Make sure that writestr creates files with mode 0600, # when it is passed a name rather than a ZipInfo instance. self.makeTestArchive(f, compression) zipfp = zipfile.ZipFile(f, "r") zinfo = zipfp.getinfo('strfile') self.assertEqual(zinfo.external_attr, 0600 << 16) def test_writestr_permissions(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.zip_test_writestr_permissions(f, zipfile.ZIP_STORED) def tearDown(self): os.remove(TESTFN) os.remove(TESTFN2) class TestZip64InSmallFiles(unittest.TestCase): # These tests test the ZIP64 functionality without using large files, # see test_zipfile64 for proper tests. def setUp(self): self._limit = zipfile.ZIP64_LIMIT zipfile.ZIP64_LIMIT = 5 line_gen = ("Test of zipfile line %d." % i for i in range(0, FIXEDTEST_SIZE)) self.data = '\n'.join(line_gen) # Make a source file with some lines fp = open(TESTFN, "wb") fp.write(self.data) fp.close() def largeFileExceptionTest(self, f, compression): zipfp = zipfile.ZipFile(f, "w", compression) self.assertRaises(zipfile.LargeZipFile, zipfp.write, TESTFN, "another"+os.extsep+"name") zipfp.close() def largeFileExceptionTest2(self, f, compression): zipfp = zipfile.ZipFile(f, "w", compression) self.assertRaises(zipfile.LargeZipFile, zipfp.writestr, "another"+os.extsep+"name", self.data) zipfp.close() def testLargeFileException(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.largeFileExceptionTest(f, zipfile.ZIP_STORED) self.largeFileExceptionTest2(f, zipfile.ZIP_STORED) def zipTest(self, f, compression): # Create the ZIP archive zipfp = zipfile.ZipFile(f, "w", compression, allowZip64=True) zipfp.write(TESTFN, "another"+os.extsep+"name") zipfp.write(TESTFN, TESTFN) zipfp.writestr("strfile", self.data) zipfp.close() # Read the ZIP archive zipfp = zipfile.ZipFile(f, "r", compression) self.assertEqual(zipfp.read(TESTFN), self.data) self.assertEqual(zipfp.read("another"+os.extsep+"name"), self.data) self.assertEqual(zipfp.read("strfile"), self.data) # Print the ZIP directory fp = StringIO() stdout = sys.stdout try: sys.stdout = fp zipfp.printdir() finally: sys.stdout = stdout directory = fp.getvalue() lines = directory.splitlines() self.assertEquals(len(lines), 4) # Number of files + header self.assert_('File Name' in lines[0]) self.assert_('Modified' in lines[0]) self.assert_('Size' in lines[0]) fn, date, time, size = lines[1].split() self.assertEquals(fn, 'another.name') # XXX: timestamp is not tested self.assertEquals(size, str(len(self.data))) # Check the namelist names = zipfp.namelist() self.assertEquals(len(names), 3) self.assert_(TESTFN in names) self.assert_("another"+os.extsep+"name" in names) self.assert_("strfile" in names) # Check infolist infos = zipfp.infolist() names = [ i.filename for i in infos ] self.assertEquals(len(names), 3) self.assert_(TESTFN in names) self.assert_("another"+os.extsep+"name" in names) self.assert_("strfile" in names) for i in infos: self.assertEquals(i.file_size, len(self.data)) # check getinfo for nm in (TESTFN, "another"+os.extsep+"name", "strfile"): info = zipfp.getinfo(nm) self.assertEquals(info.filename, nm) self.assertEquals(info.file_size, len(self.data)) # Check that testzip doesn't raise an exception zipfp.testzip() zipfp.close() def testStored(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.zipTest(f, zipfile.ZIP_STORED) if zlib: def testDeflated(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.zipTest(f, zipfile.ZIP_DEFLATED) def testAbsoluteArcnames(self): zipfp = zipfile.ZipFile(TESTFN2, "w", zipfile.ZIP_STORED, allowZip64=True) zipfp.write(TESTFN, "/absolute") zipfp.close() zipfp = zipfile.ZipFile(TESTFN2, "r", zipfile.ZIP_STORED) self.assertEqual(zipfp.namelist(), ["absolute"]) zipfp.close() def tearDown(self): zipfile.ZIP64_LIMIT = self._limit os.remove(TESTFN) os.remove(TESTFN2) class PyZipFileTests(unittest.TestCase): def testWritePyfile(self): zipfp = zipfile.PyZipFile(TemporaryFile(), "w") fn = __file__ if fn.endswith('.pyc') or fn.endswith('.pyo'): fn = fn[:-1] zipfp.writepy(fn) bn = os.path.basename(fn) self.assert_(bn not in zipfp.namelist()) self.assert_(bn + 'o' in zipfp.namelist() or bn + 'c' in zipfp.namelist()) zipfp.close() zipfp = zipfile.PyZipFile(TemporaryFile(), "w") fn = __file__ if fn.endswith('.pyc') or fn.endswith('.pyo'): fn = fn[:-1] zipfp.writepy(fn, "testpackage") bn = "%s/%s"%("testpackage", os.path.basename(fn)) self.assert_(bn not in zipfp.namelist()) self.assert_(bn + 'o' in zipfp.namelist() or bn + 'c' in zipfp.namelist()) zipfp.close() def testWritePythonPackage(self): import email packagedir = os.path.dirname(email.__file__) zipfp = zipfile.PyZipFile(TemporaryFile(), "w") zipfp.writepy(packagedir) # Check for a couple of modules at different levels of the hieararchy names = zipfp.namelist() self.assert_('email/__init__.pyo' in names or 'email/__init__.pyc' in names) self.assert_('email/mime/text.pyo' in names or 'email/mime/text.pyc' in names) def testWritePythonDirectory(self): os.mkdir(TESTFN2) try: fp = open(os.path.join(TESTFN2, "mod1.py"), "w") fp.write("print 42\n") fp.close() fp = open(os.path.join(TESTFN2, "mod2.py"), "w") fp.write("print 42 * 42\n") fp.close() fp = open(os.path.join(TESTFN2, "mod2.txt"), "w") fp.write("bla bla bla\n") fp.close() zipfp = zipfile.PyZipFile(TemporaryFile(), "w") zipfp.writepy(TESTFN2) names = zipfp.namelist() self.assert_('mod1.pyc' in names or 'mod1.pyo' in names) self.assert_('mod2.pyc' in names or 'mod2.pyo' in names) self.assert_('mod2.txt' not in names) finally: shutil.rmtree(TESTFN2) def testWriteNonPyfile(self): zipfp = zipfile.PyZipFile(TemporaryFile(), "w") file(TESTFN, 'w').write('most definitely not a python file') self.assertRaises(RuntimeError, zipfp.writepy, TESTFN) os.remove(TESTFN) class OtherTests(unittest.TestCase): def testUnicodeFilenames(self): zf = zipfile.ZipFile(TESTFN, "w") zf.writestr(u"foo.txt", "Test for unicode filename") zf.writestr(u"\xf6.txt", "Test for unicode filename") self.assertTrue(isinstance(zf.infolist()[0].filename, unicode)) zf.close() zf = zipfile.ZipFile(TESTFN, "r") self.assertEqual(zf.filelist[0].filename, "foo.txt") self.assertEqual(zf.filelist[1].filename, u"\xf6.txt") zf.close() def testCreateNonExistentFileForAppend(self): if os.path.exists(TESTFN): os.unlink(TESTFN) filename = 'testfile.txt' content = 'hello, world. this is some content.' try: zf = zipfile.ZipFile(TESTFN, 'a') zf.writestr(filename, content) zf.close() except IOError, (errno, errmsg): self.fail('Could not append data to a non-existent zip file.') self.assert_(os.path.exists(TESTFN)) zf = zipfile.ZipFile(TESTFN, 'r') self.assertEqual(zf.read(filename), content) zf.close() def testCloseErroneousFile(self): # This test checks that the ZipFile constructor closes the file object # it opens if there's an error in the file. If it doesn't, the traceback # holds a reference to the ZipFile object and, indirectly, the file object. # On Windows, this causes the os.unlink() call to fail because the # underlying file is still open. This is SF bug #412214. # fp = open(TESTFN, "w") fp.write("this is not a legal zip file\n") fp.close() try: zf = zipfile.ZipFile(TESTFN) except zipfile.BadZipfile: pass def testIsZipErroneousFile(self): # This test checks that the is_zipfile function correctly identifies # a file that is not a zip file fp = open(TESTFN, "w") fp.write("this is not a legal zip file\n") fp.close() chk = zipfile.is_zipfile(TESTFN) self.assert_(chk is False) def testIsZipValidFile(self): # This test checks that the is_zipfile function correctly identifies # a file that is a zip file zipf = zipfile.ZipFile(TESTFN, mode="w") zipf.writestr("foo.txt", "O, for a Muse of Fire!") zipf.close() chk = zipfile.is_zipfile(TESTFN) self.assert_(chk is True) def testNonExistentFileRaisesIOError(self): # make sure we don't raise an AttributeError when a partially-constructed # ZipFile instance is finalized; this tests for regression on SF tracker # bug #403871. # The bug we're testing for caused an AttributeError to be raised # when a ZipFile instance was created for a file that did not # exist; the .fp member was not initialized but was needed by the # __del__() method. Since the AttributeError is in the __del__(), # it is ignored, but the user should be sufficiently annoyed by # the message on the output that regression will be noticed # quickly. self.assertRaises(IOError, zipfile.ZipFile, TESTFN) def testClosedZipRaisesRuntimeError(self): # Verify that testzip() doesn't swallow inappropriate exceptions. data = StringIO() zipf = zipfile.ZipFile(data, mode="w") zipf.writestr("foo.txt", "O, for a Muse of Fire!") zipf.close() # This is correct; calling .read on a closed ZipFile should throw # a RuntimeError, and so should calling .testzip. An earlier # version of .testzip would swallow this exception (and any other) # and report that the first file in the archive was corrupt. self.assertRaises(RuntimeError, zipf.read, "foo.txt") self.assertRaises(RuntimeError, zipf.open, "foo.txt") self.assertRaises(RuntimeError, zipf.testzip) self.assertRaises(RuntimeError, zipf.writestr, "bogus.txt", "bogus") file(TESTFN, 'w').write('zipfile test data') self.assertRaises(RuntimeError, zipf.write, TESTFN) def test_BadConstructorMode(self): # Check that bad modes passed to ZipFile constructor are caught self.assertRaises(RuntimeError, zipfile.ZipFile, TESTFN, "q") def test_BadOpenMode(self): # Check that bad modes passed to ZipFile.open are caught zipf = zipfile.ZipFile(TESTFN, mode="w") zipf.writestr("foo.txt", "O, for a Muse of Fire!") zipf.close() zipf = zipfile.ZipFile(TESTFN, mode="r") # read the data to make sure the file is there zipf.read("foo.txt") self.assertRaises(RuntimeError, zipf.open, "foo.txt", "q") zipf.close() def test_Read0(self): # Check that calling read(0) on a ZipExtFile object returns an empty # string and doesn't advance file pointer zipf = zipfile.ZipFile(TESTFN, mode="w") zipf.writestr("foo.txt", "O, for a Muse of Fire!") # read the data to make sure the file is there f = zipf.open("foo.txt") for i in xrange(FIXEDTEST_SIZE): self.assertEqual(f.read(0), '') self.assertEqual(f.read(), "O, for a Muse of Fire!") zipf.close() def test_OpenNonexistentItem(self): # Check that attempting to call open() for an item that doesn't # exist in the archive raises a RuntimeError zipf = zipfile.ZipFile(TESTFN, mode="w") self.assertRaises(KeyError, zipf.open, "foo.txt", "r") def test_BadCompressionMode(self): # Check that bad compression methods passed to ZipFile.open are caught self.assertRaises(RuntimeError, zipfile.ZipFile, TESTFN, "w", -1) def test_NullByteInFilename(self): # Check that a filename containing a null byte is properly terminated zipf = zipfile.ZipFile(TESTFN, mode="w") zipf.writestr("foo.txt\x00qqq", "O, for a Muse of Fire!") self.assertEqual(zipf.namelist(), ['foo.txt']) def test_StructSizes(self): # check that ZIP internal structure sizes are calculated correctly self.assertEqual(zipfile.sizeEndCentDir, 22) self.assertEqual(zipfile.sizeCentralDir, 46) self.assertEqual(zipfile.sizeEndCentDir64, 56) self.assertEqual(zipfile.sizeEndCentDir64Locator, 20) def testComments(self): # This test checks that comments on the archive are handled properly # check default comment is empty zipf = zipfile.ZipFile(TESTFN, mode="w") self.assertEqual(zipf.comment, '') zipf.writestr("foo.txt", "O, for a Muse of Fire!") zipf.close() zipfr = zipfile.ZipFile(TESTFN, mode="r") self.assertEqual(zipfr.comment, '') zipfr.close() # check a simple short comment comment = 'Bravely taking to his feet, he beat a very brave retreat.' zipf = zipfile.ZipFile(TESTFN, mode="w") zipf.comment = comment zipf.writestr("foo.txt", "O, for a Muse of Fire!") zipf.close() zipfr = zipfile.ZipFile(TESTFN, mode="r") self.assertEqual(zipfr.comment, comment) zipfr.close() # check a comment of max length comment2 = ''.join(['%d' % (i**3 % 10) for i in xrange((1 << 16)-1)]) zipf = zipfile.ZipFile(TESTFN, mode="w") zipf.comment = comment2 zipf.writestr("foo.txt", "O, for a Muse of Fire!") zipf.close() zipfr = zipfile.ZipFile(TESTFN, mode="r") self.assertEqual(zipfr.comment, comment2) zipfr.close() # check a comment that is too long is truncated zipf = zipfile.ZipFile(TESTFN, mode="w") zipf.comment = comment2 + 'oops' zipf.writestr("foo.txt", "O, for a Muse of Fire!") zipf.close() zipfr = zipfile.ZipFile(TESTFN, mode="r") self.assertEqual(zipfr.comment, comment2) zipfr.close() def tearDown(self): support.unlink(TESTFN) support.unlink(TESTFN2) class DecryptionTests(unittest.TestCase): # This test checks that ZIP decryption works. Since the library does not # support encryption at the moment, we use a pre-generated encrypted # ZIP file data = ( 'PK\x03\x04\x14\x00\x01\x00\x00\x00n\x92i.#y\xef?&\x00\x00\x00\x1a\x00' '\x00\x00\x08\x00\x00\x00test.txt\xfa\x10\xa0gly|\xfa-\xc5\xc0=\xf9y' '\x18\xe0\xa8r\xb3Z}Lg\xbc\xae\xf9|\x9b\x19\xe4\x8b\xba\xbb)\x8c\xb0\xdbl' 'PK\x01\x02\x14\x00\x14\x00\x01\x00\x00\x00n\x92i.#y\xef?&\x00\x00\x00' '\x1a\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x01\x00 \x00\xb6\x81' '\x00\x00\x00\x00test.txtPK\x05\x06\x00\x00\x00\x00\x01\x00\x01\x006\x00' '\x00\x00L\x00\x00\x00\x00\x00' ) data2 = ( 'PK\x03\x04\x14\x00\t\x00\x08\x00\xcf}38xu\xaa\xb2\x14\x00\x00\x00\x00\x02' '\x00\x00\x04\x00\x15\x00zeroUT\t\x00\x03\xd6\x8b\x92G\xda\x8b\x92GUx\x04' '\x00\xe8\x03\xe8\x03\xc7<M\xb5a\xceX\xa3Y&\x8b{oE\xd7\x9d\x8c\x98\x02\xc0' 'PK\x07\x08xu\xaa\xb2\x14\x00\x00\x00\x00\x02\x00\x00PK\x01\x02\x17\x03' '\x14\x00\t\x00\x08\x00\xcf}38xu\xaa\xb2\x14\x00\x00\x00\x00\x02\x00\x00' '\x04\x00\r\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa4\x81\x00\x00\x00\x00ze' 'roUT\x05\x00\x03\xd6\x8b\x92GUx\x00\x00PK\x05\x06\x00\x00\x00\x00\x01' '\x00\x01\x00?\x00\x00\x00[\x00\x00\x00\x00\x00' ) plain = 'zipfile.py encryption test' plain2 = '\x00'*512 def setUp(self): fp = open(TESTFN, "wb") fp.write(self.data) fp.close() self.zip = zipfile.ZipFile(TESTFN, "r") fp = open(TESTFN2, "wb") fp.write(self.data2) fp.close() self.zip2 = zipfile.ZipFile(TESTFN2, "r") def tearDown(self): self.zip.close() os.unlink(TESTFN) self.zip2.close() os.unlink(TESTFN2) def testNoPassword(self): # Reading the encrypted file without password # must generate a RunTime exception self.assertRaises(RuntimeError, self.zip.read, "test.txt") self.assertRaises(RuntimeError, self.zip2.read, "zero") def testBadPassword(self): self.zip.setpassword("perl") self.assertRaises(RuntimeError, self.zip.read, "test.txt") self.zip2.setpassword("perl") self.assertRaises(RuntimeError, self.zip2.read, "zero") def testGoodPassword(self): self.zip.setpassword("python") self.assertEquals(self.zip.read("test.txt"), self.plain) self.zip2.setpassword("12345") self.assertEquals(self.zip2.read("zero"), self.plain2) class TestsWithRandomBinaryFiles(unittest.TestCase): def setUp(self): datacount = randint(16, 64)*1024 + randint(1, 1024) self.data = ''.join((struct.pack('<f', random()*randint(-1000, 1000)) for i in xrange(datacount))) # Make a source file with some lines fp = open(TESTFN, "wb") fp.write(self.data) fp.close() def tearDown(self): support.unlink(TESTFN) support.unlink(TESTFN2) def makeTestArchive(self, f, compression): # Create the ZIP archive zipfp = zipfile.ZipFile(f, "w", compression) zipfp.write(TESTFN, "another"+os.extsep+"name") zipfp.write(TESTFN, TESTFN) zipfp.close() def zipTest(self, f, compression): self.makeTestArchive(f, compression) # Read the ZIP archive zipfp = zipfile.ZipFile(f, "r", compression) testdata = zipfp.read(TESTFN) self.assertEqual(len(testdata), len(self.data)) self.assertEqual(testdata, self.data) self.assertEqual(zipfp.read("another"+os.extsep+"name"), self.data) zipfp.close() def testStored(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.zipTest(f, zipfile.ZIP_STORED) def zipOpenTest(self, f, compression): self.makeTestArchive(f, compression) # Read the ZIP archive zipfp = zipfile.ZipFile(f, "r", compression) zipdata1 = [] zipopen1 = zipfp.open(TESTFN) while 1: read_data = zipopen1.read(256) if not read_data: break zipdata1.append(read_data) zipdata2 = [] zipopen2 = zipfp.open("another"+os.extsep+"name") while 1: read_data = zipopen2.read(256) if not read_data: break zipdata2.append(read_data) testdata1 = ''.join(zipdata1) self.assertEqual(len(testdata1), len(self.data)) self.assertEqual(testdata1, self.data) testdata2 = ''.join(zipdata2) self.assertEqual(len(testdata1), len(self.data)) self.assertEqual(testdata1, self.data) zipfp.close() def testOpenStored(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.zipOpenTest(f, zipfile.ZIP_STORED) def zipRandomOpenTest(self, f, compression): self.makeTestArchive(f, compression) # Read the ZIP archive zipfp = zipfile.ZipFile(f, "r", compression) zipdata1 = [] zipopen1 = zipfp.open(TESTFN) while 1: read_data = zipopen1.read(randint(1, 1024)) if not read_data: break zipdata1.append(read_data) testdata = ''.join(zipdata1) self.assertEqual(len(testdata), len(self.data)) self.assertEqual(testdata, self.data) zipfp.close() def testRandomOpenStored(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.zipRandomOpenTest(f, zipfile.ZIP_STORED) class TestsWithMultipleOpens(unittest.TestCase): def setUp(self): # Create the ZIP archive zipfp = zipfile.ZipFile(TESTFN2, "w", zipfile.ZIP_DEFLATED) zipfp.writestr('ones', '1'*FIXEDTEST_SIZE) zipfp.writestr('twos', '2'*FIXEDTEST_SIZE) zipfp.close() def testSameFile(self): # Verify that (when the ZipFile is in control of creating file objects) # multiple open() calls can be made without interfering with each other. zipf = zipfile.ZipFile(TESTFN2, mode="r") zopen1 = zipf.open('ones') zopen2 = zipf.open('ones') data1 = zopen1.read(500) data2 = zopen2.read(500) data1 += zopen1.read(500) data2 += zopen2.read(500) self.assertEqual(data1, data2) zipf.close() def testDifferentFile(self): # Verify that (when the ZipFile is in control of creating file objects) # multiple open() calls can be made without interfering with each other. zipf = zipfile.ZipFile(TESTFN2, mode="r") zopen1 = zipf.open('ones') zopen2 = zipf.open('twos') data1 = zopen1.read(500) data2 = zopen2.read(500) data1 += zopen1.read(500) data2 += zopen2.read(500) self.assertEqual(data1, '1'*FIXEDTEST_SIZE) self.assertEqual(data2, '2'*FIXEDTEST_SIZE) zipf.close() def testInterleaved(self): # Verify that (when the ZipFile is in control of creating file objects) # multiple open() calls can be made without interfering with each other. zipf = zipfile.ZipFile(TESTFN2, mode="r") zopen1 = zipf.open('ones') data1 = zopen1.read(500) zopen2 = zipf.open('twos') data2 = zopen2.read(500) data1 += zopen1.read(500) data2 += zopen2.read(500) self.assertEqual(data1, '1'*FIXEDTEST_SIZE) self.assertEqual(data2, '2'*FIXEDTEST_SIZE) zipf.close() def tearDown(self): os.remove(TESTFN2) class TestWithDirectory(unittest.TestCase): def setUp(self): os.mkdir(TESTFN2) def testExtractDir(self): zipf = zipfile.ZipFile(findfile("zipdir.zip")) zipf.extractall(TESTFN2) self.assertTrue(os.path.isdir(os.path.join(TESTFN2, "a"))) self.assertTrue(os.path.isdir(os.path.join(TESTFN2, "a", "b"))) self.assertTrue(os.path.exists(os.path.join(TESTFN2, "a", "b", "c"))) def testStoreDir(self): os.mkdir(os.path.join(TESTFN2, "x")) zipf = zipfile.ZipFile(TESTFN, "w") zipf.write(os.path.join(TESTFN2, "x"), "x") self.assertTrue(zipf.filelist[0].filename.endswith("x/")) def tearDown(self): shutil.rmtree(TESTFN2) if os.path.exists(TESTFN): os.remove(TESTFN) class UniversalNewlineTests(unittest.TestCase): def setUp(self): self.line_gen = ["Test of zipfile line %d." % i for i in xrange(FIXEDTEST_SIZE)] self.seps = ('\r', '\r\n', '\n') self.arcdata, self.arcfiles = {}, {} for n, s in enumerate(self.seps): self.arcdata[s] = s.join(self.line_gen) + s self.arcfiles[s] = '%s-%d' % (TESTFN, n) open(self.arcfiles[s], "wb").write(self.arcdata[s]) def makeTestArchive(self, f, compression): # Create the ZIP archive zipfp = zipfile.ZipFile(f, "w", compression) for fn in self.arcfiles.values(): zipfp.write(fn, fn) zipfp.close() def readTest(self, f, compression): self.makeTestArchive(f, compression) # Read the ZIP archive zipfp = zipfile.ZipFile(f, "r") for sep, fn in self.arcfiles.items(): zipdata = zipfp.open(fn, "rU").read() self.assertEqual(self.arcdata[sep], zipdata) zipfp.close() def readlineTest(self, f, compression): self.makeTestArchive(f, compression) # Read the ZIP archive zipfp = zipfile.ZipFile(f, "r") for sep, fn in self.arcfiles.items(): zipopen = zipfp.open(fn, "rU") for line in self.line_gen: linedata = zipopen.readline() self.assertEqual(linedata, line + '\n') zipfp.close() def readlinesTest(self, f, compression): self.makeTestArchive(f, compression) # Read the ZIP archive zipfp = zipfile.ZipFile(f, "r") for sep, fn in self.arcfiles.items(): ziplines = zipfp.open(fn, "rU").readlines() for line, zipline in zip(self.line_gen, ziplines): self.assertEqual(zipline, line + '\n') zipfp.close() def iterlinesTest(self, f, compression): self.makeTestArchive(f, compression) # Read the ZIP archive zipfp = zipfile.ZipFile(f, "r") for sep, fn in self.arcfiles.items(): for line, zipline in zip(self.line_gen, zipfp.open(fn, "rU")): self.assertEqual(zipline, line + '\n') zipfp.close() def testReadStored(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.readTest(f, zipfile.ZIP_STORED) def testReadlineStored(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.readlineTest(f, zipfile.ZIP_STORED) def testReadlinesStored(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.readlinesTest(f, zipfile.ZIP_STORED) def testIterlinesStored(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.iterlinesTest(f, zipfile.ZIP_STORED) if zlib: def testReadDeflated(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.readTest(f, zipfile.ZIP_DEFLATED) def testReadlineDeflated(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.readlineTest(f, zipfile.ZIP_DEFLATED) def testReadlinesDeflated(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.readlinesTest(f, zipfile.ZIP_DEFLATED) def testIterlinesDeflated(self): for f in (TESTFN2, TemporaryFile(), StringIO()): self.iterlinesTest(f, zipfile.ZIP_DEFLATED) def tearDown(self): for sep, fn in self.arcfiles.items(): os.remove(fn) support.unlink(TESTFN) support.unlink(TESTFN2) def test_main(): run_unittest(TestsWithSourceFile, TestZip64InSmallFiles, OtherTests, PyZipFileTests, DecryptionTests, TestsWithMultipleOpens, TestWithDirectory, UniversalNewlineTests, TestsWithRandomBinaryFiles) if __name__ == "__main__": test_main()
"""Substitute for unittest If a class inherits Tester, calling its method run() on an instance runs alls the methods starting with "test_". Before running the method, executes method setUp() if present. If the test failed, print the exception, and the line in the script where the exception happened. """ import re import sys import time class _AssertRaisesBaseContext(object): def __init__(self, expected, test_case, callable_obj=None, expected_regex=None): self.expected = expected self.test_case = test_case if callable_obj is not None: try: self.obj_name = callable_obj.__name__ except AttributeError: self.obj_name = str(callable_obj) else: self.obj_name = None if isinstance(expected_regex, (bytes, str)): expected_regex = re.compile(expected_regex) self.expected_regex = expected_regex self.msg = None def _raiseFailure(self, msg): raise Exception(msg) def handle(self, name, callable_obj, args, kwargs): """ If callable_obj is None, assertRaises/Warns is being used as a context manager, so check for a 'msg' kwarg and return self. If callable_obj is not None, call it passing args and kwargs. """ if callable_obj is None: self.msg = kwargs.pop('msg', None) return self with self: callable_obj(*args, **kwargs) class _AssertRaisesContext(_AssertRaisesBaseContext): """A context manager used to implement TestCase.assertRaises* methods.""" def __enter__(self): return self def __exit__(self, exc_type, exc_value, tb): if exc_type is None: try: exc_name = self.expected.__name__ except AttributeError: exc_name = str(self.expected) if self.obj_name: self._raiseFailure("{} not raised by {}".format(exc_name, self.obj_name)) else: self._raiseFailure("{} not raised".format(exc_name)) if not issubclass(exc_type, self.expected): # let unexpected exceptions pass through return False # store exception, without traceback, for later retrieval self.exception = exc_value.with_traceback(None) if self.expected_regex is None: return True expected_regex = self.expected_regex if not expected_regex.search(str(exc_value)): self._raiseFailure('"{}" does not match "{}"'.format( expected_regex.pattern, str(exc_value))) return True class Tester: def assertEqual(self, result, expected, msg=None): if result != expected: if msg is not None: raise AssertionError(msg) raise AssertionError('assertEqual, expected %s, got %s' %(expected, result)) def assertNotEqual(self, result, expected): if result == expected: raise AssertionError('assertNotEqual, expected %s, got %s' %(expected, result)) def assertRaises(self, excClass, callableObj=None, *args, **kwargs): context = _AssertRaisesContext(excClass, self, callableObj) return context.handle('assertRaises', callableObj, args, kwargs) def assertIs(self, a, b): if not a is b: raise AssertionError('%s is %s should be true' %(a,b)) def assertIsInstance(self, obj, klass): if not isinstance(obj, klass): raise AssertionError('%s is not an instance of %s' %(obj, klass)) def assertIsNot(self, a, b): if a is b: raise AssertionError('%s is %s should be false' %(a,b)) def assertIn(self, item, container): if not item in container: raise AssertionError('%s should be in %s' %(item, container)) def assertNotIn(self, item, container): if item in container: raise AssertionError('%s should not be in %s' %(item, container)) def assertTrue(self, item, msg=None): if item is not True: raise AssertionError(msg or '%s is not True' %item) def assertFalse(self, item, msg=None): if item is not False: raise AssertionError(msg or '%s is not False' %item) def fail(self, *args): raise Exception(str(args)) def run(self, *methods): if not methods: methods = [m for m in dir(self) if m.startswith('test_') and callable(getattr(self, m))] report = TestReport(type(self).__name__) for method in methods: if method.startswith('test'): f = getattr(self, method) lineno = f.__code__.co_firstlineno if hasattr(self, 'setUp'): self.setUp() t0 = time.time() try: f() report.add(method[5:], lineno, round((time.time()-t0)*1000), 'ok') except SkipTest as exc: print('skip test', exc) report.add(method[5:], lineno, round((time.time()-t0)*1000), 'skipped') except Exception as exc: errmsg = str(exc) errline = '<nc>' tb = sys.exc_info()[2] try: fname = tb.tb_frame.f_code.co_filename except: fname = '<nc>' while True: if fname == type(self).__module__: errline = tb.tb_lineno break tb = tb.tb_next if tb is None: break fname = tb.tb_frame.f_code.co_filename report.add(method[5:], lineno, round((time.time()-t0)*1000), 'fail', 'line {}\n{}'.format(errline, errmsg)) return report class MethodReport: """Stores the results on a method : line number, execution time, status (one of "ok", "skipped", "error") and optional additional information""" def __init__(self, lineno, time, status, args): self.lineno = lineno self.time = time self.status = status self.args = args class TestReport: """Used to store the results of tests on a class""" def __init__(self, class_name): self.class_name = class_name self.records = {} def add(self, method, lineno, time, status, *args): self.records[method] = MethodReport(lineno, time, status, args) def format_html(self, name="test_report"): """Returns the report as an HTML table""" html = ('<table id="%s" class="report">\n' %name + '<tr class="header"><th>Test</th><th>Line</th><th>Time (ms)</th>'+ '<th>Status</th><th>Comments</th></tr>\n') methods = list(self.records.keys()) methods.sort() for method in methods: value = self.records[method] html += ('<tr class="method"><td>{0}</td>'+ '<td class="number">{1.lineno}</td>'+ '<td class="number">{1.time}</td>'+ '<td class="report_cell">{1.status}</td>').format(method, value) if value.args: html += '<td><pre>{}</pre></td>'.format(value.args[0]) else: html += '<td>&nbsp;</td>' html += '</tr>\n' return html + '</table>' def __str__(self): res = 'Class %s\n' %self.class_name methods = list(self.records.keys()) methods.sort() for method in methods: report = self.records[method] res += '{:15} {1.status} {1.lineno}\n {1.args[0]}'.format(method, report) return res TestCase = Tester # unittest interface tester = Tester() assertRaises = tester.assertRaises class SkipTest(Exception): pass def skip(msg): def decorator(f): def g(*args, **kw): print('raise skip test') raise SkipTest(msg) return g return decorator def skipUnless(condition, msg): if condition: def decorator(f): return f else: def decorator(f): def g(*args, **kw): print('raise skip test') raise SkipTest(msg) return g return decorator class Support: def cpython_only(self, func): def f(*args, **kw): raise SkipTest('CPython test only') return f def requires_IEEE_754(self, func): return func support = Support() if __name__=='__main__': t = 1, 2 assertRaises(TypeError, t, '__setitem__', 0, 1)
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. from __future__ import unicode_literals, division, print_function import os import tempfile import shutil from pymatgen.util.testing import PymatgenTest from monty.functools import lazy_property from pymatgen.core.lattice import Lattice from pymatgen.core.structure import Structure from pymatgen.io.abinit import * from pymatgen.io.abinit.flows import * from pymatgen.io.abinit.works import * from pymatgen.io.abinit.tasks import * from pymatgen.io.abinit.pseudos import Pseudo _test_dir = os.path.join(os.path.dirname(__file__), "..", "..", "..", "..", 'test_files', "abinit") def ref_file(filename): return os.path.join(_test_dir, filename) class FakeAbinitInput(object): """Emulate an Abinit input.""" @lazy_property def pseudos(self): return [Pseudo.as_pseudo(ref_file("14si.pspnc"))] @lazy_property def structure(self): coords = [] coords.append([0, 0, 0]) coords.append([0.75, 0.5, 0.75]) lattice = Lattice([[3.8401979337, 0.00, 0.00], [1.9200989668, 3.3257101909, 0.00], [0.00, -2.2171384943, 3.1355090603]]) return Structure(lattice, ["Si", "Si"], coords) def get(self, key, default=None): """The real AbinitInput is a dict-like object.""" if default is not None: return default return key class FlowUnitTest(PymatgenTest): """Provides helper function for testing Abinit flows.""" MANAGER = """\ policy: autoparal: 1 qadapters: - &batch priority: 1 queue: qtype: slurm qname: Oban qparams: mail_user: nobody@nowhere limits: timelimit: 0:20:00 min_cores: 4 max_cores: 12 #condition: {"$eq": {omp_threads: 2}} hardware: num_nodes: 10 sockets_per_node: 1 cores_per_socket: 2 mem_per_node: 4 Gb job: modules: - intel/compilerpro/13.0.1.117 - fftw3/intel/3.3 shell_env: PATH: /home/user/tmp_intel13/src/98_main/:/home/user//NAPS/intel13/bin:$PATH LD_LIBRARY_PATH: /home/user/NAPS/intel13/lib:$LD_LIBRARY_PATH mpi_runner: mpirun # Connection to the MongoDb database (optional) db_connector: database: abinit collection: test #host: 0.0.0.0 #port: 8080 #user: gmatteo #password: helloworld batch_adapter: *batch """ def setUp(self): """Initialization phase.""" super(FlowUnitTest, self).setUp() # Temporary directory for the flow. self.workdir = tempfile.mkdtemp() # Create the TaskManager. self.manager = TaskManager.from_string(self.MANAGER) # Fake input file self.fake_input = FakeAbinitInput() def tearDown(self): """Delete workdir""" shutil.rmtree(self.workdir) class FlowTest(FlowUnitTest): def test_base(self): """Testing Flow...""" aequal, atrue, afalse = self.assertEqual, self.assertTrue, self.assertFalse flow = Flow(workdir=self.workdir, manager=self.manager) # Build a work with a task work = flow.register_task(self.fake_input) assert work.is_work task0_w0 = work[0] atrue(task0_w0.is_task) print(task0_w0.status.colored) atrue(len(flow) == 1) aequal(flow.num_tasks, 1) atrue(flow.has_db) #print(task0_w0.input_structure) print(task0_w0.make_input) # Task history assert len(task0_w0.history) == 0 task0_w0.history.info("Hello %s", "world") assert len(task0_w0.history) == 1 print(task0_w0.history) record = task0_w0.history.pop() print(record, repr(record)) assert record.get_message(asctime=False) == "Hello world" assert len(task0_w0.history) == 0 assert flow.select_tasks(nids=task0_w0.node_id)[0] == task0_w0 assert flow.select_tasks(wslice=slice(0,1,1)) == [task0_w0] # Build a workflow containing two tasks depending on task0_w0 work = Work() atrue(work.is_work) work.register(self.fake_input) work.register(self.fake_input) aequal(len(work), 2) flow.register_work(work, deps={task0_w0: "WFK"}) atrue(flow.is_flow) aequal(len(flow), 2) # Add another work without dependencies. task0_w2 = flow.register_task(self.fake_input)[0] atrue(len(flow) == 3) afalse(flow.is_work) # Allocate internal tables flow.allocate() # Check dependecies. atrue(flow[1].depends_on(task0_w0)) atrue(flow[1][0].depends_on(task0_w0)) atrue(flow[1][0] in task0_w0.get_children()) atrue(task0_w0 in flow[1][0].get_parents()) afalse(flow[2][0].depends_on(task0_w0)) afalse(flow[2][0] in task0_w0.get_children()) afalse(task0_w0 in flow[2][0].get_parents()) aequal(flow[1].pos, 1) aequal(flow[1][0].pos, (1, 0)) aequal(flow[2][0].pos, (2, 0)) afalse(flow.all_ok) aequal(flow.num_tasks, 4) aequal(flow.ncores_used, 0) # API for iterations aequal(len(list(flow.iflat_tasks(status="Initialized"))), sum(len(work) for work in flow)) aequal(list(flow.iflat_tasks(nids=task0_w0.node_id)), [task0_w0]) aequal([task0_w0], flow.tasks_from_nids(task0_w0.node_id)) aequal([(0, 0)], flow.wti_from_nids(task0_w0.node_id)) aequal([task0_w2], flow.tasks_from_nids([task0_w2.node_id])) aequal([(2, 0)], flow.wti_from_nids([task0_w2.node_id])) # Check for deadlocks flow.check_dependencies() # Save the flow in pickle format. flow.build_and_pickle_dump() # Find the pickle file in workdir and recreate the flow. same_flow = Flow.pickle_load(self.workdir) aequal(same_flow, flow) # to/from string # FIXME This does not work with py3k #s = flow.pickle_dumps(protocol=0) #same_flow = Flow.pickle_loads(s) #aequal(same_flow, flow) self.assertMSONable(flow) flow.show_info() flow.show_summary() flow.show_inputs() flow.show_inputs(varnames="znucl") # Test show_status flow.show_status() flow.show_event_handlers() def test_workdir(self): """Testing if one can use workdir=None in flow.__init__ and then flow.allocate(workdir).""" flow = Flow(workdir=None, manager=self.manager) flow.register_task(self.fake_input) #flow.register_work(work) work = Work() work.register_scf_task(self.fake_input) flow.register_work(work) # If flow.workdir is None, we should used flow.allocate(workdir) with self.assertRaises(RuntimeError): flow.allocate() tmpdir = tempfile.mkdtemp() flow.allocate(workdir=tmpdir) print(flow) assert len(flow) == 2 flow.build() for i, work in enumerate(flow): assert work.workdir == os.path.join(tmpdir, "w%d" % i) for t, task in enumerate(work): assert task.workdir == os.path.join(work.workdir, "t%d" % t) class TestFlowInSpectatorMode(FlowUnitTest): def test_spectator(self): flow = Flow(workdir=self.workdir, manager=self.manager) work0 = Work() work0.register_scf_task(self.fake_input) work0.register_scf_task(self.fake_input) work1 = Work() work1.register_scf_task(self.fake_input) flow.register_work(work0) flow.register_work(work1) flow.disconnect_signals() flow.disconnect_signals() flow.connect_signals() flow.connect_signals() for mode in [False, True]: flow.set_spectator_mode(mode=mode) assert flow.in_spectator_mode == mode for node in flow.iflat_nodes(): assert node.in_spectator_mode == mode assert len(list(flow.iflat_nodes())) == 1 + len(flow.works) + sum(len(work) for work in flow) assert flow.node_from_nid(flow.node_id) == flow flow.set_spectator_mode(mode=False) flow.build_and_pickle_dump() # picke load always returns a flow in spectator mode. flow = Flow.pickle_load(flow.workdir) assert flow.in_spectator_mode #with self.assertRaises(flow.SpectatorError): flow.pickle_dump() #with self.assertRaises(flow.SpectatorError): flow.make_scheduler().start() work = flow[0] assert work.send_signal(work.S_OK) is None #with self.assertRaises(work.SpectatorError): work.on_ok() #with self.assertRaises(work.SpectatorError): work.on_all_ok() task = work[0] assert task.send_signal(task.S_OK) is None #with self.assertRaises(task.SpectatorError): task._on_done() #with self.assertRaises(task.SpectatorError): task.on_ok() #with self.assertRaises(task.SpectatorError): task._on_ok() class TestBatchLauncher(FlowUnitTest): def test_batchlauncher(self): """Testing BatchLauncher methods.""" # Create the TaskManager. manager = TaskManager.from_string(self.MANAGER) print("batch_adapter", manager.batch_adapter) assert manager.batch_adapter is not None def build_flow_with_name(name): """Build a flow with workdir None and the given name.""" flow = Flow(workdir=None, manager=self.manager) flow.set_name(name) flow.register_task(self.fake_input) work = Work() work.register_scf_task(self.fake_input) flow.register_work(work) return flow from pymatgen.io.abinit.launcher import BatchLauncher tmpdir = tempfile.mkdtemp() batch = BatchLauncher(workdir=tmpdir, manager=manager) print(batch) flow0 = build_flow_with_name("flow0") flow1 = build_flow_with_name("flow1") flow2_same_name = build_flow_with_name("flow1") batch.add_flow(flow0) # Cannot add the same flow twice. with self.assertRaises(batch.Error): batch.add_flow(flow0) batch.add_flow(flow1) # Cannot add two flows with the same name. with self.assertRaises(batch.Error): batch.add_flow(flow2_same_name) batch.submit(dry_run=True) for i, flow in enumerate([flow0, flow1]): assert flow.workdir == os.path.join(batch.workdir, "flow%d" % i) batch.pickle_dump() batch_from_pickle = BatchLauncher.pickle_load(batch.workdir) assert all(f1 == f2 for f1, f2 in zip(batch.flows, batch_from_pickle.flows)) if __name__ == '__main__': import unittest unittest.main()
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Serves content for "script" handlers using the Java runtime.""" import os import os.path import sys import tempfile import threading import google from google.appengine.api import appinfo from google.appengine.tools.devappserver2 import http_runtime from google.appengine.tools.devappserver2 import instance from google.appengine.tools.devappserver2 import java_application from google.appengine.tools.devappserver2 import util # TODO: figure out what's needed to react to file changes class JavaRuntimeInstanceFactory(instance.InstanceFactory): """A factory that creates new Java runtime Instances.""" START_URL_MAP = appinfo.URLMap( url='/_ah/start', script='_java_app', login='admin') WARMUP_URL_MAP = appinfo.URLMap( url='/_ah/warmup', script='_java_app', login='admin') FILE_CHANGE_INSTANCE_RESTART_POLICY = instance.ALWAYS def __init__(self, request_data, runtime_config_getter, module_configuration): """Initializer for JavaRuntimeInstanceFactory. Args: request_data: A wsgi_request_info.WSGIRequestInfo that will be provided with request information for use by API stubs. runtime_config_getter: A function that can be called without arguments and returns the runtime_config_pb2.RuntimeConfig containing the configuration for the runtime. module_configuration: An application_configuration.ModuleConfiguration instance representing the configuration of the module that owns the runtime. """ super(JavaRuntimeInstanceFactory, self).__init__(request_data, 1) self._runtime_config_getter = runtime_config_getter self._module_configuration = module_configuration self._application_lock = threading.Lock() self._java_application = java_application.JavaApplication( self._module_configuration) self._for_jetty9 = (module_configuration.runtime == 'vm' or util.is_env_flex(module_configuration.env)) self._java_command = self._make_java_command() def _make_java_command(self): # We should be in .../google/appengine/tools/devappserver2/java_runtime.py # and we want to find .../google/appengine/tools and thence # .../google/appengine/tools/java/lib java_home = os.environ.get('JAVA_HOME') if java_home and os.path.exists(java_home): java_bin = os.path.join(java_home, 'bin/java') else: java_bin = 'java' java_dir = os.environ.get('APP_ENGINE_JAVA_PATH', None) tools_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) if not java_dir or not os.path.exists(java_dir): java_dir = os.path.join(tools_dir, 'java') java_lib_dir = os.path.join(java_dir, 'lib') assert os.path.isdir(java_lib_dir), java_lib_dir class_path = os.path.join(java_lib_dir, 'appengine-tools-api.jar') assert os.path.isfile(class_path), class_path jdk_overrides_jar = os.path.join(java_lib_dir, 'override', 'appengine-dev-jdk-overrides.jar') assert os.path.isfile(jdk_overrides_jar), jdk_overrides_jar if self._for_jetty9: jetty_home = os.environ.get('APP_ENGINE_JETTY_HOME', None) jetty_base = os.environ.get('APP_ENGINE_JETTY_BASE', None) if not jetty_home: jetty_home = os.path.join(java_lib_dir, 'java-managed-vm', 'appengine-java-vmruntime') if not jetty_base: jetty_base = os.path.join(java_lib_dir, 'jetty-base-sdk') args = [ java_bin, ('-Dgcloud.java.application=%s' % self._module_configuration.application_root), '-Djetty.home=%s' % jetty_home, '-Djetty.base=%s' % jetty_base, ] args.extend(self._runtime_config_getter().java_config.jvm_args) args.append('-jar') args.append('%s/start.jar' % jetty_home) else: args = [ java_bin, '-cp', class_path, '-Dappengine.sdk.root=' + java_dir, '-Dappengine.runtime=' + self._module_configuration.runtime, '-Xbootclasspath/p:' + jdk_overrides_jar, ] if self._module_configuration.runtime.startswith('java8'): args.append('-Duse_jetty9_runtime=true') if sys.platform == 'darwin': args.append('-XstartOnFirstThread') args.extend(self._runtime_config_getter().java_config.jvm_args) args.append( 'com.google.appengine.tools.development.devappserver2.' 'StandaloneInstance') return args def get_restart_directories(self): """Returns a list of directories where changes trigger a restart. Returns: A list of directories where changes trigger a restart. """ # TODO: implement return [] def files_changed(self): """Called when a file relevant to the factory *might* have changed.""" # TODO: implement def configuration_changed(self, config_changes): """Called when the configuration of the module has changed. Args: config_changes: A set containing the changes that occured. See the *_CHANGED constants in the application_configuration module. """ # TODO: implement def new_instance(self, instance_id, expect_ready_request=False): """Create and return a new Instance. Args: instance_id: A string or integer representing the unique (per module) id of the instance. expect_ready_request: If True then the instance will be sent a special request (i.e. /_ah/warmup or /_ah/start) before it can handle external requests. Returns: The newly created instance.Instance. """ def instance_config_getter(): runtime_config = self._runtime_config_getter() runtime_config.instance_id = str(instance_id) return runtime_config def extra_args_getter(port): return 'jetty.port=%s' % port env = self._java_application.get_environment() runtime_config = instance_config_getter() for env_entry in runtime_config.environ: env[env_entry.key] = env_entry.value if self._for_jetty9: start_process_flavor = http_runtime.START_PROCESS_REVERSE_NO_FILE env['APP_ENGINE_LOG_CONFIG_PATTERN'] = ( os.path.join(tempfile.mkdtemp(suffix='gae'), 'log.%g')) else: start_process_flavor = http_runtime.START_PROCESS_FILE with self._application_lock: proxy = http_runtime.HttpRuntimeProxy( self._java_command, instance_config_getter, self._module_configuration, env=env, start_process_flavor=start_process_flavor, extra_args_getter=extra_args_getter) return instance.Instance(self.request_data, instance_id, proxy, self.max_concurrent_requests, self.max_background_threads, expect_ready_request)
# -*- coding: utf-8 -*- """ Created on Tue Oct 6 15:34:12 2015 @author: Numan Laanait -- [email protected] """ from __future__ import division, print_function, absolute_import from skimage.feature import match_descriptors, register_translation from skimage.measure import ransac from skimage.transform import warp, SimilarityTransform import warnings import h5py import numpy as np import skimage.feature import multiprocessing as mp class ImageTransformation(object): #TODO: io operations and merging the 2 classes -Oleg # Oleg: reading, shaping data from h5. # Figure out storage of features and descriptors as well as reading. # Merge all methods from FeatureExtraction and GeometricTransform. # Don't merge ancillary functions and transforms. pass # TODO: Docstrings following numpy standard. #### Functions def pickle_keypoints(keypoints): """ Function to pickle cv2.sift keypoint objects """ kpArray = np.array([]) for point in keypoints: kpArray = np.append(kpArray, [point.pt[1], point.pt[0]]) kpArray = np.reshape(kpArray, (int(kpArray.size / 2), 2)) return kpArray # Class to do feature extraction. This is a wrapper on scikit-image and openCV feature extraction detectors. # TODO: Add support for opencV or implement sift. # TODO: Add io operations for extracted features. # TODO: Memory checking, since some of the features are quite large. class FeatureExtractorParallel(object): """ This is an Object used to contain a data set and has methods to perform feature extraction on the data set that are detector based. Begin by loading a detector for features and a computer vision library. Parameters ---------- detector_name : (string) name of detector. lib : (string) computer vision library to use (opencv or skimage) The following can be used for: lib = opencv: SIFT, ORB, SURF lib = skimage: ORB, BRIEF, CENSURE """ def __init__(self, detector_name, lib): self.data = [] self.lib = lib try: if self.lib == 'opencv': pass # detector = cv2.__getattribute__(detector_name) elif self.lib == 'skimage': self.detector = skimage.feature.__getattribute__(detector_name) except AttributeError: print('Error: The Library does not contain the specified detector') def clearData(self): del self.data self.data = [] def loadData(self, dataset): """ This is a Method that loads h5 Dataset to be corrected. Parameters ---------- dataset : h5py.Dataset Dataset to be corrected """ if not isinstance(dataset, h5py.Dataset): warnings.warn('Error: Data must be an h5 Dataset object') else: self.data = dataset dim = int(np.sqrt(self.data.shape[-1])) self.data = self.data.reshape(-1, dim, dim) def getData(self): """ This is a Method that returns the loaded h5 Dataset. """ return self.data def getFeatures(self, **kwargs): """ This is a Method that returns features (keypoints and descriptors) that are obtained by using the FeatureExtractor.Detector object. Parameters ---------- processors : int, optional Number of processors to use, default = 1. mask : boolean, optional, default False. Whether to use Returns ------- keypts : keypoints descs : descriptors """ detector = self.detector dset = self.data lib = self.lib processes = kwargs.get('processors', 1) mask = kwargs.get('mask', False) origin = kwargs.get('origin', [0, 0]) winSize = kwargs.get('window_size', 0) if mask: def mask_func(x, winSize): x[origin[0] - winSize / 2: origin[0] + winSize / 2, origin[1] - winSize / 2: origin[1] + winSize / 2] = 2 x = x - 1 return x mask_ind = np.mask_indices(dset.shape[-1], mask_func, winSize) self.data = np.array([imp[mask_ind].reshape(winSize, winSize) for imp in dset]) # detect and compute keypoints def detect(image): if lib == 'opencv': image = (image - image.mean()) / image.std() image = image.astype('uint8') k_obj, d_obj = detector.detectAndCompute(image, None) keypts, descs = pickle_keypoints(k_obj), pickle_keypoints(d_obj) elif lib == 'skimage': imp = (image - image.mean()) / np.std(image) imp[imp < 0] = 0 imp.astype('float32') detector.detect_and_extract(imp) keypts, descs = detector.keypoints, detector.descriptors return keypts, descs # start pool of workers print('launching %i kernels...' % (processes)) pool = mp.Pool(processes) tasks = [(imp) for imp in self.data] chunk = int(self.data.shape[0] / processes) jobs = pool.imap(detect, tasks, chunksize=chunk) # get keypoints and descriptors results = [] print('Extracting features...') try: for j in jobs: results.append(j) except ValueError: warnings.warn('ValueError something about 2d-image. Probably some of the detector input params are wrong.') keypts = [itm[0].astype('int') for itm in results] desc = [itm[1] for itm in results] # close the pool print('Closing down the kernels... \n') pool.close() return keypts, desc class FeatureExtractorSerial(object): """ This is an Object used to contain a data set and has methods to perform feature extraction on the data set that are detector based. Begin by loading a detector for features and a computer vision library. Parameters ---------- detector_name : (string) name of detector. lib : (string) computer vision library to use (opencv or skimage) The following can be used for: lib = opencv: SIFT, ORB, SURF lib = skimage: ORB, BRIEF, CENSURE """ def __init__(self, detector_name, lib): self.data = [] self.lib = lib try: if self.lib == 'opencv': pass # detector = cv2.__getattribute__(detector_name) elif self.lib == 'skimage': self.detector = skimage.feature.__getattribute__(detector_name) except AttributeError: print('Error: The Library does not contain the specified detector') def clearData(self): del self.data self.data = [] def loadData(self, dataset): """ This is a Method that loads h5 Dataset to be corrected. Parameters ---------- dataset : h5py.Dataset """ if not isinstance(dataset, h5py.Dataset): warnings.warn('Error: Data must be an h5 Dataset object') else: self.data = dataset dim = int(np.sqrt(self.data.shape[-1])) self.data = self.data.reshape(-1, dim, dim) def getData(self): """ This is a Method that returns the loaded h5 Dataset. """ return self.data def getFeatures(self, **kwargs): """ This is a Method that returns features (keypoints and descriptors) that are obtained by using the FeatureExtractor.Detector object. Parameters ---------- mask : boolean, optional Whether to use, default False. Returns ------- keypts : descriptors descs : keypoints """ detector = self.detector dset = self.data lib = self.lib mask = kwargs.get('mask', False) origin = kwargs.get('origin', [0, 0]) winSize = kwargs.get('window_size', 0) if mask: def mask_func(x, winSize): x[origin[0] - winSize / 2: origin[0] + winSize / 2, origin[1] - winSize / 2: origin[1] + winSize / 2] = 2 x = x - 1 return x mask_ind = np.mask_indices(dset.shape[-1], mask_func, winSize) self.data = np.array([imp[mask_ind].reshape(winSize, winSize) for imp in dset]) # detect and compute keypoints def detect(image): if lib == 'opencv': image = (image - image.mean()) / image.std() image = image.astype('uint8') k_obj, d_obj = detector.detectAndCompute(image, None) keypts, descs = pickle_keypoints(k_obj), pickle_keypoints(d_obj) elif lib == 'skimage': imp = (image - image.mean()) / np.std(image) imp[imp < 0] = 0 imp.astype('float32') detector.detect_and_extract(imp) keypts, descs = detector.keypoints, detector.descriptors return keypts, descs # start pool of workers results = [detect(imp) for imp in self.data] # get keypoints and descriptors keypts = [itm[0].astype('int') for itm in results] desc = [itm[1] for itm in results] return keypts, desc #TODO: Docstrings following numpy standard. # Functions def euclidMatch(Matches, keypts1, keypts2, misalign): """ Function that thresholds the matches, found from a comparison of their descriptors, by the maximum expected misalignment. """ filteredMatches = np.array([]) deltaX =(keypts1[Matches[:,0],:][:,0]-keypts2[Matches[:,1],:][:,0])**2 deltaY =(keypts1[Matches[:,0],:][:,1]-keypts2[Matches[:,1],:][:,1])**2 dist = np.apply_along_axis(np.sqrt, 0, deltaX + deltaY) filteredMatches = np.where(dist[:] < misalign, True, False) return filteredMatches # function is taken as is from scikit-image. def _center_and_normalize_points(points): """ Center and normalize image points. The points are transformed in a two-step procedure that is expressed as a transformation matrix. The matrix of the resulting points is usually better conditioned than the matrix of the original points. Center the image points, such that the new coordinate system has its origin at the centroid of the image points. Normalize the image points, such that the mean distance from the points to the origin of the coordinate system is sqrt(2). Parameters ---------- points : (N, 2) array The coordinates of the image points. Returns ------- matrix : (3, 3) array The transformation matrix to obtain the new points. new_points : (N, 2) array The transformed image points. """ centroid = np.mean(points, axis=0) rms = np.sqrt(np.sum((points - centroid) ** 2) / points.shape[0]) norm_factor = np.sqrt(2) / rms matrix = np.array([[norm_factor, 0, -norm_factor * centroid[0]], [0, norm_factor, -norm_factor * centroid[1]], [0, 0, 1]]) pointsh = np.row_stack([points.T, np.ones((points.shape[0]),)]) new_pointsh = np.dot(matrix, pointsh).T new_points = new_pointsh[:, :2] new_points[:, 0] /= new_pointsh[:, 2] new_points[:, 1] /= new_pointsh[:, 2] return matrix, new_points class TranslationTransform(object): """ 2D translation using homogeneous representation: The transformation matrix is: [[1 1 tX] [1 1 tY] [0 0 1]] X: translation of x-axis. Y: translation of y-axis. Parameters ---------- translation : tuple (tX, tY) Attributes ---------- params : (3, 3) array Homogeneous transformation matrix. """ def __init__(self, matrix = None, translation = None): params = translation if params and matrix is not None: raise ValueError("You cannot specify the transformation matrix and" " the implicit parameters at the same time.") elif matrix is not None: if matrix.shape != (3, 3): raise ValueError("Invalid shape of transformation matrix.") self.params = matrix elif params: if translation is None: translation = (0., 0.) self.params = np.array([ [1., 0., 0.], [0., 1., 0.], [0., 0., 1.] ], dtype = 'float32') self.params[0:2, 2] = translation else: # default to an identity transform self.params = np.eye(3) def estimate(self, src, dst): #evaluate transformation matrix from src, dst # coordinates try: xs = src[:, 0][0] ys = src[:, 1][1] xd = dst[:, 0][0] yd = dst[:, 1][1] S = np.array([[1., 0., xd-xs], [0., 1., yd-ys], [0., 0., 1.] ],dtype = 'float32') self.params = S return True except IndexError: return False @property def _inv_matrix(self): inv_matrix = self.params inv_matrix[0:2,2] = - inv_matrix[0:2,2] return inv_matrix def _apply_mat(self, coords, matrix): coords = np.array(coords, copy=False, ndmin=2) x, y = np.transpose(coords) src = np.vstack((x, y, np.ones_like(x))) dst = np.dot(src.transpose(), matrix.transpose()) # rescale to homogeneous coordinates dst[:, 0] /= dst[:, 2] dst[:, 1] /= dst[:, 2] return dst[:, :2] def __call__(self, coords): return self._apply_mat(coords, self.params) def inverse(self, coords): """ Apply inverse transformation. Parameters ---------- coords : (N, 2) array Source coordinates. Returns ------- coords : (N, 2) array Transformed coordinates. """ return self._apply_mat(coords, self._inv_matrix) def residuals(self, src, dst): """ Determine residuals of transformed destination coordinates. For each transformed source coordinate the euclidean distance to the respective destination coordinate is determined. Parameters ---------- src : (N, 2) array Source coordinates. dst : (N, 2) array Destination coordinates. Returns ------- residuals : (N, ) array Residual for coordinate. """ return np.sqrt(np.sum((self(src) - dst)**2, axis=1)) @property def translation(self): return self.params[0:2, 2] class RigidTransform(object): """ 2D translation using homogeneous representation: The transformation matrix is: [[cos(theta) -sin(theta) tX] [sin(theta) cos(theta) tY] [0 0 1]] X: translation along x-axis. Y: translation along y-axis. theta: rotation angle in radians. Parameters ---------- translation : tuple (tX, tY) rotation : float in radians. Attributes ---------- params : (3, 3) array Homogeneous transformation matrix. """ def __init__(self, matrix = None, rotation = None, translation = None): params = any(param is not None for param in (rotation, translation)) if params and matrix is not None: raise ValueError("You cannot specify the transformation matrix and" " the implicit parameters at the same time.") elif matrix is not None: if matrix.shape != (3, 3): raise ValueError("Invalid shape of transformation matrix.") self.params = matrix elif params: if translation is None: translation = (0, 0) if rotation is None: rotation = 0 self.params = np.array([ [np.cos(rotation), - np.sin(rotation), 0], [np.sin(rotation), np.cos(rotation), 0], [ 0, 0, 1] ]) self.params[0:2, 2] = translation else: # default to an identity transform self.params = np.eye(3) def estimate(self, src, dst): """ Set the transformation matrix with the explicit parameters. You can determine the over-, well- and under-determined parameters with the total least-squares method. Number of source and destination coordinates must match. The transformation is defined as:: X = a0 * x - b0 * y + a1 Y = b0 * x + a0 * y + b1 These equations can be transformed to the following form:: 0 = a0 * x - b0 * y + a1 - X 0 = b0 * x + a0 * y + b1 - Y which exist for each set of corresponding points, so we have a set of N * 2 equations. The coefficients appear linearly so we can write A x = 0, where:: A = [[x 1 -y 0 -X] [y 0 x 1 -Y] ... ... ] x.T = [a0 a1 b0 b1 c3] In case of total least-squares the solution of this homogeneous system of equations is the right singular vector of A which corresponds to the smallest singular value normed by the coefficient c3. Parameters ---------- src : (N, 2) array Source coordinates. dst : (N, 2) array Destination coordinates. Returns ------- success : bool True, if model estimation succeeds. """ try: src_matrix, src = _center_and_normalize_points(src) dst_matrix, dst = _center_and_normalize_points(dst) except ZeroDivisionError: self.params = np.nan * np.empty((3, 3)) return False xs = src[:, 0] ys = src[:, 1] xd = dst[:, 0] yd = dst[:, 1] rows = src.shape[0] # params: a0, a1, b0, b1 A = np.zeros((rows * 2, 5)) A[:rows, 0] = xs A[:rows, 2] = - ys A[:rows, 1] = 1 A[rows:, 2] = xs A[rows:, 0] = ys A[rows:, 3] = 1 A[:rows, 4] = xd A[rows:, 4] = yd _, _, V = np.linalg.svd(A) # solution is right singular vector that corresponds to smallest # singular value a0, a1, b0, b1 = - V[-1, :-1] / V[-1, -1] S = np.array([[a0, -b0, a1], [b0, a0, b1], [ 0, 0, 1]]) # De-center and de-normalize S = np.dot(np.linalg.inv(dst_matrix), np.dot(S, src_matrix)) self.params = S return True def _apply_mat(self, coords, matrix): coords = np.array(coords, copy=False, ndmin=2) x, y = np.transpose(coords) src = np.vstack((x, y, np.ones_like(x))) dst = np.dot(src.transpose(), matrix.transpose()) # rescale to homogeneous coordinates dst[:, 0] /= dst[:, 2] dst[:, 1] /= dst[:, 2] return dst[:, :2] def __call__(self, coords): return self._apply_mat(coords, self.params) def inverse(self, coords): """ Apply inverse transformation. Parameters ---------- coords : (N, 2) array Source coordinates. Returns ------- coords : (N, 2) array Transformed coordinates. """ return self._apply_mat(coords, self._inv_matrix) def residuals(self, src, dst): """ Determine residuals of transformed destination coordinates. For each transformed source coordinate the euclidean distance to the respective destination coordinate is determined. Parameters ---------- src : (N, 2) array Source coordinates. dst : (N, 2) array Destination coordinates. Returns ------- residuals : (N, ) array Residual for coordinate. """ return np.sqrt(np.sum((self(src) - dst)**2, axis=1)) @property def _inv_matrix(self): return np.linalg.inv(self.params) @property def rotation(self): return np.atan2(self.params[1, 0], self.params[1, 1]) @property def translation(self): return self.params[0:2, 2] # Class to do geometric transformations. This is a wrapper on scikit-image functionality. # TODO: io operations for features and optical geometric transformations. class geoTransformerParallel(object): """ This object contains methods to perform geometric transformations on a sequence of images. Some of the capabilities are: + Homography by feature extraction. + Intensity-based image registration. + Projection Correction. """ def __init__(self): self.__init__ self.data = [] self.features = [] def clearData(self): """ This is a Method to clear the data from the object. """ del self.data self.data = [] def loadData(self, dataset): """ This is a Method that loads h5 Dataset to be corrected. Parameters ---------- input: h5py.dataset """ if not isinstance(dataset, h5py.Dataset): warnings.warn( 'Error: Data must be an h5 Dataset object' ) else: self.data = dataset dim = int(np.sqrt(self.data.shape[-1])) self.data = self.data.reshape(-1,dim,dim) def loadFeatures(self, features): """ This is a Method that loads features to be used for homography etc ... Parameters ---------- features : tuple [keypoints, descriptors] These can come from FeatureExtractor.getFeatures() or elsewhere. The format is : keypoints = [np.ndarray([y_position, x_position])] descriptors = [np.ndarray()] """ self.features = features def matchFeatures(self, **kwargs): """ This is a Method that computes similarity between keypoints based on their descriptors. Currently only skimage.feature.match_descriptors is implemented. In the future will need to add opencv2.matchers. Parameters ---------- processors: int, optional Number of processors to use, default = 1. maximum_distance: int, optional maximum_distance (int) of misalignment, default = infinity. Used to filter the matches before optimizing the transformation. Returns ------- Matches """ desc = self.features[-1] keypts = self.features[0] processes = kwargs.get('processors', 1) maxDis = kwargs.get('maximum_distance', np.infty) def match(desc): desc1, desc2 = desc[0], desc[1] matches = match_descriptors(desc1, desc2, cross_check=True) return matches # start pool of workers pool = mp.Pool(processes) print('launching %i kernels...'%(processes)) tasks = [ (desc1, desc2) for desc1, desc2 in zip(desc[:],desc[1:]) ] chunk = int(len(desc)/processes) jobs = pool.imap(match, tasks, chunksize = chunk) # get matches print('Extracting Matches From the Descriptors...') matches =[] for j in jobs: matches.append(j) # close the pool print('Closing down the kernels...\n') pool.close() # impose maximum_distance misalignment constraints on matches filt_matches = [] for match, key1, key2 in zip(matches, keypts[:],keypts[1:]): filteredMask = euclidMatch(match, key1, key2, maxDis) filt_matches.append(match[filteredMask]) return matches, filt_matches def findTransformation(self, transform, matches, processes, **kwargs): """ This is a Method that finds the optimal transformation between two images given matching features using a random sample consensus. Parameters ---------- transform: skimage.transform object matches : list matches found through match_features method. processes : int Number of processors to use. **kwargs are passed to skimage.transform.ransac Returns ------- Transformations """ keypts = self.features[0] def optimization(Pts): robustTrans, inliers = ransac((Pts[0], Pts[1]), transform, **kwargs) output = [robustTrans, inliers] return output # start pool of workers print('launching %i kernels...'%(processes)) pool = mp.Pool(processes) tasks = [ (key1[match[:, 0]], key2[match[:, 1]]) for match, key1, key2 in zip(matches,keypts[:],keypts[1:]) ] chunk = int(len(keypts)/processes) jobs = pool.imap(optimization, tasks, chunksize = chunk) # get Transforms and inlier matches transforms, trueMatches =[], [] print('Extracting Inlier Matches with RANSAC...') try: for j in jobs: transforms.append(j[0]) trueMatches.append(j[1]) except np.linalg.LinAlgError: pass # close the pool pool.close() print('Closing down the kernels...\n') return transforms, trueMatches #TODO: Need parallel version for transforming stack of images. def applyTransformation(self, transforms, **kwargs): """ This is the method that takes the list of transformation found by findTransformation and applies them to the data set. Parameters ---------- transforms: (list of skimage.GeoemetricTransform objects). The objects must be inititated with the desired parameters. transformation : string, optional. The type of geometric transformation to use (i.e. translation, rigid, etc..) Currently, only translation is implemented. default, translation. origin : int, optional The position in the data to take as origin, i.e. don't transform. default, center image in the stack. processors : int, optional Number of processors to use, default = 1. Currently,only one processor is used. Returns ------- Transformed images, transformations """ dic = ['processors','origin','transformation'] for key in kwargs.keys(): if key not in dic: print('%s is not a parameter of this function' %(str(key))) processes = kwargs.get('processors', 1) origin = kwargs.get('origin', int(self.data.shape[0]/2)) transformation = kwargs.get('transformation','translation') dset = self.data # For now restricting this to just translation... Straightforward to generalize to other transform objects. if transformation == 'translation': YTrans = np.array([trans.translation[0] for trans in transforms]) XTrans = np.array([trans.translation[1] for trans in transforms]) chainL = [] for y, x in zip(range(0,YTrans.size+1), range(0,XTrans.size+1)): if y < origin: ychain = -np.sum(YTrans[y:origin]) xchain = -np.sum(XTrans[x:origin]) elif y > origin: ychain = np.sum(YTrans[origin:y]) xchain = np.sum(XTrans[origin:x]) else: ychain = 0 xchain = 0 chainL.append([xchain, ychain]) chainTransforms = [] for params in chainL: T = TranslationTransform(translation = params) chainTransforms.append(T) # Just need a single function that does boths if transformation == 'rotation': rotTrans = np.array([trans.rotation for trans in transforms]) YTrans = np.array([trans.translation[0] for trans in transforms]) XTrans = np.array([trans.translation[1] for trans in transforms]) chainL = [] for x in range(0,rotTrans.size+1): if x < origin: rotchain = -np.sum(rotTrans[x:origin]) ychain = -np.sum(YTrans[x:origin]) xchain = -np.sum(XTrans[x:origin]) elif x > origin: rotchain = np.sum(rotTrans[origin:x]) ychain = np.sum(YTrans[origin:x]) xchain = np.sum(XTrans[origin:x]) else: rotchain = 0 ychain = 0 xchain = 0 chainL.append([rotchain, xchain, ychain]) chainTransforms = [] for params in chainL: T = SimilarityTransform(scale = 1.0, rotation = np.deg2rad(params[0]), translation = (params[1],params[2])) # T = SimilarityTransform(rotation = params, translation = (0,0)) chainTransforms.append(T) # Use the chain transformations to transform the dataset output_shape = dset[0].shape # output_shape = (2048, 2048) def warping(datum): imp, transform = datum[0], datum[1] transimp = warp(imp, inverse_map= transform, output_shape = output_shape, cval = 0, preserve_range = True) return transimp # #start pool of workers # #somehow wrap function crashes when run in parallel! run sequentially for now. # pool = mp.Pool(processes) # print('launching %i kernels...'%(processes)) # tasks = [ (imp, transform) for imp, transform in zip(dset, chainTransforms) ] # chunk = int(dset.shape[0]/processes) # jobs = pool.imap(warping, tasks, chunksize = 1) # #close the pool # pool.close() # print('Closing down the kernels... \n') # # get transformed images and pack into 3d np.ndarray print('Transforming Images...') transImages = np.copy(dset[:]) for imp, transform, itm in zip( transImages, chainTransforms, range(0,transImages.shape[0])): transimp = warping([imp, transform]) transImages[itm] = transimp print('Image #%i'%(itm)) return transImages, chainTransforms def correlationTransformation(self, **kwargs): """ Uses Cross-correlation to find a translation between 2 images. Parameters ---------- Processors: int, optional Number of processors to use, default = 1. Returns ------- Transformations. """ processes = kwargs.get('processors', 1) pool = mp.Pool(processes) print('launching %i kernels...'%(processes)) def register(images): imp1, imp2 = images[0], images[1] shifts, _, _ = register_translation(imp1,imp2) return shifts dim = int(np.sqrt(self.data.shape[-1])) tasks = [ (imp1, imp2) for imp1, imp2 in zip(self.data[:], self.data[1:]) ] chunk = int((self.data.shape[0] - 1)/processes) jobs = pool.imap(register, tasks, chunksize = chunk) # get Transforms and inlier matches results = [] print('Extracting Translations') try: for j in jobs: results.append(j) except: warnings.warn('Skipped Some Entry... dunno why!!') # close the pool pool.close() return results class geoTransformerSerial(object): """ This object contains methods to perform geometric transformations on a sequence of images. Some of the capabilities are: + Homography by feature extraction. + Intensity-based image registration. + Projection Correction. """ def __init__(self): self.__init__ self.data = [] self.features = [] def clearData(self): """ This is a Method to clear the data from the object. """ del self.data self.data = [] def loadData(self, dataset): """ This is a Method that loads h5 Dataset to be corrected. Parameters ---------- dataset : h5py.dataset """ if not isinstance(dataset, h5py.Dataset): warnings.warn( 'Error: Data must be an h5 Dataset object' ) else: self.data = dataset dim = int(np.sqrt(self.data.shape[-1])) self.data = self.data.reshape(-1,dim,dim) def loadFeatures(self, features): """ This is a Method that loads features to be used for homography etc ... Parameters ---------- features : tuple [keypoints, descriptors] These can come from FeatureExtractor.getFeatures() or elsewhere. The format is : keypoints = [np.ndarray([y_position, x_position])] descriptors = [np.ndarray()] """ self.features = features def matchFeatures(self, **kwargs): """ This is a Method that computes similarity between keypoints based on their descriptors. Currently only skimage.feature.match_descriptors is implemented. In the future will need to add opencv2.matchers. Parameters ---------- maximum_distance: int, optional maximum_distance (int) of misalignment, default = infinity. Used to filter the matches before optimizing the transformation. Returns ------- Matches. """ desc = self.features[-1] keypts = self.features[0] maxDis = kwargs.get('maximum_distance', np.infty) processes = kwargs.get('processes', 2) def match(desc): desc1, desc2 = desc[0], desc[1] matches = match_descriptors(desc1, desc2, cross_check=True) return matches # start pool of workers pool = mp.Pool(processes) print('launching %i kernels...'%(processes)) tasks = [ (desc1, desc2) for desc1, desc2 in zip(desc[:],desc[1:]) ] chunk = int(len(desc)/processes) jobs = pool.imap(match, tasks, chunksize = chunk) # get matches print('Extracting Matches From the Descriptors...') matches =[] for j in jobs: matches.append(j) # close the pool print('Closing down the kernels...\n') pool.close() # impose maximum_distance misalignment constraints on matches filt_matches = [] for match, key1, key2 in zip(matches, keypts[:],keypts[1:]): filteredMask = euclidMatch(match, key1, key2, maxDis) filt_matches.append(match[filteredMask]) return matches, filt_matches #TODO: Need Better Error Handling. def findTransformation(self, transform, matches, processes, **kwargs): """ This is a Method that finds the optimal transformation between two images given matching features using a random sample consensus. Parameters ---------- transform : skimage.transform object matches : list matches found through match_features method. processors : int Number of processors to use. **kwargs are passed to skimage.transform.ransac Returns ------- Transformations. """ keypts = self.features[0] def optimization(Pts): robustTrans, inliers = ransac((Pts[0], Pts[1]), transform, **kwargs) output = [robustTrans, inliers] return output results = [optimization(key1[match[:, 0]], key2[match[:, 1]]) for match, key1, key2 in zip(matches,keypts[:],keypts[1:])] # get Transforms and inlier matches transforms, trueMatches =[], [] print('Extracting Inlier Matches with RANSAC...') try: for res in results: transforms.append(res[0]) trueMatches.append(res[1]) except np.linalg.LinAlgError: print('Error: Inverse of the transformation failed!!!') return transforms, trueMatches def applyTransformation(self, transforms, **kwargs): """ This is the method that takes the list of transformation found by findTransformation and applies them to the data set. Parameters transforms: (list of skimage.GeoemetricTransform objects). The objects must be inititated with the desired parameters. transformation: string, optional. The type of geometric transformation to use (i.e. translation, rigid, etc..) Currently, only translation is implemented. default, translation. origin: int, optional The position in the data to take as origin, i.e. don't transform. default, center image in the stack. Returns ------- Transformed images, transformations """ dic = ['processors','origin','transformation'] for key in kwargs.keys(): if key not in dic: print('%s is not a parameter of this function' %(str(key))) processes = kwargs.get('processors', 1) origin = kwargs.get('origin', int(self.data.shape[0]/2)) transformation = kwargs.get('transformation','translation') dset = self.data # For now restricting this to just translation... Straightforward to generalize to other transform objects. if transformation == 'translation': YTrans = np.array([trans.translation[0] for trans in transforms]) XTrans = np.array([trans.translation[1] for trans in transforms]) chainL = [] for y, x in zip(range(0,YTrans.size+1), range(0,XTrans.size+1)): if y < origin: ychain = -np.sum(YTrans[y:origin]) xchain = -np.sum(XTrans[x:origin]) elif y > origin: ychain = np.sum(YTrans[origin:y]) xchain = np.sum(XTrans[origin:x]) else: ychain = 0 xchain = 0 chainL.append([xchain, ychain]) chainTransforms = [] for params in chainL: T = TranslationTransform(translation = params) chainTransforms.append(T) # Just need a single function that does boths if transformation == 'rotation': rotTrans = np.array([trans.rotation for trans in transforms]) YTrans = np.array([trans.translation[0] for trans in transforms]) XTrans = np.array([trans.translation[1] for trans in transforms]) chainL = [] for x in range(0,rotTrans.size+1): if x < origin: rotchain = -np.sum(rotTrans[x:origin]) ychain = -np.sum(YTrans[x:origin]) xchain = -np.sum(XTrans[x:origin]) elif x > origin: rotchain = np.sum(rotTrans[origin:x]) ychain = np.sum(YTrans[origin:x]) xchain = np.sum(XTrans[origin:x]) else: rotchain = 0 ychain = 0 xchain = 0 chainL.append([rotchain, xchain, ychain]) chainTransforms = [] for params in chainL: T = SimilarityTransform(scale = 1.0, rotation = np.deg2rad(params[0]), translation = (params[1],params[2])) # T = SimilarityTransform(rotation = params, translation = (0,0)) chainTransforms.append(T) # Use the chain transformations to transform the dataset output_shape = dset[0].shape def warping(datum): imp, transform = datum[0], datum[1] transimp = warp(imp, inverse_map= transform, output_shape = output_shape, cval = 0, preserve_range = True) return transimp # get transformed images and pack into 3d np.ndarray print('Transforming Images...') transImages = np.copy(dset[:]) for imp, transform, itm in zip( transImages, chainTransforms, range(0,transImages.shape[0])): transimp = warping([imp, transform]) transImages[itm] = transimp print('Image #%i'%(itm)) return transImages, chainTransforms def correlationTransformation(self, **kwargs): """ Uses Cross-correlation to find a translation between 2 images. Parameters ---------- Processors: int, optional Number of processors to use, default = 1. Returns ------- Transformations. """ processes = kwargs.get('processors', 1) pool = mp.Pool(processes) print('launching %i kernels...'%(processes)) def register(images): imp1, imp2 = images[0], images[1] shifts, _, _ = register_translation(imp1,imp2) return shifts results = [register((imp1, imp2)) for imp1, imp2 in zip(self.data[:], self.data[1:])] return results
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # # FreeType high-level python API - Copyright 2011-2015 Nicolas P. Rougier # Distributed under the terms of the new BSD license. # # ----------------------------------------------------------------------------- """ Possible values of the language identifier field in the name records of the TTF 'name' table if the 'platform' identifier code is TT_PLATFORM_MICROSOFT. TT_MS_LANGID_SANSKRIT_INDIA TT_MS_LANGID_ENGLISH_UNITED_KINGDOM TT_MS_LANGID_ENGLISH_BELIZE TT_MS_LANGID_ARABIC_LEBANON TT_MS_LANGID_MOLDAVIAN_MOLDAVIA TT_MS_LANGID_TURKISH_TURKEY TT_MS_LANGID_WELSH_WALES TT_MS_LANGID_GERMAN_AUSTRIA TT_MS_LANGID_DUTCH_BELGIUM TT_MS_LANGID_YI_CHINA TT_MS_LANGID_QUECHUA_ECUADOR TT_MS_LANGID_SPANISH_EL_SALVADOR TT_MS_LANGID_SWAHILI_KENYA TT_MS_LANGID_QUECHUA_BOLIVIA TT_MS_LANGID_SLOVENE_SLOVENIA TT_MS_LANGID_ORIYA_INDIA TT_MS_LANGID_FARSI_IRAN TT_MS_LANGID_ENGLISH_CANADA TT_MS_LANGID_NEPALI_NEPAL TT_MS_LANGID_DHIVEHI_MALDIVES TT_MS_LANGID_GERMAN_LIECHTENSTEI TT_MS_LANGID_TAMIL_INDIA TT_MS_LANGID_ARABIC_UAE TT_MS_LANGID_JAPANESE_JAPAN TT_MS_LANGID_TAMAZIGHT_MOROCCO TT_MS_LANGID_FRENCH_FRANCE TT_MS_LANGID_CHINESE_MACAU TT_MS_LANGID_VIETNAMESE_VIET_NAM TT_MS_LANGID_HEBREW_ISRAEL TT_MS_LANGID_SAMI_NORTHERN_SWEDEN TT_MS_LANGID_PUNJABI_ARABIC_PAKISTAN TT_MS_LANGID_SWEDISH_SWEDEN TT_MS_LANGID_FRENCH_REUNION TT_MS_LANGID_ARABIC_BAHRAIN TT_MS_LANGID_ENGLISH_INDIA TT_MS_LANGID_NEPALI_INDIA TT_MS_LANGID_THAI_THAILAND TT_MS_LANGID_ENGLISH_GENERAL TT_MS_LANGID_SAMI_LULE_NORWAY TT_MS_LANGID_ARABIC_OMAN TT_MS_LANGID_SPANISH_HONDURAS TT_MS_LANGID_ENGLISH_JAMAICA TT_MS_LANGID_ESTONIAN_ESTONIA TT_MS_LANGID_FRISIAN_NETHERLANDS TT_MS_LANGID_LATIN TT_MS_LANGID_ENGLISH_INDONESIA TT_MS_LANGID_ENGLISH_IRELAND TT_MS_LANGID_TIBETAN_CHINA TT_MS_LANGID_PUNJABI_INDIA TT_MS_LANGID_FRENCH_MALI TT_MS_LANGID_GERMAN_LUXEMBOURG TT_MS_LANGID_SUTU_SOUTH_AFRICA TT_MS_LANGID_FRENCH_CAMEROON TT_MS_LANGID_FRENCH_CONGO TT_MS_LANGID_CLASSIC_LITHUANIAN_LITHUANIA TT_MS_LANGID_MALAYALAM_INDIA TT_MS_LANGID_SAMI_SOUTHERN_SWEDEN TT_MS_LANGID_CHEROKEE_UNITED_STATES TT_MS_LANGID_SPANISH_GUATEMALA TT_MS_LANGID_CZECH_CZECH_REPUBLIC TT_MS_LANGID_MANIPURI_INDIA TT_MS_LANGID_ENGLISH_AUSTRALIA TT_MS_LANGID_SPANISH_DOMINICAN_REPUBLIC TT_MS_LANGID_ARABIC_LIBYA TT_MS_LANGID_FRENCH_WEST_INDIES TT_MS_LANGID_ENGLISH_TRINIDAD TT_MS_LANGID_ARABIC_QATAR TT_MS_LANGID_SPANISH_COLOMBIA TT_MS_LANGID_GUARANI_PARAGUAY TT_MS_LANGID_EDO_NIGERIA TT_MS_LANGID_SEPEDI_SOUTH_AFRICA TT_MS_LANGID_ENGLISH_HONG_KONG TT_MS_LANGID_KOREAN_EXTENDED_WANSUNG_KOREA TT_MS_LANGID_TATAR_TATARSTAN TT_MS_LANGID_PASHTO_AFGHANISTAN TT_MS_LANGID_KASHMIRI_PAKISTAN TT_MS_LANGID_GALICIAN_SPAIN TT_MS_LANGID_TAJIK_TAJIKISTAN TT_MS_LANGID_SAMI_INARI_FINLAND TT_MS_LANGID_KASHMIRI_SASIA TT_MS_LANGID_SPANISH_ARGENTINA TT_MS_LANGID_SAMI_SOUTHERN_NORWAY TT_MS_LANGID_CROATIAN_CROATIA TT_MS_LANGID_GUJARATI_INDIA TT_MS_LANGID_TIBETAN_BHUTAN TT_MS_LANGID_TIGRIGNA_ETHIOPIA TT_MS_LANGID_FINNISH_FINLAND TT_MS_LANGID_ENGLISH_UNITED_STATES TT_MS_LANGID_ITALIAN_SWITZERLAND TT_MS_LANGID_ARABIC_EGYPT TT_MS_LANGID_SPANISH_LATIN_AMERICA TT_MS_LANGID_LITHUANIAN_LITHUANIA TT_MS_LANGID_ARABIC_ALGERIA TT_MS_LANGID_MALAY_MALAYSIA TT_MS_LANGID_ARABIC_GENERAL TT_MS_LANGID_CHINESE_PRC TT_MS_LANGID_BENGALI_BANGLADESH TT_MS_LANGID_SPANISH_PERU TT_MS_LANGID_SPANISH_SPAIN_INTERNATIONAL_SORT TT_MS_LANGID_DIVEHI_MALDIVES TT_MS_LANGID_LATVIAN_LATVIA TT_MS_LANGID_TURKMEN_TURKMENISTAN TT_MS_LANGID_XHOSA_SOUTH_AFRICA TT_MS_LANGID_KHMER_CAMBODIA TT_MS_LANGID_NORWEGIAN_NORWAY_NYNORSK TT_MS_LANGID_ARABIC_MOROCCO TT_MS_LANGID_FRENCH_SENEGAL TT_MS_LANGID_YORUBA_NIGERIA TT_MS_LANGID_CATALAN_SPAIN TT_MS_LANGID_AFRIKAANS_SOUTH_AFRICA TT_MS_LANGID_ZULU_SOUTH_AFRICA TT_MS_LANGID_SPANISH_URUGUAY TT_MS_LANGID_SPANISH_ECUADOR TT_MS_LANGID_BOSNIAN_BOSNIA_HERZEGOVINA TT_MS_LANGID_CHINESE_GENERAL TT_MS_LANGID_SPANISH_PARAGUAY TT_MS_LANGID_HINDI_INDIA TT_MS_LANGID_FRENCH_LUXEMBOURG TT_MS_LANGID_TSWANA_SOUTH_AFRICA TT_MS_LANGID_HUNGARIAN_HUNGARY TT_MS_LANGID_CROATIAN_BOSNIA_HERZEGOVINA TT_MS_LANGID_ENGLISH_SINGAPORE TT_MS_LANGID_MALTESE_MALTA TT_MS_LANGID_SAMI_NORTHERN_FINLAND TT_MS_LANGID_FRENCH_CANADA TT_MS_LANGID_SAMI_LULE_SWEDEN TT_MS_LANGID_KANURI_NIGERIA TT_MS_LANGID_IRISH_GAELIC_IRELAND TT_MS_LANGID_ARABIC_SAUDI_ARABIA TT_MS_LANGID_FRENCH_HAITI TT_MS_LANGID_SPANISH_PUERTO_RICO TT_MS_LANGID_BURMESE_MYANMAR TT_MS_LANGID_POLISH_POLAND TT_MS_LANGID_PORTUGUESE_PORTUGAL TT_MS_LANGID_ENGLISH_CARIBBEAN TT_MS_LANGID_KIRGHIZ_KIRGHIZ_REPUBLIC TT_MS_LANGID_ICELANDIC_ICELAND TT_MS_LANGID_BENGALI_INDIA TT_MS_LANGID_HAUSA_NIGERIA TT_MS_LANGID_BASQUE_SPAIN TT_MS_LANGID_UIGHUR_CHINA TT_MS_LANGID_ENGLISH_MALAYSIA TT_MS_LANGID_FRENCH_MONACO TT_MS_LANGID_SPANISH_BOLIVIA TT_MS_LANGID_SORBIAN_GERMANY TT_MS_LANGID_SINDHI_INDIA TT_MS_LANGID_CHINESE_SINGAPORE TT_MS_LANGID_FRENCH_COTE_D_IVOIRE TT_MS_LANGID_SPANISH_SPAIN_TRADITIONAL_SORT TT_MS_LANGID_SERBIAN_SERBIA_CYRILLIC TT_MS_LANGID_SAMI_SKOLT_FINLAND TT_MS_LANGID_SERBIAN_BOSNIA_HERZ_CYRILLIC TT_MS_LANGID_MALAY_BRUNEI_DARUSSALAM TT_MS_LANGID_ARABIC_JORDAN TT_MS_LANGID_MONGOLIAN_MONGOLIA_MONGOLIAN TT_MS_LANGID_SERBIAN_SERBIA_LATIN TT_MS_LANGID_RUSSIAN_RUSSIA TT_MS_LANGID_ROMANIAN_ROMANIA TT_MS_LANGID_FRENCH_NORTH_AFRICA TT_MS_LANGID_MONGOLIAN_MONGOLIA TT_MS_LANGID_TSONGA_SOUTH_AFRICA TT_MS_LANGID_SOMALI_SOMALIA TT_MS_LANGID_SAAMI_LAPONIA TT_MS_LANGID_SPANISH_COSTA_RICA TT_MS_LANGID_ARABIC_SYRIA TT_MS_LANGID_SPANISH_PANAMA TT_MS_LANGID_PAPIAMENTU_NETHERLANDS_ANTILLES TT_MS_LANGID_ASSAMESE_INDIA TT_MS_LANGID_SCOTTISH_GAELIC_UNITED_KINGDOM TT_MS_LANGID_DUTCH_NETHERLANDS TT_MS_LANGID_SINDHI_PAKISTAN TT_MS_LANGID_MACEDONIAN_MACEDONIA TT_MS_LANGID_KAZAK_KAZAKSTAN TT_MS_LANGID_AZERI_AZERBAIJAN_LATIN TT_MS_LANGID_BELARUSIAN_BELARUS TT_MS_LANGID_FRENCH_MOROCCO TT_MS_LANGID_SERBIAN_BOSNIA_HERZ_LATIN TT_MS_LANGID_ALBANIAN_ALBANIA TT_MS_LANGID_SINHALESE_SRI_LANKA TT_MS_LANGID_SPANISH_MEXICO TT_MS_LANGID_ENGLISH_ZIMBABWE TT_MS_LANGID_OROMO_ETHIOPIA TT_MS_LANGID_INDONESIAN_INDONESIA TT_MS_LANGID_SAMI_NORTHERN_NORWAY TT_MS_LANGID_UZBEK_UZBEKISTAN_LATIN TT_MS_LANGID_SLOVAK_SLOVAKIA TT_MS_LANGID_KASHMIRI_INDIA TT_MS_LANGID_GERMAN_SWITZERLAND TT_MS_LANGID_URDU_INDIA TT_MS_LANGID_FAEROESE_FAEROE_ISLANDS TT_MS_LANGID_SYRIAC_SYRIA TT_MS_LANGID_SPANISH_CHILE TT_MS_LANGID_FILIPINO_PHILIPPINES TT_MS_LANGID_ARABIC_YEMEN TT_MS_LANGID_KONKANI_INDIA TT_MS_LANGID_AMHARIC_ETHIOPIA TT_MS_LANGID_ENGLISH_NEW_ZEALAND TT_MS_LANGID_RHAETO_ROMANIC_SWITZERLAND TT_MS_LANGID_ARABIC_TUNISIA TT_MS_LANGID_SOTHO_SOUTHERN_SOUTH_AFRICA TT_MS_LANGID_QUECHUA_PERU TT_MS_LANGID_DANISH_DENMARK TT_MS_LANGID_ENGLISH_PHILIPPINES TT_MS_LANGID_SPANISH_NICARAGUA TT_MS_LANGID_INUKTITUT_CANADA TT_MS_LANGID_UKRAINIAN_UKRAINE TT_MS_LANGID_NORWEGIAN_NORWAY_BOKMAL TT_MS_LANGID_UZBEK_UZBEKISTAN_CYRILLIC TT_MS_LANGID_FRENCH_BELGIUM TT_MS_LANGID_ENGLISH_SOUTH_AFRICA TT_MS_LANGID_HAWAIIAN_UNITED_STATES TT_MS_LANGID_ARABIC_IRAQ TT_MS_LANGID_KANNADA_INDIA TT_MS_LANGID_DZONGHKA_BHUTAN TT_MS_LANGID_CHINESE_TAIWAN TT_MS_LANGID_SPANISH_UNITED_STATES TT_MS_LANGID_ARMENIAN_ARMENIA TT_MS_LANGID_LAO_LAOS TT_MS_LANGID_TIGRIGNA_ERYTREA TT_MS_LANGID_MARATHI_INDIA TT_MS_LANGID_ARABIC_KUWAIT TT_MS_LANGID_TAMAZIGHT_MOROCCO_LATIN TT_MS_LANGID_PORTUGUESE_BRAZIL TT_MS_LANGID_TIGRIGNA_ERYTHREA TT_MS_LANGID_GREEK_GREECE TT_MS_LANGID_URDU_PAKISTAN TT_MS_LANGID_KIRGHIZ_KIRGHIZSTAN TT_MS_LANGID_YIDDISH_GERMANY TT_MS_LANGID_GERMAN_GERMANY TT_MS_LANGID_TELUGU_INDIA TT_MS_LANGID_AZERI_AZERBAIJAN_CYRILLIC TT_MS_LANGID_KOREAN_JOHAB_KOREA TT_MS_LANGID_ITALIAN_ITALY TT_MS_LANGID_MAORI_NEW_ZEALAND TT_MS_LANGID_SPANISH_VENEZUELA TT_MS_LANGID_IGBO_NIGERIA TT_MS_LANGID_IBIBIO_NIGERIA TT_MS_LANGID_CHINESE_HONG_KONG TT_MS_LANGID_FRENCH_SWITZERLAND TT_MS_LANGID_BULGARIAN_BULGARIA TT_MS_LANGID_FULFULDE_NIGERIA TT_MS_LANGID_RUSSIAN_MOLDAVIA TT_MS_LANGID_VENDA_SOUTH_AFRICA TT_MS_LANGID_GEORGIAN_GEORGIA TT_MS_LANGID_SWEDISH_FINLAND """ TT_MS_LANGIDS = { 'TT_MS_LANGID_ARABIC_GENERAL' : 0x0001, 'TT_MS_LANGID_ARABIC_SAUDI_ARABIA' : 0x0401, 'TT_MS_LANGID_ARABIC_IRAQ' : 0x0801, 'TT_MS_LANGID_ARABIC_EGYPT' : 0x0c01, 'TT_MS_LANGID_ARABIC_LIBYA' : 0x1001, 'TT_MS_LANGID_ARABIC_ALGERIA' : 0x1401, 'TT_MS_LANGID_ARABIC_MOROCCO' : 0x1801, 'TT_MS_LANGID_ARABIC_TUNISIA' : 0x1c01, 'TT_MS_LANGID_ARABIC_OMAN' : 0x2001, 'TT_MS_LANGID_ARABIC_YEMEN' : 0x2401, 'TT_MS_LANGID_ARABIC_SYRIA' : 0x2801, 'TT_MS_LANGID_ARABIC_JORDAN' : 0x2c01, 'TT_MS_LANGID_ARABIC_LEBANON' : 0x3001, 'TT_MS_LANGID_ARABIC_KUWAIT' : 0x3401, 'TT_MS_LANGID_ARABIC_UAE' : 0x3801, 'TT_MS_LANGID_ARABIC_BAHRAIN' : 0x3c01, 'TT_MS_LANGID_ARABIC_QATAR' : 0x4001, 'TT_MS_LANGID_BULGARIAN_BULGARIA' : 0x0402, 'TT_MS_LANGID_CATALAN_SPAIN' : 0x0403, 'TT_MS_LANGID_CHINESE_GENERAL' : 0x0004, 'TT_MS_LANGID_CHINESE_TAIWAN' : 0x0404, 'TT_MS_LANGID_CHINESE_PRC' : 0x0804, 'TT_MS_LANGID_CHINESE_HONG_KONG' : 0x0c04, 'TT_MS_LANGID_CHINESE_SINGAPORE' : 0x1004, 'TT_MS_LANGID_CHINESE_MACAU' : 0x1404, 'TT_MS_LANGID_CZECH_CZECH_REPUBLIC' : 0x0405, 'TT_MS_LANGID_DANISH_DENMARK' : 0x0406, 'TT_MS_LANGID_GERMAN_GERMANY' : 0x0407, 'TT_MS_LANGID_GERMAN_SWITZERLAND' : 0x0807, 'TT_MS_LANGID_GERMAN_AUSTRIA' : 0x0c07, 'TT_MS_LANGID_GERMAN_LUXEMBOURG' : 0x1007, 'TT_MS_LANGID_GERMAN_LIECHTENSTEI' : 0x1407, 'TT_MS_LANGID_GREEK_GREECE' : 0x0408, 'TT_MS_LANGID_ENGLISH_GENERAL' : 0x0009, 'TT_MS_LANGID_ENGLISH_UNITED_STATES' : 0x0409, 'TT_MS_LANGID_ENGLISH_UNITED_KINGDOM' : 0x0809, 'TT_MS_LANGID_ENGLISH_AUSTRALIA' : 0x0c09, 'TT_MS_LANGID_ENGLISH_CANADA' : 0x1009, 'TT_MS_LANGID_ENGLISH_NEW_ZEALAND' : 0x1409, 'TT_MS_LANGID_ENGLISH_IRELAND' : 0x1809, 'TT_MS_LANGID_ENGLISH_SOUTH_AFRICA' : 0x1c09, 'TT_MS_LANGID_ENGLISH_JAMAICA' : 0x2009, 'TT_MS_LANGID_ENGLISH_CARIBBEAN' : 0x2409, 'TT_MS_LANGID_ENGLISH_BELIZE' : 0x2809, 'TT_MS_LANGID_ENGLISH_TRINIDAD' : 0x2c09, 'TT_MS_LANGID_ENGLISH_ZIMBABWE' : 0x3009, 'TT_MS_LANGID_ENGLISH_PHILIPPINES' : 0x3409, 'TT_MS_LANGID_ENGLISH_INDONESIA' : 0x3809, 'TT_MS_LANGID_ENGLISH_HONG_KONG' : 0x3c09, 'TT_MS_LANGID_ENGLISH_INDIA' : 0x4009, 'TT_MS_LANGID_ENGLISH_MALAYSIA' : 0x4409, 'TT_MS_LANGID_ENGLISH_SINGAPORE' : 0x4809, 'TT_MS_LANGID_SPANISH_SPAIN_TRADITIONAL_SORT' : 0x040a, 'TT_MS_LANGID_SPANISH_MEXICO' : 0x080a, 'TT_MS_LANGID_SPANISH_SPAIN_INTERNATIONAL_SORT' : 0x0c0a, 'TT_MS_LANGID_SPANISH_GUATEMALA' : 0x100a, 'TT_MS_LANGID_SPANISH_COSTA_RICA' : 0x140a, 'TT_MS_LANGID_SPANISH_PANAMA' : 0x180a, 'TT_MS_LANGID_SPANISH_DOMINICAN_REPUBLIC' : 0x1c0a, 'TT_MS_LANGID_SPANISH_VENEZUELA' : 0x200a, 'TT_MS_LANGID_SPANISH_COLOMBIA' : 0x240a, 'TT_MS_LANGID_SPANISH_PERU' : 0x280a, 'TT_MS_LANGID_SPANISH_ARGENTINA' : 0x2c0a, 'TT_MS_LANGID_SPANISH_ECUADOR' : 0x300a, 'TT_MS_LANGID_SPANISH_CHILE' : 0x340a, 'TT_MS_LANGID_SPANISH_URUGUAY' : 0x380a, 'TT_MS_LANGID_SPANISH_PARAGUAY' : 0x3c0a, 'TT_MS_LANGID_SPANISH_BOLIVIA' : 0x400a, 'TT_MS_LANGID_SPANISH_EL_SALVADOR' : 0x440a, 'TT_MS_LANGID_SPANISH_HONDURAS' : 0x480a, 'TT_MS_LANGID_SPANISH_NICARAGUA' : 0x4c0a, 'TT_MS_LANGID_SPANISH_PUERTO_RICO' : 0x500a, 'TT_MS_LANGID_SPANISH_UNITED_STATES' : 0x540a, 'TT_MS_LANGID_SPANISH_LATIN_AMERICA' : 0xE40a, 'TT_MS_LANGID_FINNISH_FINLAND' : 0x040b, 'TT_MS_LANGID_FRENCH_FRANCE' : 0x040c, 'TT_MS_LANGID_FRENCH_BELGIUM' : 0x080c, 'TT_MS_LANGID_FRENCH_CANADA' : 0x0c0c, 'TT_MS_LANGID_FRENCH_SWITZERLAND' : 0x100c, 'TT_MS_LANGID_FRENCH_LUXEMBOURG' : 0x140c, 'TT_MS_LANGID_FRENCH_MONACO' : 0x180c, 'TT_MS_LANGID_FRENCH_WEST_INDIES' : 0x1c0c, 'TT_MS_LANGID_FRENCH_REUNION' : 0x200c, 'TT_MS_LANGID_FRENCH_CONGO' : 0x240c, 'TT_MS_LANGID_FRENCH_SENEGAL' : 0x280c, 'TT_MS_LANGID_FRENCH_CAMEROON' : 0x2c0c, 'TT_MS_LANGID_FRENCH_COTE_D_IVOIRE' : 0x300c, 'TT_MS_LANGID_FRENCH_MALI' : 0x340c, 'TT_MS_LANGID_FRENCH_MOROCCO' : 0x380c, 'TT_MS_LANGID_FRENCH_HAITI' : 0x3c0c, 'TT_MS_LANGID_FRENCH_NORTH_AFRICA' : 0xE40c, 'TT_MS_LANGID_HEBREW_ISRAEL' : 0x040d, 'TT_MS_LANGID_HUNGARIAN_HUNGARY' : 0x040e, 'TT_MS_LANGID_ICELANDIC_ICELAND' : 0x040f, 'TT_MS_LANGID_ITALIAN_ITALY' : 0x0410, 'TT_MS_LANGID_ITALIAN_SWITZERLAND' : 0x0810, 'TT_MS_LANGID_JAPANESE_JAPAN' : 0x0411, 'TT_MS_LANGID_KOREAN_EXTENDED_WANSUNG_KOREA' : 0x0412, 'TT_MS_LANGID_KOREAN_JOHAB_KOREA' : 0x0812, 'TT_MS_LANGID_DUTCH_NETHERLANDS' : 0x0413, 'TT_MS_LANGID_DUTCH_BELGIUM' : 0x0813, 'TT_MS_LANGID_NORWEGIAN_NORWAY_BOKMAL' : 0x0414, 'TT_MS_LANGID_NORWEGIAN_NORWAY_NYNORSK' : 0x0814, 'TT_MS_LANGID_POLISH_POLAND' : 0x0415, 'TT_MS_LANGID_PORTUGUESE_BRAZIL' : 0x0416, 'TT_MS_LANGID_PORTUGUESE_PORTUGAL' : 0x0816, 'TT_MS_LANGID_RHAETO_ROMANIC_SWITZERLAND' : 0x0417, 'TT_MS_LANGID_ROMANIAN_ROMANIA' : 0x0418, 'TT_MS_LANGID_MOLDAVIAN_MOLDAVIA' : 0x0818, 'TT_MS_LANGID_RUSSIAN_RUSSIA' : 0x0419, 'TT_MS_LANGID_RUSSIAN_MOLDAVIA' : 0x0819, 'TT_MS_LANGID_CROATIAN_CROATIA' : 0x041a, 'TT_MS_LANGID_SERBIAN_SERBIA_LATIN' : 0x081a, 'TT_MS_LANGID_SERBIAN_SERBIA_CYRILLIC' : 0x0c1a, 'TT_MS_LANGID_CROATIAN_BOSNIA_HERZEGOVINA' : 0x101a, 'TT_MS_LANGID_BOSNIAN_BOSNIA_HERZEGOVINA' : 0x141a, 'TT_MS_LANGID_SERBIAN_BOSNIA_HERZ_LATIN' : 0x181a, 'TT_MS_LANGID_SERBIAN_BOSNIA_HERZ_CYRILLIC' : 0x181a, 'TT_MS_LANGID_SLOVAK_SLOVAKIA' : 0x041b, 'TT_MS_LANGID_ALBANIAN_ALBANIA' : 0x041c, 'TT_MS_LANGID_SWEDISH_SWEDEN' : 0x041d, 'TT_MS_LANGID_SWEDISH_FINLAND' : 0x081d, 'TT_MS_LANGID_THAI_THAILAND' : 0x041e, 'TT_MS_LANGID_TURKISH_TURKEY' : 0x041f, 'TT_MS_LANGID_URDU_PAKISTAN' : 0x0420, 'TT_MS_LANGID_URDU_INDIA' : 0x0820, 'TT_MS_LANGID_INDONESIAN_INDONESIA' : 0x0421, 'TT_MS_LANGID_UKRAINIAN_UKRAINE' : 0x0422, 'TT_MS_LANGID_BELARUSIAN_BELARUS' : 0x0423, 'TT_MS_LANGID_SLOVENE_SLOVENIA' : 0x0424, 'TT_MS_LANGID_ESTONIAN_ESTONIA' : 0x0425, 'TT_MS_LANGID_LATVIAN_LATVIA' : 0x0426, 'TT_MS_LANGID_LITHUANIAN_LITHUANIA' : 0x0427, 'TT_MS_LANGID_CLASSIC_LITHUANIAN_LITHUANIA' : 0x0827, 'TT_MS_LANGID_TAJIK_TAJIKISTAN' : 0x0428, 'TT_MS_LANGID_FARSI_IRAN' : 0x0429, 'TT_MS_LANGID_VIETNAMESE_VIET_NAM' : 0x042a, 'TT_MS_LANGID_ARMENIAN_ARMENIA' : 0x042b, 'TT_MS_LANGID_AZERI_AZERBAIJAN_LATIN' : 0x042c, 'TT_MS_LANGID_AZERI_AZERBAIJAN_CYRILLIC' : 0x082c, 'TT_MS_LANGID_BASQUE_SPAIN' : 0x042d, 'TT_MS_LANGID_SORBIAN_GERMANY' : 0x042e, 'TT_MS_LANGID_MACEDONIAN_MACEDONIA' : 0x042f, 'TT_MS_LANGID_SUTU_SOUTH_AFRICA' : 0x0430, 'TT_MS_LANGID_TSONGA_SOUTH_AFRICA' : 0x0431, 'TT_MS_LANGID_TSWANA_SOUTH_AFRICA' : 0x0432, 'TT_MS_LANGID_VENDA_SOUTH_AFRICA' : 0x0433, 'TT_MS_LANGID_XHOSA_SOUTH_AFRICA' : 0x0434, 'TT_MS_LANGID_ZULU_SOUTH_AFRICA' : 0x0435, 'TT_MS_LANGID_AFRIKAANS_SOUTH_AFRICA' : 0x0436, 'TT_MS_LANGID_GEORGIAN_GEORGIA' : 0x0437, 'TT_MS_LANGID_FAEROESE_FAEROE_ISLANDS' : 0x0438, 'TT_MS_LANGID_HINDI_INDIA' : 0x0439, 'TT_MS_LANGID_MALTESE_MALTA' : 0x043a, 'TT_MS_LANGID_SAMI_NORTHERN_NORWAY' : 0x043b, 'TT_MS_LANGID_SAMI_NORTHERN_SWEDEN' : 0x083b, 'TT_MS_LANGID_SAMI_NORTHERN_FINLAND' : 0x0C3b, 'TT_MS_LANGID_SAMI_LULE_NORWAY' : 0x103b, 'TT_MS_LANGID_SAMI_LULE_SWEDEN' : 0x143b, 'TT_MS_LANGID_SAMI_SOUTHERN_NORWAY' : 0x183b, 'TT_MS_LANGID_SAMI_SOUTHERN_SWEDEN' : 0x1C3b, 'TT_MS_LANGID_SAMI_SKOLT_FINLAND' : 0x203b, 'TT_MS_LANGID_SAMI_INARI_FINLAND' : 0x243b, 'TT_MS_LANGID_SAAMI_LAPONIA' : 0x043b, 'TT_MS_LANGID_SCOTTISH_GAELIC_UNITED_KINGDOM' : 0x083c, 'TT_MS_LANGID_IRISH_GAELIC_IRELAND' : 0x043c, 'TT_MS_LANGID_YIDDISH_GERMANY' : 0x043d, 'TT_MS_LANGID_MALAY_MALAYSIA' : 0x043e, 'TT_MS_LANGID_MALAY_BRUNEI_DARUSSALAM' : 0x083e, 'TT_MS_LANGID_KAZAK_KAZAKSTAN' : 0x043f, 'TT_MS_LANGID_KIRGHIZ_KIRGHIZSTAN' : 0x0440, 'TT_MS_LANGID_KIRGHIZ_KIRGHIZ_REPUBLIC' : 0x0440, 'TT_MS_LANGID_SWAHILI_KENYA' : 0x0441, 'TT_MS_LANGID_TURKMEN_TURKMENISTAN' : 0x0442, 'TT_MS_LANGID_UZBEK_UZBEKISTAN_LATIN' : 0x0443, 'TT_MS_LANGID_UZBEK_UZBEKISTAN_CYRILLIC' : 0x0843, 'TT_MS_LANGID_TATAR_TATARSTAN' : 0x0444, 'TT_MS_LANGID_BENGALI_INDIA' : 0x0445, 'TT_MS_LANGID_BENGALI_BANGLADESH' : 0x0845, 'TT_MS_LANGID_PUNJABI_INDIA' : 0x0446, 'TT_MS_LANGID_PUNJABI_ARABIC_PAKISTAN' : 0x0846, 'TT_MS_LANGID_GUJARATI_INDIA' : 0x0447, 'TT_MS_LANGID_ORIYA_INDIA' : 0x0448, 'TT_MS_LANGID_TAMIL_INDIA' : 0x0449, 'TT_MS_LANGID_TELUGU_INDIA' : 0x044a, 'TT_MS_LANGID_KANNADA_INDIA' : 0x044b, 'TT_MS_LANGID_MALAYALAM_INDIA' : 0x044c, 'TT_MS_LANGID_ASSAMESE_INDIA' : 0x044d, 'TT_MS_LANGID_MARATHI_INDIA' : 0x044e, 'TT_MS_LANGID_SANSKRIT_INDIA' : 0x044f, 'TT_MS_LANGID_MONGOLIAN_MONGOLIA' : 0x0450, 'TT_MS_LANGID_MONGOLIAN_MONGOLIA_MONGOLIAN' : 0x0850, 'TT_MS_LANGID_TIBETAN_CHINA' : 0x0451, 'TT_MS_LANGID_DZONGHKA_BHUTAN' : 0x0851, 'TT_MS_LANGID_TIBETAN_BHUTAN' : 0x0851, 'TT_MS_LANGID_WELSH_WALES' : 0x0452, 'TT_MS_LANGID_KHMER_CAMBODIA' : 0x0453, 'TT_MS_LANGID_LAO_LAOS' : 0x0454, 'TT_MS_LANGID_BURMESE_MYANMAR' : 0x0455, 'TT_MS_LANGID_GALICIAN_SPAIN' : 0x0456, 'TT_MS_LANGID_KONKANI_INDIA' : 0x0457, 'TT_MS_LANGID_MANIPURI_INDIA' : 0x0458, 'TT_MS_LANGID_SINDHI_INDIA' : 0x0459, 'TT_MS_LANGID_SINDHI_PAKISTAN' : 0x0859, 'TT_MS_LANGID_SYRIAC_SYRIA' : 0x045a, 'TT_MS_LANGID_SINHALESE_SRI_LANKA' : 0x045b, 'TT_MS_LANGID_CHEROKEE_UNITED_STATES' : 0x045c, 'TT_MS_LANGID_INUKTITUT_CANADA' : 0x045d, 'TT_MS_LANGID_AMHARIC_ETHIOPIA' : 0x045e, 'TT_MS_LANGID_TAMAZIGHT_MOROCCO' : 0x045f, 'TT_MS_LANGID_TAMAZIGHT_MOROCCO_LATIN' : 0x085f, 'TT_MS_LANGID_KASHMIRI_PAKISTAN' : 0x0460, 'TT_MS_LANGID_KASHMIRI_SASIA' : 0x0860, 'TT_MS_LANGID_KASHMIRI_INDIA' : 0x0860, 'TT_MS_LANGID_NEPALI_NEPAL' : 0x0461, 'TT_MS_LANGID_NEPALI_INDIA' : 0x0861, 'TT_MS_LANGID_FRISIAN_NETHERLANDS' : 0x0462, 'TT_MS_LANGID_PASHTO_AFGHANISTAN' : 0x0463, 'TT_MS_LANGID_FILIPINO_PHILIPPINES' : 0x0464, 'TT_MS_LANGID_DHIVEHI_MALDIVES' : 0x0465, 'TT_MS_LANGID_DIVEHI_MALDIVES' : 0x0465, 'TT_MS_LANGID_EDO_NIGERIA' : 0x0466, 'TT_MS_LANGID_FULFULDE_NIGERIA' : 0x0467, 'TT_MS_LANGID_HAUSA_NIGERIA' : 0x0468, 'TT_MS_LANGID_IBIBIO_NIGERIA' : 0x0469, 'TT_MS_LANGID_YORUBA_NIGERIA' : 0x046a, 'TT_MS_LANGID_QUECHUA_BOLIVIA' : 0x046b, 'TT_MS_LANGID_QUECHUA_ECUADOR' : 0x086b, 'TT_MS_LANGID_QUECHUA_PERU' : 0x0c6b, 'TT_MS_LANGID_SEPEDI_SOUTH_AFRICA' : 0x046c, 'TT_MS_LANGID_SOTHO_SOUTHERN_SOUTH_AFRICA' : 0x046c, 'TT_MS_LANGID_IGBO_NIGERIA' : 0x0470, 'TT_MS_LANGID_KANURI_NIGERIA' : 0x0471, 'TT_MS_LANGID_OROMO_ETHIOPIA' : 0x0472, 'TT_MS_LANGID_TIGRIGNA_ETHIOPIA' : 0x0473, 'TT_MS_LANGID_TIGRIGNA_ERYTHREA' : 0x0873, 'TT_MS_LANGID_TIGRIGNA_ERYTREA' : 0x0873, 'TT_MS_LANGID_GUARANI_PARAGUAY' : 0x0474, 'TT_MS_LANGID_HAWAIIAN_UNITED_STATES' : 0x0475, 'TT_MS_LANGID_LATIN' : 0x0476, 'TT_MS_LANGID_SOMALI_SOMALIA' : 0x0477, 'TT_MS_LANGID_YI_CHINA' : 0x0478, 'TT_MS_LANGID_PAPIAMENTU_NETHERLANDS_ANTILLES' : 0x0479, 'TT_MS_LANGID_UIGHUR_CHINA' : 0x0480, 'TT_MS_LANGID_MAORI_NEW_ZEALAND' : 0x0481 } globals().update(TT_MS_LANGIDS)
import json import collections import operator from datetime import timedelta from django.core import mail from django.http import HttpRequest from django.template.loader import render_to_string from django.utils import timezone from django.test import TestCase from django.contrib.auth.models import AnonymousUser from django.contrib.messages import get_messages from django.contrib.messages.storage.fallback import FallbackStorage from django.contrib.sites.shortcuts import get_current_site from rest_framework.test import APIRequestFactory, force_authenticate from geokey import version from geokey.core.tests.helpers import render_helpers from geokey.users.tests.model_factories import UserFactory from geokey.projects.models import Project from geokey.projects.tests.model_factories import ProjectFactory from geokey.categories.models import Category from geokey.categories.tests.model_factories import ( CategoryFactory, TextFieldFactory, LookupFieldFactory, LookupValueFactory ) from geokey.contributions.models import Location, Observation from geokey_airquality import views from geokey_airquality.models import ( AirQualityProject, AirQualityCategory, AirQualityField, AirQualityLocation, AirQualityMeasurement ) from geokey_airquality.tests.model_factories import ( AirQualityProjectFactory, AirQualityCategoryFactory, AirQualityFieldFactory, AirQualityLocationFactory, AirQualityMeasurementFactory ) permission_denied = 'Managing Air Quality is for superusers only.' # ########################### # ADMIN PAGES # ########################### class AQIndexViewTest(TestCase): def setUp(self): self.superuser = UserFactory.create(**{'is_superuser': True}) self.user = UserFactory.create(**{'is_superuser': False}) self.anonym = AnonymousUser() self.template = 'aq_index.html' self.view = views.AQIndexView.as_view() self.request = HttpRequest() self.request.method = 'GET' setattr(self.request, 'session', 'session') messages = FallbackStorage(self.request) setattr(self.request, '_messages', messages) self.project = AirQualityProjectFactory.create( project=ProjectFactory.create() ) def test_get_with_anonymous(self): self.request.user = self.anonym response = self.view(self.request) self.assertEqual(response.status_code, 302) self.assertIn('/admin/account/login/', response['location']) def test_get_with_user(self): self.request.user = self.user response = self.view(self.request).render() rendered = render_to_string( self.template, { 'PLATFORM_NAME': get_current_site(self.request).name, 'GEOKEY_VERSION': version.get_version(), 'user': self.request.user, 'error': 'Permission denied.', 'error_description': permission_denied } ) self.assertEqual(response.status_code, 200) response = render_helpers.remove_csrf(response.content.decode('utf-8')) self.assertEqual(response, rendered) def test_get_with_superuser(self): self.request.user = self.superuser response = self.view(self.request).render() rendered = render_to_string( self.template, { 'PLATFORM_NAME': get_current_site(self.request).name, 'GEOKEY_VERSION': version.get_version(), 'user': self.request.user, 'projects': [self.project], 'total_locations': 0, 'total_measurements': 0 } ) self.assertEqual(response.status_code, 200) response = render_helpers.remove_csrf(response.content.decode('utf-8')) self.assertEqual(response, rendered) class AQExportViewTest(TestCase): def setUp(self): self.superuser = UserFactory.create(**{'is_superuser': True}) self.user = UserFactory.create(**{'is_superuser': False}) self.anonym = AnonymousUser() self.view = views.AQExportView.as_view() self.request = HttpRequest() self.request.method = 'GET' def test_get_with_anonymous(self): self.request.user = self.anonym response = self.view(self.request, file='measurements') self.assertEqual(response.status_code, 403) def test_get_with_user(self): self.request.user = self.user response = self.view(self.request, file='measurements') self.assertEqual(response.status_code, 403) def test_get_with_superuser(self): self.request.user = self.superuser response = self.view(self.request, file='measurements') self.assertEqual(response.status_code, 200) class AQAddViewTest(TestCase): def setUp(self): self.superuser = UserFactory.create(**{'is_superuser': True}) self.user = UserFactory.create(**{'is_superuser': False}) self.anonym = AnonymousUser() self.template = 'aq_add.html' self.view = views.AQAddView.as_view() self.request = HttpRequest() setattr(self.request, 'session', 'session') messages = FallbackStorage(self.request) setattr(self.request, '_messages', messages) self.project = ProjectFactory.create() self.category_types = collections.OrderedDict( sorted(dict(AirQualityCategory.TYPES).items()) ) self.field_types = collections.OrderedDict( sorted( dict(AirQualityField.TYPES).items(), key=operator.itemgetter(1) ) ) def test_get_with_anonymous(self): self.request.user = self.anonym self.request.method = 'GET' response = self.view(self.request) self.assertEqual(response.status_code, 302) self.assertIn('/admin/account/login/', response['location']) def test_get_with_user(self): self.request.user = self.user self.request.method = 'GET' response = self.view(self.request).render() rendered = render_to_string( self.template, { 'PLATFORM_NAME': get_current_site(self.request).name, 'GEOKEY_VERSION': version.get_version(), 'user': self.request.user, 'error': 'Permission denied.', 'error_description': permission_denied } ) self.assertEqual(response.status_code, 200) response = render_helpers.remove_csrf(response.content.decode('utf-8')) self.assertEqual(response, rendered) def test_get_with_superuser(self): self.request.user = self.superuser self.request.method = 'GET' response = self.view(self.request).render() rendered = render_to_string( self.template, { 'PLATFORM_NAME': get_current_site(self.request).name, 'GEOKEY_VERSION': version.get_version(), 'user': self.request.user, 'projects': [self.project], 'category_types': self.category_types, 'field_types': self.field_types } ) self.assertEqual(response.status_code, 200) response = render_helpers.remove_csrf(response.content.decode('utf-8')) self.assertEqual(response, rendered) def test_get_when_project_marked_as_inactive(self): self.project.status = 'inactive' self.project.save() self.request.user = self.superuser self.request.method = 'GET' response = self.view(self.request).render() rendered = render_to_string( self.template, { 'PLATFORM_NAME': get_current_site(self.request).name, 'GEOKEY_VERSION': version.get_version(), 'user': self.request.user, 'projects': [], 'category_types': self.category_types, 'field_types': self.field_types } ) self.assertEqual(response.status_code, 200) response = render_helpers.remove_csrf(response.content.decode('utf-8')) self.assertEqual(response, rendered) def test_get_when_project_marked_as_deleted(self): self.project.status = 'deleted' self.project.save() self.request.user = self.superuser self.request.method = 'GET' response = self.view(self.request).render() rendered = render_to_string( self.template, { 'PLATFORM_NAME': get_current_site(self.request).name, 'GEOKEY_VERSION': version.get_version(), 'user': self.request.user, 'projects': [], 'category_types': self.category_types, 'field_types': self.field_types } ) self.assertEqual(response.status_code, 200) response = render_helpers.remove_csrf(response.content.decode('utf-8')) self.assertEqual(response, rendered) def test_post_with_anonymous(self): self.request.user = self.anonym self.request.method = 'POST' self.request.POST = { 'project': self.project.id } response = self.view(self.request) self.assertEqual(response.status_code, 302) self.assertIn('/admin/account/login/', response['location']) self.assertEqual( Project.objects.get(pk=self.project.id).islocked, False ) def test_post_with_user(self): self.request.user = self.user self.request.method = 'POST' self.request.POST = { 'project': self.project.id } response = self.view(self.request).render() rendered = render_to_string( self.template, { 'PLATFORM_NAME': get_current_site(self.request).name, 'GEOKEY_VERSION': version.get_version(), 'user': self.request.user, 'error': 'Permission denied.', 'error_description': permission_denied } ) self.assertEqual(response.status_code, 200) response = render_helpers.remove_csrf(response.content.decode('utf-8')) self.assertEqual(response, rendered) self.assertEqual( Project.objects.get(pk=self.project.id).islocked, False ) def test_post_when_project_marked_as_inactive(self): self.project.status = 'inactive' self.project.save() self.request.user = self.superuser self.request.method = 'POST' self.request.POST = { 'project': self.project.id } response = self.view(self.request).render() rendered = render_to_string( self.template, { 'PLATFORM_NAME': get_current_site(self.request).name, 'GEOKEY_VERSION': version.get_version(), 'user': self.request.user, 'projects': [], 'category_types': self.category_types, 'field_types': self.field_types, 'messages': get_messages(self.request) } ) self.assertEqual(response.status_code, 200) response = render_helpers.remove_csrf(response.content.decode('utf-8')) self.assertEqual(response, rendered) self.assertEqual( Project.objects.get(pk=self.project.id).islocked, False ) def test_post_when_project_marked_as_deleted(self): self.project.status = 'deleted' self.project.save() self.request.user = self.superuser self.request.method = 'POST' self.request.POST = { 'project': self.project.id } response = self.view(self.request).render() rendered = render_to_string( self.template, { 'PLATFORM_NAME': get_current_site(self.request).name, 'GEOKEY_VERSION': version.get_version(), 'user': self.request.user, 'projects': [], 'category_types': self.category_types, 'field_types': self.field_types, 'messages': get_messages(self.request) } ) self.assertEqual(response.status_code, 200) response = render_helpers.remove_csrf(response.content.decode('utf-8')) self.assertEqual(response, rendered) class AQProjectViewTest(TestCase): def setUp(self): self.superuser = UserFactory.create(**{'is_superuser': True}) self.user = UserFactory.create(**{'is_superuser': False}) self.anonym = AnonymousUser() self.template = 'aq_project.html' self.view = views.AQProjectView.as_view() self.request = HttpRequest() setattr(self.request, 'session', 'session') messages = FallbackStorage(self.request) setattr(self.request, '_messages', messages) self.project = ProjectFactory.create() self.aq_project = AirQualityProjectFactory.create(project=self.project) self.category_types = collections.OrderedDict( sorted(dict(AirQualityCategory.TYPES).items()) ) self.field_types = collections.OrderedDict( sorted( dict(AirQualityField.TYPES).items(), key=operator.itemgetter(1) ) ) def test_get_with_anonymous(self): self.request.user = self.anonym self.request.method = 'GET' response = self.view( self.request, project_id=self.aq_project.id ) self.assertEqual(response.status_code, 302) self.assertIn('/admin/account/login/', response['location']) def test_get_with_user(self): self.request.user = self.user self.request.method = 'GET' response = self.view( self.request, project_id=self.aq_project.id ).render() rendered = render_to_string( self.template, { 'PLATFORM_NAME': get_current_site(self.request).name, 'GEOKEY_VERSION': version.get_version(), 'user': self.request.user, 'error': 'Permission denied.', 'error_description': permission_denied } ) self.assertEqual(response.status_code, 200) response = render_helpers.remove_csrf(response.content.decode('utf-8')) self.assertEqual(response, rendered) def test_get_with_superuser(self): self.request.user = self.superuser self.request.method = 'GET' response = self.view( self.request, project_id=self.aq_project.id ).render() rendered = render_to_string( self.template, { 'PLATFORM_NAME': get_current_site(self.request).name, 'GEOKEY_VERSION': version.get_version(), 'user': self.request.user, 'projects': [self.project], 'project': self.aq_project, 'category_types': self.category_types, 'field_types': self.field_types } ) self.assertEqual(response.status_code, 200) response = render_helpers.remove_csrf(response.content.decode('utf-8')) self.assertEqual(response, rendered) def test_get_when_project_marked_as_inactive(self): self.project.status = 'inactive' self.project.save() self.request.user = self.superuser self.request.method = 'GET' response = self.view( self.request, project_id=self.aq_project.id ).render() rendered = render_to_string( self.template, { 'PLATFORM_NAME': get_current_site(self.request).name, 'GEOKEY_VERSION': version.get_version(), 'user': self.request.user, 'error': 'Not found.', 'error_description': 'Project not found.' } ) self.assertEqual(response.status_code, 200) response = render_helpers.remove_csrf(response.content.decode('utf-8')) self.assertEqual(response, rendered) def test_get_when_project_marked_as_deleted(self): self.project.status = 'deleted' self.project.save() self.request.user = self.superuser self.request.method = 'GET' response = self.view( self.request, project_id=self.aq_project.id ).render() rendered = render_to_string( self.template, { 'PLATFORM_NAME': get_current_site(self.request).name, 'GEOKEY_VERSION': version.get_version(), 'user': self.request.user, 'error': 'Not found.', 'error_description': 'Project not found.' } ) self.assertEqual(response.status_code, 200) response = render_helpers.remove_csrf(response.content.decode('utf-8')) self.assertEqual(response, rendered) def test_get_when_no_project(self): Project.objects.get(pk=self.project.id).delete() self.request.user = self.superuser self.request.method = 'GET' response = self.view( self.request, project_id=self.aq_project.id ).render() rendered = render_to_string( self.template, { 'PLATFORM_NAME': get_current_site(self.request).name, 'GEOKEY_VERSION': version.get_version(), 'user': self.request.user, 'error': 'Not found.', 'error_description': 'Project not found.' } ) self.assertEqual(response.status_code, 200) response = render_helpers.remove_csrf(response.content.decode('utf-8')) self.assertEqual(response, rendered) def test_get_when_no_aq_project(self): AirQualityProject.objects.get(pk=self.aq_project.id).delete() self.request.user = self.superuser self.request.method = 'GET' response = self.view( self.request, project_id=self.aq_project.id ).render() rendered = render_to_string( self.template, { 'PLATFORM_NAME': get_current_site(self.request).name, 'GEOKEY_VERSION': version.get_version(), 'user': self.request.user, 'error': 'Not found.', 'error_description': 'Project not found.' } ) self.assertEqual(response.status_code, 200) response = render_helpers.remove_csrf(response.content.decode('utf-8')) self.assertEqual(response, rendered) def test_post_with_anonymous(self): self.request.user = self.anonym self.request.method = 'POST' self.request.POST = { 'project': self.project.id } response = self.view( self.request, project_id=self.aq_project.id ) self.assertEqual(response.status_code, 302) self.assertIn('/admin/account/login/', response['location']) def test_post_with_user(self): self.request.user = self.user self.request.method = 'POST' self.request.POST = { 'project': self.project.id } response = self.view( self.request, project_id=self.aq_project.id ).render() rendered = render_to_string( self.template, { 'PLATFORM_NAME': get_current_site(self.request).name, 'GEOKEY_VERSION': version.get_version(), 'user': self.request.user, 'error': 'Permission denied.', 'error_description': permission_denied } ) self.assertEqual(response.status_code, 200) response = render_helpers.remove_csrf(response.content.decode('utf-8')) self.assertEqual(response, rendered) def test_post_when_project_marked_as_inactive(self): self.project.status = 'inactive' self.project.save() self.request.user = self.superuser self.request.method = 'POST' self.request.POST = { 'project': self.project.id } response = self.view( self.request, project_id=self.aq_project.id ).render() rendered = render_to_string( self.template, { 'PLATFORM_NAME': get_current_site(self.request).name, 'GEOKEY_VERSION': version.get_version(), 'user': self.request.user, 'error': 'Not found.', 'error_description': 'Project not found.' } ) self.assertEqual(response.status_code, 200) response = render_helpers.remove_csrf(response.content.decode('utf-8')) self.assertEqual(response, rendered) def test_post_when_project_marked_as_deleted(self): self.project.status = 'deleted' self.project.save() self.request.user = self.superuser self.request.method = 'POST' self.request.POST = { 'project': self.project.id } response = self.view( self.request, project_id=self.aq_project.id ).render() rendered = render_to_string( self.template, { 'PLATFORM_NAME': get_current_site(self.request).name, 'GEOKEY_VERSION': version.get_version(), 'user': self.request.user, 'error': 'Not found.', 'error_description': 'Project not found.' } ) self.assertEqual(response.status_code, 200) response = render_helpers.remove_csrf(response.content.decode('utf-8')) self.assertEqual(response, rendered) def test_post_when_no_project(self): Project.objects.get(pk=self.project.id).delete() self.request.user = self.superuser self.request.method = 'POST' self.request.POST = { 'project': self.project.id } response = self.view( self.request, project_id=self.aq_project.id ).render() rendered = render_to_string( self.template, { 'PLATFORM_NAME': get_current_site(self.request).name, 'GEOKEY_VERSION': version.get_version(), 'user': self.request.user, 'error': 'Not found.', 'error_description': 'Project not found.' } ) self.assertEqual(response.status_code, 200) response = render_helpers.remove_csrf(response.content.decode('utf-8')) self.assertEqual(response, rendered) def test_post_when_no_aq_project(self): AirQualityProject.objects.get(pk=self.aq_project.id).delete() self.request.user = self.superuser self.request.method = 'POST' self.request.POST = { 'project': self.project.id } response = self.view( self.request, project_id=self.aq_project.id ).render() rendered = render_to_string( self.template, { 'PLATFORM_NAME': get_current_site(self.request).name, 'GEOKEY_VERSION': version.get_version(), 'user': self.request.user, 'error': 'Not found.', 'error_description': 'Project not found.' } ) self.assertEqual(response.status_code, 200) response = render_helpers.remove_csrf(response.content.decode('utf-8')) self.assertEqual(response, rendered) class AQRemoveViewTest(TestCase): def setUp(self): self.superuser = UserFactory.create(**{'is_superuser': True}) self.user = UserFactory.create(**{'is_superuser': False}) self.anonym = AnonymousUser() self.template = 'base.html' self.view = views.AQRemoveView.as_view() self.request = HttpRequest() self.request.method = 'GET' setattr(self.request, 'session', 'session') messages = FallbackStorage(self.request) setattr(self.request, '_messages', messages) self.project = ProjectFactory.create() self.category = CategoryFactory.create() self.field = TextFieldFactory.create() self.aq_project_1 = AirQualityProjectFactory.create( project=self.project ) self.aq_category_1 = AirQualityCategoryFactory.create( category=self.category, project=self.aq_project_1 ) self.aq_field_1 = AirQualityFieldFactory.create( field=self.field, category=self.aq_category_1 ) self.aq_project_2 = AirQualityProjectFactory.create( project=self.project ) self.aq_category_2 = AirQualityCategoryFactory.create( category=self.category, project=self.aq_project_2 ) self.aq_field_1 = AirQualityFieldFactory.create( field=self.field, category=self.aq_category_2 ) def test_get_with_anonymous(self): self.request.user = self.anonym response = self.view( self.request, project_id=self.aq_project_1.id ) self.assertEqual(response.status_code, 302) self.assertIn('/admin/account/login/', response['location']) def test_get_with_user(self): self.request.user = self.user response = self.view( self.request, project_id=self.aq_project_1.id ).render() rendered = render_to_string( self.template, { 'PLATFORM_NAME': get_current_site(self.request).name, 'GEOKEY_VERSION': version.get_version(), 'user': self.request.user, 'error': 'Permission denied.', 'error_description': permission_denied } ) self.assertEqual(response.status_code, 200) response = render_helpers.remove_csrf(response.content.decode('utf-8')) self.assertEqual(response, rendered) def test_get_with_superuser(self): self.request.user = self.superuser response = self.view( self.request, project_id=self.aq_project_1.id ) self.assertEqual(response.status_code, 302) self.assertIn('/admin/airquality/', response['location']) self.assertEqual(AirQualityProject.objects.count(), 1) self.assertEqual(AirQualityCategory.objects.count(), 1) self.assertEqual(AirQualityField.objects.count(), 1) def test_get_when_no_project(self): AirQualityProject.objects.get(pk=self.aq_project_1.id).delete() self.request.user = self.superuser response = self.view( self.request, project_id=self.aq_project_1.id ) self.assertEqual(response.status_code, 302) self.assertIn('/admin/airquality/', response['location']) # ########################### # ADMIN AJAX # ########################### class AQProjectsSingleAjaxViewTest(TestCase): def setUp(self): self.superuser = UserFactory.create(**{'is_superuser': True}) self.creator = UserFactory.create(**{'is_superuser': False}) self.user = UserFactory.create(**{'is_superuser': False}) self.anonym = AnonymousUser() self.project = ProjectFactory.create(add_contributors=[self.creator]) self.url = '/ajax/airquality/projects/%s/' % self.project.id self.factory = APIRequestFactory() self.request_get = self.factory.get(self.url) self.view = views.AQProjectsSingleAjaxView.as_view() def test_get_with_anonymous(self): force_authenticate(self.request_get, user=self.anonym) response = self.view( self.request_get, project_id=self.project.id ).render() self.assertEqual(response.status_code, 403) def test_get_with_user(self): force_authenticate(self.request_get, user=self.user) response = self.view( self.request_get, project_id=self.project.id ).render() self.assertEqual(response.status_code, 403) def test_get_with_creator(self): force_authenticate(self.request_get, user=self.creator) response = self.view( self.request_get, project_id=self.project.id ).render() self.assertEqual(response.status_code, 403) def test_get_with_superuser(self): force_authenticate(self.request_get, user=self.superuser) response = self.view( self.request_get, project_id=self.project.id ).render() project = json.loads(response.content) self.assertEqual(response.status_code, 200) self.assertEqual(project['id'], self.project.id) def test_get_when_project_marked_as_inactive(self): self.project.status = 'inactive' self.project.save() force_authenticate(self.request_get, user=self.superuser) response = self.view( self.request_get, project_id=self.project.id ).render() self.assertEqual(response.status_code, 404) def test_get_when_project_marked_as_deleted(self): self.project.status = 'deleted' self.project.save() force_authenticate(self.request_get, user=self.superuser) response = self.view( self.request_get, project_id=self.project.id ).render() self.assertEqual(response.status_code, 404) def test_get_when_no_project(self): Project.objects.get(pk=self.project.id).delete() force_authenticate(self.request_get, user=self.superuser) response = self.view( self.request_get, project_id=self.project.id ).render() self.assertEqual(response.status_code, 404) class AQCategoriesSingleAjaxViewTest(TestCase): def setUp(self): self.superuser = UserFactory.create(**{'is_superuser': True}) self.creator = UserFactory.create(**{'is_superuser': False}) self.user = UserFactory.create(**{'is_superuser': False}) self.anonym = AnonymousUser() self.project = ProjectFactory.create(add_contributors=[self.creator]) self.category = CategoryFactory.create( creator=self.creator, project=self.project ) self.url = '/ajax/airquality/projects/%s/categories/%s/' % ( self.project.id, self.category.id ) self.factory = APIRequestFactory() self.request_get = self.factory.get(self.url) self.view = views.AQCategoriesSingleAjaxView.as_view() def test_get_with_anonymous(self): force_authenticate(self.request_get, user=self.anonym) response = self.view( self.request_get, project_id=self.project.id, category_id=self.category.id ).render() self.assertEqual(response.status_code, 403) def test_get_with_user(self): force_authenticate(self.request_get, user=self.user) response = self.view( self.request_get, project_id=self.project.id, category_id=self.category.id ).render() self.assertEqual(response.status_code, 403) def test_get_with_creator(self): force_authenticate(self.request_get, user=self.creator) response = self.view( self.request_get, project_id=self.project.id, category_id=self.category.id ).render() self.assertEqual(response.status_code, 403) def test_get_with_superuser(self): force_authenticate(self.request_get, user=self.superuser) response = self.view( self.request_get, project_id=self.project.id, category_id=self.category.id ).render() category = json.loads(response.content) self.assertEqual(response.status_code, 200) self.assertEqual(category['id'], self.category.id) def test_get_when_project_marked_as_inactive(self): self.project.status = 'inactive' self.project.save() force_authenticate(self.request_get, user=self.superuser) response = self.view( self.request_get, project_id=self.project.id, category_id=self.category.id ).render() self.assertEqual(response.status_code, 404) def test_get_when_project_marked_as_deleted(self): self.project.status = 'deleted' self.project.save() force_authenticate(self.request_get, user=self.superuser) response = self.view( self.request_get, project_id=self.project.id, category_id=self.category.id ).render() self.assertEqual(response.status_code, 404) def test_get_when_no_project(self): Project.objects.get(pk=self.project.id).delete() force_authenticate(self.request_get, user=self.superuser) response = self.view( self.request_get, project_id=self.project.id, category_id=self.category.id ).render() self.assertEqual(response.status_code, 404) def test_get_when_category_marked_as_inactive(self): self.category.status = 'inactive' self.category.save() force_authenticate(self.request_get, user=self.superuser) response = self.view( self.request_get, project_id=self.project.id, category_id=self.category.id ).render() self.assertEqual(response.status_code, 404) def test_get_when_no_category(self): Category.objects.get(pk=self.category.id).delete() force_authenticate(self.request_get, user=self.superuser) response = self.view( self.request_get, project_id=self.project.id, category_id=self.category.id ).render() self.assertEqual(response.status_code, 404) # ########################### # PUBLIC API # ########################### class AQSheetAPIViewTest(TestCase): def setUp(self): self.creator = UserFactory.create() self.user = UserFactory.create() self.anonym = AnonymousUser() self.url = '/api/airquality/sheet/' self.factory = APIRequestFactory() self.request_get = self.factory.get(self.url) self.view = views.AQSheetAPIView.as_view() self.location_1 = AirQualityLocationFactory.create( creator=self.creator ) self.location_2 = AirQualityLocationFactory.create( creator=UserFactory.create() ) AirQualityMeasurementFactory.create( location=self.location_1, creator=self.location_1.creator, finished=timezone.now() ) AirQualityMeasurementFactory.create( location=self.location_1, creator=self.location_1.creator ) def test_get_with_anonymous(self): force_authenticate(self.request_get, user=self.anonym) response = self.view(self.request_get).render() self.assertEqual(response.status_code, 403) def test_get_with_user(self): force_authenticate(self.request_get, user=self.user) response = self.view(self.request_get).render() self.assertEqual(response.status_code, 204) self.assertEquals(len(mail.outbox), 1) def test_get_with_creator(self): force_authenticate(self.request_get, user=self.creator) response = self.view(self.request_get).render() self.assertEqual(response.status_code, 204) self.assertEquals(len(mail.outbox), 1) class AQProjectsAPIViewTest(TestCase): def setUp(self): self.contributor = UserFactory.create() self.user = UserFactory.create() self.anonym = AnonymousUser() self.url = '/api/airquality/projects/' self.factory = APIRequestFactory() self.request_get = self.factory.get(self.url) self.view = views.AQProjectsAPIView.as_view() self.project_1 = ProjectFactory.create( add_contributors=[self.contributor] ) self.project_2 = ProjectFactory.create( add_contributors=[self.contributor] ) self.project_3 = ProjectFactory.create( add_contributors=[self.contributor] ) self.aq_project_1 = AirQualityProjectFactory.create( project=self.project_1 ) self.aq_project_2 = AirQualityProjectFactory.create( status='inactive', project=self.project_2 ) def test_get_with_anonymous(self): force_authenticate(self.request_get, user=self.anonym) response = self.view(self.request_get).render() self.assertEqual(response.status_code, 403) def test_get_with_user(self): force_authenticate(self.request_get, user=self.user) response = self.view(self.request_get).render() projects = json.loads(response.content) self.assertEqual(response.status_code, 200) self.assertEqual(len(projects), 0) def test_get_with_contributor(self): force_authenticate(self.request_get, user=self.contributor) response = self.view(self.request_get).render() projects = json.loads(response.content) self.assertEqual(response.status_code, 200) self.assertEqual(len(projects), 1) self.assertEqual(projects[0]['id'], self.project_1.id) def test_get_when_original_project_deleted(self): self.aq_project_3 = AirQualityProjectFactory.create( project=self.project_3 ) self.project_3.delete() force_authenticate(self.request_get, user=self.contributor) response = self.view(self.request_get).render() projects = json.loads(response.content) self.assertEqual(response.status_code, 200) self.assertEqual(len(projects), 1) self.assertEqual(AirQualityProject.objects.count(), 2) class AQLocationsAPIViewTest(TestCase): def setUp(self): self.creator = UserFactory.create() self.user = UserFactory.create() self.anonym = AnonymousUser() self.url = '/api/airquality/locations/' self.data = { 'type': 'Feature', 'geometry': { 'type': 'Point', 'coordinates': [-0.134, 51.524] }, 'name': 'Test Location', 'properties': { 'distance': 2 } } self.factory = APIRequestFactory() self.request_get = self.factory.get(self.url) self.request_post = self.factory.post( self.url, json.dumps(self.data), content_type='application/json' ) self.view = views.AQLocationsAPIView.as_view() self.location_1 = AirQualityLocationFactory.create( creator=self.creator ) self.location_2 = AirQualityLocationFactory.create( creator=UserFactory.create() ) def test_get_with_anonymous(self): force_authenticate(self.request_get, user=self.anonym) response = self.view(self.request_get).render() self.assertEqual(response.status_code, 403) def test_get_with_user(self): force_authenticate(self.request_get, user=self.user) response = self.view(self.request_get).render() locations = json.loads(response.content) self.assertEqual(response.status_code, 200) self.assertEqual(len(locations), 0) def test_get_with_creator(self): force_authenticate(self.request_get, user=self.creator) response = self.view(self.request_get).render() locations = json.loads(response.content) self.assertEqual(response.status_code, 200) self.assertEqual(len(locations), 1) self.assertEqual(len(locations[0]['measurements']), 0) def test_get_together_with_measurements(self): AirQualityMeasurementFactory.create( location=self.location_1, creator=self.location_1.creator ) AirQualityMeasurementFactory.create( location=self.location_2, creator=self.location_2.creator ) force_authenticate(self.request_get, user=self.creator) response = self.view(self.request_get).render() locations = json.loads(response.content) self.assertEqual(response.status_code, 200) self.assertEqual(len(locations), 1) self.assertEqual(len(locations[0]['measurements']), 1) def test_post_with_anonymous(self): force_authenticate(self.request_post, user=self.anonym) response = self.view(self.request_post).render() self.assertEqual(response.status_code, 403) self.assertEqual(AirQualityLocation.objects.count(), 2) def test_post_with_user(self): force_authenticate(self.request_post, user=self.user) response = self.view(self.request_post).render() self.assertEqual(response.status_code, 201) self.assertEqual(AirQualityLocation.objects.count(), 3) class AQLocationsSingleAPIViewTest(TestCase): def setUp(self): self.creator = UserFactory.create() self.user = UserFactory.create() self.anonym = AnonymousUser() self.location = AirQualityLocationFactory.create(creator=self.creator) self.url = '/api/airquality/locations/%s/' % self.location.id self.data = { 'type': 'Feature', 'geometry': { 'type': 'Point', 'coordinates': [-0.124, 55.171] }, 'name': 'Updated Test Location', 'properties': { 'height': 11.2, 'distance': None, 'characteristics': 'Beautiful location' } } self.factory = APIRequestFactory() self.request_patch = self.factory.patch( self.url, json.dumps(self.data), content_type='application/json' ) self.request_delete = self.factory.delete( self.url, content_type='application/json' ) self.view = views.AQLocationsSingleAPIView.as_view() def test_patch_with_anonymous(self): force_authenticate(self.request_patch, user=self.anonym) response = self.view( self.request_patch, location_id=self.location.id ).render() self.assertEqual(response.status_code, 403) def test_patch_with_user(self): force_authenticate(self.request_patch, user=self.user) response = self.view( self.request_patch, location_id=self.location.id ).render() self.assertEqual(response.status_code, 403) def test_patch_with_creator(self): force_authenticate(self.request_patch, user=self.creator) response = self.view( self.request_patch, location_id=self.location.id ).render() reference = AirQualityLocation.objects.get(pk=self.location.id) self.assertEqual(response.status_code, 200) self.assertEqual(reference.name, self.data.get('name')) self.assertEqual(reference.properties, self.data.get('properties')) def test_patch_when_no_location(self): AirQualityLocation.objects.get(pk=self.location.id).delete() force_authenticate(self.request_patch, user=self.creator) response = self.view( self.request_patch, location_id=self.location.id ).render() self.assertEqual(response.status_code, 404) def test_delete_with_anonymous(self): force_authenticate(self.request_delete, user=self.anonym) response = self.view( self.request_delete, location_id=self.location.id ).render() self.assertEqual(response.status_code, 403) self.assertEqual(AirQualityLocation.objects.count(), 1) def test_delete_with_user(self): force_authenticate(self.request_delete, user=self.user) response = self.view( self.request_delete, location_id=self.location.id ).render() self.assertEqual(response.status_code, 403) self.assertEqual(AirQualityLocation.objects.count(), 1) def test_delete_with_creator(self): force_authenticate(self.request_delete, user=self.creator) response = self.view( self.request_delete, location_id=self.location.id ).render() self.assertEqual(response.status_code, 204) self.assertEqual( AirQualityLocation.objects.filter(pk=self.location.id).exists(), False ) def test_delete_when_there_are_measurements(self): self.measurement_1 = AirQualityMeasurementFactory.create( location=self.location, creator=self.location.creator ) self.measurement_2 = AirQualityMeasurementFactory.create( location=self.location, creator=self.location.creator ) force_authenticate(self.request_delete, user=self.creator) response = self.view( self.request_delete, location_id=self.location.id ).render() self.assertEqual(response.status_code, 204) self.assertEqual( AirQualityLocation.objects.filter(pk=self.location.id).exists(), False ) self.assertEqual(AirQualityMeasurement.objects.count(), 0) def test_delete_when_no_location(self): AirQualityLocation.objects.get(pk=self.location.id).delete() force_authenticate(self.request_delete, user=self.creator) response = self.view( self.request_delete, location_id=self.location.id ).render() self.assertEqual(response.status_code, 404) class AQMeasurementsAPIViewTest(TestCase): def setUp(self): self.creator = UserFactory.create() self.user = UserFactory.create() self.anonym = AnonymousUser() self.location = AirQualityLocationFactory.create( creator=self.creator, properties={ 'height': 2, 'distance': 10 } ) self.url = '/api/airquality/locations/%s/measurements/' % ( self.location.id ) self.data = { 'barcode': 123456, 'started': (timezone.now() - timedelta(days=28)).isoformat(), 'called': timezone.now().isoformat() } self.factory = APIRequestFactory() self.request_post = self.factory.post( self.url, json.dumps(self.data), content_type='application/json' ) self.view = views.AQMeasurementsAPIView.as_view() self.project = ProjectFactory.create(add_contributors=[self.creator]) self.aq_project = AirQualityProjectFactory.create(project=self.project) self.category = CategoryFactory.create(project=self.project) self.aq_category = AirQualityCategoryFactory.create( type='40-60', category=self.category, project=self.aq_project ) self.field_1 = TextFieldFactory.create(category=self.category) self.field_2 = TextFieldFactory.create(category=self.category) self.field_3 = TextFieldFactory.create(category=self.category) self.field_4 = TextFieldFactory.create(category=self.category) self.field_5 = TextFieldFactory.create(category=self.category) self.field_6 = TextFieldFactory.create(category=self.category) self.field_7 = TextFieldFactory.create(category=self.category) self.field_8 = TextFieldFactory.create(category=self.category) self.field_9 = TextFieldFactory.create(category=self.category) self.field_10 = TextFieldFactory.create(category=self.category) self.field_11 = LookupFieldFactory.create(category=self.category) LookupValueFactory(**{ 'field': self.field_11, 'name': 'Yes' }) LookupValueFactory(**{ 'field': self.field_11, 'name': 'No' }) self.aq_field_1 = AirQualityFieldFactory.create( type='01. Results', field=self.field_1, category=self.aq_category ) self.aq_field_2 = AirQualityFieldFactory.create( type='02. Date out', field=self.field_2, category=self.aq_category ) self.aq_field_3 = AirQualityFieldFactory.create( type='03. Time out', field=self.field_3, category=self.aq_category ) self.aq_field_4 = AirQualityFieldFactory.create( type='04. Date collected', field=self.field_4, category=self.aq_category ) self.aq_field_5 = AirQualityFieldFactory.create( type='05. Time collected', field=self.field_5, category=self.aq_category ) self.aq_field_6 = AirQualityFieldFactory.create( type='06. Exposure time (min)', field=self.field_6, category=self.aq_category ) self.aq_field_7 = AirQualityFieldFactory.create( type='07. Distance from the road', field=self.field_7, category=self.aq_category ) self.aq_field_8 = AirQualityFieldFactory.create( type='08. Height from ground', field=self.field_8, category=self.aq_category ) self.aq_field_9 = AirQualityFieldFactory.create( type='09. Site characteristics', field=self.field_9, category=self.aq_category ) self.aq_field_10 = AirQualityFieldFactory.create( type='10. Additional details', field=self.field_10, category=self.aq_category ) self.aq_field_11 = AirQualityFieldFactory.create( type='11. Diffusion tube made by students', field=self.field_11, category=self.aq_category ) def test_post_with_anonymous(self): force_authenticate(self.request_post, user=self.anonym) response = self.view( self.request_post, location_id=self.location.id ).render() self.assertEqual(response.status_code, 403) self.assertEqual(AirQualityMeasurement.objects.count(), 0) def test_post_with_user(self): force_authenticate(self.request_post, user=self.user) response = self.view( self.request_post, location_id=self.location.id ).render() self.assertEqual(response.status_code, 403) self.assertEqual(AirQualityMeasurement.objects.count(), 0) def test_post_with_creator(self): force_authenticate(self.request_post, user=self.creator) response = self.view( self.request_post, location_id=self.location.id ).render() self.assertEqual(response.status_code, 201) self.assertEqual(AirQualityMeasurement.objects.count(), 1) def test_post_when_submitting_and_no_project(self): self.data['finished'] = timezone.now().isoformat() self.data['project'] = 158 self.data['properties'] = {'results': 45.15} self.request_post = self.factory.post( self.url, json.dumps(self.data), content_type='application/json' ) force_authenticate(self.request_post, user=self.creator) response = self.view( self.request_post, location_id=self.location.id ).render() self.assertEqual(response.status_code, 201) self.assertEqual(AirQualityMeasurement.objects.count(), 1) self.assertEqual(Location.objects.count(), 0) self.assertEqual(Observation.objects.count(), 0) def test_post_when_submitting(self): self.data['finished'] = timezone.now().isoformat() self.data['project'] = self.project.id self.data['properties'] = {'results': 48.05} self.request_post = self.factory.post( self.url, json.dumps(self.data), content_type='application/json' ) force_authenticate(self.request_post, user=self.creator) response = self.view( self.request_post, location_id=self.location.id ).render() self.assertEqual(response.status_code, 204) self.assertEqual(AirQualityMeasurement.objects.count(), 0) self.assertEqual(Location.objects.count(), 1) self.assertEqual(Observation.objects.count(), 1) def test_post_when_no_location(self): AirQualityLocation.objects.get(pk=self.location.id).delete() response = self.view( self.request_post, location_id=self.location.id ).render() self.assertEqual(response.status_code, 404) self.assertEqual(AirQualityMeasurement.objects.count(), 0) class AQMeasurementsSingleAPIViewTest(TestCase): def setUp(self): self.creator = UserFactory.create() self.user = UserFactory.create() self.anonym = AnonymousUser() self.location_1 = AirQualityLocationFactory.create( creator=self.creator, properties={ 'additional_details': 'Heavy traffic.' } ) self.location_2 = AirQualityLocationFactory.create(creator=self.user) self.measurement_1 = AirQualityMeasurementFactory.create( location=self.location_1, creator=self.location_1.creator ) self.measurement_2 = AirQualityMeasurementFactory.create( location=self.location_2, creator=self.location_2.creator ) self.url = '/api/airquality/locations/%s/measurements/%s/' % ( self.location_1.id, self.measurement_1.id ) self.data = { 'barcode': self.measurement_1.barcode, 'started': (timezone.now() - timedelta(days=28)).isoformat(), 'finished': timezone.now().isoformat(), 'called': timezone.now().isoformat() } self.factory = APIRequestFactory() self.request_patch = self.factory.patch( self.url, json.dumps(self.data), content_type='application/json' ) self.request_delete = self.factory.delete( self.url, content_type='application/json' ) self.view = views.AQMeasurementsSingleAPIView.as_view() self.project = ProjectFactory.create(add_contributors=[self.creator]) self.aq_project = AirQualityProjectFactory.create(project=self.project) self.category = CategoryFactory.create(project=self.project) self.aq_category = AirQualityCategoryFactory.create( type='60-80', category=self.category, project=self.aq_project ) self.field_1 = TextFieldFactory.create(category=self.category) self.field_2 = TextFieldFactory.create(category=self.category) self.field_3 = TextFieldFactory.create(category=self.category) self.field_4 = TextFieldFactory.create(category=self.category) self.field_5 = TextFieldFactory.create(category=self.category) self.field_6 = TextFieldFactory.create(category=self.category) self.field_7 = TextFieldFactory.create(category=self.category) self.field_8 = TextFieldFactory.create(category=self.category) self.field_9 = TextFieldFactory.create(category=self.category) self.field_10 = TextFieldFactory.create(category=self.category) self.field_11 = LookupFieldFactory.create(category=self.category) LookupValueFactory(**{ 'field': self.field_11, 'name': 'Yes' }) LookupValueFactory(**{ 'field': self.field_11, 'name': 'No' }) self.aq_field_1 = AirQualityFieldFactory.create( type='01. Results', field=self.field_1, category=self.aq_category ) self.aq_field_2 = AirQualityFieldFactory.create( type='02. Date out', field=self.field_2, category=self.aq_category ) self.aq_field_3 = AirQualityFieldFactory.create( type='03. Time out', field=self.field_3, category=self.aq_category ) self.aq_field_4 = AirQualityFieldFactory.create( type='04. Date collected', field=self.field_4, category=self.aq_category ) self.aq_field_5 = AirQualityFieldFactory.create( type='05. Time collected', field=self.field_5, category=self.aq_category ) self.aq_field_6 = AirQualityFieldFactory.create( type='06. Exposure time (min)', field=self.field_6, category=self.aq_category ) self.aq_field_7 = AirQualityFieldFactory.create( type='07. Distance from the road', field=self.field_7, category=self.aq_category ) self.aq_field_8 = AirQualityFieldFactory.create( type='08. Height from ground', field=self.field_8, category=self.aq_category ) self.aq_field_9 = AirQualityFieldFactory.create( type='09. Site characteristics', field=self.field_9, category=self.aq_category ) self.aq_field_10 = AirQualityFieldFactory.create( type='10. Additional details', field=self.field_10, category=self.aq_category ) self.aq_field_11 = AirQualityFieldFactory.create( type='11. Diffusion tube made by students', field=self.field_11, category=self.aq_category ) def test_patch_with_anonymous(self): force_authenticate(self.request_patch, user=self.anonym) response = self.view( self.request_patch, location_id=self.location_1.id, measurement_id=self.measurement_1.id ).render() self.assertEqual(response.status_code, 403) def test_patch_with_user(self): force_authenticate(self.request_patch, user=self.user) response = self.view( self.request_patch, location_id=self.location_1.id, measurement_id=self.measurement_1.id ).render() self.assertEqual(response.status_code, 403) def test_patch_with_creator(self): force_authenticate(self.request_patch, user=self.creator) response = self.view( self.request_patch, location_id=self.location_1.id, measurement_id=self.measurement_1.id ).render() self.assertEqual(response.status_code, 200) def test_patch_when_changing_barcode(self): self.data['barcode'] = 451274 self.request_patch = self.factory.patch( self.url, json.dumps(self.data), content_type='application/json' ) force_authenticate(self.request_patch, user=self.creator) response = self.view( self.request_patch, location_id=self.location_1.id, measurement_id=self.measurement_1.id ).render() reference = AirQualityMeasurement.objects.get( pk=self.measurement_1.id ) self.assertEqual(response.status_code, 200) self.assertEqual(reference.barcode, str(self.data['barcode'])) def test_patch_when_submitting_and_no_project(self): self.data['project'] = 183 self.data['properties'] = {'results': 70.51} self.request_patch = self.factory.patch( self.url, json.dumps(self.data), content_type='application/json' ) force_authenticate(self.request_patch, user=self.creator) response = self.view( self.request_patch, location_id=self.location_1.id, measurement_id=self.measurement_1.id ).render() self.assertEqual(response.status_code, 200) self.assertEqual( AirQualityMeasurement.objects.filter( pk=self.measurement_1.id).exists(), True ) self.assertEqual(Location.objects.count(), 0) self.assertEqual(Observation.objects.count(), 0) def test_patch_when_submitting(self): self.data['project'] = self.project.id self.data['properties'] = {'results': 72.78} self.request_patch = self.factory.patch( self.url, json.dumps(self.data), content_type='application/json' ) force_authenticate(self.request_patch, user=self.creator) response = self.view( self.request_patch, location_id=self.location_1.id, measurement_id=self.measurement_1.id ).render() self.assertEqual(response.status_code, 204) self.assertEqual( AirQualityMeasurement.objects.filter( pk=self.measurement_1.id).exists(), False ) self.assertEqual(Location.objects.count(), 1) self.assertEqual(Observation.objects.count(), 1) def test_patch_when_no_location(self): AirQualityLocation.objects.get(pk=self.location_1.id).delete() force_authenticate(self.request_patch, user=self.creator) response = self.view( self.request_patch, location_id=self.location_1.id, measurement_id=self.measurement_1.id ).render() self.assertEqual(response.status_code, 404) def test_patch_when_no_measurement(self): AirQualityMeasurement.objects.get(pk=self.measurement_1.id).delete() force_authenticate(self.request_patch, user=self.creator) response = self.view( self.request_patch, location_id=self.location_1.id, measurement_id=self.measurement_1.id ).render() self.assertEqual(response.status_code, 404) def test_delete_with_anonymous(self): force_authenticate(self.request_delete, user=self.anonym) response = self.view( self.request_delete, location_id=self.location_1.id, measurement_id=self.measurement_1.id ).render() self.assertEqual(response.status_code, 403) self.assertEqual(AirQualityMeasurement.objects.count(), 2) def test_delete_with_user(self): force_authenticate(self.request_delete, user=self.user) response = self.view( self.request_delete, location_id=self.location_1.id, measurement_id=self.measurement_1.id ).render() self.assertEqual(response.status_code, 403) self.assertEqual(AirQualityMeasurement.objects.count(), 2) def test_delete_with_creator(self): force_authenticate(self.request_delete, user=self.creator) response = self.view( self.request_delete, location_id=self.location_1.id, measurement_id=self.measurement_1.id ).render() self.assertEqual(response.status_code, 204) self.assertEqual( AirQualityMeasurement.objects.filter( pk=self.measurement_1.id).exists(), False ) def test_delete_when_no_location(self): AirQualityLocation.objects.get(pk=self.location_1.id).delete() force_authenticate(self.request_delete, user=self.creator) response = self.view( self.request_delete, location_id=self.location_1.id, measurement_id=self.measurement_1.id ).render() self.assertEqual(response.status_code, 404) def test_delete_when_no_measurement(self): AirQualityMeasurement.objects.get(pk=self.measurement_1.id).delete() force_authenticate(self.request_delete, user=self.creator) response = self.view( self.request_delete, location_id=self.location_1.id, measurement_id=self.measurement_1.id ).render() self.assertEqual(response.status_code, 404)
from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals from ipywidgets import * from SimPEG import Mesh, Maps, EM, Utils # from pymatsolver import PardisoSolver import matplotlib.pyplot as plt import numpy as np from PIL import Image from scipy.constants import mu_0 import requests from io import StringIO from .Base import widgetify from .DipoleWidgetFD import DisPosNegvalues from .BiotSavart import BiotSavartFun class TDEMHorizontalLoopCylWidget(object): """TDEMCylWidgete""" survey = None srcList = None mesh = None f = None activeCC = None srcLoc = None mesh2D = None mu = None counter = 0 def __init__(self): self.genMesh() self.getCoreDomain() # url = "http://em.geosci.xyz/_images/disc_dipole.png" # response = requests.get(url) # self.im = Image.open(StringIO(response.content)) self.time = np.logspace(-5, -2, 41) def mirrorArray(self, x, direction="x"): X = x.reshape((self.nx_core, self.ny_core), order="F") if direction == "x" or direction == "y": X2 = np.vstack((-np.flipud(X), X)) else: X2 = np.vstack((np.flipud(X), X)) return X2 def genMesh(self, h=0., cs=3., ncx=15, ncz=30, npad=20): """ Generate cylindrically symmetric mesh """ # TODO: Make it adaptive due to z location hx = [(cs, ncx), (cs, npad, 1.3)] hz = [(cs, npad, -1.3), (cs, ncz), (cs, npad, 1.3)] self.mesh = Mesh.CylMesh([hx, 1, hz], '00C') def getCoreDomain(self, mirror=False, xmax=200, zmin=-200, zmax=200.): self.activeCC = ( (self.mesh.gridCC[:, 0] <= xmax) & ( np.logical_and( self.mesh.gridCC[:, 2] >= zmin, self.mesh.gridCC[:, 2] <= zmax ) ) ) self.gridCCactive = self.mesh.gridCC[self.activeCC, :][:, [0, 2]] xind = (self.mesh.vectorCCx <= xmax) yind = np.logical_and( self.mesh.vectorCCz >= zmin, self.mesh.vectorCCz <= zmax ) self.nx_core = xind.sum() self.ny_core = yind.sum() # if self.mesh2D is None: hx = np.r_[self.mesh.hx[xind][::-1], self.mesh.hx[xind]] hz = self.mesh.hz[yind] self.mesh2D = Mesh.TensorMesh([hx, hz], x0="CC") def getCoreModel(self, Type): if Type == 'Layer': active = self.mesh2D.vectorCCy < self.z0 ind1 = ( (self.mesh2D.vectorCCy < self.z0) & (self.mesh2D.vectorCCy >= self.z1) ) ind2 = ( (self.mesh2D.vectorCCy < self.z1) & (self.mesh2D.vectorCCy >= self.z2) ) mapping2D = ( Maps.SurjectVertical1D(self.mesh2D) * Maps.InjectActiveCells(self.mesh2D, active, self.sig0, nC=self.mesh2D.nCy) ) model2D = np.ones(self.mesh2D.nCy) * self.sig3 model2D[ind1] = self.sig1 model2D[ind2] = self.sig2 model2D = model2D[active] elif Type == 'Sphere': active = self.mesh2D.gridCC[:,1] < self.z0 ind1 = ( (self.mesh2D.gridCC[:, 1] < self.z1) & (self.mesh2D.gridCC[:, 1] >= self.z1-self.h) ) ind2 = np.sqrt((self.mesh2D.gridCC[:, 0])**2 + (self.mesh2D.gridCC[:, 1]-self.z2)**2) <= self.R mapping2D = ( Maps.InjectActiveCells(self.mesh2D, active, self.sig0, nC=self.mesh2D.nC) ) model2D = np.ones(self.mesh2D.nC) * self.sigb model2D[ind1] = self.sig1 model2D[ind2] = self.sig2 model2D = model2D[active] return model2D, mapping2D def getBiotSavrt(self, rxLoc): """ Compute Biot-Savart operator: Gz and Gx """ self.Gz = BiotSavartFun(self.mesh, rxLoc, component='z') self.Gx = BiotSavartFun(self.mesh, rxLoc, component='x') def setThreeLayerParam( self, h1=12, h2=12, sig0=1e-8, sig1=1e-2, sig2=1e-2, sig3=1e-2, chi=0. ): self.h1 = h1 # 1st layer thickness self.h2 = h2 # 2nd layer thickness self.z0 = 0. self.z1 = self.z0-h1 self.z2 = self.z0-h1-h2 self.sig0 = sig0 # 0th layer \sigma (assumed to be air) self.sig1 = sig1 # 1st layer \sigma self.sig2 = sig2 # 2nd layer \sigma self.sig3 = sig3 # 3rd layer \sigma active = self.mesh.vectorCCz < self.z0 ind1 = ( (self.mesh.vectorCCz < self.z0) & (self.mesh.vectorCCz >= self.z1) ) ind2 = ( (self.mesh.vectorCCz < self.z1) & (self.mesh.vectorCCz >= self.z2) ) self.mapping = ( Maps.SurjectVertical1D(self.mesh) * Maps.InjectActiveCells(self.mesh, active, sig0, nC=self.mesh.nCz) ) model = np.ones(self.mesh.nCz) * sig3 model[ind1] = sig1 model[ind2] = sig2 self.m = model[active] self.mu = np.ones(self.mesh.nC)*mu_0 self.mu[self.mesh.gridCC[:, 2] < 0.] = (1.+chi)*mu_0 return self.m def setLayerSphereParam( self, d1=6, h=6, d2=16, R=4, sig0=1e-8, sigb=1e-2, sig1=1e-1, sig2=1., chi=0. ): self.z0 = 0. # Surface elevation self.z1 = self.z0-d1 # Depth to layer self.h = h # Thickness of layer self.z2 = self.z0-d2 # Depth to center of sphere self.R = R # Radius of sphere self.sig0 = sig0 # Air conductivity self.sigb = sigb # Background conductivity self.sig1 = sig1 # Layer conductivity self.sig2 = sig2 # Sphere conductivity active = self.mesh.gridCC[:, 2] < self.z0 ind1 = ( (self.mesh.gridCC[:, 2] < self.z1) & (self.mesh.gridCC[:, 2] >= self.z1-self.h) ) ind2 = np.sqrt((self.mesh.gridCC[:, 0])**2 + (self.mesh.gridCC[:, 2]-self.z2)**2) <= self.R self.mapping = ( Maps.InjectActiveCells(self.mesh, active, sig0, nC=self.mesh.nC) ) model = np.ones(self.mesh.nC) * sigb model[ind1] = sig1 model[ind2] = sig2 self.m = model[active] self.mu = np.ones(self.mesh.nC)*mu_0 self.mu[self.mesh.gridCC[:, 2] < 0.] = (1.+chi)*mu_0 return self.m def simulate(self, srcLoc, rxLoc, time, radius=1.): bz = EM.TDEM.Rx.Point_b(rxLoc, time, orientation='z') dbzdt = EM.TDEM.Rx.Point_dbdt(rxLoc, time, orientation='z') src = EM.TDEM.Src.CircularLoop([bz], waveform=EM.TDEM.Src.StepOffWaveform(), loc=srcLoc, radius=radius) self.srcList = [src] prb = EM.TDEM.Problem3D_b(self.mesh, sigmaMap=self.mapping) prb.timeSteps = [ (1e-06, 10), (5e-06, 10), (1e-05, 10), (5e-5, 10), (1e-4, 10), (5e-4, 10), (1e-3, 10) ] survey = EM.TDEM.Survey(self.srcList) prb.pair(survey) self.f = prb.fields(self.m) self.prb = prb dpred = survey.dpred(self.m, f=self.f) return dpred @property def Pfx(self): if getattr(self, '_Pfx', None) is None: self._Pfx = self.mesh.getInterpolationMat( self.mesh.gridCC[self.activeCC, :], locType="Fx" ) return self._Pfx @property def Pfz(self): if getattr(self, '_Pfz', None) is None: self._Pfz = self.mesh.getInterpolationMat( self.mesh.gridCC[self.activeCC, :], locType="Fz" ) return self._Pfz def getFields(self, itime): src = self.srcList[0] Ey = self.mesh.aveE2CC*self.f[src, "e", itime] Jy = Utils.sdiag(self.prb.sigma) * Ey self.Ey = Utils.mkvc( self.mirrorArray(Ey[self.activeCC], direction="y") ) self.Jy = Utils.mkvc( self.mirrorArray(Jy[self.activeCC], direction="y") ) self.Bx = Utils.mkvc( self.mirrorArray(self.Pfx*self.f[src, "b", itime], direction="x") ) self.Bz = Utils.mkvc( self.mirrorArray(self.Pfz*self.f[src, "b", itime], direction="z") ) self.dBxdt = Utils.mkvc(self.mirrorArray( -self.Pfx*self.mesh.edgeCurl*self.f[src, "e", itime], direction="x") ) self.dBzdt = Utils.mkvc(self.mirrorArray( -self.Pfz*self.mesh.edgeCurl*self.f[src, "e", itime], direction="z") ) def getData(self): src = self.srcList[0] Pfx = self.mesh.getInterpolationMat(self.rxLoc, locType="Fx") Pfz = self.mesh.getInterpolationMat(self.rxLoc, locType="Fz") Pey = self.mesh.getInterpolationMat(self.rxLoc, locType="Ey") self.Ey = (Pey*self.f[src, "e", :]).flatten() self.Bx = (Pfx*self.f[src, "b", :]).flatten() self.Bz = (Pfz*self.f[src, "b", :]).flatten() self.dBxdt = (-Pfx*self.mesh.edgeCurl*self.f[src, "e", :]).flatten() self.dBzdt = (-Pfz*self.mesh.edgeCurl*self.f[src, "e", :]).flatten() def plotField( self, Field='B', view="vec", scale="linear", itime=0, Geometry=True, Scenario=None, Fixed=False, vmin=None, vmax=None ): # Printout for null cases if (Field == "B") & (view == "y"): print("Think about the problem geometry. There is NO By in this case.") elif (Field == "dBdt") & (view == "y"): print("Think about the problem geometry. There is NO dBy/dt in this case.") elif (Field == "E") & (view == "x") | (Field == "E") & (view == "z"): print("Think about the problem geometry. There is NO Ex or Ez in this case. Only Ey.") elif (Field == "J") & (view == "x") | (Field == "J") & (view == "z"): print("Think about the problem geometry. There is NO Jx or Jz in this case. Only Jy.") elif (Field == "E") & (view == "vec"): print("Think about the problem geometry. E only has components along y. Vector plot not possible") elif (Field == "J") & (view == "vec"): print("Think about the problem geometry. J only has components along y. Vector plot not possible") elif Field == "Model": fig = plt.figure(figsize=(7, 6)) ax = plt.subplot(111) if Scenario == 'Sphere': model2D, mapping2D = self.getCoreModel('Sphere') elif Scenario == 'Layer': model2D, mapping2D = self.getCoreModel('Layer') if Fixed: clim=(np.log10(vmin), np.log10(vmax)) else: clim=None out = self.mesh2D.plotImage(np.log10(mapping2D * model2D), ax=ax, clim=clim) cb = plt.colorbar( out[0], ax=ax, format="$10^{%.1f}$" ) cb.set_label("$\sigma$ (S/m)") ax.set_xlabel("Distance (m)") ax.set_ylabel("Depth (m)") ax.set_title("Conductivity Model") plt.show() else: fig = plt.figure(figsize=(10, 6)) ax = plt.subplot(111) vec = False if view == "vec": tname = "Vector " title = tname+Field+"-field" elif view == "amp": tname = "|" title = tname+Field+"|-field" else: title = Field + view+"-field" if Field == "B": label = "Magnetic field (T)" if view == "vec": vec = True val = np.c_[self.Bx, self.Bz] elif view == "x": val = self.Bx elif view == "z": val = self.Bz else: return elif Field == "dBdt": label = "Time derivative of magnetic field (T/s)" if view == "vec": vec = True val = np.c_[self.dBxdt, self.dBzdt] elif view == "x": val = self.dBxdt elif view == "z": val = self.dBzdt else: return elif Field == "E": label = "Electric field (V/m)" if view == "y": val = self.Ey else: return elif Field == "J": label = "Current density (A/m$^2$)" if view == "y": val = self.Jy else: return if Fixed: if scale == "log": vmin, vmax = (np.log10(vmin), np.log10(vmax)) out=ax.scatter(np.zeros(3)-1000, np.zeros(3), c=np.linspace(vmin, vmax, 3)) Utils.plot2Ddata( self.mesh2D.gridCC, val, vec=vec, ax=ax, contourOpts={"cmap": "viridis", "vmin":vmin, "vmax":vmax}, ncontour=200, scale=scale ) else: out = Utils.plot2Ddata( self.mesh2D.gridCC, val, vec=vec, ax=ax, contourOpts={"cmap": "viridis"}, ncontour=200, scale=scale )[0] if scale == "linear": cb = plt.colorbar( out, ax=ax, format="%.2e" ) elif scale == "log": cb = plt.colorbar( out, ax=ax, format="$10^{%.1f}$" ) else: raise Exception("We consdier only linear and log scale!") cb.set_label(label) xmax = self.mesh2D.gridCC[:, 0].max() if Geometry: if Scenario is 'Layer': ax.plot( np.r_[-xmax, xmax], np.ones(2)*self.srcLoc[2], 'w-', lw=1 ) ax.plot(np.r_[-xmax, xmax], np.ones(2)*self.z0, 'w--', lw=1) ax.plot(np.r_[-xmax, xmax], np.ones(2)*self.z1, 'w--', lw=1) ax.plot(np.r_[-xmax, xmax], np.ones(2)*self.z2, 'w--', lw=1) ax.plot(0, self.srcLoc[2], 'ko', ms=4) ax.plot(self.rxLoc[0, 0], self.srcLoc[2], 'ro', ms=4) elif Scenario is 'Sphere': ax.plot( np.r_[-xmax, xmax], np.ones(2)*self.srcLoc[2], 'k-', lw=1 ) ax.plot(np.r_[-xmax, xmax], np.ones(2)*self.z0, 'w--', lw=1) ax.plot(np.r_[-xmax, xmax], np.ones(2)*self.z1, 'w--', lw=1) ax.plot(np.r_[-xmax, xmax], np.ones(2)*(self.z1-self.h), 'w--', lw=1) Phi = np.linspace(0, 2*np.pi, 41) ax.plot(self.R*np.cos(Phi), self.z2+self.R*np.sin(Phi), 'w--', lw=1) ax.plot(0, self.srcLoc[2], 'ko', ms=4) ax.plot(self.rxLoc[0, 0], self.srcLoc[2], 'ro', ms=4) ax.set_xlabel("Distance (m)") ax.set_ylabel("Depth (m)") title = title + "\nt = " + '{:.2e}'.format(self.prb.times[itime]*1e3) + " ms" ax.set_title(title) ax.set_xlim(-190, 190) ax.set_ylim(-190, 190) plt.show() ###################################################### # LAYER WIDGET ###################################################### def InteractivePlane_Layer( self, scale="log", fieldvalue="E", compvalue="y" ): def foo( Update, Field, AmpDir, Component, Sigma0, Sigma1, Sigma2, Sigma3, Sus, h1, h2, Scale, rxOffset, z, radius, itime, Geometry=True, Fixed=False, vmin=None, vmax=None ): if AmpDir == "Direction (B or dBdt)": Component = "vec" m = self.setThreeLayerParam( h1=h1, h2=h2, sig0=Sigma0, sig1=Sigma1, sig2=Sigma2, sig3=Sigma3, chi=Sus ) self.srcLoc = np.array([0., 0., z]) self.rxLoc = np.array([[rxOffset, 0., z]]) self.radius = radius if Update: dpred = self.simulate( self.srcLoc, self.rxLoc, self.time, self.radius ) self.getFields(itime) return self.plotField( Field=Field, view=Component, scale=Scale, Geometry=Geometry, itime=itime, Scenario='Layer', Fixed=Fixed, vmin=vmin, vmax=vmax ) out = widgetify( foo, Update=widgets.widget_bool.Checkbox(value=True, description="Update"), Field=widgets.ToggleButtons( options=["E", "B", "dBdt", "J", "Model"], value=fieldvalue ), AmpDir=widgets.ToggleButtons( options=['None', 'Direction (B or dBdt)'], value="None" ), Component=widgets.ToggleButtons( options=['x', 'y', 'z'], value=compvalue, description='Comp.' ), Sigma0=widgets.FloatText( value=1e-8, continuous_update=False, description='$\sigma_0$ (S/m)' ), Sigma1=widgets.FloatText( value=0.01, continuous_update=False, description='$\sigma_1$ (S/m)' ), Sigma2=widgets.FloatText( value=0.01, continuous_update=False, description='$\sigma_2$ (S/m)' ), Sigma3=widgets.FloatText( value=0.01, continuous_update=False, description='$\sigma_3$ (S/m)' ), Sus=widgets.FloatText( value=0., continuous_update=False, description='$\chi$' ), h1=widgets.FloatSlider( min=2., max=50., step=2., value=20., continuous_update=False, description='$h_1$ (m)' ), h2=widgets.FloatSlider( min=2., max=50., step=2., value=20., continuous_update=False, description='$h_2$ (m)' ), Scale=widgets.ToggleButtons( options=['log', 'linear'], value="linear" ), rxOffset=widgets.FloatSlider( min=0., max=50., step=2., value=10., continuous_update=False, description='$\Delta x$(m)' ), z=widgets.FloatSlider( min=0., max=50., step=2., value=0., continuous_update=False, description='$\Delta z$ (m)' ), itime=widgets.IntSlider( min=1, max=70, step=1, value=1, continuous_update=False, description='Time index' ), radius=widgets.FloatSlider( min=2., max=50., step=2., value=2., continuous_update=False, description='Tx radius (m)' ), Fixed=widgets.widget_bool.Checkbox(value=False, description="Fixed"), vmin=FloatText(value=None, description='vmin'), vmax=FloatText(value=None, description='vmax') ) return out def InteractiveData_Layer(self, fieldvalue="B", compvalue="z"): def foo(Field, Component, Scale): if (Field == "B") & (Component == "y") | (Field == "dBdt") & (Component == "y"): print("Think about the problem geometry. There is NO By in this case.") elif (Field == "E") & (Component == "x") | (Field == "E") & (Component == "z"): print("Think about the problem geometry. There is NO Ex or Ez in this case. Only Ey.") else: fig = plt.figure() ax = plt.subplot(111) bType = "b" self.getData() if Field == "B": label = "Magnetic field (T)" if Component == "x": title = "Bx" val = self.Bx elif Component == "z": title = "Bz" val = self.Bz else: # ax.imshow(self.im) ax.set_xticks([]) ax.set_yticks([]) plt.show() print("Think about the problem geometry. There is NO By in this case.") elif Field == "dBdt": label = "Time dervative of magnetic field (T/s)" if Component == "x": title = "dBx/dt" val = self.dBxdt elif Component == "z": title = "dBz/dt" val = self.dBzdt else: # ax.imshow(self.im) ax.set_xticks([]) ax.set_yticks([]) plt.show() print("Think about the problem geometry. There is NO dBy/dt in this case.") elif Field == "E": label = "Electric field (V/m)" title = "Ey" if Component == "y": val = self.Ey else: # ax.imshow(self.im) ax.set_xticks([]) ax.set_yticks([]) plt.show() print("Think about the problem geometry. There is NO Ex or Ez in this case.") elif Field == "J": print("The conductivity at the location is 0. Therefore there is no electrical current here.") if Scale == "log": val_p, val_n = DisPosNegvalues(val) ax.plot(self.prb.times[10:]*1e3, val_p[10:], 'k-') ax.plot(self.prb.times[10:]*1e3, val_n[10:], 'k--') ax.legend(("(+)", "(-)"), loc=1, fontsize=10) else: ax.plot(self.prb.times[10:]*1e3, val[10:], 'k.-') ax.set_xscale("log") ax.set_yscale(Scale) ax.set_xlabel("Time (ms)") ax.set_ylabel(label) ax.set_title(title) ax.grid(True) plt.show() out = widgetify( foo, Field=widgets.ToggleButtons( options=["E", "B", "dBdt"], value=fieldvalue ), Component=widgets.ToggleButtons( options=['x', 'y', 'z'], value=compvalue, description='Comp.' ), Scale=widgets.ToggleButtons( options=['log', 'linear'], value="log" ) ) return out ###################################################### # SPHERE WIDGET ###################################################### def InteractivePlane_Sphere( self, scale="log", fieldvalue="E", compvalue="y" ): def foo( Update, Field, AmpDir, Component, Sigma0, Sigmab, Sigma1, Sigma2, Sus, d1, h, d2, R, Scale, rxOffset, z, radius, itime, Geometry=True, Fixed=False, vmin=None, vmax=None ): if AmpDir == "Direction (B or dBdt)": Component = "vec" m = self.setLayerSphereParam( d1=d1, h=h, d2=d2, R=R, sig0=Sigma0, sigb=Sigmab, sig1=Sigma1, sig2=Sigma2, chi=Sus ) self.srcLoc = np.array([0., 0., z]) self.rxLoc = np.array([[rxOffset, 0., z]]) self.radius = radius if Update: dpred = self.simulate( self.srcLoc, self.rxLoc, self.time, self.radius ) self.getFields(itime) return self.plotField( Field=Field, view=Component, scale=Scale, Geometry=Geometry, itime=itime, Scenario='Sphere', Fixed=Fixed, vmin=vmin, vmax=vmax ) out = widgetify( foo, Update=widgets.widget_bool.Checkbox(value=True, description="Update"), Field=widgets.ToggleButtons( options=["E", "B", "dBdt", "J", "Model"], value=fieldvalue ), AmpDir=widgets.ToggleButtons( options=['None', 'Direction (B or dBdt)'], value="None" ), Component=widgets.ToggleButtons( options=['x', 'y', 'z'], value=compvalue, description='Comp.' ), Sigma0=widgets.FloatText( value=1e-8, continuous_update=False, description='$\sigma_0$ (S/m)' ), Sigmab=widgets.FloatText( value=0.01, continuous_update=False, description='$\sigma_b$ (S/m)' ), Sigma1=widgets.FloatText( value=0.01, continuous_update=False, description='$\sigma_1$ (S/m)' ), Sigma2=widgets.FloatText( value=1., continuous_update=False, description='$\sigma_2$ (S/m)' ), Sus=widgets.FloatText( value=0., continuous_update=False, description='$\chi$' ), d1=widgets.FloatSlider( min=0., max=50., step=2., value=0., continuous_update=False, description='$d_1$ (m)' ), h=widgets.FloatSlider( min=2., max=40., step=2., value=20., continuous_update=False, description='$h$ (m)' ), d2=widgets.FloatSlider( min=20., max=80., step=2., value=60., continuous_update=False, description='$d_2$ (m)' ), R=widgets.FloatSlider( min=2., max=40., step=2., value=30., continuous_update=False, description='$R$ (m)' ), Scale=widgets.ToggleButtons( options=['log', 'linear'], value="linear" ), rxOffset=widgets.FloatSlider( min=0., max=50., step=2., value=10., continuous_update=False, description='$\Delta x$(m)' ), z=widgets.FloatSlider( min=0., max=50., step=2., value=0., continuous_update=False, description='$\Delta z$ (m)' ), radius=widgets.FloatSlider( min=2., max=50., step=2., value=2., continuous_update=False, description='Tx radius (m)' ), itime=widgets.IntSlider( min=1, max=70, step=1, value=1, continuous_update=False, description='Time index' ), Fixed=widgets.widget_bool.Checkbox(value=False, description="Fixed"), vmin=FloatText(value=None, description='vmin'), vmax=FloatText(value=None, description='vmax') ) return out def InteractiveData_Sphere(self, fieldvalue="B", compvalue="z"): def foo(Field, Component, Scale): if (Field == "B") & (Component == "y") | (Field == "dBdt") & (Component == "y"): print("Think about the problem geometry. There is NO By in this case.") elif (Field == "E") & (Component == "x") | (Field == "E") & (Component == "z"): print("Think about the problem geometry. There is NO Ex or Ez in this case. Only Ey.") else: fig = plt.figure() ax = plt.subplot(111) bType = "b" self.getData() if Field == "B": label = "Magnetic field (T)" if Component == "x": title = "Bx" val = self.Bx elif Component == "z": title = "Bz" val = self.Bz else: # ax.imshow(self.im) ax.set_xticks([]) ax.set_yticks([]) plt.show() print("Think about the problem geometry. There is NO By in this case.") elif Field == "dBdt": label = "Time dervative of magnetic field (T/s)" if Component == "x": title = "dBx/dt" val = self.dBxdt elif Component == "z": title = "dBz/dt" val = self.dBzdt else: # ax.imshow(self.im) ax.set_xticks([]) ax.set_yticks([]) plt.show() print("Think about the problem geometry. There is NO dBy/dt in this case.") elif Field == "E": label = "Electric field (V/m)" title = "Ey" if Component == "y": val = self.Ey else: # ax.imshow(self.im) ax.set_xticks([]) ax.set_yticks([]) plt.show() print("Think about the problem geometry. There is NO Ex or Ez in this case.") elif Field == "J": print("The conductivity at the location is 0. Therefore there is no electrical current here.") if Scale == "log": val_p, val_n = DisPosNegvalues(val) ax.plot(self.prb.times[10:]*1e3, val_p[10:], 'k-') ax.plot(self.prb.times[10:]*1e3, val_n[10:], 'k--') ax.legend(("(+)", "(-)"), loc=1, fontsize=10) else: ax.plot(self.prb.times[10:]*1e3, val[10:], 'k.-') ax.set_xscale("log") ax.set_yscale(Scale) ax.set_xlabel("Time (ms)") ax.set_ylabel(label) ax.set_title(title) ax.grid(True) plt.show() out = widgetify( foo, Field=widgets.ToggleButtons( options=["E", "B", "dBdt"], value=fieldvalue ), Component=widgets.ToggleButtons( options=['x', 'y', 'z'], value=compvalue, description='Comp.' ), Scale=widgets.ToggleButtons( options=['log', 'linear'], value="log" ) ) return out
# Copyright 2022 The Flax Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Library file which executes the PPO training.""" import functools from typing import Any, Callable, Tuple, List from absl import logging import flax from flax import linen as nn from flax.metrics import tensorboard from flax.training import checkpoints from flax.training import train_state import jax import jax.random import jax.numpy as jnp import ml_collections import numpy as np import optax import agent import models import test_episodes @jax.jit @functools.partial(jax.vmap, in_axes=(1, 1, 1, None, None), out_axes=1) def gae_advantages( rewards: np.ndarray, terminal_masks: np.ndarray, values: np.ndarray, discount: float, gae_param: float): """Use Generalized Advantage Estimation (GAE) to compute advantages. As defined by eqs. (11-12) in PPO paper arXiv: 1707.06347. Implementation uses key observation that A_{t} = delta_t + gamma*lambda*A_{t+1}. Args: rewards: array shaped (actor_steps, num_agents), rewards from the game terminal_masks: array shaped (actor_steps, num_agents), zeros for terminal and ones for non-terminal states values: array shaped (actor_steps, num_agents), values estimated by critic discount: RL discount usually denoted with gamma gae_param: GAE parameter usually denoted with lambda Returns: advantages: calculated advantages shaped (actor_steps, num_agents) """ assert rewards.shape[0] + 1 == values.shape[0], ('One more value needed; Eq. ' '(12) in PPO paper requires ' 'V(s_{t+1}) for delta_t') advantages = [] gae = 0. for t in reversed(range(len(rewards))): # Masks used to set next state value to 0 for terminal states. value_diff = discount * values[t + 1] * terminal_masks[t] - values[t] delta = rewards[t] + value_diff # Masks[t] used to ensure that values before and after a terminal state # are independent of each other. gae = delta + discount * gae_param * terminal_masks[t] * gae advantages.append(gae) advantages = advantages[::-1] return jnp.array(advantages) def loss_fn( params: flax.core.FrozenDict, apply_fn: Callable[..., Any], minibatch: Tuple, clip_param: float, vf_coeff: float, entropy_coeff: float): """Evaluate the loss function. Compute loss as a sum of three components: the negative of the PPO clipped surrogate objective, the value function loss and the negative of the entropy bonus. Args: params: the parameters of the actor-critic model apply_fn: the actor-critic model's apply function minibatch: Tuple of five elements forming one experience batch: states: shape (batch_size, 84, 84, 4) actions: shape (batch_size, 84, 84, 4) old_log_probs: shape (batch_size,) returns: shape (batch_size,) advantages: shape (batch_size,) clip_param: the PPO clipping parameter used to clamp ratios in loss function vf_coeff: weighs value function loss in total loss entropy_coeff: weighs entropy bonus in the total loss Returns: loss: the PPO loss, scalar quantity """ states, actions, old_log_probs, returns, advantages = minibatch log_probs, values = agent.policy_action(apply_fn, params, states) values = values[:, 0] # Convert shapes: (batch, 1) to (batch, ). probs = jnp.exp(log_probs) value_loss = jnp.mean(jnp.square(returns - values), axis=0) entropy = jnp.sum(-probs*log_probs, axis=1).mean() log_probs_act_taken = jax.vmap(lambda lp, a: lp[a])(log_probs, actions) ratios = jnp.exp(log_probs_act_taken - old_log_probs) # Advantage normalization (following the OpenAI baselines). advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8) pg_loss = ratios * advantages clipped_loss = advantages * jax.lax.clamp(1. - clip_param, ratios, 1. + clip_param) ppo_loss = -jnp.mean(jnp.minimum(pg_loss, clipped_loss), axis=0) return ppo_loss + vf_coeff*value_loss - entropy_coeff*entropy @functools.partial(jax.jit, static_argnums=(2,)) def train_step( state: train_state.TrainState, trajectories: Tuple, batch_size: int, *, clip_param: float, vf_coeff: float, entropy_coeff: float): """Compilable train step. Runs an entire epoch of training (i.e. the loop over minibatches within an epoch is included here for performance reasons). Args: state: the train state trajectories: Tuple of the following five elements forming the experience: states: shape (steps_per_agent*num_agents, 84, 84, 4) actions: shape (steps_per_agent*num_agents, 84, 84, 4) old_log_probs: shape (steps_per_agent*num_agents, ) returns: shape (steps_per_agent*num_agents, ) advantages: (steps_per_agent*num_agents, ) batch_size: the minibatch size, static argument clip_param: the PPO clipping parameter used to clamp ratios in loss function vf_coeff: weighs value function loss in total loss entropy_coeff: weighs entropy bonus in the total loss Returns: optimizer: new optimizer after the parameters update loss: loss summed over training steps """ iterations = trajectories[0].shape[0] // batch_size trajectories = jax.tree_map( lambda x: x.reshape((iterations, batch_size) + x.shape[1:]), trajectories) loss = 0. for batch in zip(*trajectories): grad_fn = jax.value_and_grad(loss_fn) l, grads = grad_fn(state.params, state.apply_fn, batch, clip_param, vf_coeff, entropy_coeff) loss += l state = state.apply_gradients(grads=grads) return state, loss def get_experience( state: train_state.TrainState, simulators: List[agent.RemoteSimulator], steps_per_actor: int): """Collect experience from agents. Runs `steps_per_actor` time steps of the game for each of the `simulators`. """ all_experience = [] # Range up to steps_per_actor + 1 to get one more value needed for GAE. for _ in range(steps_per_actor + 1): sim_states = [] for sim in simulators: sim_state = sim.conn.recv() sim_states.append(sim_state) sim_states = np.concatenate(sim_states, axis=0) log_probs, values = agent.policy_action(state.apply_fn, state.params, sim_states) log_probs, values = jax.device_get((log_probs, values)) probs = np.exp(np.array(log_probs)) for i, sim in enumerate(simulators): probabilities = probs[i] action = np.random.choice(probs.shape[1], p=probabilities) sim.conn.send(action) experiences = [] for i, sim in enumerate(simulators): sim_state, action, reward, done = sim.conn.recv() value = values[i, 0] log_prob = log_probs[i][action] sample = agent.ExpTuple(sim_state, action, reward, value, log_prob, done) experiences.append(sample) all_experience.append(experiences) return all_experience def process_experience( experience: List[List[agent.ExpTuple]], actor_steps: int, num_agents: int, gamma: float, lambda_: float): """Process experience for training, including advantage estimation. Args: experience: collected from agents in the form of nested lists/namedtuple actor_steps: number of steps each agent has completed num_agents: number of agents that collected experience gamma: dicount parameter lambda_: GAE parameter Returns: trajectories: trajectories readily accessible for `train_step()` function """ obs_shape = (84, 84, 4) exp_dims = (actor_steps, num_agents) values_dims = (actor_steps + 1, num_agents) states = np.zeros(exp_dims + obs_shape, dtype=np.float32) actions = np.zeros(exp_dims, dtype=np.int32) rewards = np.zeros(exp_dims, dtype=np.float32) values = np.zeros(values_dims, dtype=np.float32) log_probs = np.zeros(exp_dims, dtype=np.float32) dones = np.zeros(exp_dims, dtype=np.float32) for t in range(len(experience) - 1): # experience[-1] only for next_values for agent_id, exp_agent in enumerate(experience[t]): states[t, agent_id, ...] = exp_agent.state actions[t, agent_id] = exp_agent.action rewards[t, agent_id] = exp_agent.reward values[t, agent_id] = exp_agent.value log_probs[t, agent_id] = exp_agent.log_prob # Dones need to be 0 for terminal states. dones[t, agent_id] = float(not exp_agent.done) for a in range(num_agents): values[-1, a] = experience[-1][a].value advantages = gae_advantages(rewards, dones, values, gamma, lambda_) returns = advantages + values[:-1, :] # After preprocessing, concatenate data from all agents. trajectories = (states, actions, log_probs, returns, advantages) trajectory_len = num_agents * actor_steps trajectories = tuple(map( lambda x: np.reshape(x, (trajectory_len,) + x.shape[2:]), trajectories)) return trajectories @functools.partial(jax.jit, static_argnums=1) def get_initial_params(key: np.ndarray, model: nn.Module): input_dims = (1, 84, 84, 4) # (minibatch, height, width, stacked frames) init_shape = jnp.ones(input_dims, jnp.float32) initial_params = model.init(key, init_shape)['params'] return initial_params def create_train_state(params, model: nn.Module, config: ml_collections.ConfigDict, train_steps: int) -> train_state.TrainState: if config.decaying_lr_and_clip_param: lr = optax.linear_schedule( init_value=config.learning_rate, end_value=0., transition_steps=train_steps) else: lr = config.learning_rate tx = optax.adam(lr) state = train_state.TrainState.create( apply_fn=model.apply, params=params, tx=tx) return state def train( model: models.ActorCritic, config: ml_collections.ConfigDict, model_dir: str): """Main training loop. Args: model: the actor-critic model config: object holding hyperparameters and the training information model_dir: path to dictionary where checkpoints and logging info are stored Returns: optimizer: the trained optimizer """ game = config.game + 'NoFrameskip-v4' simulators = [agent.RemoteSimulator(game) for _ in range(config.num_agents)] summary_writer = tensorboard.SummaryWriter(model_dir) summary_writer.hparams(dict(config)) loop_steps = config.total_frames // (config.num_agents * config.actor_steps) log_frequency = 40 checkpoint_frequency = 500 # train_step does multiple steps per call for better performance # compute number of steps per call here to convert between the number of # train steps and the inner number of optimizer steps iterations_per_step = (config.num_agents * config.actor_steps // config.batch_size) initial_params = get_initial_params(jax.random.PRNGKey(0), model) state = create_train_state(initial_params, model, config, loop_steps * config.num_epochs * iterations_per_step) del initial_params state = checkpoints.restore_checkpoint(model_dir, state) # number of train iterations done by each train_step start_step = int(state.step) // config.num_epochs // iterations_per_step logging.info('Start training from step: %s', start_step) for step in range(start_step, loop_steps): # Bookkeeping and testing. if step % log_frequency == 0: score = test_episodes.policy_test(1, state.apply_fn, state.params, game) frames = step * config.num_agents * config.actor_steps summary_writer.scalar('game_score', score, frames) logging.info('Step %s:\nframes seen %s\nscore %s\n\n', step, frames, score) # Core training code. alpha = 1. - step / loop_steps if config.decaying_lr_and_clip_param else 1. all_experiences = get_experience( state, simulators, config.actor_steps) trajectories = process_experience( all_experiences, config.actor_steps, config.num_agents, config.gamma, config.lambda_) clip_param = config.clip_param * alpha for _ in range(config.num_epochs): permutation = np.random.permutation( config.num_agents * config.actor_steps) trajectories = tuple(x[permutation] for x in trajectories) state, _ = train_step( state, trajectories, config.batch_size, clip_param=clip_param, vf_coeff=config.vf_coeff, entropy_coeff=config.entropy_coeff) if (step + 1) % checkpoint_frequency == 0: checkpoints.save_checkpoint(model_dir, state, step + 1) return train_state
""" Built-in pipeline """ import time import logging import logging.config import shutil import os import matplotlib matplotlib.use('Agg') # supress PCA unpickle userwarning # Cat: TODO: this is dangersous, may wish to fix the problem in cluster.py # import warnings # warnings.filterwarnings("ignore", category=UserWarning) try: # py3 from collections.abc import Mapping except ImportError: from collections import Mapping import numpy as np import yaml import yass from yass import set_config from yass import read_config from yass import (preprocess, detect, cluster, postprocess, deconvolve, residual, merge, rf, visual) from yass.template import update_templates from yass.util import (load_yaml, save_metadata, load_logging_config_file, human_readable_time) def run(config, logger_level='INFO', clean=False, output_dir='tmp/', complete=False, calculate_rf=False, visualize=False, set_zero_seed=False): """Run YASS built-in pipeline Parameters ---------- config: str or mapping (such as dictionary) Path to YASS configuration file or mapping object logger_level: str Logger level clean: bool, optional Delete CONFIG.data.root_folder/output_dir/ before running output_dir: str, optional Output directory (if relative, it makes it relative to CONFIG.data.root_folder) to store the output data, defaults to tmp/. If absolute, it leaves it as it is. complete: bool, optional Generates extra files (needed to generate phy files) Notes ----- Running the preprocessor will generate the followiing files in CONFIG.data.root_folder/output_directory/: * ``config.yaml`` - Copy of the configuration file * ``metadata.yaml`` - Experiment metadata * ``filtered.bin`` - Filtered recordings (from preprocess) * ``filtered.yaml`` - Filtered recordings metadata (from preprocess) * ``standardized.bin`` - Standarized recordings (from preprocess) * ``standardized.yaml`` - Standarized recordings metadata (from preprocess) * ``whitening.npy`` - Whitening filter (from preprocess) Returns ------- numpy.ndarray Spike train """ # load yass configuration parameters set_config(config, output_dir) CONFIG = read_config() TMP_FOLDER = CONFIG.path_to_output_directory # remove tmp folder if needed if os.path.exists(TMP_FOLDER) and clean: shutil.rmtree(TMP_FOLDER) # create TMP_FOLDER if needed if not os.path.exists(TMP_FOLDER): os.makedirs(TMP_FOLDER) # load logging config file logging_config = load_logging_config_file() logging_config['handlers']['file']['filename'] = os.path.join( TMP_FOLDER,'yass.log') logging_config['root']['level'] = logger_level # configure logging logging.config.dictConfig(logging_config) # instantiate logger logger = logging.getLogger(__name__) # print yass version logger.info('YASS version: %s', yass.__version__) ''' ********************************************** ******** SET ENVIRONMENT VARIABLES *********** ********************************************** ''' os.environ["OPENBLAS_NUM_THREADS"] = "1" os.environ["MKL_NUM_THREADS"] = "1" os.environ["GIO_EXTRA_MODULES"] = "/usr/lib/x86_64-linux-gnu/gio/modules/" ''' ********************************************** ************** PREPROCESS ******************** ********************************************** ''' # preprocess start = time.time() (standardized_path, standardized_params) = preprocess.run( os.path.join(TMP_FOLDER, 'preprocess')) #### Block 1: Detection, Clustering, Postprocess (fname_templates, fname_spike_train) = initial_block( os.path.join(TMP_FOLDER, 'block_1'), standardized_path, standardized_params, run_chunk_sec = [0, CONFIG.rec_len]) print (" inpput to block2: ", fname_templates) #### Block 2: Deconv, Merge, Residuals, Clustering, Postprocess n_iterations = 1 for it in range(n_iterations): (fname_templates, fname_spike_train) = iterative_block( os.path.join(TMP_FOLDER, 'block_{}'.format(it+2)), standardized_path, standardized_params, fname_templates, run_chunk_sec = [0, CONFIG.rec_len]) ### Block 3: Deconvolve, Residual, Merge (fname_templates, fname_spike_train, fname_templates_up, fname_spike_train_up, fname_residual, residual_dtype)= final_deconv( os.path.join(TMP_FOLDER, 'final_deconv'), standardized_path, standardized_params, fname_templates) ## save the final templates and spike train fname_templates_final = os.path.join( TMP_FOLDER, 'templates.npy') fname_spike_train_final = os.path.join( TMP_FOLDER, 'spike_train.npy') # tranpose axes templates = np.load(fname_templates).transpose(1,2,0) # align spike time to the beginning spike_train = np.load(fname_spike_train) spike_train[:,0] -= CONFIG.spike_size//2 np.save(fname_templates_final, templates) np.save(fname_spike_train_final, spike_train) total_time = time.time() - start ''' ********************************************** ************** RF / VISUALIZE **************** ********************************************** ''' if calculate_rf: rf.run() if visualize: visual.run() logger.info('Finished YASS execution. Total time: {}'.format( human_readable_time(total_time))) logger.info('Final Templates Location: '+fname_templates_final) logger.info('Final Spike Train Location: '+fname_spike_train_final) def initial_block(TMP_FOLDER, standardized_path, standardized_params, run_chunk_sec): logger = logging.getLogger(__name__) if not os.path.exists(TMP_FOLDER): os.makedirs(TMP_FOLDER) ''' ********************************************** ************** DETECT EVENTS ***************** ********************************************** ''' # detect logger.info('INITIAL DETECTION') spike_index_path = detect.run( standardized_path, standardized_params, os.path.join(TMP_FOLDER, 'detect'), run_chunk_sec=run_chunk_sec) logger.info('INITIAL CLUSTERING') # cluster raw_data = True full_run = True fname_templates, fname_spike_train = cluster.run( spike_index_path, standardized_path, standardized_params['dtype'], os.path.join(TMP_FOLDER, 'cluster'), raw_data, full_run) methods = ['duplicate', 'high_mad', 'collision'] fname_templates, fname_spike_train = postprocess.run( methods, fname_templates, fname_spike_train, os.path.join(TMP_FOLDER, 'cluster_post_process'), standardized_path, standardized_params['dtype']) return fname_templates, fname_spike_train def iterative_block(TMP_FOLDER, standardized_path, standardized_params, fname_templates, run_chunk_sec): logger = logging.getLogger(__name__) if not os.path.exists(TMP_FOLDER): os.makedirs(TMP_FOLDER) # run deconvolution logger.info('DECONV') (fname_templates, fname_spike_train, fname_templates_up, fname_spike_train_up, fname_shifts) = deconvolve.run( fname_templates, os.path.join(TMP_FOLDER, 'deconv'), standardized_path, standardized_params['dtype'], run_chunk_sec=run_chunk_sec) # compute residual logger.info('RESIDUAL COMPUTATION') fname_residual, residual_dtype = residual.run( fname_shifts, fname_templates_up, fname_spike_train_up, os.path.join(TMP_FOLDER, 'residual'), standardized_path, standardized_params['dtype'], dtype_out='float32', run_chunk_sec=run_chunk_sec) logger.info('BLOCK1 MERGE') fname_templates_up, fname_spike_train_up = merge.run( os.path.join(TMP_FOLDER, 'post_deconv_merge'), False, fname_spike_train, fname_templates, fname_spike_train_up, fname_templates_up, standardized_path, standardized_params['dtype'], fname_residual, residual_dtype) fname_templates = fname_templates_up fname_spike_train = fname_spike_train_up # cluster logger.info('RECLUSTERING') raw_data = False full_run = True fname_templates, fname_spike_train = cluster.run( fname_spike_train, standardized_path, standardized_params['dtype'], os.path.join(TMP_FOLDER, 'cluster'), raw_data, full_run, fname_residual=fname_residual, residual_dtype=residual_dtype, fname_templates_up=fname_templates_up, fname_spike_train_up=fname_spike_train_up) methods = ['duplicate', 'high_mad', 'collision'] fname_templates, fname_spike_train = postprocess.run( methods, fname_templates, fname_spike_train, os.path.join(TMP_FOLDER, 'cluster_post_process'), standardized_path, standardized_params['dtype']) return fname_templates, fname_spike_train def final_deconv(TMP_FOLDER, standardized_path, standardized_params, fname_templates): logger = logging.getLogger(__name__) if not os.path.exists(TMP_FOLDER): os.makedirs(TMP_FOLDER) ''' ********************************************** ************** DECONVOLUTION ***************** ********************************************** ''' # run deconvolution logger.info('FINAL DECONV') (fname_templates, fname_spike_train, fname_templates_up, fname_spike_train_up, fname_shifts) = deconvolve.run( fname_templates, os.path.join(TMP_FOLDER, 'deconv'), standardized_path, standardized_params['dtype']) # compute residual logger.info('RESIDUAL COMPUTATION') fname_residual, residual_dtype = residual.run( fname_shifts, fname_templates_up, fname_spike_train_up, os.path.join(TMP_FOLDER, 'residual'), standardized_path, standardized_params['dtype'], dtype_out='float32') #logger.info('FINAL MERGE') fname_templates, fname_spike_train = merge.run( os.path.join(TMP_FOLDER, 'post_deconv_merge'), False, fname_spike_train, fname_templates, fname_spike_train_up, fname_templates_up, standardized_path, standardized_params['dtype'], fname_residual, residual_dtype) return (fname_templates, fname_spike_train, fname_templates_up, fname_spike_train_up, fname_residual, residual_dtype)
import logging import json import dropbox import time import copy import threading import re from StringIO import StringIO from datetime import datetime, timedelta from django.contrib.auth.decorators import login_required from django.utils.decorators import method_decorator from django.contrib import messages from django.contrib.auth import get_user_model from django.shortcuts import get_object_or_404 from django.template import RequestContext from django.template.loader import render_to_string from django.views.generic import View, TemplateView from django.views.decorators.csrf import csrf_exempt from django.http import HttpResponseNotFound, HttpResponse, HttpResponseRedirect, HttpResponseBadRequest, HttpResponseForbidden, HttpResponseServerError, HttpResponsePermanentRedirect from django.views.generic.base import ContextMixin from django.conf import settings from django.views.decorators.cache import never_cache from django.core import serializers from dropbox.rest import ErrorResponse from django.core.cache import cache from django.template import Template from fastapp.utils import UnAuthorized, Connection, NoBasesFound, message, info, warn, channel_name_for_user, send_client from fastapp.queue import generate_vhost_configuration from fastapp.models import AuthProfile, Base, Apy, Setting, Executor, Process, Thread, Transaction from fastapp.models import RUNNING, FINISHED from fastapp import responses from fastapp.executors.remote import call_rpc_client from fastapp.importer import _handle_settings, _read_config from fastapp.plugins import PluginRegistry User = get_user_model() logger = logging.getLogger(__name__) use_plans = False try: from plans.quota import get_user_quota except ImportError: use_plans = False class CockpitView(TemplateView): def get_context_data(self, **kwargs): context = super(CockpitView, self).get_context_data(**kwargs) qs = Executor.objects.all().order_by('base__name') if not self.request.user.is_superuser: qs = qs.filter(base__user=self.request.user) context['executors'] = qs.order_by('base__name') context['process_list'] = Process.objects.all().order_by('-running') context['threads'] = Thread.objects.all().order_by('parent__name', 'name') context['plugins'] = PluginRegistry().get() return context def dispatch(self, *args, **kwargs): if not self.request.user.is_superuser: return HttpResponseNotFound() return super(CockpitView, self).dispatch(*args, **kwargs) class ResponseUnavailableViewMixing(): def verify(self, request, base_model): if not base_model.state: response = HttpResponse() if "html" in request.META['HTTP_ACCEPT']: response.content_type = "text/html" response.content = "Content cannot be delivered" response.status_code = 503 return response else: return None class DjendMixin(object): def connection(self, request): logger.debug("Creating connection for %s" % request.user) return Connection(request.user.authprofile.access_token) class DjendExecView(View, ResponseUnavailableViewMixing, DjendMixin): STATE_OK = "OK" STATE_NOK = "NOK" STATE_NOT_FOUND = "NOT_FOUND" STATE_TIMEOUT = "TIMEOUT" def _prepare_request(self, request, exec_model): apy_data = serializers.serialize("json", [exec_model], fields=('base_id', 'name')) struct = json.loads(apy_data) apy_data = json.dumps(struct[0]) request_data = {} request_data.update({'model': apy_data, 'base_name': exec_model.base.name}) get_dict = copy.deepcopy(request.GET) post_dict = copy.deepcopy(request.POST) for key in ["json", "shared_key"]: if request.method == "GET": if key in get_dict: del get_dict[key] if request.method == "POST": if key in post_dict: del get_dict[key] request_data.update({'request': { 'method': request.method, 'content_type': request.META.get('Content-Type'), 'GET': get_dict.dict(), 'POST': post_dict.dict(), 'user': {'username': request.user.username}, 'UUID': exec_model.base.uuid, 'REMOTE_ADDR': request.META.get('REMOTE_ADDR') } }) logger.debug("REQUEST-data: %s" % request_data) return request_data def _execute(self, request, request_data, base_model, rid): try: # _do on remote start = int(round(time.time() * 1000)) request_data.update({'rid': rid}) response_data = call_rpc_client(json.dumps(request_data), generate_vhost_configuration( base_model.user.username, base_model.name), base_model.name, base_model.executor.password ) end = int(round(time.time() * 1000)) ms=str(end-start) logger.debug("DATA: %s" % str(response_data)) logger.debug("RESPONSE-time: %sms" % str(ms)) logger.debug("RESPONSE-data: %s" % response_data[:120]) data = json.loads(response_data) data.update({ "time_ms": ms, }) except Exception, e: logger.exception(e) raise Exception("Could not execute request") return data def _execute_async(self, request, request_data, base_model, rid): try: # _do on remote request_data.update({'rid': rid}) call_rpc_client(json.dumps(request_data), generate_vhost_configuration( base_model.user.username, base_model.name), base_model.name, base_model.executor.password, async=True ) except Exception, e: logger.exception(e) raise e return True def _handle_response(self, request, data, exec_model): response_class = data.get("response_class", None) default_status_code = 200 logger.debug(data) if not data.has_key('returned'): response_status_code = default_status_code else: if response_class: try: response_status_code = json.loads(data['returned']).get('status_code', default_status_code) except: response_status_code = data['returned'].get('status_code', default_status_code) else: response_status_code = default_status_code # respond with json if request.GET.has_key(u'json') or request.GET.has_key('callback'): status = data.get("status", False) # if is json if status == "OK": exec_model.mark_executed() else: exec_model.mark_failed() if status in [self.STATE_NOK]: response_status_code = 500 elif status in [self.STATE_NOT_FOUND]: response_status_code = 404 elif status in [self.STATE_TIMEOUT]: response_status_code = 502 # send counter to client cdata = { 'counter': { 'executed': str(Apy.objects.get(id=exec_model.id).counter.executed), 'failed': str(Apy.objects.get(id=exec_model.id).counter.failed) }, 'apy_id': exec_model.id } #user = channel_name_for_user(request) #send_client(user, "counter", cdata) if request.GET.has_key('callback'): data = '%s(%s);' % (request.REQUEST['callback'], json.dumps(data)) return HttpResponse(data, "application/javascript") return HttpResponse(json.dumps(data), content_type="application/json", status=response_status_code) # real response elif response_class: if response_class == u''+responses.XMLResponse.__name__: content_type = load_json(data['returned'])['content_type'] content = load_json(data['returned'])['content'] elif response_class == u''+responses.HTMLResponse.__name__: content_type = load_json(data['returned'])['content_type'] content = load_json(data['returned'])['content'] elif response_class == u''+responses.JSONResponse.__name__: content_type = load_json(data['returned'])['content_type'] content = load_json(data['returned'])['content'] elif response_class == u''+responses.RedirectResponse.__name__: location = load_json(data['returned'])['content'] return HttpResponseRedirect(location) else: logger.warning("Wrong response") return HttpResponseServerError("You're apy did not return any allowed response-class or is not called with 'json' or 'callback' as querystring.") return HttpResponse(content, content_type, status=response_status_code) else: msg = "Not received json or callback query string nor response_class from response." logger.error("Not received json or callback query string nor response_class from response.") return HttpResponseServerError(msg) #@profile @never_cache def get(self, request, *args, **kwargs): # get base base_model = get_object_or_404(Base, name=kwargs['base']) response = self.verify(request, base_model) if response: return response # get exec from database try: exec_model = base_model.apys.get(id=kwargs['id']) except Apy.DoesNotExist: #warning(channel_name_for_user(request), "404 on %s" % request.META['PATH_INFO']) return HttpResponseNotFound("'%s' not found" % request.META['PATH_INFO']) rid = request.GET.get('rid', None) if rid: # look for transaction transaction = Transaction.objects.get(pk=rid) if transaction.tout: data = transaction.tout else: data = {'status': transaction.get_status_display()} redirect_to = request.get_full_path() data.update({'url': redirect_to}) else: request_data = self._prepare_request(request, exec_model) transaction = Transaction(apy=exec_model) transaction.tin = json.dumps(request_data) transaction.status = RUNNING transaction.save() if request.GET.has_key('async') or request.POST.has_key('async'): transaction.async = True transaction.save() # execute async data = self._execute_async(request, request_data, base_model, transaction.rid) redirect_to = request.get_full_path()+"&rid=%s" % transaction.rid return HttpResponsePermanentRedirect(redirect_to) else: # execute data = self._execute(request, request_data, base_model, transaction.rid) try: returned = json.loads(data['returned']) data['returned'] = returned except: pass transaction.tout = json.dumps(data) transaction.status = FINISHED transaction.save() # add exec's id to the response dict data.update({ "id": kwargs['id'], "rid": transaction.rid }) # response response = self._handle_response(request, data, exec_model) return response @method_decorator(csrf_exempt) def post(self, request, *args, **kwargs): return DjendExecView.get(self, request, *args, **kwargs) @method_decorator(csrf_exempt) def dispatch(self, *args, **kwargs): return super(DjendExecView, self).dispatch(*args, **kwargs) class DjendSharedView(View, ContextMixin): def get(self, request, *args, **kwargs): context = RequestContext(request) base_name = kwargs.get('base') shared_key = request.GET.get('shared_key') if not shared_key: shared_key = request.session.get('shared_key') base_model = get_object_or_404(Base, name=base_name, uuid=shared_key) # store it in session list if not request.session.__contains__('shared_bases'): request.session['shared_bases'] = {} request.session['shared_bases'][base_name] = shared_key request.session.modified = True # context context['VERSION'] = version context['shared_bases'] = request.session['shared_bases'] context['FASTAPP_EXECS'] = base_model.apys.all().order_by('name') context['LAST_EXEC'] = request.GET.get('done') context['active_base'] = base_model context['username'] = request.user.username context['FASTAPP_NAME'] = base_model.name #context['DROPBOX_REDIRECT_URL'] = settings.DROPBOX_REDIRECT_URL #context['PUSHER_KEY'] = settings.PUSHER_KEY context['CHANNEL'] = channel_name_for_user(request) context['FASTAPP_STATIC_URL'] = "/%s/%s/static/" % ("fastapp", base_model.name) rs = base_model.template(context) return HttpResponse(rs) class DjendBaseCreateView(View): def post(self, request, *args, **kwargs): # TODO: should be in planet project and not fastapp if use_plans: if get_user_quota(request.user).get('MAX_BASES_PER_USER') <= request.user.bases.count(): return HttpResponseForbidden("Too many bases for your plan.") base, created = Base.objects.get_or_create(name=request.POST.get('new_base_name'), user=User.objects.get(username=request.user.username)) if not created: return HttpResponseBadRequest("A base with this name does already exist.") base.save_and_sync() from fastapp.api_serializers import BaseSerializer base_data = BaseSerializer(base) response_data = base_data.data return HttpResponse(json.dumps(response_data), content_type="application/json") @csrf_exempt def dispatch(self, *args, **kwargs): return super(DjendBaseCreateView, self).dispatch(*args, **kwargs) class DjendBaseDeleteView(View): def post(self, request, *args, **kwargs): base = Base.objects.get(name=kwargs['base'], user=User.objects.get(username=request.user.username)) base.delete() response_data = {"redirect": "/fastapp/"} return HttpResponse(json.dumps(response_data), content_type="application/json") @csrf_exempt def dispatch(self, *args, **kwargs): return super(DjendBaseDeleteView, self).dispatch(*args, **kwargs) class DjendBaseSettingsView(View): def get(self, request, *args, **kwargs): base = Base.objects.get(name=kwargs['base']) base_settings = base.setting.all().extra(\ select={'lower_key':'lower(key)'}).order_by('lower_key').values('key', 'value', 'id') return HttpResponse(json.dumps(list(base_settings)), content_type="application/json") def delete(self, request, *args, **kwargs): base = Base.objects.get(name=kwargs['base']) base_setting = base.setting.get(id=kwargs['id']) base_setting.delete() return HttpResponse(content_type="application/json") def post(self, request, *args, **kwargs): base_settings = json.loads(request.POST.get('settings')) try: for setting in base_settings: base = Base.objects.get(name=kwargs['base']) if setting.has_key('id'): setting_obj = Setting.objects.get(base=base, id=setting['id']) setting_obj.key = setting['key'] else: setting_obj = Setting(key=setting['key'], base=base) setting_obj.value = setting['value'] setting_obj.save() except Exception: logger.exception() return HttpResponse({}, content_type="application/json") @csrf_exempt def dispatch(self, *args, **kwargs): return super(DjendBaseSettingsView, self).dispatch(*args, **kwargs) class DjendExecDeleteView(View): def post(self, request, *args, **kwargs): base = get_object_or_404(Base, name=kwargs['base'], user=User.objects.get(username=request.user.username)) # syncing to storage provider # exec e = base.apys.get(name=kwargs['id']) try: e.delete() #info(request.user.username, "Exec '%s' deleted" % e.exec_name) except Exception, e: pass #error(request.user.username, "Error deleting(%s)" % e) return HttpResponse('{"redirect": %s}' % request.META['HTTP_REFERER']) @csrf_exempt def dispatch(self, *args, **kwargs): return super(DjendExecDeleteView, self).dispatch(*args, **kwargs) @csrf_exempt def dispatch(self, *args, **kwargs): return super(DjendExecRenameView, self).dispatch(*args, **kwargs) class DjendBaseRenameView(View): def post(self, request, *args, **kwargs): base = get_object_or_404(Base, name=kwargs['base'], user=User.objects.get(username=request.user.username)) base.name = request.POST.get('new_name') base.save() response_data = {"redirect": request.META['HTTP_REFERER'].replace(kwargs['base'], base.name)} return HttpResponse(json.dumps(response_data), content_type="application/json") @csrf_exempt def dispatch(self, *args, **kwargs): return super(DjendBaseRenameView, self).dispatch(*args, **kwargs) class DjendBaseSaveView(View): def post(self, request, *args, **kwargs): base = get_object_or_404(Base, name=kwargs['base'], user=User.objects.get(username=request.user.username)) content = request.POST.get('content', None) public = request.POST.get('public', None) static_public = request.POST.get('static_public', None) # exec if request.POST.has_key('exec_name'): exec_name = request.POST.get('exec_name') # save in database e = base.apys.get(name=exec_name) if len(content) > 8200: pass #error(channel_name_for_user(request), "Exec '%s' is to big." % exec_name) else: e.module = content e.description = request.POST.get('exec_description') e.save() info(channel_name_for_user(request), "Exec '%s' saved" % exec_name) # base else: logger.info("Save base") if content: base.content = content if public: base.public = public if static_public: base.static_public = static_public base.save() # save in database #info(channel_name_for_user(request), "Base index '%s' saved" % base.name) return HttpResponse() @csrf_exempt def dispatch(self, *args, **kwargs): return super(DjendBaseSaveView, self).dispatch(*args, **kwargs) class DjendBaseView(TemplateView, ContextMixin): def _refresh_single_base(self, base): base = Base.objects.get(name=base) base.refresh() base.save() def get(self, request, *args, **kwargs): rs = None context = RequestContext(request) # redirect to shared view if not request.user.is_authenticated(): if request.GET.has_key('shared_key') or request.session.__contains__("shared_key"): return DjendSharedView.as_view()(request, *args, **kwargs) try: # refresh bases from dropbox refresh = "refresh" in request.GET base = kwargs.get('base') if refresh and base: self._refresh_single_base(base) base_model = None if base: base_model = get_object_or_404(Base, name=base, user=request.user.id) #base_model.save() #if refresh: # base_model.refresh_execs() # execs try: context['FASTAPP_EXECS'] = base_model.apys.all().order_by('name') except ErrorResponse, e: messages.warning(request, "No app.json found", extra_tags="alert-warning") logging.debug(e) # context try: context['bases'] = Base.objects.filter(user=request.user.id).order_by('name') context['FASTAPP_NAME'] = base #context['DROPBOX_REDIRECT_URL'] = settings.DROPBOX_REDIRECT_URL #context['PUSHER_KEY'] = settings.PUSHER_KEY context['CHANNEL'] = channel_name_for_user(request) context['FASTAPP_STATIC_URL'] = "/%s/%s/static/" % ("fastapp", base) context['active_base'] = base_model context['username'] = request.user.username context['LAST_EXEC'] = request.GET.get('done') context['transaction_list'] = Transaction.objects.filter(apy__base__name=base).filter(created__gte=datetime.now()-timedelta(minutes=30)).order_by('created') #rs = base_model.template(context) except ErrorResponse, e: if e.__dict__['status'] == 404: logging.debug(base) logging.debug("Template not found") messages.error(request, "Template %s not found" % template_name, extra_tags="alert-danger") # error handling except (UnAuthorized, AuthProfile.DoesNotExist), e: return HttpResponseRedirect("/fastapp/dropbox_auth_start") except NoBasesFound, e: message(request, logging.WARNING, "No bases found") rs = render_to_string("fastapp/base.html", context_instance=context) #rs = render_to_string("fastapp/base.html", context_instance=context) return HttpResponse(rs) class DjendView(TemplateView): def get_context_data(self, **kwargs): context = super(DjendView, self).get_context_data(**kwargs) context['bases'] = Base.objects.filter(user=self.request.user).order_by('name') context['public_bases'] = Base.objects.filter(public=True).order_by('name') #try: # token = self.request.user.auth_token #except Token.DoesNotExist: # token = Token.objects.create(user=self.request.user) #context['TOKEN'] = token return context @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(DjendView, self).dispatch(*args, **kwargs) def get_dropbox_auth_flow(web_app_session): redirect_uri = "%s/fastapp/dropbox_auth_finish" % settings.DROPBOX_REDIRECT_URL dropbox_consumer_key = settings.DROPBOX_CONSUMER_KEY dropbox_consumer_secret = settings.DROPBOX_CONSUMER_SECRET return dropbox.client.DropboxOAuth2Flow(dropbox_consumer_key, dropbox_consumer_secret, redirect_uri, web_app_session, "dropbox-auth-csrf-token") # URL handler for /dropbox-auth-start def dropbox_auth_start(request): authorize_url = get_dropbox_auth_flow(request.session).start() return HttpResponseRedirect(authorize_url) # URL handler for /dropbox-auth-finish def dropbox_auth_finish(request): try: access_token, user_id, url_state = get_dropbox_auth_flow(request.session).finish(request.GET) auth, created = AuthProfile.objects.get_or_create(user=request.user) # store access_token auth.access_token = access_token auth.dropbox_userid = user_id auth.user = request.user auth.save() return HttpResponseRedirect("/fastapp/") except dropbox.client.DropboxOAuth2Flow.BadRequestException, e: return HttpResponseBadRequest(e) except dropbox.client.DropboxOAuth2Flow.BadStateException, e: # Start the auth flow again. return HttpResponseRedirect("http://www.mydomain.com/dropbox_auth_start") except dropbox.client.DropboxOAuth2Flow.CsrfException, e: return HttpResponseForbidden() except dropbox.client.DropboxOAuth2Flow.NotApprovedException, e: raise e except dropbox.client.DropboxOAuth2Flow.ProviderException, e: raise e # URL handler for /dropbox-auth-start def dropbox_auth_disconnect(request): request.user.authprofile.access_token = "" request.user.authprofile.save() return HttpResponseRedirect("/profile/") def process_file(path, metadata, client, user): def get_app_config(client, path): appconfig_file = StringIO() appconfig_file = StringIO() appconfig_file.write(client.get_file_content(path)) appconfig_file.seek(0) appconfig = _read_config(appconfig_file) appconfig_file.close() return appconfig try: # Handle only files ending with ".py" or "config" #if not path.endswith("py") or not metadata or "/." in path or not path.endswith("config") or not path is "index.html": # logger.info("Ignore path: %s" % path) # continue # setup recognition regex = re.compile("/(.*)/.*") r = regex.search(path) if not r: logger.warn("regex '/(.*)/(.*).py' no results in '%s'" % path) return names = r.groups() base_name = names[0] appconfig_path = "%s/app.config" % base_name logger.info("notification for: base_name: %s, user: %s" % (base_name, user)) if "/." in path: logger.debug("Ignore file starting with a dot") return # Handle app.config elif "app.config" in path: appconfig = get_app_config(client, path) logger.info("Read app.config for base %s" % base_name) # base base_obj, created = Base.objects.get_or_create(name=base_name, user=user) base_obj.save() logger.info("base %s created?: %s" % (base_name, created)) # settings _handle_settings(appconfig['settings'], base_obj) # Handle index.html elif path is "index.html": base_obj = Base.objects.get(name=base_name, user=user) index_html = client.get_file_content(path) base_obj.content = index_html base_obj.save() # Handle apys elif path.endswith("py"): logger.info("Try to handle apy on path %s" % path) regex = re.compile("/(.*)/([a-zA-Z-_0-9.]*).py") r = regex.search(path) apy_name = r.groups()[1] try: base_obj = Base.objects.get(name=base_name, user=user) apy, created = Apy.objects.get_or_create(name=apy_name, base=base_obj) if created: apy.save() logger.info("new apy %s created" % apy_name) logger.info("apy %s already exists" % apy_name) except Apy.DoesNotExist, e: logger.warn(e.message) return try: description = get_app_config(client, appconfig_path)['modules'][apy_name].get('description', None) if description: apy.description = get_app_config(client, appconfig_path)['modules'][apy_name]['description'] apy.save() except Exception, e: logger.warn("Description could not be read for %s" % apy_name) logger.warn(repr(e)) new_rev = metadata['rev'] logger.debug("local rev: %s, remote rev: %s" % (apy.rev, new_rev)) if apy.rev == new_rev: logger.info("No changes in %s" % path) else: logger.info("Load changes for %s" % path) content, rev = client.get_file_content_and_rev("%s" % path) apy.module = content logger.info("Update content for %s with %s" % (path, str(len(content)))) apy.rev = rev apy.save() logger.info("Apy %s updated" % apy.name) else: logger.warn("Path %s ignored" % path) if "static" in path: try: cache_path = path.lstrip("/") base_obj = Base.objects.get(name=base_name, user=user) cache_key = "%s-%s-%s" % (base_obj.user.username, base_obj.name, cache_path) logger.info("Delete cache entry: %s" % cache_key) cache.delete(cache_key) except Exception, e: logger.error("Problem cleaning cache for static file %s" % cache_path) logger.warn("Looking for %s for user %s" % (base_name, user.username)) except Exception, e: logger.error("Exception handling path %s" % path) logger.exception(e) def process_user(uid): auth_profile = AuthProfile.objects.filter(dropbox_userid=uid)[0] token = auth_profile.access_token user = auth_profile.user logger.info("START process user '%s'" % user) logger.info("Process change notfication for user: %s" % user.username) cursor = cache.get("cursor-%s" % uid) client = Connection(token) has_more = True from fastapp.threadpool import ThreadPool from random import uniform while has_more: result = client.delta(cursor) pool = ThreadPool(1) for path, metadata in result['entries']: logger.info("Add task for %s to pool" % path) pool.add_task(process_file, path, metadata, client, user) logger.info("Waiting for completion ... %s" % path) pool.wait_completion() logger.info("Add task for %s to pool") logger.info("Tasks completed.") # Update cursor cursor = result['cursor'] cursor = cache.set("cursor-%s" % uid, cursor) # Repeat only if there's more to do has_more = result['has_more'] logger.info("END process user '%s'" % user) class DropboxNotifyView(View): def get(self, request): challenge = request.GET['challenge'] return HttpResponse(challenge) def post(self, request): # get delta for user for uid in json.loads(request.body)['delta']['users']: thread = threading.Thread(target=process_user, args=(uid,)) thread.daemon = True thread.start() return HttpResponse() @csrf_exempt def dispatch(self, *args, **kwargs): return super(DropboxNotifyView, self).dispatch(*args, **kwargs) @csrf_exempt def login_or_sharedkey(function): def wrapper(request, *args, **kwargs): # logger.debug("authenticate %s" % request.user) user=request.user # if logged in if user.is_authenticated(): return function(request, *args, **kwargs) base_name = kwargs.get('base') base_obj = get_object_or_404(Base, name=base_name) # static_public if "static" in request.path_info and base_obj.static_public: return function(request, *args, **kwargs) # if base is public if base_obj.public: return function(request, *args, **kwargs) # if shared key in query string elif request.GET.has_key('shared_key'): shared_key = request.GET.get('shared_key', None) if base_obj.uuid==shared_key or base_obj.public: request.session['shared_key'] = shared_key return function(request, *args, **kwargs) else: return HttpResponseNotFound() # if shared key in session and corresponds to base #has_shared_key = request.session.__contains__('shared_key') #if has_shared_key: # shared_key = request.session['shared_key'] # logger.info("authenticate on base '%s' with shared_key '%s'" % (base, shared_key)) # get_object_or_404(Base, name=base_name, uuid=shared_key) # return function(request, *args, **kwargs) # don't redirect when access a exec withoud secret key elif kwargs.has_key('id'): if Apy.objects.get(base=base_obj, id=kwargs['id']).everyone: return function(request, *args, **kwargs) else: return HttpResponseNotFound('Ups, wrong URL?') # TODO: should redirect to a nice login page return HttpResponseRedirect("/") return wrapper def load_json(s): if type(s) is str: r = json.loads(s) elif type(s) is dict: r = s return r
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # CHANGED BY Kapiche Ltd. # Copyright 2015 Kapiche Ltd. All rights reserved. # Based on work by the good folk responsible for gcloud-python. Thanks folks! # Author: Ryan Stuart<[email protected]> # """Create / interact with gcloud datastore queries.""" from __future__ import absolute_import, division, print_function import base64 import six from . import utils from ._generated import query_pb2 as query_pb from .connection import get_connection from ..exceptions import InvalidQueryError from ..key import Key from .transaction import Transaction class Query(object): """ A Google Datastore Query. This class serves as an abstraction for creating a query over data stored in Datastore. """ OPERATORS = { '<=': query_pb.PropertyFilter.LESS_THAN_OR_EQUAL, 'lte': query_pb.PropertyFilter.LESS_THAN_OR_EQUAL, '>=': query_pb.PropertyFilter.GREATER_THAN_OR_EQUAL, 'gte': query_pb.PropertyFilter.GREATER_THAN_OR_EQUAL, '<': query_pb.PropertyFilter.LESS_THAN, 'lt': query_pb.PropertyFilter.LESS_THAN, '>': query_pb.PropertyFilter.GREATER_THAN, 'gt': query_pb.PropertyFilter.GREATER_THAN, '=': query_pb.PropertyFilter.EQUAL, 'eq': query_pb.PropertyFilter.EQUAL, } """Mapping of operator strs and their protobuf equivalents.""" def __init__(self, entity, ancestor=None, filters=(), projection=(), order=(), group_by=(), limit=None, offset=0): """ Initialise a new Query. :type entity: type :param entity: The entity class to use for the query. Used to derive the ``kind`` passed to datastore. :type ancestor: :class:`~gcloudoem.entity.Entity` or None :param ancestor: the ancestor to which this query's results are restricted. :type filters: sequence of (property_name, operator, value) tuples :param filters: property filters applied by this query. :type projection: sequence of str :param projection: fields to be returned as part of query results. An empty sequence means all fields. :type order: sequence of str :param order: field names used to order query results. Prepend '-' to a field name to sort it in descending order. :type group_by: sequence of str :param group_by: field names used to group query results. :type limit: int :param limit: number of entity results to limit this query to. None means don't limit. Defaults to None. :type offset: int :param offset: the offset into the results the first entity should be. Defaults to 0. """ from gcloudoem import Entity if not isinstance(entity, type) or not issubclass(entity, Entity): raise ValueError('You must pass a valid entity class to query (one that subclasses Entity)') self._entity = entity self._ancestor = ancestor self._filters = list() self._projection = list(projection) self._order = list(order) self._group_by = list(group_by) self._limit = limit self._offset = offset self._has_inequality_filter = None for f in filters: self.add_filter(*f) @property def limit(self): return self._limit @limit.setter def limit(self, limit): self._limit = limit @property def offset(self): return self._offset @offset.setter def offset(self, offset): self._offset = offset def set_limits(self, offset, limit): """Shortcut to set the offset and the limit. Useful for slices.""" self._offset = offset self._limit = limit def is_limited(self): """Has an offset or limit been applied to this query?""" return bool(self._offset or self._limit) @property def entity(self): """ Get the Kind of the Query. :rtype: str """ return self._entity @property def ancestor(self): """ The ancestor key for the query. :rtype: :class:`~gcloudoem.entity.Entity` or None """ return self._ancestor @property def filters(self): """ Filters set on the query. :rtype: sequence of (property_name, operator, value) tuples. """ return self._filters[:] def add_filter(self, property_name, operator, value): """ Add a filter to the query based on a property name, operator and a value. Expressions take the form of:: .add_filter('<property>', '<operator>', <value>) where property is the name of a property stored on the entity for this query, operator is one of ``OPERATORS`` (ie, ``=``, ``<``, ``<=``, ``>``, ``>=``) and value is the value to filter on:: >>> from gcloudoem import entity, properties >>> from gcloudoem.datastore.query import Query >>> class Person(entity.Entity): ... name = properties.TextProperty() ... age = properties.IntegerProperty() ... >>> query = Query(Person) >>> query.add_filter('name', '=', 'James') >>> query.add_filter('age', '>', 50) :type property_name: str :param property_name: A property name. Used to fetch the corresponding property off the Entity for this query. :type operator: str :param operator: One of ``=``, ``<``, ``<=``, ``>``, ``>=``. See :attr:`Query.OPERATORS`. :type value: int, str, bool, float, None, datetime :param value: The value to filter on. :raises: :class:`gcloudoem.exceptions.InvalidQueryError` if: * `operation` is not one of the specified values, or * query.entity doesn't have a property by the name ``property_name``, or * filter names `'__key__'` but passes an invalid operator (``=`` is required) or value (a Key is required). """ if self.OPERATORS.get(operator) is None: error_message = 'Invalid expression: "%s"' % (operator,) choices_message = 'Please use one of: =, <, <=, >, >=.' raise InvalidQueryError(error_message, choices_message) if property_name == 'key': if not isinstance(value, (Key,) + six.string_types + six.integer_types): raise InvalidQueryError('Invalid key value "%s"' % type(value)) if not isinstance(value, Key): value = Key(self._entity._meta.kind, value=value) if self.OPERATORS[operator] != query_pb.PropertyFilter.EQUAL: raise InvalidQueryError('Invalid operator for key: "%s"' % operator) elif not hasattr(self._entity, property_name): raise InvalidQueryError("Entity %s used in this Query doesn't have a property %s" % (self._entity._meta.kind, property_name)) if self.OPERATORS[operator] in ( query_pb.PropertyFilter.LESS_THAN_OR_EQUAL, query_pb.PropertyFilter.GREATER_THAN_OR_EQUAL, ): if not self._has_inequality_filter: self._has_inequality_filter = property_name elif property_name != self._has_inequality_filter: raise InvalidQueryError( "Datastore only supports inequality operators on a single property within a query." ) self._filters.append((property_name, operator, value)) @property def projection(self): """ Fields names returned by the query. :rtype: sequence of str :returns: Names of fields in query results. """ return self._projection[:] @projection.setter def projection(self, value): """ :raises: :class:`gcloudoem.exceptions.InvalidQueryError` if the property name(s) in value don't exist on the entity for this query. """ if isinstance(value, str): value = [value] for projection in value: if not projection == '__key__' and not hasattr(self._entity, projection): raise InvalidQueryError("Entity %s used in this Query doesn't have a property %s" % (self.entity._meta.kind, projection)) self._projection[:] = value def keys_only(self): """Set the projection to include only keys.""" self._projection[:] = ['__key__'] @property def order(self): """ Names of fields used to sort query results. :rtype: sequence of str """ return self._order[:] @order.setter def order(self, value): """ Set the fields used to sort query results. Sort fields will be applied in the order specified. :type value: str or sequence of str :param value: Each value is a str giving the name of the property on which to sort, optionally preceded by a hyphen (-) to specify descending order. Omitting the hyphen implies ascending order. :raises: :class:`gcloudoem.exceptions.InvalidQueryError` if the property name(s) in value don't exist on the entity for this query. """ if isinstance(value, str): value = [value] for prop_name in value: property = prop_name[1:] if prop_name[0] == '-' else prop_name if not hasattr(self._entity, property): raise InvalidQueryError("Entity %s used in this Query doesn't have a property %s" % (self._entity._meta.kind, prop_name)) self._order[:] = value @property def group_by(self): """ Names of fields used to group query results. :rtype: sequence of str """ return self._group_by[:] @group_by.setter def group_by(self, value): """ Set fields used to group query results. :type value: str or sequence of strs :param value: Each value is a str giving the name of a property to use to group results together. :raises: :class:`gcloudoem.exceptions.InvalidQueryError` if the property name(s) in value don't exist on the entity for this query. """ if isinstance(value, str): value = [value] for prop_name in value: if not hasattr(self._entity, prop_name): raise InvalidQueryError("Entity %s used in this Query doesn't have a property %s" % (self._entity._meta.kind, prop_name)) self._group_by[:] = value def __call__(self): """ Execute the Query; return a :class:`Cursor` for the matching entities. For example:: >>> from gcloudoem.datastore.query import Query >>> query = Query('Person') >>> query.add_filter('name', '=', 'Sally') >>> list(query.execute()) [<Entity object>, <Entity object>, ...] >>> query.limit = 1 >>> list(query.execute(1)) [<Entity object>] For an explication of the options, see https://cloud.google.com/datastore/docs/concepts/queries#Datastore_Query_cursors. :rtype: :class:`Cursor` :raises: :class:`~gcloudoem.exceptions.ConnectionError` if there is no active connection. """ connection = get_connection() return Cursor(self, connection, self.limit, self.offset) def clone(self): return self.__class__( self._entity, self._ancestor, self.filters, self.projection, self.order, self.group_by, self._limit, self._offset ) def to_protobuf(self): """ Convert this Query instance to the corresponding protobuf representation. :rtype: :class:`~gcloudoem.datastore.datastore_v1_pb2.Query` :returns: A protobuf query that can be sent to the protobuf API. N.b. that it does not contain "in-flight" fields for ongoing query executions (cursors, offset, limit). """ pb = query_pb.Query() for projection_name in self._projection: pb.projection.add().property.name = projection_name if self._entity: pb.kind.add().name = self._entity._meta.kind composite_filter = pb.filter.composite_filter composite_filter.op = query_pb.CompositeFilter.AND if self.ancestor: ancestor_pb = self.ancestor._properties['key'].to_protobuf(self.ancestor.key) # Filter on __key__ HAS_ANCESTOR == ancestor. ancestor_filter = composite_filter.filters.add().property_filter ancestor_filter.property.name = '__key__' ancestor_filter.op = query_pb.PropertyFilter.HAS_ANCESTOR ancestor_filter.value.key_value.CopyFrom(ancestor_pb) for property_name, operator, value in self.filters: pb_op_enum = self.OPERATORS.get(operator) # Add the specific filter prop = self._entity._properties[property_name] property_filter = composite_filter.filters.add().property_filter property_filter.property.name = prop.db_name property_filter.op = pb_op_enum # Set the value to filter on based on the type. if property_name == 'key': key_pb = prop.to_protobuf(value) property_filter.value.key_value.CopyFrom(key_pb) else: attr, pb_value = prop.to_protobuf(value) utils.set_protobuf_value(property_filter.value, attr, pb_value) if not composite_filter.filters: pb.ClearField('filter') for prop in self.order: property_order = pb.order.add() if prop.startswith('-'): property_order.property.name = prop[1:] property_order.direction = property_order.DESCENDING else: property_order.property.name = prop property_order.direction = property_order.ASCENDING for group_by_name in self.group_by: pb.group_by.add().name = group_by_name return pb class Cursor(object): """ Represent the state of a given execution of a Query. This class is a generator that can be iterated. """ _NOT_FINISHED = query_pb.QueryResultBatch.NOT_FINISHED _FINISHED = ( query_pb.QueryResultBatch.NO_MORE_RESULTS, query_pb.QueryResultBatch.MORE_RESULTS_AFTER_LIMIT, ) def __init__(self, query, connection, limit=None, offset=0, start_cursor=None, end_cursor=None): self._query = query self._connection = connection self._limit = limit self._offset = offset self._start_cursor = start_cursor self._end_cursor = end_cursor self._page = self._more_results = None def next_page(self): """ Fetch a single "page" of query results. Low-level API for fine control: the more convenient API is to iterate on the current Iterator. :rtype: tuple, (entities, more_results, cursor) """ pb = self._query.to_protobuf() start_cursor = self._start_cursor if start_cursor is not None: pb.start_cursor = base64.b64decode(start_cursor) end_cursor = self._end_cursor if end_cursor is not None: pb.end_cursor = base64.b64decode(end_cursor) if self._limit is not None: pb.limit = self._limit pb.offset = self._offset transaction = Transaction.current() query_results = self._connection.run_query( query_pb=pb, namespace=self._connection.namespace, transaction_id=transaction and transaction.id, ) # NOTE: `query_results` contains an extra value that we don't use, namely `skipped_results`. # # NOTE: The value of `more_results` is not currently useful because the back-end always returns an enum value of # MORE_RESULTS_AFTER_LIMIT even if there are no more results. See # https://github.com/GoogleCloudPlatform/gcloud-python/issues/280 for discussion. entity_pbs, cursor_as_bytes, more_results_enum = query_results[:3] self._start_cursor = base64.b64encode(cursor_as_bytes) self._end_cursor = None if more_results_enum == self._NOT_FINISHED: self._more_results = True elif more_results_enum in self._FINISHED: self._more_results = False else: raise RuntimeError('Unexpected value returned for `more_results`.') self._page = [self._query.entity.from_protobuf(pb) for pb in entity_pbs] return self._page, self._more_results, self._start_cursor def __iter__(self): """ Generator yielding all results matching our query. :rtype: sequence of :class:`gcloud.datastore.entity.Entity` """ self.next_page() while True: for entity in self._page: yield entity if not self._more_results: break self.next_page()
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Awaitable, Callable, Dict, Optional, Sequence, Tuple, Union from google.api_core import gapic_v1 from google.api_core import grpc_helpers_async from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import grpc # type: ignore from grpc.experimental import aio # type: ignore from google.cloud.secretmanager_v1.types import resources from google.cloud.secretmanager_v1.types import service from google.iam.v1 import iam_policy_pb2 # type: ignore from google.iam.v1 import policy_pb2 # type: ignore from google.protobuf import empty_pb2 # type: ignore from .base import SecretManagerServiceTransport, DEFAULT_CLIENT_INFO from .grpc import SecretManagerServiceGrpcTransport class SecretManagerServiceGrpcAsyncIOTransport(SecretManagerServiceTransport): """gRPC AsyncIO backend transport for SecretManagerService. Secret Manager Service Manages secrets and operations using those secrets. Implements a REST model with the following objects: - [Secret][google.cloud.secretmanager.v1.Secret] - [SecretVersion][google.cloud.secretmanager.v1.SecretVersion] This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ _grpc_channel: aio.Channel _stubs: Dict[str, Callable] = {} @classmethod def create_channel( cls, host: str = "secretmanager.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, **kwargs, ) -> aio.Channel: """Create and return a gRPC AsyncIO channel object. Args: host (Optional[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. quota_project_id (Optional[str]): An optional project to use for billing and quota. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: aio.Channel: A gRPC AsyncIO channel object. """ return grpc_helpers_async.create_channel( host, credentials=credentials, credentials_file=credentials_file, quota_project_id=quota_project_id, default_scopes=cls.AUTH_SCOPES, scopes=scopes, default_host=cls.DEFAULT_HOST, **kwargs, ) def __init__( self, *, host: str = "secretmanager.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, channel: aio.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None, quota_project_id=None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. channel (Optional[aio.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or application default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for the grpc channel. It is ignored if ``channel`` is provided. client_cert_source_for_mtls (Optional[Callable[[], Tuple[bytes, bytes]]]): A callback to provide client certificate bytes and private key bytes, both in PEM format. It is used to configure a mutual TLS channel. It is ignored if ``channel`` or ``ssl_channel_credentials`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. always_use_jwt_access (Optional[bool]): Whether self signed JWT should be used for service account credentials. Raises: google.auth.exceptions.MutualTlsChannelError: If mutual TLS transport creation failed for any reason. google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ self._grpc_channel = None self._ssl_channel_credentials = ssl_channel_credentials self._stubs: Dict[str, Callable] = {} if api_mtls_endpoint: warnings.warn("api_mtls_endpoint is deprecated", DeprecationWarning) if client_cert_source: warnings.warn("client_cert_source is deprecated", DeprecationWarning) if channel: # Ignore credentials if a channel was passed. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None else: if api_mtls_endpoint: host = api_mtls_endpoint # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: self._ssl_channel_credentials = SslCredentials().ssl_credentials else: if client_cert_source_for_mtls and not ssl_channel_credentials: cert, key = client_cert_source_for_mtls() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) # The base transport sets the host, credentials and scopes super().__init__( host=host, credentials=credentials, credentials_file=credentials_file, scopes=scopes, quota_project_id=quota_project_id, client_info=client_info, always_use_jwt_access=always_use_jwt_access, ) if not self._grpc_channel: self._grpc_channel = type(self).create_channel( self._host, # use the credentials which are saved credentials=self._credentials, # Set ``credentials_file`` to ``None`` here as # the credentials that we saved earlier should be used. credentials_file=None, scopes=self._scopes, ssl_credentials=self._ssl_channel_credentials, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) # Wrap messages. This must be done after self._grpc_channel exists self._prep_wrapped_messages(client_info) @property def grpc_channel(self) -> aio.Channel: """Create the channel designed to connect to this service. This property caches on the instance; repeated calls return the same channel. """ # Return the channel from cache. return self._grpc_channel @property def list_secrets( self, ) -> Callable[[service.ListSecretsRequest], Awaitable[service.ListSecretsResponse]]: r"""Return a callable for the list secrets method over gRPC. Lists [Secrets][google.cloud.secretmanager.v1.Secret]. Returns: Callable[[~.ListSecretsRequest], Awaitable[~.ListSecretsResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "list_secrets" not in self._stubs: self._stubs["list_secrets"] = self.grpc_channel.unary_unary( "/google.cloud.secretmanager.v1.SecretManagerService/ListSecrets", request_serializer=service.ListSecretsRequest.serialize, response_deserializer=service.ListSecretsResponse.deserialize, ) return self._stubs["list_secrets"] @property def create_secret( self, ) -> Callable[[service.CreateSecretRequest], Awaitable[resources.Secret]]: r"""Return a callable for the create secret method over gRPC. Creates a new [Secret][google.cloud.secretmanager.v1.Secret] containing no [SecretVersions][google.cloud.secretmanager.v1.SecretVersion]. Returns: Callable[[~.CreateSecretRequest], Awaitable[~.Secret]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "create_secret" not in self._stubs: self._stubs["create_secret"] = self.grpc_channel.unary_unary( "/google.cloud.secretmanager.v1.SecretManagerService/CreateSecret", request_serializer=service.CreateSecretRequest.serialize, response_deserializer=resources.Secret.deserialize, ) return self._stubs["create_secret"] @property def add_secret_version( self, ) -> Callable[ [service.AddSecretVersionRequest], Awaitable[resources.SecretVersion] ]: r"""Return a callable for the add secret version method over gRPC. Creates a new [SecretVersion][google.cloud.secretmanager.v1.SecretVersion] containing secret data and attaches it to an existing [Secret][google.cloud.secretmanager.v1.Secret]. Returns: Callable[[~.AddSecretVersionRequest], Awaitable[~.SecretVersion]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "add_secret_version" not in self._stubs: self._stubs["add_secret_version"] = self.grpc_channel.unary_unary( "/google.cloud.secretmanager.v1.SecretManagerService/AddSecretVersion", request_serializer=service.AddSecretVersionRequest.serialize, response_deserializer=resources.SecretVersion.deserialize, ) return self._stubs["add_secret_version"] @property def get_secret( self, ) -> Callable[[service.GetSecretRequest], Awaitable[resources.Secret]]: r"""Return a callable for the get secret method over gRPC. Gets metadata for a given [Secret][google.cloud.secretmanager.v1.Secret]. Returns: Callable[[~.GetSecretRequest], Awaitable[~.Secret]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "get_secret" not in self._stubs: self._stubs["get_secret"] = self.grpc_channel.unary_unary( "/google.cloud.secretmanager.v1.SecretManagerService/GetSecret", request_serializer=service.GetSecretRequest.serialize, response_deserializer=resources.Secret.deserialize, ) return self._stubs["get_secret"] @property def update_secret( self, ) -> Callable[[service.UpdateSecretRequest], Awaitable[resources.Secret]]: r"""Return a callable for the update secret method over gRPC. Updates metadata of an existing [Secret][google.cloud.secretmanager.v1.Secret]. Returns: Callable[[~.UpdateSecretRequest], Awaitable[~.Secret]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "update_secret" not in self._stubs: self._stubs["update_secret"] = self.grpc_channel.unary_unary( "/google.cloud.secretmanager.v1.SecretManagerService/UpdateSecret", request_serializer=service.UpdateSecretRequest.serialize, response_deserializer=resources.Secret.deserialize, ) return self._stubs["update_secret"] @property def delete_secret( self, ) -> Callable[[service.DeleteSecretRequest], Awaitable[empty_pb2.Empty]]: r"""Return a callable for the delete secret method over gRPC. Deletes a [Secret][google.cloud.secretmanager.v1.Secret]. Returns: Callable[[~.DeleteSecretRequest], Awaitable[~.Empty]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "delete_secret" not in self._stubs: self._stubs["delete_secret"] = self.grpc_channel.unary_unary( "/google.cloud.secretmanager.v1.SecretManagerService/DeleteSecret", request_serializer=service.DeleteSecretRequest.serialize, response_deserializer=empty_pb2.Empty.FromString, ) return self._stubs["delete_secret"] @property def list_secret_versions( self, ) -> Callable[ [service.ListSecretVersionsRequest], Awaitable[service.ListSecretVersionsResponse], ]: r"""Return a callable for the list secret versions method over gRPC. Lists [SecretVersions][google.cloud.secretmanager.v1.SecretVersion]. This call does not return secret data. Returns: Callable[[~.ListSecretVersionsRequest], Awaitable[~.ListSecretVersionsResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "list_secret_versions" not in self._stubs: self._stubs["list_secret_versions"] = self.grpc_channel.unary_unary( "/google.cloud.secretmanager.v1.SecretManagerService/ListSecretVersions", request_serializer=service.ListSecretVersionsRequest.serialize, response_deserializer=service.ListSecretVersionsResponse.deserialize, ) return self._stubs["list_secret_versions"] @property def get_secret_version( self, ) -> Callable[ [service.GetSecretVersionRequest], Awaitable[resources.SecretVersion] ]: r"""Return a callable for the get secret version method over gRPC. Gets metadata for a [SecretVersion][google.cloud.secretmanager.v1.SecretVersion]. ``projects/*/secrets/*/versions/latest`` is an alias to the most recently created [SecretVersion][google.cloud.secretmanager.v1.SecretVersion]. Returns: Callable[[~.GetSecretVersionRequest], Awaitable[~.SecretVersion]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "get_secret_version" not in self._stubs: self._stubs["get_secret_version"] = self.grpc_channel.unary_unary( "/google.cloud.secretmanager.v1.SecretManagerService/GetSecretVersion", request_serializer=service.GetSecretVersionRequest.serialize, response_deserializer=resources.SecretVersion.deserialize, ) return self._stubs["get_secret_version"] @property def access_secret_version( self, ) -> Callable[ [service.AccessSecretVersionRequest], Awaitable[service.AccessSecretVersionResponse], ]: r"""Return a callable for the access secret version method over gRPC. Accesses a [SecretVersion][google.cloud.secretmanager.v1.SecretVersion]. This call returns the secret data. ``projects/*/secrets/*/versions/latest`` is an alias to the most recently created [SecretVersion][google.cloud.secretmanager.v1.SecretVersion]. Returns: Callable[[~.AccessSecretVersionRequest], Awaitable[~.AccessSecretVersionResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "access_secret_version" not in self._stubs: self._stubs["access_secret_version"] = self.grpc_channel.unary_unary( "/google.cloud.secretmanager.v1.SecretManagerService/AccessSecretVersion", request_serializer=service.AccessSecretVersionRequest.serialize, response_deserializer=service.AccessSecretVersionResponse.deserialize, ) return self._stubs["access_secret_version"] @property def disable_secret_version( self, ) -> Callable[ [service.DisableSecretVersionRequest], Awaitable[resources.SecretVersion] ]: r"""Return a callable for the disable secret version method over gRPC. Disables a [SecretVersion][google.cloud.secretmanager.v1.SecretVersion]. Sets the [state][google.cloud.secretmanager.v1.SecretVersion.state] of the [SecretVersion][google.cloud.secretmanager.v1.SecretVersion] to [DISABLED][google.cloud.secretmanager.v1.SecretVersion.State.DISABLED]. Returns: Callable[[~.DisableSecretVersionRequest], Awaitable[~.SecretVersion]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "disable_secret_version" not in self._stubs: self._stubs["disable_secret_version"] = self.grpc_channel.unary_unary( "/google.cloud.secretmanager.v1.SecretManagerService/DisableSecretVersion", request_serializer=service.DisableSecretVersionRequest.serialize, response_deserializer=resources.SecretVersion.deserialize, ) return self._stubs["disable_secret_version"] @property def enable_secret_version( self, ) -> Callable[ [service.EnableSecretVersionRequest], Awaitable[resources.SecretVersion] ]: r"""Return a callable for the enable secret version method over gRPC. Enables a [SecretVersion][google.cloud.secretmanager.v1.SecretVersion]. Sets the [state][google.cloud.secretmanager.v1.SecretVersion.state] of the [SecretVersion][google.cloud.secretmanager.v1.SecretVersion] to [ENABLED][google.cloud.secretmanager.v1.SecretVersion.State.ENABLED]. Returns: Callable[[~.EnableSecretVersionRequest], Awaitable[~.SecretVersion]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "enable_secret_version" not in self._stubs: self._stubs["enable_secret_version"] = self.grpc_channel.unary_unary( "/google.cloud.secretmanager.v1.SecretManagerService/EnableSecretVersion", request_serializer=service.EnableSecretVersionRequest.serialize, response_deserializer=resources.SecretVersion.deserialize, ) return self._stubs["enable_secret_version"] @property def destroy_secret_version( self, ) -> Callable[ [service.DestroySecretVersionRequest], Awaitable[resources.SecretVersion] ]: r"""Return a callable for the destroy secret version method over gRPC. Destroys a [SecretVersion][google.cloud.secretmanager.v1.SecretVersion]. Sets the [state][google.cloud.secretmanager.v1.SecretVersion.state] of the [SecretVersion][google.cloud.secretmanager.v1.SecretVersion] to [DESTROYED][google.cloud.secretmanager.v1.SecretVersion.State.DESTROYED] and irrevocably destroys the secret data. Returns: Callable[[~.DestroySecretVersionRequest], Awaitable[~.SecretVersion]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "destroy_secret_version" not in self._stubs: self._stubs["destroy_secret_version"] = self.grpc_channel.unary_unary( "/google.cloud.secretmanager.v1.SecretManagerService/DestroySecretVersion", request_serializer=service.DestroySecretVersionRequest.serialize, response_deserializer=resources.SecretVersion.deserialize, ) return self._stubs["destroy_secret_version"] @property def set_iam_policy( self, ) -> Callable[[iam_policy_pb2.SetIamPolicyRequest], Awaitable[policy_pb2.Policy]]: r"""Return a callable for the set iam policy method over gRPC. Sets the access control policy on the specified secret. Replaces any existing policy. Permissions on [SecretVersions][google.cloud.secretmanager.v1.SecretVersion] are enforced according to the policy set on the associated [Secret][google.cloud.secretmanager.v1.Secret]. Returns: Callable[[~.SetIamPolicyRequest], Awaitable[~.Policy]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "set_iam_policy" not in self._stubs: self._stubs["set_iam_policy"] = self.grpc_channel.unary_unary( "/google.cloud.secretmanager.v1.SecretManagerService/SetIamPolicy", request_serializer=iam_policy_pb2.SetIamPolicyRequest.SerializeToString, response_deserializer=policy_pb2.Policy.FromString, ) return self._stubs["set_iam_policy"] @property def get_iam_policy( self, ) -> Callable[[iam_policy_pb2.GetIamPolicyRequest], Awaitable[policy_pb2.Policy]]: r"""Return a callable for the get iam policy method over gRPC. Gets the access control policy for a secret. Returns empty policy if the secret exists and does not have a policy set. Returns: Callable[[~.GetIamPolicyRequest], Awaitable[~.Policy]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "get_iam_policy" not in self._stubs: self._stubs["get_iam_policy"] = self.grpc_channel.unary_unary( "/google.cloud.secretmanager.v1.SecretManagerService/GetIamPolicy", request_serializer=iam_policy_pb2.GetIamPolicyRequest.SerializeToString, response_deserializer=policy_pb2.Policy.FromString, ) return self._stubs["get_iam_policy"] @property def test_iam_permissions( self, ) -> Callable[ [iam_policy_pb2.TestIamPermissionsRequest], Awaitable[iam_policy_pb2.TestIamPermissionsResponse], ]: r"""Return a callable for the test iam permissions method over gRPC. Returns permissions that a caller has for the specified secret. If the secret does not exist, this call returns an empty set of permissions, not a NOT_FOUND error. Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning. Returns: Callable[[~.TestIamPermissionsRequest], Awaitable[~.TestIamPermissionsResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "test_iam_permissions" not in self._stubs: self._stubs["test_iam_permissions"] = self.grpc_channel.unary_unary( "/google.cloud.secretmanager.v1.SecretManagerService/TestIamPermissions", request_serializer=iam_policy_pb2.TestIamPermissionsRequest.SerializeToString, response_deserializer=iam_policy_pb2.TestIamPermissionsResponse.FromString, ) return self._stubs["test_iam_permissions"] def close(self): return self.grpc_channel.close() __all__ = ("SecretManagerServiceGrpcAsyncIOTransport",)
from __future__ import absolute_import from __future__ import with_statement from celery.datastructures import ( ExceptionInfo, LRUCache, LimitedSet, AttributeDict, DictAttribute, ConfigurationView, DependencyGraph, ) from celery.utils.compat import THREAD_TIMEOUT_MAX from celery.tests.utils import Case, WhateverIO class Object(object): pass class test_DictAttribute(Case): def test_get_set(self): x = DictAttribute(Object()) x['foo'] = 'The quick brown fox' self.assertEqual(x['foo'], 'The quick brown fox') self.assertEqual(x['foo'], x.obj.foo) self.assertEqual(x.get('foo'), 'The quick brown fox') self.assertIsNone(x.get('bar')) with self.assertRaises(KeyError): x['bar'] def test_setdefault(self): x = DictAttribute(Object()) self.assertEqual(x.setdefault('foo', 'NEW'), 'NEW') self.assertEqual(x.setdefault('foo', 'XYZ'), 'NEW') def test_contains(self): x = DictAttribute(Object()) x['foo'] = 1 self.assertIn('foo', x) self.assertNotIn('bar', x) def test_items(self): obj = Object() obj.attr1 = 1 x = DictAttribute(obj) x['attr2'] = 2 self.assertEqual(x['attr1'], 1) self.assertEqual(x['attr2'], 2) class test_ConfigurationView(Case): def setUp(self): self.view = ConfigurationView({'changed_key': 1, 'both': 2}, [{'default_key': 1, 'both': 1}]) def test_setdefault(self): self.assertEqual(self.view.setdefault('both', 36), 2) self.assertEqual(self.view.setdefault('new', 36), 36) def test_get(self): self.assertEqual(self.view.get('both'), 2) sp = object() self.assertIs(self.view.get('nonexisting', sp), sp) def test_update(self): changes = dict(self.view.changes) self.view.update(a=1, b=2, c=3) self.assertDictEqual(self.view.changes, dict(changes, a=1, b=2, c=3)) def test_contains(self): self.assertIn('changed_key', self.view) self.assertIn('default_key', self.view) self.assertNotIn('new', self.view) def test_repr(self): self.assertIn('changed_key', repr(self.view)) self.assertIn('default_key', repr(self.view)) def test_iter(self): expected = {'changed_key': 1, 'default_key': 1, 'both': 2} self.assertDictEqual(dict(self.view.items()), expected) self.assertItemsEqual(list(iter(self.view)), expected.keys()) self.assertItemsEqual(self.view.keys(), expected.keys()) self.assertItemsEqual(self.view.values(), expected.values()) class test_ExceptionInfo(Case): def test_exception_info(self): try: raise LookupError('The quick brown fox jumps...') except Exception: einfo = ExceptionInfo() self.assertEqual(str(einfo), einfo.traceback) self.assertIsInstance(einfo.exception, LookupError) self.assertTupleEqual( einfo.exception.args, ('The quick brown fox jumps...', ), ) self.assertTrue(einfo.traceback) r = repr(einfo) self.assertTrue(r) class test_LimitedSet(Case): def test_add(self): s = LimitedSet(maxlen=2) s.add('foo') s.add('bar') for n in 'foo', 'bar': self.assertIn(n, s) s.add('baz') for n in 'bar', 'baz': self.assertIn(n, s) self.assertNotIn('foo', s) def test_iter(self): s = LimitedSet(maxlen=2) items = 'foo', 'bar' for item in items: s.add(item) l = list(iter(s)) for item in items: self.assertIn(item, l) def test_repr(self): s = LimitedSet(maxlen=2) items = 'foo', 'bar' for item in items: s.add(item) self.assertIn('LimitedSet(', repr(s)) def test_clear(self): s = LimitedSet(maxlen=2) s.add('foo') s.add('bar') self.assertEqual(len(s), 2) s.clear() self.assertFalse(s) def test_update(self): s1 = LimitedSet(maxlen=2) s1.add('foo') s1.add('bar') s2 = LimitedSet(maxlen=2) s2.update(s1) self.assertItemsEqual(list(s2), ['foo', 'bar']) s2.update(['bla']) self.assertItemsEqual(list(s2), ['bla', 'bar']) s2.update(['do', 're']) self.assertItemsEqual(list(s2), ['do', 're']) def test_as_dict(self): s = LimitedSet(maxlen=2) s.add('foo') self.assertIsInstance(s.as_dict(), dict) class test_LRUCache(Case): def test_expires(self): limit = 100 x = LRUCache(limit=limit) slots = list(xrange(limit * 2)) for i in slots: x[i] = i self.assertListEqual(x.keys(), list(slots[limit:])) def test_least_recently_used(self): x = LRUCache(3) x[1], x[2], x[3] = 1, 2, 3 self.assertEqual(x.keys(), [1, 2, 3]) x[4], x[5] = 4, 5 self.assertEqual(x.keys(), [3, 4, 5]) # access 3, which makes it the last used key. x[3] x[6] = 6 self.assertEqual(x.keys(), [5, 3, 6]) x[7] = 7 self.assertEqual(x.keys(), [3, 6, 7]) def assertSafeIter(self, method, interval=0.01, size=10000): from threading import Thread, Event from time import sleep x = LRUCache(size) x.update(zip(xrange(size), xrange(size))) class Burglar(Thread): def __init__(self, cache): self.cache = cache self._is_shutdown = Event() self._is_stopped = Event() Thread.__init__(self) def run(self): while not self._is_shutdown.isSet(): try: self.cache.data.popitem(last=False) except KeyError: break self._is_stopped.set() def stop(self): self._is_shutdown.set() self._is_stopped.wait() self.join(THREAD_TIMEOUT_MAX) burglar = Burglar(x) burglar.start() try: for _ in getattr(x, method)(): sleep(0.0001) finally: burglar.stop() def test_safe_to_remove_while_iteritems(self): self.assertSafeIter('iteritems') def test_safe_to_remove_while_keys(self): self.assertSafeIter('keys') def test_safe_to_remove_while_itervalues(self): self.assertSafeIter('itervalues') def test_items(self): c = LRUCache() c.update(a=1, b=2, c=3) self.assertTrue(c.items()) class test_AttributeDict(Case): def test_getattr__setattr(self): x = AttributeDict({'foo': 'bar'}) self.assertEqual(x['foo'], 'bar') with self.assertRaises(AttributeError): x.bar x.bar = 'foo' self.assertEqual(x['bar'], 'foo') class test_DependencyGraph(Case): def graph1(self): return DependencyGraph([ ('A', []), ('B', []), ('C', ['A']), ('D', ['C', 'B']), ]) def test_repr(self): self.assertTrue(repr(self.graph1())) def test_topsort(self): order = self.graph1().topsort() # C must start before D self.assertLess(order.index('C'), order.index('D')) # and B must start before D self.assertLess(order.index('B'), order.index('D')) # and A must start before C self.assertLess(order.index('A'), order.index('C')) def test_edges(self): self.assertListEqual(list(self.graph1().edges()), ['C', 'D']) def test_items(self): self.assertDictEqual( dict(self.graph1().items()), {'A': [], 'B': [], 'C': ['A'], 'D': ['C', 'B']}, ) def test_to_dot(self): s = WhateverIO() self.graph1().to_dot(s) self.assertTrue(s.getvalue())
# Copyright (C) 2010-2012 Yaco Sistemas (http://www.yaco.es) # Copyright (C) 2009 Lorenzo Gil Sanchez <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging try: from xml.etree import ElementTree except ImportError: from elementtree import ElementTree from django.conf import settings from django.contrib import auth from django.contrib.auth.decorators import login_required from django.contrib.auth.views import logout as django_logout from django.http import Http404, HttpResponse from django.http import HttpResponseRedirect, HttpResponseBadRequest, HttpResponseForbidden from django.views.decorators.http import require_POST from django.shortcuts import render_to_response from django.template import RequestContext try: from django.views.decorators.csrf import csrf_exempt except ImportError: # Django 1.0 compatibility def csrf_exempt(view_func): return view_func from saml2 import BINDING_HTTP_REDIRECT from saml2.client import Saml2Client from saml2.metadata import entity_descriptor from saml2 import BINDING_HTTP_POST from djangosaml2.cache import IdentityCache, OutstandingQueriesCache from djangosaml2.cache import StateCache from djangosaml2.conf import get_config from djangosaml2.signals import post_authenticated from djangosaml2.utils import get_custom_setting logger = logging.getLogger('djangosaml2') def _set_subject_id(session, subject_id): session['_saml2_subject_id'] = subject_id def _get_subject_id(session): try: return session['_saml2_subject_id'] except KeyError: return None def login(request, config_loader_path=None, wayf_template='djangosaml2/wayf.html', authorization_error_template='djangosaml2/auth_error.html'): """SAML Authorization Request initiator This view initiates the SAML2 Authorization handshake using the pysaml2 library to create the AuthnRequest. It uses the SAML 2.0 Http Redirect protocol binding. """ logger.debug('Login process started') came_from = request.GET.get('next', settings.LOGIN_REDIRECT_URL) if not came_from: logger.warning('The next parameter exists but is empty') came_from = settings.LOGIN_REDIRECT_URL # if the user is already authenticated that maybe because of two reasons: # A) He has this URL in two browser windows and in the other one he # has already initiated the authenticated session. # B) He comes from a view that (incorrectly) send him here because # he does not have enough permissions. That view should have shown # an authorization error in the first place. # We can only make one thing here and that is configurable with the # SAML_IGNORE_AUTHENTICATED_USERS_ON_LOGIN setting. If that setting # is True (default value) we will redirect him to the came_from view. # Otherwise, we will show an (configurable) authorization error. if not request.user.is_anonymous(): try: redirect_authenticated_user = settings.SAML_IGNORE_AUTHENTICATED_USERS_ON_LOGIN except AttributeError: redirect_authenticated_user = True if redirect_authenticated_user: return HttpResponseRedirect(came_from) else: logger.debug('User is already logged in') return render_to_response(authorization_error_template, { 'came_from': came_from, }, context_instance=RequestContext(request)) selected_idp = request.GET.get('idp', None) conf = get_config(config_loader_path, request) # is a embedded wayf needed? # idps = conf.idps() # if selected_idp is None and len(idps) > 1: # logger.debug('A discovery process is needed') # return render_to_response(wayf_template, { # 'available_idps': idps.items(), # 'came_from': came_from, # }, context_instance=RequestContext(request)) client = Saml2Client(conf) try: (session_id, result) = client.prepare_for_authenticate( entityid=selected_idp, relay_state=came_from, binding=BINDING_HTTP_REDIRECT, ) except TypeError, e: logger.error('Unable to know which IdP to use') return HttpResponse(unicode(e)) assert result['headers'][0][0] == 'Location' location = result['headers'][0][1] logger.debug('Saving the session_id in the OutstandingQueries cache') oq_cache = OutstandingQueriesCache(request.session) oq_cache.set(session_id, came_from) logger.debug('Redirecting the user to the IdP') return HttpResponseRedirect(location) @require_POST @csrf_exempt def assertion_consumer_service(request, config_loader_path=None, attribute_mapping=None, create_unknown_user=None): """SAML Authorization Response endpoint The IdP will send its response to this view, which will process it with pysaml2 help and log the user in using the custom Authorization backend djangosaml2.backends.Saml2Backend that should be enabled in the settings.py """ attribute_mapping = attribute_mapping or get_custom_setting( 'SAML_ATTRIBUTE_MAPPING', {'uid': ('username', )}) create_unknown_user = create_unknown_user or get_custom_setting( 'SAML_CREATE_UNKNOWN_USER', True) logger.debug('Assertion Consumer Service started') conf = get_config(config_loader_path, request) if 'SAMLResponse' not in request.POST: return HttpResponseBadRequest( 'Couldn\'t find "SAMLResponse" in POST data.') client = Saml2Client(conf, identity_cache=IdentityCache(request.session)) oq_cache = OutstandingQueriesCache(request.session) outstanding_queries = oq_cache.outstanding_queries() # process the authentication response response = client.parse_authn_request_response(request.POST['SAMLResponse'], BINDING_HTTP_POST, outstanding_queries) if response is None: logger.error('SAML response is None') return HttpResponseBadRequest( "SAML response has errors. Please check the logs") session_id = response.session_id() oq_cache.delete(session_id) # authenticate the remote user session_info = response.session_info() if callable(attribute_mapping): attribute_mapping = attribute_mapping() if callable(create_unknown_user): create_unknown_user = create_unknown_user() logger.debug('Trying to authenticate the user') user = auth.authenticate(session_info=session_info, attribute_mapping=attribute_mapping, create_unknown_user=create_unknown_user) if user is None: logger.error('The user is None') return HttpResponseForbidden("Permission denied") auth.login(request, user) _set_subject_id(request.session, session_info['name_id']) logger.debug('Sending the post_authenticated signal') post_authenticated.send_robust(sender=user, session_info=session_info) # redirect the user to the view where he came from relay_state = request.POST.get('RelayState', '/') if not relay_state: logger.warning('The RelayState parameter exists but is empty') relay_state = settings.LOGIN_REDIRECT_URL logger.debug('Redirecting to the RelayState: ' + relay_state) return HttpResponseRedirect(relay_state) @login_required def echo_attributes(request, config_loader_path=None, template='djangosaml2/echo_attributes.html'): """Example view that echo the SAML attributes of an user""" state = StateCache(request.session) conf = get_config(config_loader_path, request) client = Saml2Client(conf, state_cache=state, identity_cache=IdentityCache(request.session)) subject_id = _get_subject_id(request.session) identity = client.users.get_identity(subject_id, check_not_on_or_after=False) return render_to_response(template, {'attributes': identity[0]}, context_instance=RequestContext(request)) @login_required def logout(request, config_loader_path=None): """SAML Logout Request initiator This view initiates the SAML2 Logout request using the pysaml2 library to create the LogoutRequest. """ logger.debug('Logout process started') state = StateCache(request.session) conf = get_config(config_loader_path, request) client = Saml2Client(conf, state_cache=state, identity_cache=IdentityCache(request.session)) subject_id = _get_subject_id(request.session) if subject_id is None: logger.warning( 'The session does not contains the subject id for user %s' % request.user) session_id, code, head, body = client.global_logout(subject_id) headers = dict(head) state.sync() logger.debug('Redirecting to the IdP to continue the logout process') return HttpResponseRedirect(headers['Location']) def logout_service(request, config_loader_path=None, next_page=None, logout_error_template='djangosaml2/logout_error.html'): """SAML Logout Response endpoint The IdP will send the logout response to this view, which will process it with pysaml2 help and log the user out. Note that the IdP can request a logout even when we didn't initiate the process as a single logout request started by another SP. """ logger.debug('Logout service started') conf = get_config(config_loader_path, request) state = StateCache(request.session) client = Saml2Client(conf, state_cache=state, identity_cache=IdentityCache(request.session)) if 'SAMLResponse' in request.GET: # we started the logout logger.debug('Receiving a logout response from the IdP') response = client.logout_response(request.GET['SAMLResponse'], binding=BINDING_HTTP_REDIRECT) state.sync() if response and response[1] == '200 Ok': if next_page is None and hasattr(settings, 'LOGOUT_REDIRECT_URL'): next_page = settings.LOGOUT_REDIRECT_URL logger.debug('Performing django_logout with a next_page of %s' % next_page) return django_logout(request, next_page=next_page) else: logger.error('Unknown error during the logout') return HttpResponse('Error during logout') elif 'SAMLRequest' in request.GET: # logout started by the IdP logger.debug('Receiving a logout request from the IdP') subject_id = _get_subject_id(request.session) if subject_id is None: logger.warning( 'The session does not contain the subject id for user %s. Performing local logout' % request.user) auth.logout(request) return render_to_response(logout_error_template, {}, context_instance=RequestContext(request)) else: response, success = client.logout_request(request.GET, subject_id) state.sync() if success: auth.logout(request) assert response[0][0] == 'Location' url = response[0][1] return HttpResponseRedirect(url) elif response is not None: assert response[0][0] == 'Location' url = response[0][1] return HttpResponseRedirect(url) else: logger.error('Unknown error during the logout') return HttpResponse('Error during logout') else: logger.error('No SAMLResponse or SAMLRequest parameter found') raise Http404('No SAMLResponse or SAMLRequest parameter found') def metadata(request, config_loader_path=None, valid_for=None): """Returns an XML with the SAML 2.0 metadata for this SP as configured in the settings.py file. """ conf = get_config(config_loader_path, request) conf.valid_for = valid_for or get_custom_setting('SAML_VALID_FOR', 24) metadata = entity_descriptor(conf) return HttpResponse(content=str(metadata), content_type="text/xml; charset=utf8") def register_namespace_prefixes(): from saml2 import md, saml, samlp import xmlenc import xmldsig prefixes = (('saml', saml.NAMESPACE), ('samlp', samlp.NAMESPACE), ('md', md.NAMESPACE), ('ds', xmldsig.NAMESPACE), ('xenc', xmlenc.NAMESPACE)) if hasattr(ElementTree, 'register_namespace'): for prefix, namespace in prefixes: ElementTree.register_namespace(prefix, namespace) else: for prefix, namespace in prefixes: ElementTree._namespace_map[namespace] = prefix register_namespace_prefixes()
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ A client for AWS batch services .. seealso:: - http://boto3.readthedocs.io/en/latest/guide/configuration.html - http://boto3.readthedocs.io/en/latest/reference/services/batch.html - https://docs.aws.amazon.com/batch/latest/APIReference/Welcome.html """ from random import uniform from time import sleep from typing import Dict, List, Optional, Union import botocore.client import botocore.exceptions import botocore.waiter from typing_extensions import Protocol, runtime_checkable from airflow import AirflowException, LoggingMixin from airflow.providers.amazon.aws.hooks.aws_hook import AwsHook # Add exceptions to pylint for the boto3 protocol only; ideally the boto3 library could provide # protocols for all their dynamically generated classes (try to migrate this to a PR on botocore). # Note that the use of invalid-name parameters should be restricted to the boto3 mappings only; # all the Airflow wrappers of boto3 clients should not adopt invalid-names to match boto3. # pylint: disable=invalid-name, unused-argument @runtime_checkable class AwsBatchProtocol(Protocol): """ A structured Protocol for ``boto3.client('batch') -> botocore.client.Batch``. This is used for type hints on :py:meth:`.AwsBatchClient.client`; it covers only the subset of client methods required. .. seealso:: - https://mypy.readthedocs.io/en/latest/protocols.html - http://boto3.readthedocs.io/en/latest/reference/services/batch.html """ def describe_jobs(self, jobs: List[str]) -> Dict: """ Get job descriptions from AWS batch :param jobs: a list of JobId to describe :type jobs: List[str] :return: an API response to describe jobs :rtype: Dict """ ... def get_waiter(self, waiterName: str) -> botocore.waiter.Waiter: """ Get an AWS Batch service waiter :param waiterName: The name of the waiter. The name should match the name (including the casing) of the key name in the waiter model file (typically this is CamelCasing). :type waiterName: str :return: a waiter object for the named AWS batch service :rtype: botocore.waiter.Waiter .. note:: AWS batch might not have any waiters (until botocore PR-1307 is released). .. code-block:: python import boto3 boto3.client('batch').waiter_names == [] .. seealso:: - https://boto3.amazonaws.com/v1/documentation/api/latest/guide/clients.html#waiters - https://github.com/boto/botocore/pull/1307 """ ... def submit_job( self, jobName: str, jobQueue: str, jobDefinition: str, arrayProperties: Dict, parameters: Dict, containerOverrides: Dict, ) -> Dict: """ Submit a batch job :param jobName: the name for the AWS batch job :type jobName: str :param jobQueue: the queue name on AWS Batch :type jobQueue: str :param jobDefinition: the job definition name on AWS Batch :type jobDefinition: str :param arrayProperties: the same parameter that boto3 will receive :type arrayProperties: Dict :param parameters: the same parameter that boto3 will receive :type parameters: Dict :param containerOverrides: the same parameter that boto3 will receive :type containerOverrides: Dict :return: an API response :rtype: Dict """ ... def terminate_job(self, jobId: str, reason: str) -> Dict: """ Terminate a batch job :param jobId: a job ID to terminate :type jobId: str :param reason: a reason to terminate job ID :type reason: str :return: an API response :rtype: Dict """ ... # Note that the use of invalid-name parameters should be restricted to the boto3 mappings only; # all the Airflow wrappers of boto3 clients should not adopt invalid-names to match boto3. # pylint: enable=invalid-name, unused-argument class AwsBatchClient(LoggingMixin): """ A client for AWS batch services. :param max_retries: exponential back-off retries, 4200 = 48 hours; polling is only used when waiters is None :type max_retries: Optional[int] :param status_retries: number of HTTP retries to get job status, 10; polling is only used when waiters is None :type status_retries: Optional[int] :param aws_conn_id: connection id of AWS credentials / region name. If None, credential boto3 strategy will be used (http://boto3.readthedocs.io/en/latest/guide/configuration.html). :type aws_conn_id: Optional[str] :param region_name: region name to use in AWS client. Override the region_name in connection (if provided) :type region_name: Optional[str] .. note:: Several methods use a default random delay to check or poll for job status, i.e. ``random.uniform(DEFAULT_DELAY_MIN, DEFAULT_DELAY_MAX)`` Using a random interval helps to avoid AWS API throttle limits when many concurrent tasks request job-descriptions. To modify the global defaults for the range of jitter allowed when a random delay is used to check batch job status, modify these defaults, e.g.: .. code-block:: AwsBatchClient.DEFAULT_DELAY_MIN = 0 AwsBatchClient.DEFAULT_DELAY_MAX = 5 When explict delay values are used, a 1 second random jitter is applied to the delay (e.g. a delay of 0 sec will be a ``random.uniform(0, 1)`` delay. It is generally recommended that random jitter is added to API requests. A convenience method is provided for this, e.g. to get a random delay of 10 sec +/- 5 sec: ``delay = AwsBatchClient.add_jitter(10, width=5, minima=0)`` .. seealso:: - https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/batch.html - https://docs.aws.amazon.com/general/latest/gr/api-retries.html - https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/ """ MAX_RETRIES = 4200 STATUS_RETRIES = 10 # delays are in seconds DEFAULT_DELAY_MIN = 1 DEFAULT_DELAY_MAX = 10 def __init__( self, max_retries: Optional[int] = None, status_retries: Optional[int] = None, aws_conn_id: Optional[str] = None, region_name: Optional[str] = None, ): super().__init__() self.max_retries = max_retries or self.MAX_RETRIES self.status_retries = status_retries or self.STATUS_RETRIES self.aws_conn_id = aws_conn_id self.region_name = region_name self._hook = None # type: Union[AwsHook, None] self._client = None # type: Union[AwsBatchProtocol, botocore.client.BaseClient, None] @property def hook(self) -> AwsHook: """ An AWS API connection manager (wraps boto3) :return: the connected hook to AWS :rtype: AwsHook """ if self._hook is None: self._hook = AwsHook(aws_conn_id=self.aws_conn_id) return self._hook @property def client(self) -> Union[AwsBatchProtocol, botocore.client.BaseClient]: """ An AWS API client for batch services, like ``boto3.client('batch')`` :return: a boto3 'batch' client for the ``.region_name`` :rtype: Union[AwsBatchProtocol, botocore.client.BaseClient] """ if self._client is None: self._client = self.hook.get_client_type("batch", region_name=self.region_name) return self._client def terminate_job(self, job_id: str, reason: str) -> Dict: """ Terminate a batch job :param job_id: a job ID to terminate :type job_id: str :param reason: a reason to terminate job ID :type reason: str :return: an API response :rtype: Dict """ response = self.client.terminate_job(jobId=job_id, reason=reason) self.log.info(response) return response def check_job_success(self, job_id: str) -> bool: """ Check the final status of the batch job; return True if the job 'SUCCEEDED', else raise an AirflowException :param job_id: a batch job ID :type job_id: str :rtype: bool :raises: AirflowException """ job = self.get_job_description(job_id) job_status = job.get("status") if job_status == "SUCCEEDED": self.log.info("AWS batch job (%s) succeeded: %s", job_id, job) return True if job_status == "FAILED": raise AirflowException("AWS Batch job ({}) failed: {}".format(job_id, job)) if job_status in ["SUBMITTED", "PENDING", "RUNNABLE", "STARTING", "RUNNING"]: raise AirflowException("AWS Batch job ({}) is not complete: {}".format(job_id, job)) raise AirflowException("AWS Batch job ({}) has unknown status: {}".format(job_id, job)) def wait_for_job(self, job_id: str, delay: Union[int, float, None] = None): """ Wait for batch job to complete :param job_id: a batch job ID :type job_id: str :param delay: a delay before polling for job status :type delay: Optional[Union[int, float]] :raises: AirflowException """ self.delay(delay) self.poll_for_job_running(job_id, delay) self.poll_for_job_complete(job_id, delay) self.log.info("AWS Batch job (%s) has completed", job_id) def poll_for_job_running(self, job_id: str, delay: Union[int, float, None] = None): """ Poll for job running. The status that indicates a job is running or already complete are: 'RUNNING'|'SUCCEEDED'|'FAILED'. So the status options that this will wait for are the transitions from: 'SUBMITTED'>'PENDING'>'RUNNABLE'>'STARTING'>'RUNNING'|'SUCCEEDED'|'FAILED' The completed status options are included for cases where the status changes too quickly for polling to detect a RUNNING status that moves quickly from STARTING to RUNNING to completed (often a failure). :param job_id: a batch job ID :type job_id: str :param delay: a delay before polling for job status :type delay: Optional[Union[int, float]] :raises: AirflowException """ self.delay(delay) running_status = ["RUNNING", "SUCCEEDED", "FAILED"] self.poll_job_status(job_id, running_status) def poll_for_job_complete(self, job_id: str, delay: Union[int, float, None] = None): """ Poll for job completion. The status that indicates job completion are: 'SUCCEEDED'|'FAILED'. So the status options that this will wait for are the transitions from: 'SUBMITTED'>'PENDING'>'RUNNABLE'>'STARTING'>'RUNNING'>'SUCCEEDED'|'FAILED' :param job_id: a batch job ID :type job_id: str :param delay: a delay before polling for job status :type delay: Optional[Union[int, float]] :raises: AirflowException """ self.delay(delay) complete_status = ["SUCCEEDED", "FAILED"] self.poll_job_status(job_id, complete_status) def poll_job_status(self, job_id: str, match_status: List[str]) -> bool: """ Poll for job status using an exponential back-off strategy (with max_retries). :param job_id: a batch job ID :type job_id: str :param match_status: a list of job status to match; the batch job status are: 'SUBMITTED'|'PENDING'|'RUNNABLE'|'STARTING'|'RUNNING'|'SUCCEEDED'|'FAILED' :type match_status: List[str] :rtype: bool :raises: AirflowException """ retries = 0 while True: job = self.get_job_description(job_id) job_status = job.get("status") self.log.info( "AWS Batch job (%s) check status (%s) in %s", job_id, job_status, match_status, ) if job_status in match_status: return True if retries >= self.max_retries: raise AirflowException( "AWS Batch job ({}) status checks exceed max_retries".format(job_id) ) retries += 1 pause = self.exponential_delay(retries) self.log.info( "AWS Batch job (%s) status check (%d of %d) in the next %.2f seconds", job_id, retries, self.max_retries, pause, ) self.delay(pause) def get_job_description(self, job_id: str) -> Dict: """ Get job description (using status_retries). :param job_id: a batch job ID :type job_id: str :return: an API response for describe jobs :rtype: Dict :raises: AirflowException """ retries = 0 while True: try: response = self.client.describe_jobs(jobs=[job_id]) return self.parse_job_description(job_id, response) except botocore.exceptions.ClientError as err: error = err.response.get("Error", {}) if error.get("Code") == "TooManyRequestsException": pass # allow it to retry, if possible else: raise AirflowException( "AWS Batch job ({}) description error: {}".format(job_id, err) ) retries += 1 if retries >= self.status_retries: raise AirflowException( "AWS Batch job ({}) description error: exceeded " "status_retries ({})".format(job_id, self.status_retries) ) pause = self.exponential_delay(retries) self.log.info( "AWS Batch job (%s) description retry (%d of %d) in the next %.2f seconds", job_id, retries, self.status_retries, pause, ) self.delay(pause) @staticmethod def parse_job_description(job_id: str, response: Dict) -> Dict: """ Parse job description to extract description for job_id :param job_id: a batch job ID :type job_id: str :param response: an API response for describe jobs :type response: Dict :return: an API response to describe job_id :rtype: Dict :raises: AirflowException """ jobs = response.get("jobs", []) matching_jobs = [job for job in jobs if job.get("jobId") == job_id] if len(matching_jobs) != 1: raise AirflowException( "AWS Batch job ({}) description error: response: {}".format(job_id, response) ) return matching_jobs[0] @staticmethod def add_jitter( delay: Union[int, float], width: Union[int, float] = 1, minima: Union[int, float] = 0 ) -> float: """ Use delay +/- width for random jitter Adding jitter to status polling can help to avoid AWS batch API limits for monitoring batch jobs with a high concurrency in Airflow tasks. :param delay: number of seconds to pause; delay is assumed to be a positive number :type delay: Union[int, float] :param width: delay +/- width for random jitter; width is assumed to be a positive number :type width: Union[int, float] :param minima: minimum delay allowed; minima is assumed to be a non-negative number :type minima: Union[int, float] :return: uniform(delay - width, delay + width) jitter and it is a non-negative number :rtype: float """ delay = abs(delay) width = abs(width) minima = abs(minima) lower = max(minima, delay - width) upper = delay + width return uniform(lower, upper) @staticmethod def delay(delay: Union[int, float, None] = None): """ Pause execution for ``delay`` seconds. :param delay: a delay to pause execution using ``time.sleep(delay)``; a small 1 second jitter is applied to the delay. :type delay: Optional[Union[int, float]] .. note:: This method uses a default random delay, i.e. ``random.uniform(DEFAULT_DELAY_MIN, DEFAULT_DELAY_MAX)``; using a random interval helps to avoid AWS API throttle limits when many concurrent tasks request job-descriptions. """ if delay is None: delay = uniform(AwsBatchClient.DEFAULT_DELAY_MIN, AwsBatchClient.DEFAULT_DELAY_MAX) else: delay = AwsBatchClient.add_jitter(delay) sleep(delay) @staticmethod def exponential_delay(tries: int) -> float: """ An exponential back-off delay, with random jitter. There is a maximum interval of 10 minutes (with random jitter between 3 and 10 minutes). This is used in the :py:meth:`.poll_for_job_status` method. :param tries: Number of tries :type tries: int :rtype: float Examples of behavior: .. code-block:: python def exp(tries): max_interval = 600.0 # 10 minutes in seconds delay = 1 + pow(tries * 0.6, 2) delay = min(max_interval, delay) print(delay / 3, delay) for tries in range(10): exp(tries) # 0.33 1.0 # 0.45 1.35 # 0.81 2.44 # 1.41 4.23 # 2.25 6.76 # 3.33 10.00 # 4.65 13.95 # 6.21 18.64 # 8.01 24.04 # 10.05 30.15 .. seealso:: - https://docs.aws.amazon.com/general/latest/gr/api-retries.html - https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/ """ max_interval = 600.0 # results in 3 to 10 minute delay delay = 1 + pow(tries * 0.6, 2) delay = min(max_interval, delay) return uniform(delay / 3, delay)
#!/usr/bin/env python # -- Content-Encoding: UTF-8 -- """ Forker configuration broker. A simple servlet handling GET and DELETE commands to provide a raw JSON configuration for the requested isolate, if available. The stored configurations should be the ones given by a monitor requesting to start an isolate. A configuration should be deleted on a request by the isolate itself when it read it correctly. :author: Thomas Calmant :license: Apache Software License 2.0 .. Copyright 2014 isandlaTech Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # Python standard library import json import logging import threading # Pelix framework from pelix.ipopo.decorators import ComponentFactory, Invalidate, Property, \ Provides import pelix.http # COHORTE constants import cohorte # ------------------------------------------------------------------------------ # Documentation strings format __docformat__ = "restructuredtext en" # Version __version_info__ = (1, 0, 1) __version__ = ".".join(str(x) for x in __version_info__) # ------------------------------------------------------------------------------ MIME_TYPE_JSON = 'application/json' """ JSON data MIME type """ _logger = logging.getLogger(__name__) # ------------------------------------------------------------------------------ @ComponentFactory("cohorte-forker-broker-factory") @Provides(cohorte.SERVICE_CONFIGURATION_BROKER, controller='_svc_flag') @Provides(pelix.http.HTTP_SERVLET) @Property("_servlet_path", pelix.http.HTTP_SERVLET_PATH, "/cohorte/broker") class ConfigBroker(object): """ The configuration broker servlet """ def __init__(self): """ Sets up members """ # The broker flag self._svc_flag = False # The path to this servlet self._servlet_path = None # Servlet access self._host = None self._port = None # Configurations : Isolate UID -> JSON string self._configurations = {} # Configurations lock self.__config_lock = threading.Lock() def bound_to(self, path, parameters): """ Servlet bound to a HTTP service :param path: The path to access the servlet :param parameters: The server & servlet parameters """ if path == self._servlet_path: # Update our access information self._host = parameters['http.address'] self._port = int(parameters['http.port']) # Register our service self._svc_flag = True else: _logger.warning("Bound to a HTTP service with a different path." "Ignore.") def unbound_from(self, path, parameters): """ Servlet unbound from a HTTP service :param path: The path to access the servlet :param parameters: The server & servlet parameters """ if path == self._servlet_path: # Unregister our service self._svc_flag = False # Clear our access information self._host = None self._port = None def do_GET(self, request, response): """ Handles GET requests :param request: The HTTP request bean :param request: The HTTP response handler """ # Get the isolate UID (last part of the request path) uid = request.get_path().split('/')[-1] with self.__config_lock: # Get the associated configuration json_config = self._configurations.get(uid) if json_config: # Send the found configuration response.send_content(200, json_config, MIME_TYPE_JSON) else: # Unknown isolate error = {'uid': uid, 'result': False, 'message': "Unknown isolate UID"} response.send_content(404, json.dumps(error), MIME_TYPE_JSON) def do_DELETE(self, request, response): """ Handles DELETE requests :param request: The HTTP request bean :param request: The HTTP response handler """ # Get the isolate UID (last part of the request path) uid = request.get_path().split('/')[-1] result = {'uid': uid} if self.delete_configuration(uid): # Success code = 200 result['result'] = True result['message'] = "Configuration deleted" else: # Error code = 404 result['result'] = False result['message'] = "Unknown isolate UID" response.send_content(code, json.dumps(result), MIME_TYPE_JSON) def delete_configuration(self, uid): """ Deletes the configuration of the given isolate :param uid: An isolate UID :return: True if the isolate was known, else False """ with self.__config_lock: if uid in self._configurations: # Found ! del self._configurations[uid] return True return False def store_configuration(self, uid, dict_config): """ Stores the configuration of the given isolate :param uid: An isolate UID :param dict_config: The configuration dictionary of the given isolate :return: The URL to access this configuration :raise ValueError: Invalid parameter """ if not uid or not dict_config: # Invalid parameters raise ValueError("Can't store an invalid configuration") with self.__config_lock: # Store the configuration as a JSON string self._configurations[uid] = json.dumps(dict_config) # Send a "localhost" address to avoid an "address not available" error # under Windows if ':' in self._host: # IPv6 host host = '[::1]' else: host = '127.0.0.1' return 'http://{host}:{port}{path}/{uid}'\ .format(uid=uid, host=host, port=self._port, path=self._servlet_path) @Invalidate def invalidate(self, context): """ Component invalidated :param context: The bundle context """ # Reset the service flag self._svc_flag = False with self.__config_lock: self._configurations.clear()
# -*- coding: utf-8 -*- from operator import attrgetter from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType from pyangbind.lib.yangtypes import RestrictedClassType from pyangbind.lib.yangtypes import TypedListType from pyangbind.lib.yangtypes import YANGBool from pyangbind.lib.yangtypes import YANGListType from pyangbind.lib.yangtypes import YANGDynClass from pyangbind.lib.yangtypes import ReferenceType from pyangbind.lib.base import PybindBase from collections import OrderedDict from decimal import Decimal from bitarray import bitarray import six # PY3 support of some PY2 keywords (needs improved) if six.PY3: import builtins as __builtin__ long = int elif six.PY2: import __builtin__ from . import config from . import state class interface(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance - based on the path /network-instances/network-instance/interfaces/interface. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: An interface associated with the network instance """ __slots__ = ("_path_helper", "_extmethods", "__id", "__config", "__state") _yang_name = "interface" _pybind_generated_by = "container" def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__id = YANGDynClass( base=six.text_type, is_leaf=True, yang_name="id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="leafref", is_config=True, ) self.__config = YANGDynClass( base=config.config, is_container="container", yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=True, ) self.__state = YANGDynClass( base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=True, ) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path() + [self._yang_name] else: return ["network-instances", "network-instance", "interfaces", "interface"] def _get_id(self): """ Getter method for id, mapped from YANG variable /network_instances/network_instance/interfaces/interface/id (leafref) YANG Description: A reference to an identifier for this interface which acts as a key for this list """ return self.__id def _set_id(self, v, load=False): """ Setter method for id, mapped from YANG variable /network_instances/network_instance/interfaces/interface/id (leafref) If this variable is read-only (config: false) in the source YANG file, then _set_id is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_id() directly. YANG Description: A reference to an identifier for this interface which acts as a key for this list """ parent = getattr(self, "_parent", None) if parent is not None and load is False: raise AttributeError( "Cannot set keys directly when" + " within an instantiated list" ) if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=six.text_type, is_leaf=True, yang_name="id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="leafref", is_config=True, ) except (TypeError, ValueError): raise ValueError( { "error-string": """id must be of a type compatible with leafref""", "defined-type": "leafref", "generated-type": """YANGDynClass(base=six.text_type, is_leaf=True, yang_name="id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='leafref', is_config=True)""", } ) self.__id = t if hasattr(self, "_set"): self._set() def _unset_id(self): self.__id = YANGDynClass( base=six.text_type, is_leaf=True, yang_name="id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="leafref", is_config=True, ) def _get_config(self): """ Getter method for config, mapped from YANG variable /network_instances/network_instance/interfaces/interface/config (container) YANG Description: Configuration parameters relating to the associated interface """ return self.__config def _set_config(self, v, load=False): """ Setter method for config, mapped from YANG variable /network_instances/network_instance/interfaces/interface/config (container) If this variable is read-only (config: false) in the source YANG file, then _set_config is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_config() directly. YANG Description: Configuration parameters relating to the associated interface """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=config.config, is_container="container", yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=True, ) except (TypeError, ValueError): raise ValueError( { "error-string": """config must be of a type compatible with container""", "defined-type": "container", "generated-type": """YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=True)""", } ) self.__config = t if hasattr(self, "_set"): self._set() def _unset_config(self): self.__config = YANGDynClass( base=config.config, is_container="container", yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=True, ) def _get_state(self): """ Getter method for state, mapped from YANG variable /network_instances/network_instance/interfaces/interface/state (container) YANG Description: Operational state parameters relating to the associated interface """ return self.__state def _set_state(self, v, load=False): """ Setter method for state, mapped from YANG variable /network_instances/network_instance/interfaces/interface/state (container) If this variable is read-only (config: false) in the source YANG file, then _set_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_state() directly. YANG Description: Operational state parameters relating to the associated interface """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=True, ) except (TypeError, ValueError): raise ValueError( { "error-string": """state must be of a type compatible with container""", "defined-type": "container", "generated-type": """YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=True)""", } ) self.__state = t if hasattr(self, "_set"): self._set() def _unset_state(self): self.__state = YANGDynClass( base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=True, ) id = __builtin__.property(_get_id, _set_id) config = __builtin__.property(_get_config, _set_config) state = __builtin__.property(_get_state, _set_state) _pyangbind_elements = OrderedDict( [("id", id), ("config", config), ("state", state)] ) from . import config from . import state class interface(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance-l2 - based on the path /network-instances/network-instance/interfaces/interface. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: An interface associated with the network instance """ __slots__ = ("_path_helper", "_extmethods", "__id", "__config", "__state") _yang_name = "interface" _pybind_generated_by = "container" def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__id = YANGDynClass( base=six.text_type, is_leaf=True, yang_name="id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="leafref", is_config=True, ) self.__config = YANGDynClass( base=config.config, is_container="container", yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=True, ) self.__state = YANGDynClass( base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=True, ) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path() + [self._yang_name] else: return ["network-instances", "network-instance", "interfaces", "interface"] def _get_id(self): """ Getter method for id, mapped from YANG variable /network_instances/network_instance/interfaces/interface/id (leafref) YANG Description: A reference to an identifier for this interface which acts as a key for this list """ return self.__id def _set_id(self, v, load=False): """ Setter method for id, mapped from YANG variable /network_instances/network_instance/interfaces/interface/id (leafref) If this variable is read-only (config: false) in the source YANG file, then _set_id is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_id() directly. YANG Description: A reference to an identifier for this interface which acts as a key for this list """ parent = getattr(self, "_parent", None) if parent is not None and load is False: raise AttributeError( "Cannot set keys directly when" + " within an instantiated list" ) if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=six.text_type, is_leaf=True, yang_name="id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="leafref", is_config=True, ) except (TypeError, ValueError): raise ValueError( { "error-string": """id must be of a type compatible with leafref""", "defined-type": "leafref", "generated-type": """YANGDynClass(base=six.text_type, is_leaf=True, yang_name="id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='leafref', is_config=True)""", } ) self.__id = t if hasattr(self, "_set"): self._set() def _unset_id(self): self.__id = YANGDynClass( base=six.text_type, is_leaf=True, yang_name="id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="leafref", is_config=True, ) def _get_config(self): """ Getter method for config, mapped from YANG variable /network_instances/network_instance/interfaces/interface/config (container) YANG Description: Configuration parameters relating to the associated interface """ return self.__config def _set_config(self, v, load=False): """ Setter method for config, mapped from YANG variable /network_instances/network_instance/interfaces/interface/config (container) If this variable is read-only (config: false) in the source YANG file, then _set_config is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_config() directly. YANG Description: Configuration parameters relating to the associated interface """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=config.config, is_container="container", yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=True, ) except (TypeError, ValueError): raise ValueError( { "error-string": """config must be of a type compatible with container""", "defined-type": "container", "generated-type": """YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=True)""", } ) self.__config = t if hasattr(self, "_set"): self._set() def _unset_config(self): self.__config = YANGDynClass( base=config.config, is_container="container", yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=True, ) def _get_state(self): """ Getter method for state, mapped from YANG variable /network_instances/network_instance/interfaces/interface/state (container) YANG Description: Operational state parameters relating to the associated interface """ return self.__state def _set_state(self, v, load=False): """ Setter method for state, mapped from YANG variable /network_instances/network_instance/interfaces/interface/state (container) If this variable is read-only (config: false) in the source YANG file, then _set_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_state() directly. YANG Description: Operational state parameters relating to the associated interface """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=True, ) except (TypeError, ValueError): raise ValueError( { "error-string": """state must be of a type compatible with container""", "defined-type": "container", "generated-type": """YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=True)""", } ) self.__state = t if hasattr(self, "_set"): self._set() def _unset_state(self): self.__state = YANGDynClass( base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=True, ) id = __builtin__.property(_get_id, _set_id) config = __builtin__.property(_get_config, _set_config) state = __builtin__.property(_get_state, _set_state) _pyangbind_elements = OrderedDict( [("id", id), ("config", config), ("state", state)] )
"""Base class for all the objects in Diofant.""" from collections import defaultdict from collections.abc import Mapping from itertools import zip_longest from ..utilities import ordered from .cache import cacheit from .compatibility import iterable from .decorators import _sympifyit from .evaluate import evaluate from .sympify import SympifyError, sympify class Basic: """ Base class for all objects in Diofant. Always use ``args`` property, when accessing parameters of some instance. """ # To be overridden with True in the appropriate subclasses is_number = False is_Atom: bool = False is_Symbol = False is_Dummy = False is_Wild = False is_Function = False is_Add = False is_Mul = False is_Pow = False is_Number = False is_Float = False is_Rational = False is_Integer = False is_NumberSymbol = False is_Order = False is_Derivative = False is_Piecewise = False is_Poly = False is_Relational = False is_Equality = False is_Boolean = False is_Not = False is_Matrix: bool = False is_MatMul = False is_Vector = False def __new__(cls, *args): obj = object.__new__(cls) obj._hash = None # will be set by __hash__ method. obj._args = args # all items in args must be Basic objects return obj def copy(self): """Return swallow copy of self.""" return self.func(*self.args) def __reduce_ex__(self, proto): """Pickling support.""" return type(self), self.__getnewargs__(), self.__getstate__() def __getnewargs__(self): return self.args def __getstate__(self): return {'_hash': None} def __setstate__(self, state): for k, v in state.items(): setattr(self, k, v) def __hash__(self): # hash cannot be cached using cache_it because infinite recurrence # occurs as hash is needed for setting cache dictionary keys h = self._hash if h is None: h = hash((type(self).__name__,) + self._hashable_content()) self._hash = h return h def _hashable_content(self): """Return a tuple of information about self that can be used to compute the hash. If a class defines additional attributes, like ``name`` in Symbol, then this method should be updated accordingly to return such relevant attributes. Defining more than _hashable_content is necessary if __eq__ has been defined by a class. See note about this in Basic.__eq__. """ return self._args @classmethod def class_key(cls): """Nice order of classes.""" return 5, 0, cls.__name__ @cacheit def sort_key(self, order=None): """Return a sort key. Examples ======== >>> sorted([Rational(1, 2), I, -I], key=lambda x: x.sort_key()) [1/2, -I, I] >>> [x, 1/x, 1/x**2, x**2, sqrt(x), root(x, 4), x**Rational(3, 2)] [x, 1/x, x**(-2), x**2, sqrt(x), x**(1/4), x**(3/2)] >>> sorted(_, key=lambda x: x.sort_key()) [x**(-2), 1/x, x**(1/4), sqrt(x), x, x**(3/2), x**2] """ from .numbers import Integer args = len(self.args), tuple(arg.sort_key(order) for arg in self._sorted_args) return self.class_key(), args, Integer(1).sort_key(), Integer(1) @_sympifyit('other', NotImplemented) def __eq__(self, other): """Return a boolean indicating whether a == b on the basis of their symbolic trees. Notes ===== See [1]_. If a class that overrides __eq__() needs to retain the implementation of __hash__() from a parent class, the interpreter must be told this explicitly by setting __hash__ = <ParentClass>.__hash__. Otherwise the inheritance of __hash__() will be blocked, just as if __hash__ had been explicitly set to None. References ========== * http://docs.python.org/dev/reference/datamodel.html#object.__hash__ """ if self is other: return True if type(self) != type(other): return False return self._hashable_content() == other._hashable_content() # Note, we always use the default ordering (lex) in __str__ and __repr__, # regardless of the global setting. See issue sympy/sympy#5487. def __repr__(self): from ..printing import srepr return srepr(self, order=None) def __str__(self): from ..printing import sstr return sstr(self, order=None) def _repr_pretty_(self, p, cycle): from ..printing import pretty p.text(pretty(self)) def _repr_latex_(self): from ..printing import latex return latex(self, mode='equation*') def atoms(self, *types): """Returns the atoms that form the current object. By default, only objects that are truly atomic and can't be divided into smaller pieces are returned: symbols, numbers, and number symbols like I and pi. It is possible to request atoms of any type, however, as demonstrated below. Examples ======== >>> e = 1 + x + 2*sin(y + I*pi) >>> e.atoms() {1, 2, I, pi, x, y} If one or more types are given, the results will contain only those types of atoms. >>> e.atoms(Symbol) {x, y} >>> e.atoms(Number) {1, 2} >>> e.atoms(Number, NumberSymbol) {1, 2, pi} >>> e.atoms(Number, NumberSymbol, I) {1, 2, I, pi} Note that I (imaginary unit) and zoo (complex infinity) are special types of number symbols and are not part of the NumberSymbol class. The type can be given implicitly, too: >>> e.atoms(x) {x, y} Be careful to check your assumptions when using the implicit option since ``Integer(1).is_Integer = True`` but ``type(Integer(1))`` is ``One``, a special type of diofant atom, while ``type(Integer(2))`` is type ``Integer`` and will find all integers in an expression: >>> e.atoms(Integer(1)) {1} >>> e.atoms(Integer(2)) {1, 2} Finally, arguments to atoms() can select more than atomic atoms: any diofant type can be listed as an argument and those types of "atoms" as found in scanning the arguments of the expression recursively: >>> from diofant.core.function import AppliedUndef >>> (1 + x + 2*sin(y + I*pi)).atoms(Mul) {I*pi, 2*sin(y + I*pi)} >>> f = Function('f') >>> e = 1 + f(x) + 2*sin(y + I*pi) >>> e.atoms(Function) {f(x), sin(y + I*pi)} >>> (1 + f(x) + 2*sin(y + I*pi)).atoms(AppliedUndef) {f(x)} """ if types: types = tuple(t if isinstance(t, type) else type(t) for t in types) else: types = Atom, return set().union(*[self.find(t) for t in types]) @property def free_symbols(self): """Return from the atoms of self those which are free symbols. For most expressions, all symbols are free symbols. For some classes this is not true. e.g. Integrals use Symbols for the dummy variables which are bound variables, so Integral has a method to return all symbols except those. Derivative keeps track of symbols with respect to which it will perform a derivative; those are bound variables, too, so it has its own free_symbols method. Any other method that uses bound variables should implement a free_symbols method. """ return set().union(*[a.free_symbols for a in self.args]) def rcall(self, *args): """Apply on the argument recursively through the expression tree. This method is used to simulate a common abuse of notation for operators. For instance in Diofant the the following will not work: ``(x+Lambda(y, 2*y))(z) == x+2*z``, however you can use >>> (x + Lambda(y, 2*y)).rcall(z) x + 2*z """ if callable(self) and hasattr(self, '__call__'): return self(*args) elif self.args: newargs = [sub.rcall(*args) for sub in self.args] return type(self)(*newargs) else: return self @property def func(self): """The top-level function in an expression. The following should hold for all objects:: x == x.func(*x.args) Examples ======== >>> a = 2*x >>> a.func <class 'diofant.core.mul.Mul'> >>> a.args (2, x) >>> a.func(*a.args) 2*x >>> a == a.func(*a.args) True """ return self.__class__ @property def args(self): """Returns a tuple of arguments of 'self'. Examples ======== >>> cot(x).args (x,) >>> (x*y).args (x, y) """ return self._args @property def is_evaluated(self): """Test if an expession is evaluated.""" with evaluate(True): expr = self.func(*self.args) return expr == self @property def _sorted_args(self): """ The same as ``args``. Derived classes which don't fix an order on their arguments should override this method to produce the sorted representation. """ return self.args def subs(self, *args, **kwargs): """ Substitutes old for new in an expression after sympifying args. `args` is either: - one iterable argument, e.g. foo.subs(iterable). The iterable may be o an iterable container with (old, new) pairs. In this case the replacements are processed in the order given with successive patterns possibly affecting replacements already made. o a dict or set whose key/value items correspond to old/new pairs. In this case the old/new pairs will be sorted by op count and in case of a tie, by number of args and the default_sort_key. The resulting sorted list is then processed as an iterable container (see previous). If the keyword ``simultaneous`` is True, the subexpressions will not be evaluated until all the substitutions have been made. Examples ======== >>> (1 + x*y).subs({x: pi}) pi*y + 1 >>> (1 + x*y).subs({x: pi, y: 2}) 1 + 2*pi >>> (1 + x*y).subs([(x, pi), (y, 2)]) 1 + 2*pi >>> reps = [(y, x**2), (x, 2)] >>> (x + y).subs(reps) 6 >>> (x + y).subs(reversed(reps)) x**2 + 2 >>> (x**2 + x**4).subs({x**2: y}) y**2 + y To replace only the x**2 but not the x**4, use xreplace: >>> (x**2 + x**4).xreplace({x**2: y}) x**4 + y To delay evaluation until all substitutions have been made, set the keyword ``simultaneous`` to True: >>> (x/y).subs([(x, 0), (y, 0)]) 0 >>> (x/y).subs([(x, 0), (y, 0)], simultaneous=True) nan This has the added feature of not allowing subsequent substitutions to affect those already made: >>> ((x + y)/y).subs({x + y: y, y: x + y}) 1 >>> ((x + y)/y).subs({x + y: y, y: x + y}, simultaneous=True) y/(x + y) In order to obtain a canonical result, unordered iterables are sorted by count_op length, number of arguments and by the default_sort_key to break any ties. All other iterables are left unsorted. >>> from diofant.abc import e >>> expr = sqrt(sin(2*x))*sin(exp(x)*x)*cos(2*x) + sin(2*x) >>> expr.subs({sqrt(sin(2*x)): a, sin(2*x): b, ... cos(2*x): c, x: d, exp(x): e}) a*c*sin(d*e) + b The resulting expression represents a literal replacement of the old arguments with the new arguments. This may not reflect the limiting behavior of the expression: >>> (x**3 - 3*x).subs({x: oo}) nan >>> limit(x**3 - 3*x, x, oo) oo If the substitution will be followed by numerical evaluation, it is better to pass the substitution to evalf as >>> (1/x).evalf(21, subs={x: 3.0}, strict=False) 0.333333333333333333333 rather than >>> (1/x).subs({x: 3.0}).evalf(21, strict=False) 0.333333333333333 as the former will ensure that the desired level of precision is obtained. See Also ======== replace: replacement capable of doing wildcard-like matching, parsing of match, and conditional replacements xreplace: exact node replacement in expr tree; also capable of using matching rules diofant.core.evalf.EvalfMixin.evalf: calculates the given formula to a desired level of precision """ from ..utilities import default_sort_key from .numbers import Integer from .symbol import Dummy unordered = False if len(args) == 1: sequence = args[0] if isinstance(sequence, set): unordered = True elif isinstance(sequence, Mapping): unordered = True sequence = sequence.items() elif not iterable(sequence): raise ValueError('Expected a mapping or iterable ' 'of (old, new) tuples.') sequence = list(sequence) else: raise ValueError('subs accepts one argument') sequence = [_ for _ in sympify(sequence) if not _aresame(*_)] if unordered: sequence = dict(sequence) if not all(k.is_Atom for k in sequence): d = defaultdict(list) for o, n in sequence.items(): try: ops = o.count_ops(), len(o.args) except TypeError: ops = (0, 0) d[ops].append((o, n)) newseq = [] for k in sorted(d, reverse=True): newseq.extend(sorted((v[0] for v in d[k]), key=default_sort_key)) sequence = [(k, sequence[k]) for k in newseq] del newseq, d else: sequence = sorted(((k, v) for (k, v) in sequence.items()), key=default_sort_key) if kwargs.pop('simultaneous', False): # XXX should this be the default for dict subs? reps = {} rv = self m = Dummy() for old, new in sequence: d = Dummy(commutative=new.is_commutative) # using d*m so Subs will be used on dummy variables # in things like Derivative(f(x, y), x) in which x # is both free and bound rv = rv._subs(old, d*m, **kwargs) reps[d] = new reps[m] = Integer(1) # get rid of m return rv.xreplace(reps) else: rv = self for old, new in sequence: rv = rv._subs(old, new, **kwargs) if not isinstance(rv, Basic): break return rv @cacheit def _subs(self, old, new, **hints): """Substitutes an expression old -> new. If self is not equal to old then _eval_subs is called. If _eval_subs doesn't want to make any special replacement then a None is received which indicates that the fallback should be applied wherein a search for replacements is made amongst the arguments of self. Examples ======== Add's _eval_subs knows how to target x + y in the following so it makes the change: >>> (x + y + z).subs({x + y: 1}) z + 1 Add's _eval_subs doesn't need to know how to find x + y in the following: >>> Add._eval_subs(z*(x + y) + 3, x + y, 1) is None True The returned None will cause the fallback routine to traverse the args and pass the z*(x + y) arg to Mul where the change will take place and the substitution will succeed: >>> (z*(x + y) + 3).subs({x + y: 1}) z + 3 ** Developers Notes ** An _eval_subs routine for a class should be written if: 1) any arguments are not instances of Basic (e.g. bool, tuple); 2) some arguments should not be targeted (as in integration variables); 3) if there is something other than a literal replacement that should be attempted (as in Piecewise where the condition may be updated without doing a replacement). If it is overridden, here are some special cases that might arise: 1) If it turns out that no special change was made and all the original sub-arguments should be checked for replacements then None should be returned. 2) If it is necessary to do substitutions on a portion of the expression then _subs should be called. _subs will handle the case of any sub-expression being equal to old (which usually would not be the case) while its fallback will handle the recursion into the sub-arguments. For example, after Add's _eval_subs removes some matching terms it must process the remaining terms so it calls _subs on each of the un-matched terms and then adds them onto the terms previously obtained. 3) If the initial expression should remain unchanged then the original expression should be returned. (Whenever an expression is returned, modified or not, no further substitution of old -> new is attempted.) Sum's _eval_subs routine uses this strategy when a substitution is attempted on any of its summation variables. """ def fallback(self, old, new): """Try to replace old with new in any of self's arguments.""" hit = False args = list(self.args) for i, arg in enumerate(args): arg = arg._subs(old, new, **hints) if not _aresame(arg, args[i]): hit = True args[i] = arg if hit: return self.func(*args) return self if _aresame(self, old): return new rv = self._eval_subs(old, new) # pylint: disable=assignment-from-none if rv is None: rv = fallback(self, old, new) return rv def _eval_subs(self, old, new): """Override this stub if you want to do anything more than attempt a replacement of old with new in the arguments of self. See also ======== _subs """ return def xreplace(self, rule): """ Replace occurrences of objects within the expression. Parameters ========== rule : dict-like Expresses a replacement rule Returns ======= xreplace : the result of the replacement Examples ======== >>> (1 + x*y).xreplace({x: pi}) pi*y + 1 >>> (1 + x*y).xreplace({x: pi, y: 2}) 1 + 2*pi Replacements occur only if an entire node in the expression tree is matched: >>> (x*y + z).xreplace({x*y: pi}) z + pi >>> (x*y*z).xreplace({x*y: pi}) x*y*z >>> (2*x).xreplace({2*x: y, x: z}) y >>> (2*2*x).xreplace({2*x: y, x: z}) 4*z >>> (x + y + 2).xreplace({x + y: 2}) x + y + 2 >>> (x + 2 + exp(x + 2)).xreplace({x + 2: y}) E**y + x + 2 xreplace doesn't differentiate between free and bound symbols. In the following, subs(x, y) would not change x since it is a bound symbol, but xreplace does: >>> Integral(x, (x, 1, 2*x)).xreplace({x: y}) Integral(y, (y, 1, 2*y)) Trying to replace x with an expression raises an error: >>> Integral(x, (x, 1, 2*x)).xreplace({x: 2*y}) Traceback (most recent call last): ... ValueError: Invalid limits given: ((2*y, 1, 4*y),) See Also ======== replace: replacement capable of doing wildcard-like matching, parsing of match, and conditional replacements subs: substitution of subexpressions as defined by the objects themselves. """ if self in rule: return rule[self] elif rule and not self.is_Atom: args = tuple(a.xreplace(rule) for a in self.args) if not _aresame(args, self.args): return self.func(*args) return self @cacheit def has(self, *patterns): r"""Test if any subexpression matches any of the patterns. Parameters ========== \*patterns : tuple of Expr List of expressions to search for match. Returns ======= bool False if there is no match or patterns list is empty, else True. Examples ======== >>> e = x**2 + sin(x*y) >>> e.has(z) False >>> e.has(x, y, z) True >>> x.has() False """ from .function import Function, UndefinedFunction if len(patterns) != 1: return any(self.has(pattern) for pattern in patterns) else: pattern = sympify(patterns[0]) if isinstance(pattern, UndefinedFunction): return any(pattern in (f, f.func) for f in self.atoms(Function, UndefinedFunction)) elif isinstance(pattern, type): return any(isinstance(arg, pattern) for arg in preorder_traversal(self)) else: match = pattern._has_matcher() return any(match(arg) for arg in preorder_traversal(self)) def _has_matcher(self): """Helper for .has().""" return lambda x: self == x def replace(self, query, value, exact=False): """Replace matching subexpressions of ``self`` with ``value``. Traverses an expression tree and performs replacement of matching subexpressions from the bottom to the top of the tree in a simultaneous fashion so changes made are targeted only once. In addition, if an expression containing more than one Wild symbol is being used to match subexpressions and the ``exact`` flag is True, then the match will only succeed if non-zero values are received for each Wild that appears in the match pattern. The list of possible combinations of queries and replacement values is listed below: Examples ======== Initial setup >>> f = log(sin(x)) + tan(sin(x**2)) 1.1. type -> type obj.replace(type, newtype) When object of type ``type`` is found, replace it with the result of passing its argument(s) to ``newtype``. >>> f.replace(sin, cos) log(cos(x)) + tan(cos(x**2)) >>> (x*y).replace(Mul, Add) x + y 1.2. type -> func obj.replace(type, func) When object of type ``type`` is found, apply ``func`` to its argument(s). ``func`` must be written to handle the number of arguments of ``type``. >>> f.replace(sin, lambda arg: sin(2*arg)) log(sin(2*x)) + tan(sin(2*x**2)) >>> (x*y).replace(Mul, lambda *args: sin(2*Mul(*args))) sin(2*x*y) 2.1. pattern -> expr obj.replace(pattern(wild), expr(wild)) Replace subexpressions matching ``pattern`` with the expression written in terms of the Wild symbols in ``pattern``. >>> a = Wild('a') >>> f.replace(sin(a), tan(a)) log(tan(x)) + tan(tan(x**2)) >>> f.replace(sin(a), tan(a/2)) log(tan(x/2)) + tan(tan(x**2/2)) >>> f.replace(sin(a), a) log(x) + tan(x**2) >>> (x*y).replace(a*x, a) y When the default value of False is used with patterns that have more than one Wild symbol, non-intuitive results may be obtained: >>> b = Wild('b') >>> (2*x).replace(a*x + b, b - a) 2/x For this reason, the ``exact`` option can be used to make the replacement only when the match gives non-zero values for all Wild symbols: >>> (2*x + y).replace(a*x + b, b - a, exact=True) y - 2 >>> (2*x).replace(a*x + b, b - a, exact=True) 2*x 2.2. pattern -> func obj.replace(pattern(wild), lambda wild: expr(wild)) All behavior is the same as in 2.1 but now a function in terms of pattern variables is used rather than an expression: >>> f.replace(sin(a), lambda a: sin(2*a)) log(sin(2*x)) + tan(sin(2*x**2)) 3.1. func -> func obj.replace(filter, func) Replace subexpression ``e`` with ``func(e)`` if ``filter(e)`` is True. >>> g = 2*sin(x**3) >>> g.replace(lambda expr: expr.is_Number, lambda expr: expr**2) 4*sin(x**9) The expression itself is also targeted by the query but is done in such a fashion that changes are not made twice. >>> e = x*(x*y + 1) >>> e.replace(lambda x: x.is_Mul, lambda x: 2*x) 2*x*(2*x*y + 1) See Also ======== subs: substitution of subexpressions as defined by the objects themselves. xreplace: exact node replacement in expr tree; also capable of using matching rules """ from ..simplify.simplify import bottom_up try: query = sympify(query) except SympifyError: pass try: value = sympify(value) except SympifyError: pass if isinstance(query, type): def _query(expr): return isinstance(expr, query) if isinstance(value, type) or callable(value): def _value(expr, result): return value(*expr.args) else: raise TypeError( 'given a type, replace() expects another ' 'type or a callable') elif isinstance(query, Basic): def _query(expr): return expr.match(query) # XXX remove the exact flag and make multi-symbol # patterns use exact=True semantics; to do this the query must # be tested to find out how many Wild symbols are present. # See https://groups.google.com/forum/ # ?fromgroups=#!topic/sympy/zPzo5FtRiqI # for a method of inspecting a function to know how many # parameters it has. if isinstance(value, Basic): if exact: def _value(expr, result): return (value.subs(result) if all(val for val in result.values()) else expr) else: def _value(expr, result): return value.subs(result) elif callable(value): # match dictionary keys get the trailing underscore stripped # from them and are then passed as keywords to the callable; # if ``exact`` is True, only accept match if there are no null # values amongst those matched. if exact: def _value(expr, result): return (value(**{str(key)[:-1]: val for key, val in result.items()}) if all(val for val in result.values()) else expr) else: def _value(expr, result): return value(**{str(key)[:-1]: val for key, val in result.items()}) else: raise TypeError( 'given an expression, replace() expects ' 'another expression or a callable') elif callable(query): _query = query if callable(value): def _value(expr, result): return value(expr) else: raise TypeError( 'given a callable, replace() expects ' 'another callable') else: raise TypeError( 'first argument to replace() must be a ' 'type, an expression or a callable') def rec_replace(expr): result = _query(expr) if result or result == {}: new = _value(expr, result) if new is not None and new != expr: expr = new return expr return bottom_up(self, rec_replace, atoms=True) def find(self, query): """Find all subexpressions matching a query.""" try: query = sympify(query) except SympifyError: pass if isinstance(query, type): def _query(expr): return isinstance(expr, query) elif isinstance(query, Basic): def _query(expr): return expr.match(query) is not None else: _query = query groups = defaultdict(int) for result in filter(_query, preorder_traversal(self)): groups[result] += 1 return dict(groups) def count(self, query): """Count the number of matching subexpressions.""" return sum(self.find(query).values()) def _matches(self, expr, repl_dict={}): """Helper method for match() that looks for a match between Wild symbols in self and expressions in expr. Examples ======== >>> x = Wild('x') >>> Basic(a + x, x)._matches(Basic(a + b, c)) is None True >>> Basic(a + x, x)._matches(Basic(a + b + c, b + c)) {x_: b + c} """ expr = sympify(expr) if not isinstance(expr, self.func): return if self == expr: return repl_dict if self.is_Atom: return if len(self.args) != len(expr.args): return d = repl_dict.copy() for arg, other_arg in zip(self.args, expr.args): if arg == other_arg: continue d = arg.xreplace(d)._matches(other_arg, d) if d is None: return return d def match(self, pattern): """Pattern matching. Wild symbols match all. Parameters ========== pattern : Expr An expression that may contain Wild symbols. Returns ======= dict or None If pattern match self, return a dictionary of replacement rules, such that:: pattern.xreplace(self.match(pattern)) == self Examples ======== >>> p = Wild('p') >>> q = Wild('q') >>> e = (x + y)**(x + y) >>> e.match(p**p) {p_: x + y} >>> e.match(p**q) {p_: x + y, q_: x + y} >>> (p**q).xreplace(_) (x + y)**(x + y) See Also ======== xreplace diofant.core.symbol.Wild """ from ..simplify import signsimp pattern = sympify(pattern) s = signsimp(self) p = signsimp(pattern) # if we still have the same relationship between the types of # input, then use the sign simplified forms if (pattern.func == self.func) and (s.func == p.func): rv = p._matches(s) else: rv = pattern._matches(self) return rv def count_ops(self, visual=None): """Wrapper for count_ops that returns the operation count.""" from .function import count_ops return count_ops(self, visual) def doit(self, **hints): """Evaluate objects that are not evaluated by default. For example, limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via 'hints' or unless the 'deep' hint was set to 'False'. Examples ======== >>> 2*Integral(x, x) 2*Integral(x, x) >>> (2*Integral(x, x)).doit() x**2 >>> (2*Integral(x, x)).doit(deep=False) 2*Integral(x, x) """ if hints.get('deep', True): terms = [term.doit(**hints) if isinstance(term, Basic) else term for term in self.args] return self.func(*terms) else: return self def _eval_rewrite(self, pattern, rule, **hints): if self.is_Atom: if hasattr(self, rule): return getattr(self, rule)() return self if hints.get('deep', True): args = [a._eval_rewrite(pattern, rule, **hints) if isinstance(a, Basic) else a for a in self.args] else: args = self.args if pattern is None or isinstance(self, pattern): if hasattr(self, rule): rewritten = getattr(self, rule)(*args) if rewritten is not None: return rewritten return self.func(*args) def rewrite(self, *args, **hints): """Rewrite functions in terms of other functions. Rewrites expression containing applications of functions of one kind in terms of functions of different kind. For example you can rewrite trigonometric functions as complex exponentials or combinatorial functions as gamma function. As a pattern this function accepts a list of functions to to rewrite (instances of DefinedFunction class). As rule you can use string or a destination function instance (in this case rewrite() will use the str() function). There is also the possibility to pass hints on how to rewrite the given expressions. For now there is only one such hint defined called 'deep'. When 'deep' is set to False it will forbid functions to rewrite their contents. Examples ======== Unspecified pattern: >>> sin(x).rewrite(exp) -I*(E**(I*x) - E**(-I*x))/2 Pattern as a single function: >>> sin(x).rewrite(sin, exp) -I*(E**(I*x) - E**(-I*x))/2 Pattern as a list of functions: >>> sin(x).rewrite([sin], exp) -I*(E**(I*x) - E**(-I*x))/2 """ if not args: return self else: pattern = args[:-1] if isinstance(args[-1], str): rule = '_eval_rewrite_as_' + args[-1] else: rule = '_eval_rewrite_as_' + args[-1].__name__ if not pattern: return self._eval_rewrite(None, rule, **hints) else: if iterable(pattern[0]): pattern = pattern[0] pattern = [p for p in pattern if self.has(p)] if pattern: return self._eval_rewrite(tuple(pattern), rule, **hints) else: return self class Atom(Basic): """A parent class for atomic things. An atom is an expression with no subexpressions, for example Symbol, Number, Rational or Integer, but not Add, Mul, Pow. """ is_Atom = True def doit(self, **hints): """Evaluate objects that are not evaluated by default. See Also ======== Basic.doit """ return self @classmethod def class_key(cls): """Nice order of classes.""" return 2, 0, cls.__name__ @cacheit def sort_key(self, order=None): """Return a sort key.""" from . import Integer return self.class_key(), (1, (str(self),)), Integer(1).sort_key(), Integer(1) def _eval_simplify(self, ratio, measure): return self @property def _sorted_args(self): # this is here as a safeguard against accidentally using _sorted_args # on Atoms -- they cannot be rebuilt as atom.func(*atom._sorted_args) # since there are no args. So the calling routine should be checking # to see that this property is not called for Atoms. raise AttributeError('Atoms have no args. It might be necessary' ' to make a check for Atoms in the calling code.') def _aresame(a, b): """Return True if a and b are structurally the same, else False. Examples ======== To Diofant, 2.0 == 2: >>> 2.0 == Integer(2) True Since a simple 'same or not' result is sometimes useful, this routine was written to provide that query: >>> _aresame(Float(2.0), Integer(2)) False """ from .function import AppliedUndef from .function import UndefinedFunction as UndefFunc for i, j in zip_longest(preorder_traversal(a), preorder_traversal(b)): if i != j or type(i) != type(j): if (isinstance(i, (UndefFunc, AppliedUndef)) and isinstance(j, (UndefFunc, AppliedUndef))): if i.class_key() != j.class_key(): return False else: return False return True class preorder_traversal: """Do a pre-order traversal of a tree. This iterator recursively yields nodes that it has visited in a pre-order fashion. That is, it yields the current node then descends through the tree breadth-first to yield all of a node's children's pre-order traversal. For an expression, the order of the traversal depends on the order of .args, which in many cases can be arbitrary. Parameters ========== node : diofant expression The expression to traverse. keys : (default None) sort key(s) The key(s) used to sort args of Basic objects. When None, args of Basic objects are processed in arbitrary order. If key is defined, it will be passed along to ordered() as the only key(s) to use to sort the arguments; if ``key`` is simply True then the default keys of ordered will be used. Yields ====== subtree : diofant expression All of the subtrees in the tree. Examples ======== The nodes are returned in the order that they are encountered unless key is given; simply passing key=True will guarantee that the traversal is unique. >>> list(preorder_traversal((x + y)*z, keys=True)) [z*(x + y), z, x + y, x, y] """ def __init__(self, node, keys=None): self._skip_flag = False self._pt = self._preorder_traversal(node, keys) def _preorder_traversal(self, node, keys): yield node if self._skip_flag: self._skip_flag = False return if isinstance(node, Basic): args = node.args if keys: args = ordered(args) for arg in args: for subtree in self._preorder_traversal(arg, keys): yield subtree elif iterable(node): for item in node: for subtree in self._preorder_traversal(item, keys): yield subtree def skip(self): """ Skip yielding current node's (last yielded node's) subtrees. Examples ======== >>> pt = preorder_traversal((x+y*z)*z) >>> for i in pt: ... print(i) ... if i == x + y*z: ... pt.skip() z*(x + y*z) z x + y*z """ self._skip_flag = True def __next__(self): return next(self._pt) def __iter__(self): return self
import random import zlib import base64 from django.db import models from django.db.models import get_model from django.conf import settings from django.contrib.contenttypes import generic from django.contrib.contenttypes.models import ContentType from django.utils.translation import ugettext_lazy as _ from please_reply import settings as backup_settings from please_reply.exceptions import NotInvited, InvalidHash USER_MODEL = getattr( settings, 'PLEASE_REPLY_USER_MODEL', backup_settings.PLEASE_REPLY_USER_MODEL) class ReplyListManager(models.Manager): """ Defines helper functions to get all attendees for an event. """ def is_guest_attending(self, event, guest): """ Returns true if the guest is marked as attending this event. """ matching_guest = self.get_replylist_for(event ).replies.filter(attending=True, guest=guest) return any(matching_guest.all()) def get_confirmed_guests_for(self, event): """ return all attending=True replies for the given event. """ return self.get_replylist_for(event ).replies.filter(attending=True) def get_invited_guests_for(self, event): """ Return all Reply models for the given event. """ return self.get_replylist_for(event ).replies.all() def get_replylist_for(self, event): """ Return the replylist for the given event. """ event_type = ContentType.objects.get_for_model(event) return self.get_query_set().get( object_id=event.pk, content_type=event_type) def create_replylist(self, event, guests=None): """ Create a new reply list with optional guest-list. Running a second time with the some of the same guests will not change the replies for the existing guests but will add new blank replies for the new guests. """ if guests is None: guests = [] content_type = ContentType.objects.get_for_model(event) replylist, created = self.model.objects.get_or_create( object_id=event.pk, content_type=content_type ) replylist.save() for guest in guests: emptyreply, created = Reply.objects.get_or_create( replylist=replylist, guest=guest ) if created: emptyreply.attending=False emptyreply.responded=False emptyreply.save() return replylist class ReplyList(models.Model): """ A group of replies for an event. """ # event instance. object_id = models.CharField(max_length=999) content_type = models.ForeignKey(ContentType) content_object = generic.GenericForeignKey('content_type', 'object_id') created_at = models.DateTimeField(auto_now_add=True) modified_at = models.DateTimeField(auto_now=True) objects = ReplyListManager() class Meta: verbose_name = _("reply list") verbose_name_plural = _("reply lists") ordering = ("content_type", "-object_id") def __unicode__(self): return u"replies for %s" % ( self.content_object ) def make_simple_filter_manager(**filter_kwargs): """ Factory function returns Manager class that filters results by the keywords given in filter_kwargs. """ class FilteredReplyManager(models.Manager): def get_query_set(self): return super(FilteredReplyManager, self).get_query_set( ).filter(**filter_kwargs) return FilteredReplyManager class ReplyManager(models.Manager): """ Some convenience methods for marking a guest as attending an event. """ def reply_to_event_for(self, event, guest, attending): """ Set guest's reply to attending (true or false) for the replylist matching the event. """ replylist = ReplyList.objects.get_replylist_for(event) try: guest = self.model.objects.get( replylist=replylist, guest=guest) except self.model.DoesNotExist: raise NotInvited("%s wasn't invited to %s" % (guest, event)) guest.attending = attending guest.responded = True guest.save() return guest class Reply(models.Model): """ A single guest's reply to an event. """ replylist = models.ForeignKey( 'ReplyList', related_name="replies", verbose_name=_("reply to list") ) guest = models.ForeignKey( get_model(*USER_MODEL.split(".")), verbose_name=_("guest") ) attending = models.BooleanField( _("attending"), default=False ) responded = models.BooleanField( _("responded"), default=False ) created_at = models.DateTimeField(auto_now_add=True) modified_at = models.DateTimeField(auto_now=True) # custom managers. objects = ReplyManager() confirmed_guests = make_simple_filter_manager(attending=True)() not_responded = make_simple_filter_manager(responded=False)() def generate_userhash(self, salt): """ create XOR encrypted and base64 encoded text version of the guest__pk. """ return encode_userhash(self.guest.pk, self.replylist.pk, salt) class Meta: verbose_name = _("reply") verbose_name_plural = _("replies") ordering = ("replylist", "-responded", "-attending", "guest") def __unicode__(self): return u"%s is%s attending %s" % ( self.guest, '' if self.attending else ' not', self.replylist.content_object ) #---------------------------------------------------------------------- # Utilities def tinycode(key, text, reverse=False): """ an XOR type encryption routine taken from http://code.activestate.com/recipes/266586-simple-xor-keyword-encryption/ This isn't a secure technique, I am only using it to slightly obscure an otherwise obvious use of user.id in the uri. I know I could use a UUID for this purpose, but I didn't want to add uuid as a dependancy for this project. """ rand = random.Random(key).randrange if not reverse: text = zlib.compress(text) text = ''.join([chr(ord(elem)^rand(256)) for elem in text]) if reverse: text = zlib.decompress(text) return text def decode_userhash(userhash, reply_list_id, salt): """ Decode and return the user-pk value. Assume the unhashed text has the form: userpk. and was generated with key salt%%reply_list_id we are in big trouble if salt has %% in it!!. so we assume they are not present. """ reply_list_id = str(reply_list_id).replace("%%", "") salt = str(salt).replace("%%", "") key = "%%".join([salt, reply_list_id]) try: userhash = base64.urlsafe_b64decode(str(userhash)) except TypeError: raise InvalidHash('hash %s was not valid' % userhash) try: return tinycode(key, userhash, reverse=True) except zlib.error: raise InvalidHash('attempted to decrypt %s with invalid key %s' % (userhash, key)) def encode_userhash(userpk, reply_list_id, salt): """ Return a base64 XOR encrypted text using a key of: salt%%reply_list_id where any '%%' has been removed from salt and reply_list_id """ reply_list_id = unicode(reply_list_id).replace("%%", "") salt = unicode(salt).replace("%%", "") key = "%%".join([salt, reply_list_id]) userhash = tinycode(key, str(userpk)) return base64.urlsafe_b64encode(userhash)
import cv2 import numpy as np import pyscreenshot as ImageGrab from tkinter import * from Xlib import display import mss import os import pyxhook import serial import threading import serial.tools.list_ports import ctypes import glob from PIL import ImageTk, Image import sys with open(os.devnull, 'w') as f: ###shutting up pygame silliness oldstdout = sys.stdout# disable stdout sys.stdout = f import pygame sys.stdout = oldstdout# enable stdout version = '0.9.4l' print('CHMACHINE Ver. %s \n' %version) class motorclass(): def __init__(self): self.state=2 self.tempo=0 self.savestate=2 self.result=0 self.colorshow=np.zeros((streamwindowssizex, streamwindowssizey, 4), np.uint8) #create an array of zeros for the black background self.index=0 self.listindex=0 self.timetic=0 self.patternspeed=0 self.speed='0' self.targetspeed='0' self.pinresttime=0 self.serialfloodlimit=5 #time(ms) between commands to limit serial flooding def detect(self): global stream_window_open global stream_window while detectflag==True: if arduino_connected==False: pygame.time.wait(1) while ((self.state==5) or (self.state==1)): #################### DETECT/DETECT SETUP if self.state==5 and self.getspeed()!=0 and arduino_connected==True: self.PWMpin('0') try: #take care of sliding too fast which result in a shape out of boundaries self.monitor = {"top": top, "left": left, "width": int(screenshotsizex), "height": int(screenshotsizey)} arr = np.array(mss.mss().grab(self.monitor)) self.result = cv2.matchTemplate(arr, arrbase, cv2.TM_CCOEFF_NORMED) #check if images match if self.state==5: if self.result>0: print ('%.0f %% Match' %(self.result*100)) else: print ('0 % Match') if checkinv==False: #invert flag False if (self.result>=threshold): # if match value is over the threshold if self.state==1 and arduino_connected==True: self.PWMpin(speed) self.colorshow=np.zeros((streamwindowssizex, streamwindowssizey, 4), np.uint8) #create a black background cv2.circle(self.colorshow,(0,0), 70, (0,255,0), -1) #draw a green circle self.tempo=pygame.time.get_ticks() elif (pygame.time.get_ticks()-self.tempo) >= (timeonvar): #turn the pin to floor speed some time after the last match is occurred if self.state==1 and arduino_connected==True: self.PWMpin(floorspeed) self.colorshow=np.zeros((streamwindowssizex, streamwindowssizey, 4), np.uint8) #create a black background else: #invert flag True if (self.result<=threshold):#match if value is under the threshold if self.state==1 and arduino_connected==True: self.PWMpin(speed) self.colorshow=np.zeros((streamwindowssizex, streamwindowssizey, 4), np.uint8) #create a black background cv2.circle(self.colorshow,(0,0), 70, (0,255,0), -1) #draw a green circle self.tempo=pygame.time.get_ticks() elif (pygame.time.get_ticks()-self.tempo) >= (timeonvar): #turn the pin to floor speed some time after the last match is occurred if self.state==1 and arduino_connected==True: self.PWMpin(floorspeed) self.colorshow=np.zeros((streamwindowssizex, streamwindowssizey, 4), np.uint8) #create a black background ###centering and overlapping images over background: x_offset=int((streamwindowssizex - screenshotsizex)/2) y_offset=int((streamwindowssizey - screenshotsizey)/2) self.colorshow[y_offset:y_offset + arr.shape[0], x_offset:x_offset + arr.shape[1]] = arr ### except: pass if stream_window_open==False: # open "stream" window if isn't already opened stream_window= Toplevel() stream_window.resizable(False,False) stream_window.title('Stream') stream_window.geometry(str(streamwindowssizex) + 'x' + str(streamwindowssizey)) stream_window.protocol("WM_DELETE_WINDOW", on_closing_stream_window) stream_canvas = Canvas(stream_window, width=streamwindowssizex, height=streamwindowssizey, background='black') stream_canvas.pack() stream_window_open=True try: iconpath=os.path.abspath(os.path.dirname(__file__)) + '/icon.gif' imgicon = PhotoImage(file=iconpath) stream_window.tk.call('wm', 'iconphoto', stream_window._w, imgicon) except: pass ontop() else: ###showing image: self.im = cv2.cvtColor(self.colorshow, cv2.COLOR_BGRA2RGB) self.imag = Image.fromarray(self.im) self.imagi = ImageTk.PhotoImage(image=self.imag) stream_canvas.create_image(streamwindowssizex/2, streamwindowssizex/2, image=self.imagi) stream_canvas.image=self.imagi #to keep a reference else it shows blank if self.state==1 and arduino_connected==True: self.PWMpin(str(self.getspeed())) #Keeps the PWM pin alive(see Arduino code) ### pygame.time.wait(1) while self.state==2 and arduino_connected==True:#################### STOP/PAUSE self.PWMpin('0') pygame.time.wait(1) while self.state==3 and arduino_connected==True: ##################### ALWAYSON/PATTERN if patternvar=='none': self.PWMpin(speed) pygame.time.wait(1) else: self.listindex=namelist.index(patternvar) if pygame.time.get_ticks()-self.timetic>=timeonvar/100: if self.index < len(patternlist[self.listindex])-1: self.index+=1 else: self.index=0 self.patternspeed=int(round(patternlist[self.listindex][self.index]/100*int(speed))) if self.patternspeed>=int(floorspeed): self.PWMpin(str(self.patternspeed)) if self.patternspeed<int(floorspeed) and self.listindex>1: self.PWMpin(floorspeed) self.timetic=pygame.time.get_ticks() pygame.time.wait(1) while self.state==4 and arduino_connected==True:######################### PULSE self.tempo=pygame.time.get_ticks() while (pygame.time.get_ticks()-self.tempo) <= (timeonvar): if self.state!=4: break self.PWMpin(speed) pygame.time.wait(1) self.tempo=pygame.time.get_ticks() while (pygame.time.get_ticks()-self.tempo) <= (timeoffvar): if self.state!=4: break self.PWMpin(floorspeed) pygame.time.wait(1) def getspeed(self): return int(self.speed) def PWMpin(self, PWM_speed): #set the Arduino pin PWM global arduino_connected try: if (pygame.time.get_ticks()-self.pinresttime) > self.serialfloodlimit: #limit serial flooding self.speed=PWM_speed arduino.write(('V' + self.speed + 'S').encode('utf-8')) self.pinresttime=pygame.time.get_ticks() except serial.SerialTimeoutException: print('WRITE TIMEOUT ERROR.') arduino.close() self.stop() arduino_connected=False except: print('SERIAL CONNECTION ERROR') arduino.close() self.stop() arduino_connected=False def stop(self): self.state=2 self.savestate=2 def pause(self): if self.state!=2: self.savestate=self.state self.state=2 elif self.state==2: self.state=self.savestate def startdetect(self): self.state=1 self.savestate=self.state def alwayson_pattern(self): self.state=3 self.savestate=self.state def pulse(self): self.state=4 self.savestate=self.state def setup(self): self.state=5 self.savestate=self.state def keysetup(file): global pausebutton global slowdownbutton global speedupbutton global screenshotbutton global refreshbutton global savebutton global loadbutton linelist=[] ###default keys: pausebutton='P_Insert' slowdownbutton='P_End' speedupbutton='P_Down' screenshotbutton='F9' refreshbutton='F10' savebutton='F11' loadbutton='F12' ### try: setup = open(file, 'r') for x in range(100): linelist=setup.readline().replace(' ', '').strip().split('=') #read line, remove spaces and split the string a the "=" sign if linelist[0]== '***': break if linelist[0] == 'Pause': pausebutton=linelist[1] if linelist[0] == 'Slowdown': slowdownbutton=linelist[1] if linelist[0] == 'Speedup': speedupbutton=linelist[1] if linelist[0] == 'Screenshot': screenshotbutton=linelist[1] if linelist[0] == 'Refresh': refreshbutton=linelist[1] if linelist[0] == 'Loadstate': loadbutton=linelist[1] if linelist[0] == 'Savestate': savebutton=linelist[1] setup.close() except: print('Cannot open', file, ', loading default keys...\n') print('- HOTKEYS:\n') print('Pause -------------- ',pausebutton) print('Slow down ---------- ',slowdownbutton) print('Speed up ----------- ',speedupbutton) print('Screenshot --------- ',screenshotbutton) print('Screenshot update -- ',refreshbutton) print('Save state --------- ',savebutton) print('Load state --------- ',loadbutton) print('') print('') def patternsetup(file): global namelist global patternlist linelist=[] namelist=[] patternlist=[] namelist.append('PATTERN') namelist.append('none') patternlist.append([0]) patternlist.append([0]) try: patterntxt = open(file, 'r') for x in range(1000): linelist=patterntxt.readline() if linelist.strip()== '***': #strip() removes spaces and end of line characters break try: if linelist.count('=')==1 and linelist.count(':')>0: linelist=linelist.replace(' ', '').replace(',', '.').strip().split('=') #read line, remove spaces, convert "," to "." and split the string at the "=" sign if linelist[0] != '' and linelist[1]!= '': namelist.append(linelist[0][0:18]) stringlist=linelist[1].split(':') intlist = [int(round(float(i))) for i in stringlist]#converts list of strings into rounded integers patternlist.append(intlist) except: print(file, 'FORMAT ERROR\n') patterntxt.close() except: print('Cannot open', file, '\n') def comportsetup(): global ports ports = list(serial.tools.list_ports.comports()) # detects available ports print ('- AVAILABLE PORTS:\n') for p in ports: print (p) print('') def autoserialstart(baud): checkAO.configure(state=DISABLED) checkPUL.configure(state=DISABLED) checkDET.configure(state=DISABLED) checkSET.configure(state=DISABLED) buttonserial.configure(state=DISABLED) comentry.insert(END, "PLEASE WAIT...") # insert text into the widget comentry.configure(state=DISABLED) global arduino global arduino_connected line=('') portnumber=('') comentry.delete(0, END) # delete text from the widget from position 0 to the END root.focus() #remove focus from the entry widget resetGUI() motor.stop() print("Looking for the CH Machine, PLEASE WAIT...\n") for p in ports: arduino_connected=False try:#try to close already existing serial connection arduino.close() while arduino.is_open: pygame.time.wait(1) except: pass try: print (p[0] + '...') arduino = serial.Serial(p[0], baud, timeout = 1, write_timeout = 1) # always a good idea to specify a timeout in case we send bad data pygame.time.wait(3000)# wait for Arduino to initialize arduino.write(('T').encode('utf-8')) pygame.time.wait(150)# wait for a response from Arduino line = arduino.read(arduino.inWaiting()).decode(encoding='UTF-8',errors='replace') if line.find('connOK')!=-1: print("CHM CONNECTED!") print (p[0] + ' - Initialization Complete.') arduino_connected=True break else: print ('Wrong serial connection.') except: print ('Serial port exception') if line.find('connOK')==-1: print ('\nCHMachine not found, check out the connection.\n') checkAO.configure(state=NORMAL) checkPUL.configure(state=NORMAL) checkDET.configure(state=NORMAL) checkSET.configure(state=NORMAL) buttonserial.configure(state=NORMAL) comentry.configure(state=NORMAL) comentry.delete(0, END) return True def serialstart(COMstring, baud): global arduino_connected global arduino line=('') comentry.delete(0, 'end') # delete text from the widget root.focus() #remove focus from the entry widget if COMstring == ('') or COMstring == ('COM Port'): #if no port is specified start autoserialstart() to find it automatically tserial=threading.Thread(target=autoserialstart, args={serialbaud}) tserial.setDaemon(True) tserial.start() #manual port: else: print (COMstring + ' - Initializing...') resetGUI() arduino_connected=False motor.stop() try: if arduino.is_open: arduino.close() pygame.time.wait(500) except: pass try: arduino = serial.Serial(COMstring, baud, timeout = 1, write_timeout = 1) # 2=Com3 on windows always a good idea to specify a timeout in case we send bad data pygame.time.wait(4000)# wait for the Arduino to initialize #test the connection(see Arduino code): arduino.write(('T').encode('utf-8')) pygame.time.wait(300) line = arduino.read(arduino.inWaiting()).decode(encoding='UTF-8',errors='replace') if line.find('connOK')!=-1: print("CHM CONNECTED!") print (COMstring + ' - Initialization Complete.') arduino_connected=True else: print ('Wrong serial connection.') arduino.close() except serial.SerialTimeoutException: print (COMstring + ' TIMEOUT EXCEPTION. Try another port.') arduino.close() arduino_connected=False except: print('No port found.') def onKeyDown(event): global speed global pos global arrbase global savelist global loadlist global top global left global screenshotsizex global screenshotsizey global match_window_open global match_window global match_canvas # never put any condition before event.key if event.Key == ('Return'): if comentry==root.focus_get() and comentry.get()!=(''): serialstart(comtext.get(), serialbaud) if event.Key == (slowdownbutton): speedint=int(speed) if (checkAOVar.get()==True or checkPULVar.get()==True or checkDETVar.get()==True): if speedint>10: speedint -= 10 motorspeed.set(speedint) speed=str(speedint) else: motorspeed.set(0) speed=('0') if event.Key == (speedupbutton): speedint=int(speed) if (checkAOVar.get()==True or checkPULVar.get()==True or checkDETVar.get()==True): if speedint <= 245: speedint += 10 motorspeed.set(speedint) speed=str(speedint) else: motorspeed.set(255) speed=('255') if event.Key == (pausebutton): motor.pause() if (event.Key == screenshotbutton or event.Key == refreshbutton): if (event.Key == screenshotbutton): mousedata=display.Display().screen().root.query_pointer()._data pos=[mousedata['root_x'], mousedata['root_y']] if (pos != [-1,-1]): print('Mouse position',pos) ###find black border width: screenshotsizex=sizex.get()*(streamwindowssizex - 20)/100 screenshotsizey=sizey.get()*(streamwindowssizey - 20)/100 ### top=int((pos[1]-screenshotsizey/2)) left=int((pos[0]-screenshotsizex/2)) ###adjusting screenshot position so it stays into screen boundaries: if left<0: left=0 if top<0: top=0 if left + screenshotsizex > screenwidth: left=int(screenwidth-screenshotsizex) if top + screenshotsizey > screenheight: top=int(screenheight-screenshotsizey) ### monitor = {"top": top, "left": left, "width": int(screenshotsizex), "height": int(screenshotsizey)} arrbase = np.array(mss.mss().grab(monitor)) base=np.zeros((streamwindowssizex, streamwindowssizey, 4), np.uint8) #an array of zeros for a black background x_offset=int((streamwindowssizex-screenshotsizex)/2) y_offset=int((streamwindowssizey-screenshotsizey)/2) base[y_offset:y_offset+arrbase.shape[0], x_offset:x_offset+arrbase.shape[1]] = arrbase #center the image array if match_window_open==False:# open "match" window if isn't already opened match_window= Toplevel() match_window.resizable(False,False) match_window.title('Match') match_window.geometry(str(streamwindowssizex) + 'x' + str(streamwindowssizey)) match_window.protocol("WM_DELETE_WINDOW", on_closing_match_window) match_canvas = Canvas(match_window, width=streamwindowssizex, height=streamwindowssizey, background='black') match_canvas.pack() try: iconpath=os.path.abspath(os.path.dirname(__file__)) + '/icon.gif' imgicon = PhotoImage(file=iconpath) match_window.tk.call('wm', 'iconphoto', match_window._w, imgicon) except: pass ontop() match_window_open=True ###show image: im = cv2.cvtColor(base, cv2.COLOR_BGRA2RGB) imag = Image.fromarray(im) imagi = ImageTk.PhotoImage(image=imag) match_canvas.image=imagi #to keep a reference in scope else it shows blank match_canvas.create_image(streamwindowssizex/2, streamwindowssizex/2, image=match_canvas.image) ### if event.Key == (savebutton): filesname=glob.glob(os.path.abspath(os.path.dirname(__file__)) + "/*.npz") #find name of all .npz files in the main folder savelist=[] for x in filesname: try: #in case of a miswritten file name x = x[-9:-4] x=x.strip('save') num=int(x) savelist.append(num) except: pass if savelist!=[]: savename=(os.path.abspath(os.path.dirname(__file__)) + '/save' + str(max(savelist) + 1) + '.npz') #find the max value to add to the string else: savename=(os.path.abspath(os.path.dirname(__file__)) + '/save0.npz') np.savez(savename, arrbase, pos, int(screenshotsizex), int(screenshotsizey), speed, floorspeed, timeonvar, timeoffvar, threshold, checkinv) print(savename, 'SAVED') loadlist=[] if event.Key == (loadbutton): filesname=glob.glob(os.path.abspath(os.path.dirname(__file__)) + "/*.npz") #find name of all npz files in the main folder if loadlist==[]: for x in filesname: try: #in case of a miswritten file name x = x[-9:-4] x=x.strip('save') num=int(x) loadlist.append(num) except: pass loadlist.sort() #sort numbers in the list if loadlist!=[]: loadname=(os.path.abspath(os.path.dirname(__file__)) + '/save' + str(loadlist.pop()) + '.npz') # pop() removes last element and return it loaded_arrays = np.load(loadname) load_state(loaded_arrays['arr_0'], loaded_arrays['arr_1'], loaded_arrays['arr_2'], loaded_arrays['arr_3'], loaded_arrays['arr_4'], loaded_arrays['arr_5'], loaded_arrays['arr_6'], loaded_arrays['arr_7'], loaded_arrays['arr_8'], loaded_arrays['arr_9']) print(loadname, 'LOADED') else: print('nothing to load') return True def load_state(image_arrayl, posl, xsizel, ysizel, speedl, floorspeedl, timeonvarl, timeoffvarl, thresholdl, checkinvl): global screenshotsizex global screenshotsizey global speed global timeonvar global timeoffvar global floorspeed global threshold global arrbase global arr global pos global top global left global checkinv global match_window_open global match_window global match_canvas ###load variables and update interface: motorspeed.set(speedl) speed=str(speedl) timeON.set(timeonvarl) timeonvar=timeON.get() timeOFF.set(timeoffvarl) timeoffvar=timeOFF.get() floorspeedVAR.set(floorspeedl) floorspeed=str(floorspeedVAR.get()) thresh.set(thresholdl * 100) threshold=thresholdl if checkinvl == True: checkinvert.select() checkinv=True else: checkinvert.deselect() checkinv=False ### ###load and display image: if posl[0] != -1: pos = [posl[0], posl[1]] top=int((posl[1]-screenshotsizey/2)) left=int((posl[0]-screenshotsizex/2)) arrbase=image_arrayl arr=image_arrayl sizex.set(xsizel/2) sizey.set(ysizel/2) screenshotsizex=(xsizel/2)*(streamwindowssizex - 20)/100 screenshotsizey=(ysizel/2)*(streamwindowssizey - 20)/100 x_offset=int((streamwindowssizex - screenshotsizex)/2) y_offset=int((streamwindowssizey - screenshotsizey)/2) base=np.zeros((streamwindowssizex, streamwindowssizey, 4), np.uint8) #an array of zeros for a black background base[y_offset:y_offset+arrbase.shape[0], x_offset:x_offset+arrbase.shape[1]] = arrbase #center the image array if match_window_open==False:# open "match" window if isn't already opened match_window= Toplevel() match_window.resizable(False,False) match_window.title('Match') match_window.geometry(str(streamwindowssizex) + 'x' + str(streamwindowssizey)) match_window.protocol("WM_DELETE_WINDOW", on_closing_match_window) match_canvas = Canvas(match_window, width=streamwindowssizex, height=streamwindowssizey, background='black') match_canvas.pack() try: iconpath=os.path.abspath(os.path.dirname(__file__)) + '/icon.gif' imgicon = PhotoImage(file=iconpath) match_window.tk.call('wm', 'iconphoto', match_window._w, imgicon) except: pass ontop() match_window_open=True im = cv2.cvtColor(base, cv2.COLOR_BGRA2RGB) imag = Image.fromarray(im) imagi = ImageTk.PhotoImage(image=imag) match_canvas.image=imagi #to keep a reference else it shows blank match_canvas.create_image(streamwindowssizex/2, streamwindowssizex/2, image=match_canvas.image) ### # TKINTER FUNCTIONS: def alwaysONtick(): try: arduino.name if (arduino.is_open): if checkAOVar.get()==False: resetGUI() motor.stop() if checkAOVar.get()==True: if patternvar=='none': resetGUI() slidera.config(foreground='black') checkAO.select() motor.alwayson_pattern() else: resetGUI() slidera.config(foreground='black') sliderb.config(foreground='black', label='PATTERN FREQ:') sliderd.config(foreground='black') checkAO.select() motor.alwayson_pattern() else: print('No serial connection') checkAO.deselect() except: print('No serial connection') checkAO.deselect() def detecttick(): if (pos==[-1,-1]): print('Position? (Press', screenshotbutton, 'to take a screenshot)') checkDET.deselect() else: try: arduino.name if (arduino.is_open): if checkDETVar.get()==False: resetGUI() motor.stop() if checkDETVar.get()==True: resetGUI() slidera.config(foreground='black') sliderb.config(foreground='black') sliderd.config(foreground='black') slidersizex.config(foreground='black') slidersizey.config(foreground='black') sliderthresh.config(foreground='black') checkinvert.config(foreground='black') checkDET.select() motor.startdetect() else: print('No serial connection') checkDET.deselect() except: print('No serial connection') checkDET.deselect() def detectsetup(): if (pos==[-1,-1]): print('Position? (Press', screenshotbutton, 'to take a screenshot)') checkSET.deselect() else: if checkSETVar.get()==False: resetGUI() motor.stop() if checkSETVar.get()==True: resetGUI() sliderb.config(foreground='black') slidersizex.config(foreground='black') slidersizey.config(foreground='black') sliderthresh.config(foreground='black') checkinvert.config(foreground='black') checkSET.select() motor.setup() def pulsetick(): try: arduino.name if (arduino.is_open): if checkPULVar.get()==False: resetGUI() motor.stop() if checkPULVar.get()==True: resetGUI() slidera.config(foreground='black') sliderb.config(foreground='black') sliderc.config(foreground='black') sliderd.config(foreground='black') checkPUL.select() motor.pulse() else: print('No serial connection') checkPUL.deselect() except: print('No serial connection') checkPUL.deselect() def on_closing_match_window(): global match_window_open global match_window match_window_open=False match_window.destroy() def on_closing_stream_window(): global stream_window_open global stream_window stream_window_open=False stream_window.destroy() def on_closing(): global detectflag motor.stop() detectflag=False print ('Bye Bye') pygame.time.wait(1) hm.cancel() cv2.destroyAllWindows() root.quit() root.destroy() print ('Be vigilant') sys.exit() def slidersize(value): global arrbase global screenshotsizex global screenshotsizey global top global left screenshotsizex=sizex.get()*(streamwindowssizex - 20)/100 screenshotsizey=sizey.get()*(streamwindowssizey - 20)/100 if pos != [-1,-1]: top=int((pos[1]-screenshotsizey/2)) left=int((pos[0]-screenshotsizex/2)) ### adjusting screenshot position so it stays into screen boundaries: if left<0: left=0 if top<0: top=0 if left + screenshotsizex > screenwidth: left=int(screenwidth-screenshotsizex) if top + screenshotsizey > screenheight: top=int(screenheight-screenshotsizey) ### ### show image: monitor = {"top": top, "left": left, "width": int(screenshotsizex), "height": int(screenshotsizey)} arrbase = np.array(mss.mss().grab(monitor)) base=np.zeros((streamwindowssizex, streamwindowssizey, 4), np.uint8) #an array of zeros for a black background x_offset=int((streamwindowssizex-screenshotsizex)/2) y_offset=int((streamwindowssizey-screenshotsizey)/2) base[y_offset:y_offset+arrbase.shape[0], x_offset:x_offset+arrbase.shape[1]] = arrbase #center the image array im = cv2.cvtColor(base, cv2.COLOR_BGRA2RGB) imag = Image.fromarray(im) imagi = ImageTk.PhotoImage(image=imag) try: # if the window is not opened an exception occur match_canvas.image=imagi #to keep a reference else it shows blank match_canvas.create_image(streamwindowssizex/2, streamwindowssizex/2, image=match_canvas.image) except: pass ### def speedslider(value): global speed speed=value def floorspeedslider(value): global floorspeed floorspeed=value def timeONslider(value): global timeonvar timeonvar=int(value) def timeOFFslider(value): global timeoffvar timeoffvar=int(value) def thresholdslider(value): global threshold threshold=int(value)/100 def about(): top = Toplevel() top.wm_attributes("-topmost", 1) top.resizable(False,False) top.focus() top.geometry("220x150") top.title('About') try: iconpath=os.path.abspath(os.path.dirname(__file__)) + '/icon.gif' imgicon = PhotoImage(file=iconpath) top.tk.call('wm', 'iconphoto', top._w, imgicon) except: pass msg = Message(top, width=300, text='COCK HERO MACHINE Ver.' + version) msga = Message(top, width=300, text='[email protected]') msgb = Message(top, width=300, text='For more informations visit:') msgc = Message(top, width=300, text='cockheromachine.blogspot.com\n') msg.pack() msga.pack() msgb.pack() msgc.pack() button = Button(top, height=1, width=10, text="OK", command=top.destroy) button.pack() def ontop(): if checkontopvar.get()==True: root.wm_attributes("-topmost", 1) # on top try:#if the window is not opened an exception occur match_window.wm_attributes("-topmost", 1)# on top except: pass try: stream_window.wm_attributes("-topmost", 1)# on top except: pass if checkontopvar.get()==False: root.wm_attributes("-topmost", 0) # NOT on top try: match_window.wm_attributes("-topmost", 0)# NOT on top except: pass try: stream_window.wm_attributes("-topmost", 0)# NOT on top except: pass def on_entry_click(event): if comentry.get() == 'COM Port': comentry.delete(0, "end") # delete all the text in the entry widget comentry.insert(0, '') #Insert blank comentry.config(foreground = 'black') def resetGUI(): checkAO.deselect() checkPUL.deselect() checkDET.deselect() checkSET.deselect() slidera.config(foreground='gray') sliderb.config(foreground='gray', label='TIME ON(ms):') sliderc.config(foreground='gray') sliderd.config(foreground='gray') slidersizex.config(foreground='gray') slidersizey.config(foreground='gray') sliderthresh.config(foreground='gray') checkinvert.config(foreground='gray') def inverttick(): global checkinv checkinv=not checkinv def patternmenu(value): global patternvar patternvar=value alwaysONtick() # TKINTER INTERFACE: root= Tk() streamwindowssizex=220 streamwindowssizey=220 comtext = StringVar() comentry=Entry(root, textvariable=comtext) comentry.grid(row = 0, column = 0) comentry.insert(0, "COM Port") comentry.bind('<FocusIn>', on_entry_click) comentry.config(fg = 'gray', width=13) buttonserial=Button(root,height=1, width=8,text='CONNECT', command=lambda:serialstart(comtext.get(), serialbaud)) buttonserial.grid(row = 0, column = 1, sticky=W) checkontopvar = BooleanVar() checkontop=Checkbutton(root,text = 'On top', variable=checkontopvar, command=lambda:ontop()) checkontop.grid(row = 0, column = 3) checkontop.select() buttonabout=Button(root,height=1, width=8,text='About...', command=lambda:about()) buttonabout.grid(row = 0, column = 4) patternsetup(os.path.abspath(os.path.dirname(__file__)) + '/pattern.txt')#load patterns patternvar='none' pattern_variable = StringVar() pattern_variable.set("PATTERNS") optionmenu_widget = OptionMenu(root, pattern_variable, *namelist[1:], command=patternmenu) optionmenu_widget.grid(row = 2, column=0) optionmenu_widget.config(width=7) checkAOVar = IntVar() checkAO=Checkbutton(root,text = 'ALWAYS ON', command=lambda:alwaysONtick(), variable = checkAOVar) checkAO.grid(row = 2, column = 1, pady=10) checkPULVar = IntVar() checkPUL=Checkbutton(root,text = 'PULSE', command=lambda:pulsetick(), variable = checkPULVar) checkPUL.grid(row = 2, column = 2, pady=10) checkDETVar = IntVar() checkDET=Checkbutton(root,text = 'DETECT', command=lambda:detecttick(), variable = checkDETVar) checkDET.grid(row = 2, column = 3, pady=10) checkSETVar = IntVar() checkSET=Checkbutton(root,text = 'DETECT SETUP', command=lambda:detectsetup(), variable = checkSETVar) checkSET.grid(row = 2, column = 4, pady=10) buttonpause=Button(root, height=2, width=60, text='-PAUSE/START-', command=lambda:motor.pause()) buttonpause.grid(row = 4, columnspan = 5, pady=10) motorspeed=IntVar(value=10) slidera = Scale(root, from_=0, to=255, orient=HORIZONTAL,length=400.00, variable=motorspeed, label='MOTOR SPEED:', command=speedslider) slidera.grid(columnspan = 6,pady=5) speed=(str(motorspeed.get())) timeON=IntVar(value=200) sliderb = Scale(root, from_=10, to=1000, orient=HORIZONTAL,length=400.00, variable=timeON, label='TIME ON(ms):', command=timeONslider) sliderb.grid(columnspan = 7,pady=5) timeonvar=timeON.get() timeOFF=IntVar(value=100) sliderc = Scale(root, from_=10, to=1000, orient=HORIZONTAL,length=400.00, variable=timeOFF, label='TIME OFF(ms):', command=timeOFFslider) sliderc.grid(columnspan = 8,pady=5) timeoffvar=timeOFF.get() floorspeedVAR=IntVar(value=0) sliderd = Scale(root, from_=0, to=255, orient=HORIZONTAL,length=400.00, variable=floorspeedVAR, label='FLOOR SPEED:', command=floorspeedslider) sliderd.grid(columnspan = 9,pady=5) floorspeed=str(floorspeedVAR.get()) sizex=IntVar(value=25) slidersizex = Scale(root, from_=1, to=100, orient=HORIZONTAL,length=400.00, variable=sizex, label='Xsize:', command=slidersize) slidersizex.grid(columnspan = 10,pady=5) screenshotsizex=sizex.get()*(streamwindowssizex - 20)/100 sizey=IntVar(value=25) slidersizey = Scale(root, from_=1, to=100, orient=HORIZONTAL,length=400.00, variable=sizey, label='Ysize:', command=slidersize) slidersizey.grid(columnspan = 11,pady=5) screenshotsizey=sizey.get()*(streamwindowssizey - 20)/100 thresh=IntVar(value=70) sliderthresh = Scale(root, from_=1, to=100, orient=HORIZONTAL,length=400.00, variable=thresh, label='THRESHOLD:', command=thresholdslider) sliderthresh.grid(columnspan = 12,pady=5) threshold=int(thresh.get())/100 checkinv=False checkinvert=Checkbutton(root,text = 'Invert', command=inverttick, variable=checkinv) checkinvert.grid(columnspan = 13) #THREADS: detectflag=True arduino_connected=False motor=motorclass() tmotordetect=threading.Thread(target=motor.detect, args=()) tmotordetect.setDaemon(True) tmotordetect.start() #INITIALIZING: pos=[-1,-1] top=0 left=0 savelist=[] loadlist=[] screenshotsizex=sizex.get()*(streamwindowssizex - 20)/100 screenshotsizey=sizey.get()*(streamwindowssizey - 20)/100 arrbase=np.zeros((streamwindowssizex, streamwindowssizey, 4), np.uint8) #an array of zeros for a black background serialbaud=9600 arduino=None keysetup(os.path.abspath(os.path.dirname(__file__)) + '/setup.txt') #assign keys from setup.txt comportsetup() #list all available com ports pygame.init() hm = pyxhook.HookManager() # hooking keyboard hm.KeyDown = onKeyDown hm.HookKeyboard() hm.start() pygame.event.pump() root.withdraw() root.wm_attributes("-topmost", 1) root.protocol("WM_DELETE_WINDOW", on_closing) root.title('CHM ' + version) root.resizable(False,False) try: iconpath=os.path.abspath(os.path.dirname(__file__)) + '/icon.gif' imgicon = PhotoImage(file=iconpath) root.tk.call('wm', 'iconphoto', root._w, imgicon) except: pass screenwidth, screenheight = root.winfo_screenwidth(), root.winfo_screenheight()# get the screen resolution match_window_open=False stream_window_open=False root.deiconify() resetGUI() ontop() root.mainloop()
from django.db.utils import DatabaseError try: import thread except ImportError: import dummy_thread as thread from contextlib import contextmanager from django.conf import settings from django.db import DEFAULT_DB_ALIAS from django.db.backends import util from django.db.transaction import TransactionManagementError from django.utils.functional import cached_property from django.utils.importlib import import_module from django.utils.timezone import is_aware class BaseDatabaseWrapper(object): """ Represents a database connection. """ ops = None vendor = 'unknown' def __init__(self, settings_dict, alias=DEFAULT_DB_ALIAS, allow_thread_sharing=False): # `settings_dict` should be a dictionary containing keys such as # NAME, USER, etc. It's called `settings_dict` instead of `settings` # to disambiguate it from Django settings modules. self.connection = None self.queries = [] self.settings_dict = settings_dict self.alias = alias self.use_debug_cursor = None # Transaction related attributes self.transaction_state = [] self.savepoint_state = 0 self._dirty = None self._thread_ident = thread.get_ident() self.allow_thread_sharing = allow_thread_sharing def __eq__(self, other): return self.alias == other.alias def __ne__(self, other): return not self == other def _commit(self): if self.connection is not None: return self.connection.commit() def _rollback(self): if self.connection is not None: return self.connection.rollback() def _enter_transaction_management(self, managed): """ A hook for backend-specific changes required when entering manual transaction handling. """ pass def _leave_transaction_management(self, managed): """ A hook for backend-specific changes required when leaving manual transaction handling. Will usually be implemented only when _enter_transaction_management() is also required. """ pass def _savepoint(self, sid): if not self.features.uses_savepoints: return self.cursor().execute(self.ops.savepoint_create_sql(sid)) def _savepoint_rollback(self, sid): if not self.features.uses_savepoints: return self.cursor().execute(self.ops.savepoint_rollback_sql(sid)) def _savepoint_commit(self, sid): if not self.features.uses_savepoints: return self.cursor().execute(self.ops.savepoint_commit_sql(sid)) def enter_transaction_management(self, managed=True): """ Enters transaction management for a running thread. It must be balanced with the appropriate leave_transaction_management call, since the actual state is managed as a stack. The state and dirty flag are carried over from the surrounding block or from the settings, if there is no surrounding block (dirty is always false when no current block is running). """ if self.transaction_state: self.transaction_state.append(self.transaction_state[-1]) else: self.transaction_state.append(settings.TRANSACTIONS_MANAGED) if self._dirty is None: self._dirty = False self._enter_transaction_management(managed) def leave_transaction_management(self): """ Leaves transaction management for a running thread. A dirty flag is carried over to the surrounding block, as a commit will commit all changes, even those from outside. (Commits are on connection level.) """ if self.transaction_state: del self.transaction_state[-1] else: raise TransactionManagementError( "This code isn't under transaction management") # We will pass the next status (after leaving the previous state # behind) to subclass hook. self._leave_transaction_management(self.is_managed()) if self._dirty: self.rollback() raise TransactionManagementError( "Transaction managed block ended with pending COMMIT/ROLLBACK") self._dirty = False def validate_thread_sharing(self): """ Validates that the connection isn't accessed by another thread than the one which originally created it, unless the connection was explicitly authorized to be shared between threads (via the `allow_thread_sharing` property). Raises an exception if the validation fails. """ if (not self.allow_thread_sharing and self._thread_ident != thread.get_ident()): raise DatabaseError("DatabaseWrapper objects created in a " "thread can only be used in that same thread. The object " "with alias '%s' was created in thread id %s and this is " "thread id %s." % (self.alias, self._thread_ident, thread.get_ident())) def is_dirty(self): """ Returns True if the current transaction requires a commit for changes to happen. """ return self._dirty def set_dirty(self): """ Sets a dirty flag for the current thread and code streak. This can be used to decide in a managed block of code to decide whether there are open changes waiting for commit. """ if self._dirty is not None: self._dirty = True else: raise TransactionManagementError("This code isn't under transaction " "management") def set_clean(self): """ Resets a dirty flag for the current thread and code streak. This can be used to decide in a managed block of code to decide whether a commit or rollback should happen. """ if self._dirty is not None: self._dirty = False else: raise TransactionManagementError("This code isn't under transaction management") self.clean_savepoints() def clean_savepoints(self): self.savepoint_state = 0 def is_managed(self): """ Checks whether the transaction manager is in manual or in auto state. """ if self.transaction_state: return self.transaction_state[-1] # Note that this setting isn't documented, and is only used here, and # in enter_transaction_management() return settings.TRANSACTIONS_MANAGED def managed(self, flag=True): """ Puts the transaction manager into a manual state: managed transactions have to be committed explicitly by the user. If you switch off transaction management and there is a pending commit/rollback, the data will be commited. """ top = self.transaction_state if top: top[-1] = flag if not flag and self.is_dirty(): self._commit() self.set_clean() else: raise TransactionManagementError("This code isn't under transaction " "management") def commit_unless_managed(self): """ Commits changes if the system is not in managed transaction mode. """ self.validate_thread_sharing() if not self.is_managed(): self._commit() self.clean_savepoints() else: self.set_dirty() def rollback_unless_managed(self): """ Rolls back changes if the system is not in managed transaction mode. """ self.validate_thread_sharing() if not self.is_managed(): self._rollback() else: self.set_dirty() def commit(self): """ Does the commit itself and resets the dirty flag. """ self.validate_thread_sharing() self._commit() self.set_clean() def rollback(self): """ This function does the rollback itself and resets the dirty flag. """ self.validate_thread_sharing() self._rollback() self.set_clean() def savepoint(self): """ Creates a savepoint (if supported and required by the backend) inside the current transaction. Returns an identifier for the savepoint that will be used for the subsequent rollback or commit. """ thread_ident = thread.get_ident() self.savepoint_state += 1 tid = str(thread_ident).replace('-', '') sid = "s%s_x%d" % (tid, self.savepoint_state) self._savepoint(sid) return sid def savepoint_rollback(self, sid): """ Rolls back the most recent savepoint (if one exists). Does nothing if savepoints are not supported. """ self.validate_thread_sharing() if self.savepoint_state: self._savepoint_rollback(sid) def savepoint_commit(self, sid): """ Commits the most recent savepoint (if one exists). Does nothing if savepoints are not supported. """ self.validate_thread_sharing() if self.savepoint_state: self._savepoint_commit(sid) @contextmanager def constraint_checks_disabled(self): disabled = self.disable_constraint_checking() try: yield finally: if disabled: self.enable_constraint_checking() def disable_constraint_checking(self): """ Backends can implement as needed to temporarily disable foreign key constraint checking. """ pass def enable_constraint_checking(self): """ Backends can implement as needed to re-enable foreign key constraint checking. """ pass def check_constraints(self, table_names=None): """ Backends can override this method if they can apply constraint checking (e.g. via "SET CONSTRAINTS ALL IMMEDIATE"). Should raise an IntegrityError if any invalid foreign key references are encountered. """ pass def close(self): self.validate_thread_sharing() if self.connection is not None: self.connection.close() self.connection = None def cursor(self): self.validate_thread_sharing() if (self.use_debug_cursor or (self.use_debug_cursor is None and settings.DEBUG)): cursor = self.make_debug_cursor(self._cursor()) else: cursor = util.CursorWrapper(self._cursor(), self) return cursor def make_debug_cursor(self, cursor): return util.CursorDebugWrapper(cursor, self) class BaseDatabaseFeatures(object): allows_group_by_pk = False # True if django.db.backend.utils.typecast_timestamp is used on values # returned from dates() calls. needs_datetime_string_cast = True empty_fetchmany_value = [] update_can_self_select = True # Does the backend distinguish between '' and None? interprets_empty_strings_as_nulls = False # Does the backend allow inserting duplicate rows when a unique_together # constraint exists, but one of the unique_together columns is NULL? ignores_nulls_in_unique_constraints = True can_use_chunked_reads = True can_return_id_from_insert = False has_bulk_insert = False uses_autocommit = False uses_savepoints = False can_combine_inserts_with_and_without_auto_increment_pk = False # If True, don't use integer foreign keys referring to, e.g., positive # integer primary keys. related_fields_match_type = False allow_sliced_subqueries = True has_select_for_update = False has_select_for_update_nowait = False supports_select_related = True # Does the default test database allow multiple connections? # Usually an indication that the test database is in-memory test_db_allows_multiple_connections = True # Can an object be saved without an explicit primary key? supports_unspecified_pk = False # Can a fixture contain forward references? i.e., are # FK constraints checked at the end of transaction, or # at the end of each save operation? supports_forward_references = True # Does a dirty transaction need to be rolled back # before the cursor can be used again? requires_rollback_on_dirty_transaction = False # Does the backend allow very long model names without error? supports_long_model_names = True # Is there a REAL datatype in addition to floats/doubles? has_real_datatype = False supports_subqueries_in_group_by = True supports_bitwise_or = True # Do time/datetime fields have microsecond precision? supports_microsecond_precision = True # Does the __regex lookup support backreferencing and grouping? supports_regex_backreferencing = True # Can date/datetime lookups be performed using a string? supports_date_lookup_using_string = True # Can datetimes with timezones be used? supports_timezones = True # When performing a GROUP BY, is an ORDER BY NULL required # to remove any ordering? requires_explicit_null_ordering_when_grouping = False # Is there a 1000 item limit on query parameters? supports_1000_query_parameters = True # Can an object have a primary key of 0? MySQL says No. allows_primary_key_0 = True # Do we need to NULL a ForeignKey out, or can the constraint check be # deferred can_defer_constraint_checks = False # date_interval_sql can properly handle mixed Date/DateTime fields and timedeltas supports_mixed_date_datetime_comparisons = True # Does the backend support tablespaces? Default to False because it isn't # in the SQL standard. supports_tablespaces = False # Does the backend reset sequences between tests? supports_sequence_reset = True # Confirm support for introspected foreign keys # Every database can do this reliably, except MySQL, # which can't do it for MyISAM tables can_introspect_foreign_keys = True # Support for the DISTINCT ON clause can_distinct_on_fields = False def __init__(self, connection): self.connection = connection @cached_property def supports_transactions(self): "Confirm support for transactions" try: # Make sure to run inside a managed transaction block, # otherwise autocommit will cause the confimation to # fail. self.connection.enter_transaction_management() self.connection.managed(True) cursor = self.connection.cursor() cursor.execute('CREATE TABLE ROLLBACK_TEST (X INT)') self.connection._commit() cursor.execute('INSERT INTO ROLLBACK_TEST (X) VALUES (8)') self.connection._rollback() cursor.execute('SELECT COUNT(X) FROM ROLLBACK_TEST') count, = cursor.fetchone() cursor.execute('DROP TABLE ROLLBACK_TEST') self.connection._commit() self.connection._dirty = False finally: self.connection.leave_transaction_management() return count == 0 @cached_property def supports_stddev(self): "Confirm support for STDDEV and related stats functions" class StdDevPop(object): sql_function = 'STDDEV_POP' try: self.connection.ops.check_aggregate_support(StdDevPop()) return True except NotImplementedError: return False class BaseDatabaseOperations(object): """ This class encapsulates all backend-specific differences, such as the way a backend performs ordering or calculates the ID of a recently-inserted row. """ compiler_module = "django.db.models.sql.compiler" def __init__(self, connection): self.connection = connection self._cache = None def autoinc_sql(self, table, column): """ Returns any SQL needed to support auto-incrementing primary keys, or None if no SQL is necessary. This SQL is executed when a table is created. """ return None def cache_key_culling_sql(self): """ Returns a SQL query that retrieves the first cache key greater than the n smallest. This is used by the 'db' cache backend to determine where to start culling. """ return "SELECT cache_key FROM %s ORDER BY cache_key LIMIT 1 OFFSET %%s" def date_extract_sql(self, lookup_type, field_name): """ Given a lookup_type of 'year', 'month' or 'day', returns the SQL that extracts a value from the given date field field_name. """ raise NotImplementedError() def date_interval_sql(self, sql, connector, timedelta): """ Implements the date interval functionality for expressions """ raise NotImplementedError() def date_trunc_sql(self, lookup_type, field_name): """ Given a lookup_type of 'year', 'month' or 'day', returns the SQL that truncates the given date field field_name to a DATE object with only the given specificity. """ raise NotImplementedError() def datetime_cast_sql(self): """ Returns the SQL necessary to cast a datetime value so that it will be retrieved as a Python datetime object instead of a string. This SQL should include a '%s' in place of the field's name. """ return "%s" def deferrable_sql(self): """ Returns the SQL necessary to make a constraint "initially deferred" during a CREATE TABLE statement. """ return '' def drop_foreignkey_sql(self): """ Returns the SQL command that drops a foreign key. """ return "DROP CONSTRAINT" def drop_sequence_sql(self, table): """ Returns any SQL necessary to drop the sequence for the given table. Returns None if no SQL is necessary. """ return None def fetch_returned_insert_id(self, cursor): """ Given a cursor object that has just performed an INSERT...RETURNING statement into a table that has an auto-incrementing ID, returns the newly created ID. """ return cursor.fetchone()[0] def field_cast_sql(self, db_type): """ Given a column type (e.g. 'BLOB', 'VARCHAR'), returns the SQL necessary to cast it before using it in a WHERE statement. Note that the resulting string should contain a '%s' placeholder for the column being searched against. """ return '%s' def force_no_ordering(self): """ Returns a list used in the "ORDER BY" clause to force no ordering at all. Returning an empty list means that nothing will be included in the ordering. """ return [] def for_update_sql(self, nowait=False): """ Returns the FOR UPDATE SQL clause to lock rows for an update operation. """ if nowait: return 'FOR UPDATE NOWAIT' else: return 'FOR UPDATE' def fulltext_search_sql(self, field_name): """ Returns the SQL WHERE clause to use in order to perform a full-text search of the given field_name. Note that the resulting string should contain a '%s' placeholder for the value being searched against. """ raise NotImplementedError('Full-text search is not implemented for this database backend') def distinct_sql(self, fields): """ Returns an SQL DISTINCT clause which removes duplicate rows from the result set. If any fields are given, only the given fields are being checked for duplicates. """ if fields: raise NotImplementedError('DISTINCT ON fields is not supported by this database backend') else: return 'DISTINCT' def last_executed_query(self, cursor, sql, params): """ Returns a string of the query last executed by the given cursor, with placeholders replaced with actual values. `sql` is the raw query containing placeholders, and `params` is the sequence of parameters. These are used by default, but this method exists for database backends to provide a better implementation according to their own quoting schemes. """ from django.utils.encoding import smart_unicode, force_unicode # Convert params to contain Unicode values. to_unicode = lambda s: force_unicode(s, strings_only=True, errors='replace') if isinstance(params, (list, tuple)): u_params = tuple([to_unicode(val) for val in params]) else: u_params = dict([(to_unicode(k), to_unicode(v)) for k, v in params.items()]) return smart_unicode(sql) % u_params def last_insert_id(self, cursor, table_name, pk_name): """ Given a cursor object that has just performed an INSERT statement into a table that has an auto-incrementing ID, returns the newly created ID. This method also receives the table name and the name of the primary-key column. """ return cursor.lastrowid def lookup_cast(self, lookup_type): """ Returns the string to use in a query when performing lookups ("contains", "like", etc). The resulting string should contain a '%s' placeholder for the column being searched against. """ return "%s" def max_in_list_size(self): """ Returns the maximum number of items that can be passed in a single 'IN' list condition, or None if the backend does not impose a limit. """ return None def max_name_length(self): """ Returns the maximum length of table and column names, or None if there is no limit. """ return None def no_limit_value(self): """ Returns the value to use for the LIMIT when we are wanting "LIMIT infinity". Returns None if the limit clause can be omitted in this case. """ raise NotImplementedError def pk_default_value(self): """ Returns the value to use during an INSERT statement to specify that the field should use its default value. """ return 'DEFAULT' def process_clob(self, value): """ Returns the value of a CLOB column, for backends that return a locator object that requires additional processing. """ return value def return_insert_id(self): """ For backends that support returning the last insert ID as part of an insert query, this method returns the SQL and params to append to the INSERT query. The returned fragment should contain a format string to hold the appropriate column. """ pass def compiler(self, compiler_name): """ Returns the SQLCompiler class corresponding to the given name, in the namespace corresponding to the `compiler_module` attribute on this backend. """ if self._cache is None: self._cache = import_module(self.compiler_module) return getattr(self._cache, compiler_name) def quote_name(self, name): """ Returns a quoted version of the given table, index or column name. Does not quote the given name if it's already been quoted. """ raise NotImplementedError() def random_function_sql(self): """ Returns a SQL expression that returns a random value. """ return 'RANDOM()' def regex_lookup(self, lookup_type): """ Returns the string to use in a query when performing regular expression lookups (using "regex" or "iregex"). The resulting string should contain a '%s' placeholder for the column being searched against. If the feature is not supported (or part of it is not supported), a NotImplementedError exception can be raised. """ raise NotImplementedError def savepoint_create_sql(self, sid): """ Returns the SQL for starting a new savepoint. Only required if the "uses_savepoints" feature is True. The "sid" parameter is a string for the savepoint id. """ raise NotImplementedError def savepoint_commit_sql(self, sid): """ Returns the SQL for committing the given savepoint. """ raise NotImplementedError def savepoint_rollback_sql(self, sid): """ Returns the SQL for rolling back the given savepoint. """ raise NotImplementedError def set_time_zone_sql(self): """ Returns the SQL that will set the connection's time zone. Returns '' if the backend doesn't support time zones. """ return '' def sql_flush(self, style, tables, sequences): """ Returns a list of SQL statements required to remove all data from the given database tables (without actually removing the tables themselves). The `style` argument is a Style object as returned by either color_style() or no_style() in django.core.management.color. """ raise NotImplementedError() def sequence_reset_sql(self, style, model_list): """ Returns a list of the SQL statements required to reset sequences for the given models. The `style` argument is a Style object as returned by either color_style() or no_style() in django.core.management.color. """ return [] # No sequence reset required by default. def start_transaction_sql(self): """ Returns the SQL statement required to start a transaction. """ return "BEGIN;" def end_transaction_sql(self, success=True): if not success: return "ROLLBACK;" return "COMMIT;" def tablespace_sql(self, tablespace, inline=False): """ Returns the SQL that will be used in a query to define the tablespace. Returns '' if the backend doesn't support tablespaces. If inline is True, the SQL is appended to a row; otherwise it's appended to the entire CREATE TABLE or CREATE INDEX statement. """ return '' def prep_for_like_query(self, x): """Prepares a value for use in a LIKE query.""" from django.utils.encoding import smart_unicode return smart_unicode(x).replace("\\", "\\\\").replace("%", "\%").replace("_", "\_") # Same as prep_for_like_query(), but called for "iexact" matches, which # need not necessarily be implemented using "LIKE" in the backend. prep_for_iexact_query = prep_for_like_query def validate_autopk_value(self, value): """ Certain backends do not accept some values for "serial" fields (for example zero in MySQL). This method will raise a ValueError if the value is invalid, otherwise returns validated value. """ return value def value_to_db_date(self, value): """ Transform a date value to an object compatible with what is expected by the backend driver for date columns. """ if value is None: return None return unicode(value) def value_to_db_datetime(self, value): """ Transform a datetime value to an object compatible with what is expected by the backend driver for datetime columns. """ if value is None: return None return unicode(value) def value_to_db_time(self, value): """ Transform a time value to an object compatible with what is expected by the backend driver for time columns. """ if value is None: return None if is_aware(value): raise ValueError("Django does not support timezone-aware times.") return unicode(value) def value_to_db_decimal(self, value, max_digits, decimal_places): """ Transform a decimal.Decimal value to an object compatible with what is expected by the backend driver for decimal (numeric) columns. """ if value is None: return None return util.format_number(value, max_digits, decimal_places) def year_lookup_bounds(self, value): """ Returns a two-elements list with the lower and upper bound to be used with a BETWEEN operator to query a field value using a year lookup `value` is an int, containing the looked-up year. """ first = '%s-01-01 00:00:00' second = '%s-12-31 23:59:59.999999' return [first % value, second % value] def year_lookup_bounds_for_date_field(self, value): """ Returns a two-elements list with the lower and upper bound to be used with a BETWEEN operator to query a DateField value using a year lookup `value` is an int, containing the looked-up year. By default, it just calls `self.year_lookup_bounds`. Some backends need this hook because on their DB date fields can't be compared to values which include a time part. """ return self.year_lookup_bounds(value) def convert_values(self, value, field): """Coerce the value returned by the database backend into a consistent type that is compatible with the field type. """ internal_type = field.get_internal_type() if internal_type == 'DecimalField': return value elif internal_type and internal_type.endswith('IntegerField') or internal_type == 'AutoField': return int(value) elif internal_type in ('DateField', 'DateTimeField', 'TimeField'): return value # No field, or the field isn't known to be a decimal or integer # Default to a float return float(value) def check_aggregate_support(self, aggregate_func): """Check that the backend supports the provided aggregate This is used on specific backends to rule out known aggregates that are known to have faulty implementations. If the named aggregate function has a known problem, the backend should raise NotImplementedError. """ pass def combine_expression(self, connector, sub_expressions): """Combine a list of subexpressions into a single expression, using the provided connecting operator. This is required because operators can vary between backends (e.g., Oracle with %% and &) and between subexpression types (e.g., date expressions) """ conn = ' %s ' % connector return conn.join(sub_expressions) class BaseDatabaseIntrospection(object): """ This class encapsulates all backend-specific introspection utilities """ data_types_reverse = {} def __init__(self, connection): self.connection = connection def get_field_type(self, data_type, description): """Hook for a database backend to use the cursor description to match a Django field type to a database column. For Oracle, the column data_type on its own is insufficient to distinguish between a FloatField and IntegerField, for example.""" return self.data_types_reverse[data_type] def table_name_converter(self, name): """Apply a conversion to the name for the purposes of comparison. The default table name converter is for case sensitive comparison. """ return name def table_names(self, cursor=None): """ Returns a list of names of all tables that exist in the database. The returned table list is sorted by Python's default sorting. We do NOT use database's ORDER BY here to avoid subtle differences in sorting order between databases. """ if cursor is None: cursor = self.connection.cursor() return sorted(self.get_table_list(cursor)) def get_table_list(self, cursor): """ Returns an unsorted list of names of all tables that exist in the database. """ raise NotImplementedError def django_table_names(self, only_existing=False): """ Returns a list of all table names that have associated Django models and are in INSTALLED_APPS. If only_existing is True, the resulting list will only include the tables that actually exist in the database. """ from django.db import models, router tables = set() for app in models.get_apps(): for model in models.get_models(app): if not model._meta.managed: continue if not router.allow_syncdb(self.connection.alias, model): continue tables.add(model._meta.db_table) tables.update([f.m2m_db_table() for f in model._meta.local_many_to_many]) tables = list(tables) if only_existing: existing_tables = self.table_names() tables = [ t for t in tables if self.table_name_converter(t) in existing_tables ] return tables def installed_models(self, tables): "Returns a set of all models represented by the provided list of table names." from django.db import models, router all_models = [] for app in models.get_apps(): for model in models.get_models(app): if router.allow_syncdb(self.connection.alias, model): all_models.append(model) tables = map(self.table_name_converter, tables) return set([ m for m in all_models if self.table_name_converter(m._meta.db_table) in tables ]) def sequence_list(self): "Returns a list of information about all DB sequences for all models in all apps." from django.db import models, router apps = models.get_apps() sequence_list = [] for app in apps: for model in models.get_models(app): if not model._meta.managed: continue if not router.allow_syncdb(self.connection.alias, model): continue for f in model._meta.local_fields: if isinstance(f, models.AutoField): sequence_list.append({'table': model._meta.db_table, 'column': f.column}) break # Only one AutoField is allowed per model, so don't bother continuing. for f in model._meta.local_many_to_many: # If this is an m2m using an intermediate table, # we don't need to reset the sequence. if f.rel.through is None: sequence_list.append({'table': f.m2m_db_table(), 'column': None}) return sequence_list def get_key_columns(self, cursor, table_name): """ Backends can override this to return a list of (column_name, referenced_table_name, referenced_column_name) for all key columns in given table. """ raise NotImplementedError def get_primary_key_column(self, cursor, table_name): """ Backends can override this to return the column name of the primary key for the given table. """ raise NotImplementedError def get_indexes(self, cursor, table_name): """ Returns a dictionary of indexed fieldname -> infodict for the given table, where each infodict is in the format: {'primary_key': boolean representing whether it's the primary key, 'unique': boolean representing whether it's a unique index} Only single-column indexes are introspected. """ raise NotImplementedError class BaseDatabaseClient(object): """ This class encapsulates all backend-specific methods for opening a client shell. """ # This should be a string representing the name of the executable # (e.g., "psql"). Subclasses must override this. executable_name = None def __init__(self, connection): # connection is an instance of BaseDatabaseWrapper. self.connection = connection def runshell(self): raise NotImplementedError() class BaseDatabaseValidation(object): """ This class encapsualtes all backend-specific model validation. """ def __init__(self, connection): self.connection = connection def validate_field(self, errors, opts, f): "By default, there is no backend-specific validation" pass
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKWOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPT2Config, T5Config, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeq2SeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPT2LMHeadModel, TFRobertaForMaskedLM, TFT5ForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpt2.modeling_tf_gpt2 import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.t5.modeling_tf_t5 import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPT2LMHeadModel, RobertaForMaskedLM, T5ForConditionalGeneration, ) @is_pt_tf_cross_test class TFPTAutoModelTest(unittest.TestCase): @slow def test_model_from_pretrained(self): import h5py self.assertTrue(h5py.version.hdf5_version.startswith("1.10")) # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModel.from_pretrained(model_name, from_pt=True) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertModel) model = AutoModel.from_pretrained(model_name, from_tf=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertModel) @slow def test_model_for_pretraining_from_pretrained(self): import h5py self.assertTrue(h5py.version.hdf5_version.startswith("1.10")) # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModelForPreTraining.from_pretrained(model_name, from_pt=True) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertForPreTraining) model = AutoModelForPreTraining.from_pretrained(model_name, from_tf=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForPreTraining) @slow def test_model_for_causal_lm(self): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, GPT2Config) model = TFAutoModelForCausalLM.from_pretrained(model_name, from_pt=True) model, loading_info = TFAutoModelForCausalLM.from_pretrained( model_name, output_loading_info=True, from_pt=True ) self.assertIsNotNone(model) self.assertIsInstance(model, TFGPT2LMHeadModel) model = AutoModelForCausalLM.from_pretrained(model_name, from_tf=True) model, loading_info = AutoModelForCausalLM.from_pretrained( model_name, output_loading_info=True, from_tf=True ) self.assertIsNotNone(model) self.assertIsInstance(model, GPT2LMHeadModel) @slow def test_lmhead_model_from_pretrained(self): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModelWithLMHead.from_pretrained(model_name, from_pt=True) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertForMaskedLM) model = AutoModelWithLMHead.from_pretrained(model_name, from_tf=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForMaskedLM) @slow def test_model_for_masked_lm(self): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModelForMaskedLM.from_pretrained(model_name, from_pt=True) model, loading_info = TFAutoModelForMaskedLM.from_pretrained( model_name, output_loading_info=True, from_pt=True ) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertForMaskedLM) model = AutoModelForMaskedLM.from_pretrained(model_name, from_tf=True) model, loading_info = AutoModelForMaskedLM.from_pretrained( model_name, output_loading_info=True, from_tf=True ) self.assertIsNotNone(model) self.assertIsInstance(model, BertForMaskedLM) @slow def test_model_for_encoder_decoder_lm(self): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, T5Config) model = TFAutoModelForSeq2SeqLM.from_pretrained(model_name, from_pt=True) model, loading_info = TFAutoModelForSeq2SeqLM.from_pretrained( model_name, output_loading_info=True, from_pt=True ) self.assertIsNotNone(model) self.assertIsInstance(model, TFT5ForConditionalGeneration) model = AutoModelForSeq2SeqLM.from_pretrained(model_name, from_tf=True) model, loading_info = AutoModelForSeq2SeqLM.from_pretrained( model_name, output_loading_info=True, from_tf=True ) self.assertIsNotNone(model) self.assertIsInstance(model, T5ForConditionalGeneration) @slow def test_sequence_classification_model_from_pretrained(self): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModelForSequenceClassification.from_pretrained(model_name, from_pt=True) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertForSequenceClassification) model = AutoModelForSequenceClassification.from_pretrained(model_name, from_tf=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForSequenceClassification) @slow def test_question_answering_model_from_pretrained(self): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: config = AutoConfig.from_pretrained(model_name) self.assertIsNotNone(config) self.assertIsInstance(config, BertConfig) model = TFAutoModelForQuestionAnswering.from_pretrained(model_name, from_pt=True) self.assertIsNotNone(model) self.assertIsInstance(model, TFBertForQuestionAnswering) model = AutoModelForQuestionAnswering.from_pretrained(model_name, from_tf=True) self.assertIsNotNone(model) self.assertIsInstance(model, BertForQuestionAnswering) def test_from_pretrained_identifier(self): model = TFAutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER, from_pt=True) self.assertIsInstance(model, TFBertForMaskedLM) self.assertEqual(model.num_parameters(), 14410) self.assertEqual(model.num_parameters(only_trainable=True), 14410) model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER, from_tf=True) self.assertIsInstance(model, BertForMaskedLM) self.assertEqual(model.num_parameters(), 14410) self.assertEqual(model.num_parameters(only_trainable=True), 14410) def test_from_identifier_from_model_type(self): model = TFAutoModelWithLMHead.from_pretrained(DUMMY_UNKWOWN_IDENTIFIER, from_pt=True) self.assertIsInstance(model, TFRobertaForMaskedLM) self.assertEqual(model.num_parameters(), 14410) self.assertEqual(model.num_parameters(only_trainable=True), 14410) model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKWOWN_IDENTIFIER, from_tf=True) self.assertIsInstance(model, RobertaForMaskedLM) self.assertEqual(model.num_parameters(), 14410) self.assertEqual(model.num_parameters(only_trainable=True), 14410)
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Estimator related util.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools from tensorflow.python.platform import test from tensorflow.python.util import function_utils def silly_example_function(): pass class SillyCallableClass(object): def __call__(self): pass class FnArgsTest(test.TestCase): def test_simple_function(self): def fn(a, b): return a + b self.assertEqual(('a', 'b'), function_utils.fn_args(fn)) def test_callable(self): class Foo(object): def __call__(self, a, b): return a + b self.assertEqual(('a', 'b'), function_utils.fn_args(Foo())) def test_bound_method(self): class Foo(object): def bar(self, a, b): return a + b self.assertEqual(('a', 'b'), function_utils.fn_args(Foo().bar)) def test_bound_method_no_self(self): class Foo(object): def bar(*args): # pylint:disable=no-method-argument return args[1] + args[2] self.assertEqual((), function_utils.fn_args(Foo().bar)) def test_partial_function(self): expected_test_arg = 123 def fn(a, test_arg): if test_arg != expected_test_arg: return ValueError('partial fn does not work correctly') return a wrapped_fn = functools.partial(fn, test_arg=123) self.assertEqual(('a',), function_utils.fn_args(wrapped_fn)) def test_partial_function_with_positional_args(self): expected_test_arg = 123 def fn(test_arg, a): if test_arg != expected_test_arg: return ValueError('partial fn does not work correctly') return a wrapped_fn = functools.partial(fn, 123) self.assertEqual(('a',), function_utils.fn_args(wrapped_fn)) self.assertEqual(3, wrapped_fn(3)) self.assertEqual(3, wrapped_fn(a=3)) def test_double_partial(self): expected_test_arg1 = 123 expected_test_arg2 = 456 def fn(a, test_arg1, test_arg2): if test_arg1 != expected_test_arg1 or test_arg2 != expected_test_arg2: return ValueError('partial does not work correctly') return a wrapped_fn = functools.partial(fn, test_arg2=456) double_wrapped_fn = functools.partial(wrapped_fn, test_arg1=123) self.assertEqual(('a',), function_utils.fn_args(double_wrapped_fn)) def test_double_partial_with_positional_args_in_outer_layer(self): expected_test_arg1 = 123 expected_test_arg2 = 456 def fn(test_arg1, a, test_arg2): if test_arg1 != expected_test_arg1 or test_arg2 != expected_test_arg2: return ValueError('partial fn does not work correctly') return a wrapped_fn = functools.partial(fn, test_arg2=456) double_wrapped_fn = functools.partial(wrapped_fn, 123) self.assertEqual(('a',), function_utils.fn_args(double_wrapped_fn)) self.assertEqual(3, double_wrapped_fn(3)) # pylint: disable=no-value-for-parameter self.assertEqual(3, double_wrapped_fn(a=3)) # pylint: disable=no-value-for-parameter def test_double_partial_with_positional_args_in_both_layers(self): expected_test_arg1 = 123 expected_test_arg2 = 456 def fn(test_arg1, test_arg2, a): if test_arg1 != expected_test_arg1 or test_arg2 != expected_test_arg2: return ValueError('partial fn does not work correctly') return a wrapped_fn = functools.partial(fn, 123) # binds to test_arg1 double_wrapped_fn = functools.partial(wrapped_fn, 456) # binds to test_arg2 self.assertEqual(('a',), function_utils.fn_args(double_wrapped_fn)) self.assertEqual(3, double_wrapped_fn(3)) # pylint: disable=no-value-for-parameter self.assertEqual(3, double_wrapped_fn(a=3)) # pylint: disable=no-value-for-parameter class HasKwargsTest(test.TestCase): def test_simple_function(self): fn_has_kwargs = lambda **x: x self.assertTrue(function_utils.has_kwargs(fn_has_kwargs)) fn_has_no_kwargs = lambda x: x self.assertFalse(function_utils.has_kwargs(fn_has_no_kwargs)) def test_callable(self): class FooHasKwargs(object): def __call__(self, **x): del x self.assertTrue(function_utils.has_kwargs(FooHasKwargs())) class FooHasNoKwargs(object): def __call__(self, x): del x self.assertFalse(function_utils.has_kwargs(FooHasNoKwargs())) def test_bound_method(self): class FooHasKwargs(object): def fn(self, **x): del x self.assertTrue(function_utils.has_kwargs(FooHasKwargs().fn)) class FooHasNoKwargs(object): def fn(self, x): del x self.assertFalse(function_utils.has_kwargs(FooHasNoKwargs().fn)) def test_partial_function(self): expected_test_arg = 123 def fn_has_kwargs(test_arg, **x): if test_arg != expected_test_arg: return ValueError('partial fn does not work correctly') return x wrapped_fn = functools.partial(fn_has_kwargs, test_arg=123) self.assertTrue(function_utils.has_kwargs(wrapped_fn)) some_kwargs = dict(x=1, y=2, z=3) self.assertEqual(wrapped_fn(**some_kwargs), some_kwargs) def fn_has_no_kwargs(x, test_arg): if test_arg != expected_test_arg: return ValueError('partial fn does not work correctly') return x wrapped_fn = functools.partial(fn_has_no_kwargs, test_arg=123) self.assertFalse(function_utils.has_kwargs(wrapped_fn)) some_arg = 1 self.assertEqual(wrapped_fn(some_arg), some_arg) def test_double_partial(self): expected_test_arg1 = 123 expected_test_arg2 = 456 def fn_has_kwargs(test_arg1, test_arg2, **x): if test_arg1 != expected_test_arg1 or test_arg2 != expected_test_arg2: return ValueError('partial does not work correctly') return x wrapped_fn = functools.partial(fn_has_kwargs, test_arg2=456) double_wrapped_fn = functools.partial(wrapped_fn, test_arg1=123) self.assertTrue(function_utils.has_kwargs(double_wrapped_fn)) some_kwargs = dict(x=1, y=2, z=3) self.assertEqual(double_wrapped_fn(**some_kwargs), some_kwargs) def fn_has_no_kwargs(x, test_arg1, test_arg2): if test_arg1 != expected_test_arg1 or test_arg2 != expected_test_arg2: return ValueError('partial does not work correctly') return x wrapped_fn = functools.partial(fn_has_no_kwargs, test_arg2=456) double_wrapped_fn = functools.partial(wrapped_fn, test_arg1=123) self.assertFalse(function_utils.has_kwargs(double_wrapped_fn)) some_arg = 1 self.assertEqual(double_wrapped_fn(some_arg), some_arg) # pylint: disable=no-value-for-parameter def test_raises_type_error(self): with self.assertRaisesRegex(TypeError, 'should be a callable'): function_utils.has_kwargs('not a function') class GetFuncNameTest(test.TestCase): def testWithSimpleFunction(self): self.assertEqual( 'silly_example_function', function_utils.get_func_name(silly_example_function)) def testWithClassMethod(self): self.assertEqual( 'GetFuncNameTest.testWithClassMethod', function_utils.get_func_name(self.testWithClassMethod)) def testWithCallableClass(self): callable_instance = SillyCallableClass() self.assertRegex( function_utils.get_func_name(callable_instance), '<.*SillyCallableClass.*>') def testWithFunctoolsPartial(self): partial = functools.partial(silly_example_function) self.assertRegex( function_utils.get_func_name(partial), '<.*functools.partial.*>') def testWithLambda(self): anon_fn = lambda x: x self.assertEqual('<lambda>', function_utils.get_func_name(anon_fn)) def testRaisesWithNonCallableObject(self): with self.assertRaises(ValueError): function_utils.get_func_name(None) class GetFuncCodeTest(test.TestCase): def testWithSimpleFunction(self): code = function_utils.get_func_code(silly_example_function) self.assertIsNotNone(code) self.assertRegex(code.co_filename, 'function_utils_test.py') def testWithClassMethod(self): code = function_utils.get_func_code(self.testWithClassMethod) self.assertIsNotNone(code) self.assertRegex(code.co_filename, 'function_utils_test.py') def testWithCallableClass(self): callable_instance = SillyCallableClass() code = function_utils.get_func_code(callable_instance) self.assertIsNotNone(code) self.assertRegex(code.co_filename, 'function_utils_test.py') def testWithLambda(self): anon_fn = lambda x: x code = function_utils.get_func_code(anon_fn) self.assertIsNotNone(code) self.assertRegex(code.co_filename, 'function_utils_test.py') def testWithFunctoolsPartial(self): partial = functools.partial(silly_example_function) code = function_utils.get_func_code(partial) self.assertIsNone(code) def testRaisesWithNonCallableObject(self): with self.assertRaises(ValueError): function_utils.get_func_code(None) if __name__ == '__main__': test.main()
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from msrest import Serializer from .. import models as _models from .._vendor import _convert_request, _format_url_section T = TypeVar('T') JSONType = Any ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False def build_get_request( subscription_id: str, resource_group_name: str, registry_name: str, replication_name: str, **kwargs: Any ) -> HttpRequest: api_version = "2021-06-01-preview" accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ContainerRegistry/registries/{registryName}/replications/{replicationName}') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str', min_length=1), "registryName": _SERIALIZER.url("registry_name", registry_name, 'str', max_length=50, min_length=5, pattern=r'^[a-zA-Z0-9]*$'), "replicationName": _SERIALIZER.url("replication_name", replication_name, 'str', max_length=50, min_length=5, pattern=r'^[a-zA-Z0-9]*$'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_create_request_initial( subscription_id: str, resource_group_name: str, registry_name: str, replication_name: str, *, json: JSONType = None, content: Any = None, **kwargs: Any ) -> HttpRequest: content_type = kwargs.pop('content_type', None) # type: Optional[str] api_version = "2021-06-01-preview" accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ContainerRegistry/registries/{registryName}/replications/{replicationName}') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str', min_length=1), "registryName": _SERIALIZER.url("registry_name", registry_name, 'str', max_length=50, min_length=5, pattern=r'^[a-zA-Z0-9]*$'), "replicationName": _SERIALIZER.url("replication_name", replication_name, 'str', max_length=50, min_length=5, pattern=r'^[a-zA-Z0-9]*$'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="PUT", url=url, params=query_parameters, headers=header_parameters, json=json, content=content, **kwargs ) def build_delete_request_initial( subscription_id: str, resource_group_name: str, registry_name: str, replication_name: str, **kwargs: Any ) -> HttpRequest: api_version = "2021-06-01-preview" # Construct URL url = kwargs.pop("template_url", '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ContainerRegistry/registries/{registryName}/replications/{replicationName}') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str', min_length=1), "registryName": _SERIALIZER.url("registry_name", registry_name, 'str', max_length=50, min_length=5, pattern=r'^[a-zA-Z0-9]*$'), "replicationName": _SERIALIZER.url("replication_name", replication_name, 'str', max_length=50, min_length=5, pattern=r'^[a-zA-Z0-9]*$'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') return HttpRequest( method="DELETE", url=url, params=query_parameters, **kwargs ) def build_update_request_initial( subscription_id: str, resource_group_name: str, registry_name: str, replication_name: str, *, json: JSONType = None, content: Any = None, **kwargs: Any ) -> HttpRequest: content_type = kwargs.pop('content_type', None) # type: Optional[str] api_version = "2021-06-01-preview" accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ContainerRegistry/registries/{registryName}/replications/{replicationName}') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str', min_length=1), "registryName": _SERIALIZER.url("registry_name", registry_name, 'str', max_length=50, min_length=5, pattern=r'^[a-zA-Z0-9]*$'), "replicationName": _SERIALIZER.url("replication_name", replication_name, 'str', max_length=50, min_length=5, pattern=r'^[a-zA-Z0-9]*$'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="PATCH", url=url, params=query_parameters, headers=header_parameters, json=json, content=content, **kwargs ) def build_list_request( subscription_id: str, resource_group_name: str, registry_name: str, **kwargs: Any ) -> HttpRequest: api_version = "2021-06-01-preview" accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ContainerRegistry/registries/{registryName}/replications') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str', min_length=1), "registryName": _SERIALIZER.url("registry_name", registry_name, 'str', max_length=50, min_length=5, pattern=r'^[a-zA-Z0-9]*$'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['api-version'] = _SERIALIZER.query("api_version", api_version, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs ) class ReplicationsOperations(object): """ReplicationsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.containerregistry.v2021_06_01_preview.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace def get( self, resource_group_name: str, registry_name: str, replication_name: str, **kwargs: Any ) -> "_models.Replication": """Gets the properties of the specified replication. :param resource_group_name: The name of the resource group to which the container registry belongs. :type resource_group_name: str :param registry_name: The name of the container registry. :type registry_name: str :param replication_name: The name of the replication. :type replication_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: Replication, or the result of cls(response) :rtype: ~azure.mgmt.containerregistry.v2021_06_01_preview.models.Replication :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.Replication"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, registry_name=registry_name, replication_name=replication_name, template_url=self.get.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('Replication', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ContainerRegistry/registries/{registryName}/replications/{replicationName}'} # type: ignore def _create_initial( self, resource_group_name: str, registry_name: str, replication_name: str, replication: "_models.Replication", **kwargs: Any ) -> "_models.Replication": cls = kwargs.pop('cls', None) # type: ClsType["_models.Replication"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] _json = self._serialize.body(replication, 'Replication') request = build_create_request_initial( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, registry_name=registry_name, replication_name=replication_name, content_type=content_type, json=_json, template_url=self._create_initial.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('Replication', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('Replication', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ContainerRegistry/registries/{registryName}/replications/{replicationName}'} # type: ignore @distributed_trace def begin_create( self, resource_group_name: str, registry_name: str, replication_name: str, replication: "_models.Replication", **kwargs: Any ) -> LROPoller["_models.Replication"]: """Creates a replication for a container registry with the specified parameters. :param resource_group_name: The name of the resource group to which the container registry belongs. :type resource_group_name: str :param registry_name: The name of the container registry. :type registry_name: str :param replication_name: The name of the replication. :type replication_name: str :param replication: The parameters for creating a replication. :type replication: ~azure.mgmt.containerregistry.v2021_06_01_preview.models.Replication :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either Replication or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.containerregistry.v2021_06_01_preview.models.Replication] :raises: ~azure.core.exceptions.HttpResponseError """ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] polling = kwargs.pop('polling', True) # type: Union[bool, azure.core.polling.PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.Replication"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._create_initial( resource_group_name=resource_group_name, registry_name=registry_name, replication_name=replication_name, replication=replication, content_type=content_type, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) def get_long_running_output(pipeline_response): response = pipeline_response.http_response deserialized = self._deserialize('Replication', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ContainerRegistry/registries/{registryName}/replications/{replicationName}'} # type: ignore def _delete_initial( self, resource_group_name: str, registry_name: str, replication_name: str, **kwargs: Any ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_delete_request_initial( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, registry_name=registry_name, replication_name=replication_name, template_url=self._delete_initial.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ContainerRegistry/registries/{registryName}/replications/{replicationName}'} # type: ignore @distributed_trace def begin_delete( self, resource_group_name: str, registry_name: str, replication_name: str, **kwargs: Any ) -> LROPoller[None]: """Deletes a replication from a container registry. :param resource_group_name: The name of the resource group to which the container registry belongs. :type resource_group_name: str :param registry_name: The name of the container registry. :type registry_name: str :param replication_name: The name of the replication. :type replication_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises: ~azure.core.exceptions.HttpResponseError """ polling = kwargs.pop('polling', True) # type: Union[bool, azure.core.polling.PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._delete_initial( resource_group_name=resource_group_name, registry_name=registry_name, replication_name=replication_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ContainerRegistry/registries/{registryName}/replications/{replicationName}'} # type: ignore def _update_initial( self, resource_group_name: str, registry_name: str, replication_name: str, replication_update_parameters: "_models.ReplicationUpdateParameters", **kwargs: Any ) -> "_models.Replication": cls = kwargs.pop('cls', None) # type: ClsType["_models.Replication"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] _json = self._serialize.body(replication_update_parameters, 'ReplicationUpdateParameters') request = build_update_request_initial( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, registry_name=registry_name, replication_name=replication_name, content_type=content_type, json=_json, template_url=self._update_initial.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('Replication', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('Replication', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ContainerRegistry/registries/{registryName}/replications/{replicationName}'} # type: ignore @distributed_trace def begin_update( self, resource_group_name: str, registry_name: str, replication_name: str, replication_update_parameters: "_models.ReplicationUpdateParameters", **kwargs: Any ) -> LROPoller["_models.Replication"]: """Updates a replication for a container registry with the specified parameters. :param resource_group_name: The name of the resource group to which the container registry belongs. :type resource_group_name: str :param registry_name: The name of the container registry. :type registry_name: str :param replication_name: The name of the replication. :type replication_name: str :param replication_update_parameters: The parameters for updating a replication. :type replication_update_parameters: ~azure.mgmt.containerregistry.v2021_06_01_preview.models.ReplicationUpdateParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either Replication or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.containerregistry.v2021_06_01_preview.models.Replication] :raises: ~azure.core.exceptions.HttpResponseError """ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] polling = kwargs.pop('polling', True) # type: Union[bool, azure.core.polling.PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.Replication"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._update_initial( resource_group_name=resource_group_name, registry_name=registry_name, replication_name=replication_name, replication_update_parameters=replication_update_parameters, content_type=content_type, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) def get_long_running_output(pipeline_response): response = pipeline_response.http_response deserialized = self._deserialize('Replication', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ContainerRegistry/registries/{registryName}/replications/{replicationName}'} # type: ignore @distributed_trace def list( self, resource_group_name: str, registry_name: str, **kwargs: Any ) -> Iterable["_models.ReplicationListResult"]: """Lists all the replications for the specified container registry. :param resource_group_name: The name of the resource group to which the container registry belongs. :type resource_group_name: str :param registry_name: The name of the container registry. :type registry_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ReplicationListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.containerregistry.v2021_06_01_preview.models.ReplicationListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ReplicationListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) def prepare_request(next_link=None): if not next_link: request = build_list_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, registry_name=registry_name, template_url=self.list.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, registry_name=registry_name, template_url=next_link, ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request def extract_data(pipeline_response): deserialized = self._deserialize("ReplicationListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ContainerRegistry/registries/{registryName}/replications'} # type: ignore
# -*- coding: utf-8 -*- # Copyright 2020 Green Valley Belgium NV # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # @@license_version:1.7@@ import logging import os import urllib from google.appengine.ext import webapp from google.appengine.ext.webapp import template from mcfw.utils import chunks from rogerthat.bizz import channel from rogerthat.bizz.profile import create_user_profile from rogerthat.consts import DEBUG from rogerthat.dal.mobile import get_user_active_mobiles_count from rogerthat.dal.profile import get_profile_info, get_service_or_user_profile from rogerthat.dal.service import get_service_identities_by_service_identity_users from rogerthat.pages.legal import get_current_document_version, DOC_TERMS_SERVICE, DOC_TERMS from rogerthat.restapi.roles import login_as from rogerthat.rpc import users from rogerthat.settings import get_server_settings from rogerthat.utils.service import create_service_identity_user class CrossDomainDotXml(webapp.RequestHandler): def get(self): self.response.headers['Content-Type'] = 'text/xml' self.response.out.write("""<?xml version="1.0"?> <!DOCTYPE cross-domain-policy SYSTEM "http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd"> <cross-domain-policy> <allow-access-from domain="*" /> </cross-domain-policy> """) class RobotsTxt(webapp.RequestHandler): def get(self): self.response.headers['Content-Type'] = 'text/plain' self.response.out.write("""User-agent: * Disallow: """) class MainPage(webapp.RequestHandler): def head(self): pass def get_request_host(self): host = os.environ.get('HTTP_X_FORWARDED_HOST') if not host: host = os.environ.get('HTTP_HOST') return host def get_custom_signin_path(self, host): settings = get_server_settings() paths = settings.customSigninPaths mapping = dict((h, p) for h, p in chunks(paths, 2)) return mapping.get(host) def get(self): user = users.get_current_user() if not user: signin_path = self.get_custom_signin_path(self.get_request_host()) if signin_path and self.request.path != signin_path: return self.redirect(str(signin_path)) owning_user_services = None should_show_service_picker = False session_user = None session_service_identity_user = None loading_enabled = False if user: session_ = users.get_current_session() # Support reloading user_account = self.request.get("user") if user_account and user_account != user.email(): if not login_as(user_account): self.response.write("<html><body>You don't have access to account %s. This problem is logged and may cause legal action against you.</body></html>" % user_account) return user = users.get_current_user() session_ = users.get_current_session() mobile_count = get_user_active_mobiles_count(user) my_profile_info = get_profile_info(user, skip_warning=True) if not my_profile_info: my_profile_info = create_user_profile(user, user.email()[:40]) # todo communities set community_id myavatarid = my_profile_info.avatarId if my_profile_info.isServiceIdentity: myname = my_profile_info.name or my_profile_info.qualifiedIdentifier or user.email() else: myname = my_profile_info.name or user.email() if my_profile_info.owningServiceEmails and my_profile_info.isCreatedForService: should_show_service_picker = True my_owning_service_identity_users = [create_service_identity_user(users.User(owning_service_email)) for owning_service_email in my_profile_info.owningServiceEmails] my_owning_service_identities = get_service_identities_by_service_identity_users(my_owning_service_identity_users) result = list() for si in my_owning_service_identities: result.append(dict(is_default=si.is_default, service_user=si.service_user.email(), service_identity_user=si.service_identity_user.email(), name=si.name, description=si.description, avatar_url=si.avatarUrl)) owning_user_services = result myname = myname.replace("\\", "\\\\").replace("'", "\\'") is_service = my_profile_info.isServiceIdentity loading_enabled = not is_service user_services = session_.service_users session_user = session_.user session_service_identity_user = session_.service_identity_user else: mobile_count = 0 myavatarid = None myname = None is_service = False user_services = None owning_user_services = None template_params = { 'continue': "/", 'debug': DEBUG, 'user': user, 'myavatarid': myavatarid, 'myname': myname, 'mobile_count': mobile_count, 'is_service': is_service, 'session': users.create_logout_url("/") if user else users.create_login_url("/"), "loading_enabled": loading_enabled, 'user_services': user_services, 'owning_user_services': owning_user_services, 'session_user': session_user, 'session_service_identity_user': session_service_identity_user, 'service_profile': None, 'email': self.request.get("email", None)} channel.append_firebase_params(template_params) if user: profile = get_service_or_user_profile(user) if is_service: if profile.tos_version != get_current_document_version(DOC_TERMS_SERVICE) and not profile.solution: logging.info('Redirecting to service terms and conditions page') self.redirect('/terms-and-conditions') return elif profile.tos_version != get_current_document_version(DOC_TERMS) and not profile.isCreatedForService: logging.info('Redirecting to user terms and conditions page') self.redirect('/terms-and-conditions') return else: profile = None if is_service: service_profile = profile template_params['service_profile'] = service_profile if not self.request.get('sp') and service_profile.solution: params = self.request.GET redirect_url = '/%s/' % service_profile.solution if params: params = dict((k, v.decode('utf8')) for k, v in params.iteritems()) redirect_url = "%s?%s" % (redirect_url, urllib.urlencode(params)) logging.info("Redirecting to url: %s" % redirect_url) self.redirect(redirect_url) return if user: if should_show_service_picker: page = "pick_account.html" else: page = "main.html" elif self.request.get("sp", None): template_params["bg_image_uri"] = _get_front_page_image_by_ip(os.environ.get('HTTP_X_FORWARDED_FOR', None)) page = 'main_unauthenticated.html' else: self.redirect('/customers/signin') return path = os.path.join(os.path.dirname(__file__), page) self.response.out.write(template.render(path, template_params)) FRONT_PAGE_IMAGES = [([41, 189, 192, 0], [41, 189, 223, 255], "/static/images/bg-image-cd.jpg"), ([41, 243, 0, 0], [41, 243, 255, 255], "/static/images/bg-image-cd.jpg"), ([197, 189, 0, 0], [197, 189, 127, 255], "/static/images/bg-image-cd.jpg")] def _get_front_page_image_by_ip(ip_addresses): if ip_addresses: exceptions = list() splitted = ip_addresses.split(',') for ip_address in splitted: try: ip_parts = [int(part) for part in ip_address.strip().split(".")] for from_ip, to_ip, url in FRONT_PAGE_IMAGES: if from_ip <= ip_parts <= to_ip: return url except Exception, e: logging.debug("Could not determine background image for IP '%s'.", ip_address, exc_info=True) exceptions.append(e) if splitted and len(splitted) == len(exceptions): logging.warn("Could not determine background image for IP '%s'. Showing the default background image.", ip_addresses) return "/static/images/bg-image.jpg"
import windows.security from windows.security import SecurityDescriptor from .pfwtest import * import ctypes # CC -> Create-Child -> 1 # GR -> Generic read -> 0x80000000L # AN -> Anonymous -> S-1-5-7 TEST_SDDL = [ "O:ANG:AND:(A;;RPWPCCDCLCSWRCWDWOGA;;;S-1-0-0)(D;;RPWPCCDCLCSWRCWDWOGA;;;S-1-0-0)", "O:ANG:AND:(A;;GR;;;S-1-0-0)", "O:ANG:AND:(OA;;CC;;00000042-0043-0044-0045-000000000000;S-1-0-0)", "O:ANG:AND:(OA;;CCGR;00004242-0043-0044-0045-000000000000;00000042-0043-0044-0045-000000000000;S-1-0-0)", ] @pytest.mark.parametrize("sddl", TEST_SDDL) def test_security_descriptor_from_string(sddl): sd = SecurityDescriptor.from_string(sddl) TEST_BIN_SDDL = [ # TapiSrv security descriptor b'\x01\x00\x14\x80\x8c\x00\x00\x00\x98\x00\x00\x00\x14\x00\x00\x000\x00\x00\x00\x02\x00\x1c\x00\x01\x00\x00\x00\x02\x80\x14\x00\xff\x01\x0f\x00\x01\x01\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x02\x00\\\x00\x04\x00\x00\x00\x00\x00\x14\x00\xfd\x01\x02\x00\x01\x01\x00\x00\x00\x00\x00\x05\x12\x00\x00\x00\x00\x00\x18\x00\xff\x01\x0f\x00\x01\x02\x00\x00\x00\x00\x00\x05 \x00\x00\x00 \x02\x00\x00\x00\x00\x14\x00\x9d\x01\x02\x00\x01\x01\x00\x00\x00\x00\x00\x05\x04\x00\x00\x00\x00\x00\x14\x00\x9d\x01\x02\x00\x01\x01\x00\x00\x00\x00\x00\x05\x06\x00\x00\x00\x01\x01\x00\x00\x00\x00\x00\x05\x12\x00\x00\x00\x01\x01\x00\x00\x00\x00\x00\x05\x12\x00\x00\x00', ] @pytest.mark.parametrize("binsd", TEST_BIN_SDDL) def test_security_descriptor_from_binary(binsd): sd = SecurityDescriptor.from_binary(binsd) def test_empty_security_descriptor(): esd = SecurityDescriptor.from_string("") assert esd.owner is None # Should NOT be NULL PSID but None assert esd.group is None # Should NOT be NULL PSID but None assert esd.dacl is None assert esd.sacl is None def test_security_descriptor__str__(): sddl = "D:(A;;FA;;;WD)" sd = SecurityDescriptor.from_string(sddl) assert str(sd) == sddl def test_pacl_object(): SDDL = "O:ANG:S-1-2-3D:(A;;;;;S-1-42-42)(A;;;;;S-1-42-43)(A;;;;;S-1-42-44)" dacl = SecurityDescriptor.from_string(SDDL).dacl assert dacl is not None assert len(dacl) == 3 # __len__ assert len(list(dacl)) == 3 # __iter__ assert len(dacl.aces) == 3 assert ctypes.addressof(dacl[0]) == ctypes.addressof(dacl[0]) # __getitem__ assert len([ctypes.addressof(dacl[i])for i in range(3)]) == 3 with pytest.raises(IndexError): x = dacl[3] def test_sec_descrip_owner_group(): SDDL = "O:ANG:S-1-2-3" sd = SecurityDescriptor.from_string(SDDL) assert sd.owner.to_string() == "S-1-5-7" assert sd.group.to_string() == "S-1-2-3" assert sd.dacl is None assert sd.sacl is None def test_mask_sid_ace(): SDDL = "D:(A;CIOI;CCGR;;;S-1-42-42)" # OBJECT_INHERIT_ACE(0x1L) | CONTAINER_INHERIT_ACE(0x2L) # Create-Child | GENERIC_READ(0x80000000L) sd = SecurityDescriptor.from_string(SDDL) dacl = sd.dacl assert dacl is not None ace = dacl[0] # Test the ACE assert ace.Header.AceType == gdef.ACCESS_ALLOWED_ACE_TYPE # flags + flags split assert ace.Header.AceFlags == gdef.OBJECT_INHERIT_ACE | gdef.CONTAINER_INHERIT_ACE assert set(ace.Header.flags) == {gdef.OBJECT_INHERIT_ACE, gdef.CONTAINER_INHERIT_ACE} # mask + mask split assert ace.Mask == 1 | gdef.GENERIC_READ assert set(ace.mask) == {1, gdef.GENERIC_READ} # SID assert ace.sid.to_string() == "S-1-42-42" SGUID = gdef.GUID.from_string COMPLEXE_SDDL_GUID = [ ("D:(OA;;;00000042-0043-0044-0045-000000000001;;S-1-0-0)", SGUID("00000042-0043-0044-0045-000000000001"), None), ("D:(OA;;;;00000042-0043-0044-0045-000000000000;S-1-0-0)", None, SGUID("00000042-0043-0044-0045-000000000000")), ("D:(OA;;;00000042-0043-0044-0045-000000000002;00000042-0043-0044-0045-000000000003;S-1-0-0)", SGUID("00000042-0043-0044-0045-000000000002"), SGUID("00000042-0043-0044-0045-000000000003")), ("D:(OA;;;;;S-1-0-0)", None, None), ] @pytest.mark.parametrize("sddl, obj_guid, inherited_object_guid", COMPLEXE_SDDL_GUID) def test_complex_ace_guid_sid(sddl, obj_guid, inherited_object_guid): sd = SecurityDescriptor.from_string(sddl) assert sd.dacl is not None ace = sd.dacl[0] assert ace.sid.to_string() == "S-1-0-0" if obj_guid is None and inherited_object_guid is None: # No GUID -> transformed in ACCESS_ALLOWED_ACE_TYPE assert ace.Header.AceType == gdef.ACCESS_ALLOWED_ACE_TYPE return assert ace.object_type == obj_guid assert ace.inherited_object_type == inherited_object_guid ALL_DACL_ACE_TYPES = [ ("D:(A;;;;;S-1-2-3)", gdef.ACCESS_ALLOWED_ACE_TYPE), ("D:(D;;;;;S-1-2-3)", gdef.ACCESS_DENIED_ACE_TYPE), ("D:(OA;;;;00000042-0043-0044-0045-000000000000;S-1-0-0)", gdef.ACCESS_ALLOWED_OBJECT_ACE_TYPE), ("D:(OD;;;;00000042-0043-0044-0045-000000000001;S-1-0-0)", gdef.ACCESS_DENIED_OBJECT_ACE_TYPE), ("D:AI(XA;;GR;;;WD;(YOLO))", gdef.ACCESS_ALLOWED_CALLBACK_ACE_TYPE), ("D:AI(XD;;GR;;;WD;(YOLO))", gdef.ACCESS_DENIED_CALLBACK_ACE_TYPE), ("D:AI(ZA;;GR;;00000042-0043-0044-0045-000000000001;WD;(YOLO))", gdef.ACCESS_ALLOWED_CALLBACK_OBJECT_ACE_TYPE), # NO SDDL DEFINE FOR : gdef.ACCESS_DENIED_CALLBACK_OBJECT_ACE_TYPE) ] @pytest.mark.parametrize("sddl, ace_type", ALL_DACL_ACE_TYPES) def test_ace_dacl_subclass(sddl, ace_type): sd = SecurityDescriptor.from_string(sddl) dacl = sd.dacl assert len(dacl) == 1 ace = dacl[0] # Will raise if AceHeader is not handled assert ace.Header.AceType == ace_type # SACL STUFF ALL_SACL_ACE_TYPES = [ ("S:(AU;;;;;AN)", gdef.SYSTEM_AUDIT_ACE_TYPE), ("S:(ML;;;;;S-1-16-4000)", gdef.SYSTEM_MANDATORY_LABEL_ACE_TYPE), # S-1-19-512-4096 what retrieved in a ACE from a directory in C:\Program Files\WindowsApps\ ("S:(TL;;;;;S-1-19-512-4096)", gdef.SYSTEM_PROCESS_TRUST_LABEL_ACE_TYPE), ("S:(SP;;;;;S-1-17-1)", gdef.SYSTEM_SCOPED_POLICY_ID_ACE_TYPE), ("S:(OU;;;;00000042-0043-0044-0045-000000000000;AN)", gdef.SYSTEM_AUDIT_OBJECT_ACE_TYPE), ("S:(XU;;;;;S-1-2-3;(YOLO))", gdef.SYSTEM_AUDIT_CALLBACK_ACE_TYPE), ## Reserved for futur use (RFS): not handled by ADVAPI.dll # ("S:(AL;;;;;S-1-2-3)", gdef.SYSTEM_ALARM_OBJECT_ACE_TYPE), #("S:(OL;;;;00000042-0043-0044-0045-000000000000;AN)", gdef.SYSTEM_ALARM_OBJECT_ACE_TYPE), ## NO SDDL FOR: # SYSTEM_ALARM_CALLBACK_ACE_TYPE # SYSTEM_AUDIT_CALLBACK_OBJECT_ACE_TYPE # SYSTEM_ALARM_CALLBACK_OBJECT_ACE_TYPE ] @pytest.mark.parametrize("sddl, ace_type", ALL_SACL_ACE_TYPES) def test_ace_sacl_subclass(sddl, ace_type): sd = SecurityDescriptor.from_string(sddl) sacl = sd.sacl assert len(sacl) == 1 ace = sacl[0] # Will raise if AceHeader is not handled assert ace.Header.AceType == ace_type RESOURCE_ATTRIBUTES_SDDLS = [ ("""S:(RA;;;;;WD; ("TestName",TI,0,-2, -1, 0, 1, 2))""", (-2, -1, 0, 1, 2 )), ("""S:(RA;;;;;WD; ("TestName",TU,0,3,4,42))""", (3, 4, 42)), ("""S:(RA;;;;;WD; ("TestName",TS,0,"Windows","SQL", ""))""", ("Windows", "SQL", "")), ("""S:(RA;;;;;WD; ("TestName",TD,0, AN, S-1-2-3-4-5-6-7-8-9))""", (gdef.PSID.from_string("S-1-5-7"), gdef.PSID.from_string("S-1-2-3-4-5-6-7-8-9"))), ("""S:(RA;;;;;WD; ("TestName",TX,0, 42000042, 0123456789abcdef))""", (b"B\x00\x00B", b"\x01\x23\x45\x67\x89\xab\xcd\xef")), ("""S:(RA;;;;;WD; ("TestName",TB,0, 0, 1, 0, 0, 1))""", (False, True, False, False, True)), ] @pytest.mark.parametrize("sddl, expected_values", RESOURCE_ATTRIBUTES_SDDLS) def test_ace_resource_attribute(sddl, expected_values): sd = SecurityDescriptor.from_string(sddl) ra = sd.sacl[0] assert ra.Header.AceType == gdef.SYSTEM_RESOURCE_ATTRIBUTE_ACE_TYPE attr = ra.attribute assert attr.name == "TestName" assert attr.values == expected_values CONDITIONAL_SDDLS = [ ("D:AI(XA;;GR;;;WD;(ATTR1))", b"ATTR1"), ("D:AI(XD;;GR;;;WD;(ATTR2))", b"ATTR2"), ("S:AI(XU;;GR;;;WD;(ATTR3))", b"ATTR3") ] @pytest.mark.parametrize("sddl, expected_value", CONDITIONAL_SDDLS) def test_conditional_ace_applicationdata(sddl, expected_value): sd = SecurityDescriptor.from_string(sddl) acl = sd.dacl if acl is None: acl = sd.sacl ace = acl[0] appdata = ace.application_data # https://msdn.microsoft.com/en-us/library/hh877860.aspx assert appdata.startswith(b"artx") assert expected_value in appdata.replace(b"\x00", b"")
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sb from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor from sklearn.ensemble.partial_dependence import partial_dependence from sklearn.preprocessing import LabelEncoder from .print_message import PrintMessageMixin class Visualizer(PrintMessageMixin): """ Provides a number of descriptive functions for creating useful visualizations. Initialize the class by passing in a data set and then call the functions individually to create the plots. Each method is designed to adapt the character of the visualization based on the inputs provided. Parameters ---------- data : array-like The data set to use to create visualizations. fig_size : int, optional, default 16 Size of the plots. verbose : boolean, optional, default True If true, messages will be written to the console. logger : object, optional, default None An instantiated log writer with an open file handle. If provided, messages will be written to the log file. """ def __init__(self, data, fig_size=16, verbose=True, logger=None): PrintMessageMixin.__init__(self, verbose, logger) self.data = data self.fig_size = fig_size def feature_distributions(self, viz_type='hist', bins=None, max_features=None, grid_size=4): """ Generates feature distribution plots (histogram or kde) for each feature. Parameters ---------- viz_type : {'hist', 'kde', 'both'}, optional, default 'hist' Type of plot used for visualization. bins : int, optional, default None Number of bins to use in histogram plots. max_features : int, optional, default None The maximum number of columns in the data to plot. grid_size : int, optional, default 4 Number of vertical/horizontal plots to display in a single window. """ self.print_message('Generating feature distribution plots...') if viz_type == 'hist': hist = True kde = False elif viz_type == 'kde': hist = False kde = True elif viz_type == 'both': hist = True kde = True else: raise Exception('Visualization type not supported.') data = self.data.fillna(0) if max_features: data = data.iloc[:, :max_features] n_features = len(data.columns) plot_size = grid_size ** 2 n_plots = n_features // plot_size if n_features % plot_size == 0 else n_features // plot_size + 1 for i in range(n_plots): fig, ax = plt.subplots(grid_size, grid_size, figsize=(self.fig_size, self.fig_size / 2)) for j in range(plot_size): index = (i * plot_size) + j if index < n_features: if type(data.iloc[0, index]) is str: sb.countplot(x=data.columns[index], data=data, ax=ax[j // grid_size, j % grid_size]) else: sb.distplot(a=data.iloc[:, index], bins=bins, hist=hist, kde=kde, label=data.columns[index], ax=ax[j // grid_size, j % grid_size], kde_kws={"shade": True}) fig.tight_layout() self.print_message('Plot generation complete.') def feature_correlations(self, color_palette='coolwarm', max_features=None, annotate=False): """ Generates a correlation matrix heat map. Parameters ---------- color_palette : string, optional, default 'coolwarm' Seaborn color palette. max_features : int, optional, default None The maximum number of columns in the data to plot. annotate : boolean, optional, default False Annotate the heat map with labels. """ self.print_message('Generating feature correlations plot...') if max_features: corr = self.data.iloc[:, :max_features].corr() else: corr = self.data.corr() if annotate: corr = np.round(corr, 2) mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True fig, ax = plt.subplots(figsize=(self.fig_size, self.fig_size * 3 / 4)) colormap = sb.blend_palette(sb.color_palette(color_palette), as_cmap=True) sb.heatmap(corr, mask=mask, cmap=colormap, annot=annotate) fig.tight_layout() self.print_message('Plot generation complete.') def variable_relationship(self, quantitative_vars, category_vars=None, joint_viz_type='scatter', pair_viz_type='scatter', factor_viz_type='strip', pair_diag_type='kde'): """ Generates plots showing the relationship between several variables. The combination of plots generated depends on the number of quantitative and discrete (categorical or ordinal) variables to be analyzed. Plots are rendered using the seaborn statistical visualization package. Parameters ---------- quantitative_vars : array-like List of variable names to analyze quantitatively. category_vars : array-like, optional, default None List of variable names to analyze discretely. joint_viz_type : {'scatter', 'reg', 'resid', 'kde', 'hex'}, optional, default 'scatter' Method to use to display two quantitative variables together. pair_viz_type : {'scatter', 'reg'}, optional, default 'scatter' Method to use to display more than two quantitative variables together. factor_viz_type : {'point', 'bar', 'count', 'box', 'violin', 'strip'}, optional, default 'strip' Method to use to display one quantitative variable along with categorical variables. pair_diag_type : {'hist', 'kde'}, optional, default 'kde' Display type for the diagonal plots in a pair plot. """ self.print_message('Generating variable relationship plots...') if quantitative_vars is None or len(quantitative_vars) == 0: raise Exception('Must provide at least one quantitative variable.') if joint_viz_type not in ['scatter', 'reg', 'resid', 'kde', 'hex']: raise Exception('Invalid value for joint_viz_type.') if pair_viz_type not in ['scatter', 'reg']: raise Exception('Invalid value for pair_viz_type.') if factor_viz_type not in ['point', 'bar', 'count', 'box', 'violin', 'strip']: raise Exception('Invalid value for factor_viz_type.') if pair_diag_type not in ['hist', 'kde']: raise Exception('Invalid value for pair_diag_type.') sub_data = self.data[quantitative_vars] fig, ax = plt.subplots(1, 1, figsize=(self.fig_size, self.fig_size * 3 / 4)) sb.violinplot(data=sub_data, ax=ax) fig.tight_layout() if category_vars is not None: fig, ax = plt.subplots(len(quantitative_vars), len(category_vars), figsize=(self.fig_size, self.fig_size * 3 / 4)) if len(quantitative_vars) == 1: if len(category_vars) == 1: sb.violinplot(x=quantitative_vars[0], y=category_vars[0], data=self.data, ax=ax) else: for i, cat in enumerate(category_vars): sb.violinplot(x=quantitative_vars[0], y=cat, data=self.data, ax=ax[i]) else: for i, var in enumerate(quantitative_vars): if len(category_vars) == 1: sb.violinplot(x=var, y=category_vars[0], data=self.data, ax=ax[i]) else: for j, cat in enumerate(category_vars): sb.violinplot(x=var, y=cat, data=self.data, ax=ax[i, j]) fig.tight_layout() if category_vars is None: if len(quantitative_vars) == 2: sb.jointplot(x=quantitative_vars[0], y=quantitative_vars[1], data=self.data, kind=joint_viz_type, size=self.fig_size) else: sb.pairplot(data=self.data, vars=quantitative_vars, kind=pair_viz_type, diag_kind=pair_diag_type, size=self.fig_size / len(quantitative_vars)) else: if len(quantitative_vars) == 1: if len(category_vars) == 1: sb.factorplot(x=category_vars[0], y=quantitative_vars[0], data=self.data, kind=factor_viz_type, size=self.fig_size) else: sb.factorplot(x=category_vars[0], y=quantitative_vars[0], hue=category_vars[1], data=self.data, kind=factor_viz_type, size=self.fig_size) elif len(quantitative_vars) == 2: if len(category_vars) == 1: sb.lmplot(x=quantitative_vars[0], y=quantitative_vars[1], data=self.data, row=category_vars[0], size=self.fig_size) else: sb.lmplot(x=quantitative_vars[0], y=quantitative_vars[1], data=self.data, col=category_vars[0], row=category_vars[1], size=self.fig_size) else: sb.pairplot(data=self.data, hue=category_vars[0], vars=quantitative_vars, kind=pair_viz_type, diag_kind=pair_diag_type, size=self.fig_size / len(quantitative_vars)) self.print_message('Plot generation complete.') def sequential_relationships(self, time='index', smooth_method=None, window=1, grid_size=4): """ Generates line plots to visualize sequential data. Parameters ---------- time : string, optional, default 'index' Datetime input column to use for visualization. smooth_method : {'mean', 'var', 'skew', 'kurt', None}, optional, default None Apply a function to the time series to smooth out variations. window : int, optional, default 1 Size of the moving window used to calculate the smoothing function. grid_size : int, optional, default 4 Number of vertical/horizontal plots to display in a single window. """ self.print_message('Generating sequential relationship plots...') if smooth_method not in ['mean', 'var', 'skew', 'kurt', None]: raise Exception('Invalid value for smooth_method.') data = self.data.fillna(0) if time is not 'index': data = data.reset_index() data = data.set_index(time) data.index.name = None n_features = len(data.columns) plot_size = grid_size ** 2 n_plots = n_features // plot_size if n_features % plot_size == 0 else n_features // plot_size + 1 for i in range(n_plots): fig, ax = plt.subplots(grid_size, grid_size, sharex=True, figsize=(self.fig_size, self.fig_size / 2)) for j in range(plot_size): index = (i * plot_size) + j if index < n_features: if type(data.iloc[0, index]) is not str: if smooth_method == 'mean': data.iloc[:, index] = pd.rolling_mean(data.iloc[:, index], window) elif smooth_method == 'var': data.iloc[:, index] = pd.rolling_var(data.iloc[:, index], window) elif smooth_method == 'skew': data.iloc[:, index] = pd.rolling_skew(data.iloc[:, index], window) elif smooth_method == 'kurt': data.iloc[:, index] = pd.rolling_kurt(data.iloc[:, index], window) data.iloc[:, index].plot(ax=ax[j // grid_size, j % grid_size], kind='line', legend=False, title=data.columns[index]) fig.tight_layout() self.print_message('Plot generation complete.') def transform(self, transform, X_columns, y_column=None, task=None, n_components=2, scatter_size=50): """ Generates plots to visualize the data transformed by a linear or manifold algorithm. Parameters ---------- transform : array-like Transform object. Can be a pipeline with multiple transforms. X_columns : list List of columns to use to fit the transform. y_column : string, optional, default None Target column. Used to color input values for label-based visualizations. task : {'classification', 'regression', None}, optional, default None Specifies if the data set is being used for classification or regression. If one of these is specified, the plots will color input values using the provided labels. n_components : int, optional, default 2 Number of components of the transformed data set to visualize. scatter_size : int, optional, default 50 Size of the points on the scatter plot. """ self.print_message('Generating transform plot...') if task not in ['classification', 'regression', None]: raise Exception('Invalid value for task.') if hasattr(transform, 'n_components'): transform.n_components = n_components X = self.data[X_columns].values X = transform.fit_transform(X) y = None encoder = None if y_column: y = self.data[y_column].values if task == 'classification': encoder = LabelEncoder() y = encoder.fit_transform(y) if y_column and task == 'classification': class_count = len(np.unique(y)) colors = sb.color_palette('hls', class_count) for i in range(n_components - 1): fig, ax = plt.subplots(figsize=(self.fig_size, self.fig_size * 3 / 4)) for j in range(class_count): ax.scatter(X[y == j, i], X[y == j, i + 1], s=scatter_size, c=colors[j], label=encoder.classes_[j]) ax.set_title('Components ' + str(i + 1) + ' and ' + str(i + 2)) ax.legend() fig.tight_layout() elif y_column and task == 'regression': for i in range(n_components - 1): fig, ax = plt.subplots(figsize=(self.fig_size, self.fig_size * 3 / 4)) sc = ax.scatter(X[:, i], X[:, i + 1], s=scatter_size, c=y, cmap='Blues') ax.set_title('Components ' + str(i + 1) + ' and ' + str(i + 2)) ax.legend() fig.colorbar(sc) fig.tight_layout() else: for i in range(n_components - 1): fig, ax = plt.subplots(figsize=(self.fig_size, self.fig_size * 3 / 4)) ax.scatter(X[:, i], X[:, i + 1], s=scatter_size, label='None') ax.set_title('Components ' + str(i + 1) + ' and ' + str(i + 2)) ax.legend() fig.tight_layout() self.print_message('Plot generation complete.') def feature_importance(self, X_columns, y_column, average=False, task='classification', **kwargs): """ Visualize the predictive importance of each feature in a data set using a trained gradient boosting model. Parameters ---------- X_columns : list List of columns to use to fit the transform. y_column : string, optional, default None Target column. Used to color input values for label-based visualizations. average : boolean, optional, default False Smooth the results by fitting the model multiple times to reduce random variance. task : {'classification', 'regression'}, optional, default 'classification' Specifies if the target is continuous or categorical. **kwargs : dict, optional Arguments to pass to the scikit-learn gradient boosting model to improve the quality of the fit. If none are provided then the defaults will be used. """ self.print_message('Generating feature importance plot...') if task not in ['classification', 'regression']: raise Exception('Invalid value for task.') X = self.data[X_columns] y = self.data[y_column] if task == 'classification': model = GradientBoostingClassifier(**kwargs) else: model = GradientBoostingRegressor(**kwargs) if average: feature_importance = np.ones((1, X.shape[1])) for i in range(10): model.fit(X, y) temp = model.feature_importances_.reshape(1, -1) feature_importance = np.append(feature_importance, temp, axis=0) feature_importance = feature_importance[1:, :].mean(axis=0).reshape(1, -1) else: model.fit(X, y) feature_importance = model.feature_importances_.reshape(1, -1) feature_importance = 100.0 * (feature_importance / feature_importance.max()) sorted_idx = np.argsort(feature_importance.ravel()) pos = np.arange(sorted_idx.shape[0]) fig, ax = plt.subplots(figsize=(self.fig_size, self.fig_size * 3 / 4)) ax.set_title('Variable Importance') ax.barh(pos, feature_importance.ravel()[sorted_idx], align='center') ax.set_yticks(pos) ax.set_yticklabels([X_columns[i] for i in sorted_idx]) ax.set_xlabel('Relative Importance') fig.tight_layout() self.print_message('Plot generation complete.') def partial_dependence(self, X_columns, y_column, var_column, average=False, task='classification', grid_resolution=100, **kwargs): """ Visualize the marginal effect of a single variable on a dependent variable, holding all other variables constant. Generated via a trained gradient boosting model. Parameters ---------- X_columns : list List of columns to use to fit the transform. y_column : string, optional, default None Target column. Used to color input values for label-based visualizations. var_column : string The name of the variable to compare to the response value. average : boolean, optional, default False Smooth the results by fitting the model multiple times to reduce random variance. task : {'classification', 'regression'}, optional, default 'classification' Specifies if the target is continuous or categorical. grid_resolution : int, optional, default 100 Defines the granularity of the segments in the plot. **kwargs : dict, optional Arguments to pass to the scikit-learn gradient boosting model to improve the quality of the fit. If none are provided then the defaults will be used. """ self.print_message('Generating partial dependence plot...') if task not in ['classification', 'regression']: raise Exception('Invalid value for task.') X = self.data[X_columns] y = self.data[y_column] index = X_columns.index(var_column) distinct = len(np.unique(self.data[var_column])) if distinct < grid_resolution: grid_resolution = distinct if task == 'classification': model = GradientBoostingClassifier(**kwargs) else: model = GradientBoostingRegressor(**kwargs) if average: response = np.ones((1, grid_resolution)) axes = np.ones((1, grid_resolution)) for i in range(10): model.fit(X, y) a, b = partial_dependence(model, [index], X=X, grid_resolution=grid_resolution) response = np.append(response, a, axis=0) axes = np.append(axes, b[0].reshape((1, grid_resolution)), axis=0) response = response[1:, :].mean(axis=0).reshape((grid_resolution, 1)) axes = axes[1:, :].mean(axis=0).reshape((grid_resolution, 1)) else: model.fit(X, y) response, axes = partial_dependence(model, [index], X=X, grid_resolution=grid_resolution) response = response.reshape((grid_resolution, 1)) axes = axes[0].reshape((grid_resolution, 1)) df = pd.DataFrame(np.append(axes, response, axis=1), columns=[var_column, y_column]) df.plot(x=var_column, y=y_column, kind='line', figsize=(self.fig_size, self.fig_size * 3 / 4)) self.print_message('Plot generation complete.')
r""" Study and StudyPerson objects (:mod:`qiita_db.study`) ===================================================== .. currentmodule:: qiita_db.study This module provides the implementation of the Study and StudyPerson classes. The study class allows access to all basic information including name and pmids associated with the study, as well as returning ids for the data, sample template, owner, and shared users. It is the central hub for creating, deleting, and accessing a study in the database. Contacts are taken care of by the StudyPerson class. This holds the contact's name, email, address, and phone of the various persons in a study, e.g. The PI or lab contact. Classes ------- .. autosummary:: :toctree: generated/ Study StudyPerson Examples -------- Studies contain contact people (PIs, Lab members, and EBI contacts). These people have names, emails, addresses, and phone numbers. The email and name are the minimum required information. >>> from qiita_db.study import StudyPerson # doctest: +SKIP >>> person = StudyPerson.create('Some Dude', '[email protected]', ... address='111 fake street', ... phone='111-121-1313') # doctest: +SKIP >>> person.name # doctest: +SKIP Some dude >>> person.email # doctest: +SKIP somedude@foobar >>> person.address # doctest: +SKIP 111 fake street >>> person.phone # doctest: +SKIP 111-121-1313 A study requres a minimum of information to be created. Note that the people must be passed as StudyPerson objects and the owner as a User object. >>> from qiita_db.study import Study # doctest: +SKIP >>> from qiita_db.user import User # doctest: +SKIP >>> info = { ... "timeseries_type_id": 1, ... "metadata_complete": True, ... "mixs_compliant": True, ... "number_samples_collected": 25, ... "number_samples_promised": 28, ... "portal_type_id": 3, ... "study_alias": "TST", ... "study_description": "Some description of the study goes here", ... "study_abstract": "Some abstract goes here", ... "emp_person_id": StudyPerson(2), ... "principal_investigator_id": StudyPerson(3), ... "lab_person_id": StudyPerson(1)} # doctest: +SKIP >>> owner = User('[email protected]') # doctest: +SKIP >>> Study(owner, "New Study Title", 1, info) # doctest: +SKIP You can also add a study to an investigation by passing the investigation object while creating the study. >>> from qiita_db.study import Study # doctest: +SKIP >>> from qiita_db.user import User # doctest: +SKIP >>> from qiita_db.study import Investigation # doctest: +SKIP >>> info = { ... "timeseries_type_id": 1, ... "metadata_complete": True, ... "mixs_compliant": True, ... "number_samples_collected": 25, ... "number_samples_promised": 28, ... "portal_type_id": 3, ... "study_alias": "TST", ... "study_description": "Some description of the study goes here", ... "study_abstract": "Some abstract goes here", ... "emp_person_id": StudyPerson(2), ... "principal_investigator_id": StudyPerson(3), ... "lab_person_id": StudyPerson(1)} # doctest: +SKIP >>> owner = User('[email protected]') # doctest: +SKIP >>> investigation = Investigation(1) # doctest: +SKIP >>> Study(owner, "New Study Title", 1, info, investigation) # doctest: +SKIP """ # ----------------------------------------------------------------------------- # Copyright (c) 2014--, The Qiita Development Team. # # Distributed under the terms of the BSD 3-clause License. # # The full license is in the file LICENSE, distributed with this software. # ----------------------------------------------------------------------------- from __future__ import division from future.utils import viewitems from copy import deepcopy from qiita_core.exceptions import IncompetentQiitaDeveloperError from .base import QiitaStatusObject, QiitaObject from .exceptions import (QiitaDBStatusError, QiitaDBColumnError, QiitaDBError) from .util import (check_required_columns, check_table_cols, convert_to_id, get_environmental_packages) from .sql_connection import SQLConnectionHandler class Study(QiitaStatusObject): r"""Study object to access to the Qiita Study information Attributes ---------- data_types efo info investigation name pmids shared_with sample_template status title owner Methods ------- raw_data preprocessed_data processed_data add_pmid exists has_access share unshare Notes ----- All setters raise QiitaDBStatusError if trying to change a public study. You should not be doing that. """ _table = "study" # The following columns are considered not part of the study info _non_info = {"email", "study_status_id", "study_title"} def _lock_non_sandbox(self, conn_handler): """Raises QiitaDBStatusError if study is non-sandboxed""" if self.status != 'sandbox': raise QiitaDBStatusError("Illegal operation on non-sandbox study!") def _status_setter_checks(self, conn_handler): r"""Perform a check to make sure not setting status away from public """ if self.check_status(("public", )): raise QiitaDBStatusError("Illegal operation on public study!") @classmethod def get_by_status(cls, status): """Returns study id for all Studies with given status Parameters ---------- status : str Status setting to search for Returns ------- list of Study objects All studies in the database that match the given status """ conn_handler = SQLConnectionHandler() sql = ("SELECT study_id FROM qiita.{0} s JOIN qiita.{0}_status ss ON " "s.study_status_id = ss.study_status_id WHERE " "ss.status = %s".format(cls._table)) return [x[0] for x in conn_handler.execute_fetchall(sql, (status, ))] @classmethod def exists(cls, study_title): """Check if a study exists based on study_title, which is unique Parameters ---------- study_title : str The title of the study to search for in the database Returns ------- bool """ conn_handler = SQLConnectionHandler() sql = ("SELECT exists(select study_id from qiita.{} WHERE " "study_title = %s)").format(cls._table) return conn_handler.execute_fetchone(sql, [study_title])[0] @classmethod def create(cls, owner, title, efo, info, investigation=None): """Creates a new study on the database Parameters ---------- owner : User object the study's owner title : str Title of the study efo : list Experimental Factor Ontology id(s) for the study info : dict the information attached to the study. All "*_id" keys must pass the objects associated with them. investigation : Investigation object, optional If passed, the investigation to associate with. Defaults to None. Raises ------ QiitaDBColumnError Non-db columns in info dictionary All required keys not passed IncompetentQiitaDeveloperError email, study_id, study_status_id, or study_title passed as a key empty efo list passed Notes ----- All keys in info, except the efo, must be equal to columns in qiita.study table in the database. """ # make sure not passing non-info columns in the info dict if cls._non_info.intersection(info): raise QiitaDBColumnError("non info keys passed: %s" % cls._non_info.intersection(info)) # make sure efo info passed if not efo: raise IncompetentQiitaDeveloperError("Need EFO information!") # add default values to info insertdict = deepcopy(info) insertdict['email'] = owner.id insertdict['study_title'] = title if "reprocess" not in insertdict: insertdict['reprocess'] = False # default to sandboxed status insertdict['study_status_id'] = 4 # No nuns allowed insertdict = {k: v for k, v in viewitems(insertdict) if v is not None} conn_handler = SQLConnectionHandler() # make sure dictionary only has keys for available columns in db check_table_cols(conn_handler, insertdict, cls._table) # make sure reqired columns in dictionary check_required_columns(conn_handler, insertdict, cls._table) # Insert study into database sql = ("INSERT INTO qiita.{0} ({1}) VALUES ({2}) RETURNING " "study_id".format(cls._table, ','.join(insertdict), ','.join(['%s'] * len(insertdict)))) # make sure data in same order as sql column names, and ids are used data = [] for col in insertdict: if isinstance(insertdict[col], QiitaObject): data.append(insertdict[col].id) else: data.append(insertdict[col]) study_id = conn_handler.execute_fetchone(sql, data)[0] # insert efo information into database sql = ("INSERT INTO qiita.{0}_experimental_factor (study_id, " "efo_id) VALUES (%s, %s)".format(cls._table)) conn_handler.executemany(sql, [(study_id, e) for e in efo]) # add study to investigation if necessary if investigation: sql = ("INSERT INTO qiita.investigation_study (investigation_id, " "study_id) VALUES (%s, %s)") conn_handler.execute(sql, (investigation.id, study_id)) return cls(study_id) # --- Attributes --- @property def title(self): """Returns the title of the study Returns ------- str Title of study """ conn_handler = SQLConnectionHandler() sql = ("SELECT study_title FROM qiita.{0} WHERE " "study_id = %s".format(self._table)) return conn_handler.execute_fetchone(sql, (self._id, ))[0] @title.setter def title(self, title): """Sets the title of the study Parameters ---------- title : str The new study title """ conn_handler = SQLConnectionHandler() sql = ("UPDATE qiita.{0} SET study_title = %s WHERE " "study_id = %s".format(self._table)) return conn_handler.execute(sql, (title, self._id)) @property def info(self): """Dict with all information attached to the study Returns ------- dict info of study keyed to column names """ conn_handler = SQLConnectionHandler() sql = "SELECT * FROM qiita.{0} WHERE study_id = %s".format(self._table) info = dict(conn_handler.execute_fetchone(sql, (self._id, ))) # remove non-info items from info for item in self._non_info: info.pop(item) # This is an optional column, but should not be considered part of the # info info.pop('study_id') return info @info.setter def info(self, info): """Updates the information attached to the study Parameters ---------- info : dict information to change/update for the study, keyed to column name Raises ------ IncompetentQiitaDeveloperError Empty dict passed QiitaDBColumnError Unknown column names passed """ if not info: raise IncompetentQiitaDeveloperError("Need entries in info dict!") if 'study_id' in info: raise QiitaDBColumnError("Cannot set study_id!") if self._non_info.intersection(info): raise QiitaDBColumnError("non info keys passed: %s" % self._non_info.intersection(info)) conn_handler = SQLConnectionHandler() if 'timeseries_type_id' in info: # We only lock if the timeseries type changes self._lock_non_sandbox(conn_handler) # make sure dictionary only has keys for available columns in db check_table_cols(conn_handler, info, self._table) sql_vals = [] data = [] # build query with data values in correct order for SQL statement for key, val in viewitems(info): sql_vals.append("{0} = %s".format(key)) if isinstance(val, QiitaObject): data.append(val.id) else: data.append(val) data.append(self._id) sql = ("UPDATE qiita.{0} SET {1} WHERE " "study_id = %s".format(self._table, ','.join(sql_vals))) conn_handler.execute(sql, data) @property def efo(self): conn_handler = SQLConnectionHandler() sql = ("SELECT efo_id FROM qiita.{0}_experimental_factor WHERE " "study_id = %s".format(self._table)) return [x[0] for x in conn_handler.execute_fetchall(sql, (self._id, ))] @efo.setter def efo(self, efo_vals): """Sets the efo for the study Parameters ---------- efo_vals : list Id(s) for the new efo values Raises ------ IncompetentQiitaDeveloperError Empty efo list passed """ if not efo_vals: raise IncompetentQiitaDeveloperError("Need EFO information!") conn_handler = SQLConnectionHandler() self._lock_non_sandbox(conn_handler) # wipe out any EFOs currently attached to study sql = ("DELETE FROM qiita.{0}_experimental_factor WHERE " "study_id = %s".format(self._table)) conn_handler.execute(sql, (self._id, )) # insert new EFO information into database sql = ("INSERT INTO qiita.{0}_experimental_factor (study_id, " "efo_id) VALUES (%s, %s)".format(self._table)) conn_handler.executemany(sql, [(self._id, efo) for efo in efo_vals]) @property def shared_with(self): """list of users the study is shared with Returns ------- list of User ids Users the study is shared with """ conn_handler = SQLConnectionHandler() sql = ("SELECT email FROM qiita.{0}_users WHERE " "study_id = %s".format(self._table)) return [x[0] for x in conn_handler.execute_fetchall(sql, (self._id,))] @property def pmids(self): """ Returns list of paper PMIDs from this study Returns ------- list of str list of all the PMIDs """ conn_handler = SQLConnectionHandler() sql = ("SELECT pmid FROM qiita.{0}_pmid WHERE " "study_id = %s".format(self._table)) return [x[0] for x in conn_handler.execute_fetchall(sql, (self._id, ))] @pmids.setter def pmids(self, values): """Sets the pmids for the study Parameters ---------- values : list of str The list of pmids to associate with the study Raises ------ TypeError If values is not a list """ # Check that a list is actually passed if not isinstance(values, list): raise TypeError('pmids should be a list') # Get the connection to the database conn_handler = SQLConnectionHandler() # Create a queue for the operations that we need to do queue = "%d_pmid_setter" % self._id conn_handler.create_queue(queue) # Delete the previous pmids associated with the study sql = "DELETE FROM qiita.study_pmid WHERE study_id=%s" sql_args = (self._id,) conn_handler.add_to_queue(queue, sql, sql_args) # Set the new ones sql = "INSERT INTO qiita.study_pmid (study_id, pmid) VALUES (%s, %s)" sql_args = [(self._id, val) for val in values] conn_handler.add_to_queue(queue, sql, sql_args, many=True) # Execute the queue conn_handler.execute_queue(queue) @property def investigation(self): """ Returns Investigation this study is part of Returns ------- Investigation id """ conn_handler = SQLConnectionHandler() sql = ("SELECT investigation_id FROM qiita.investigation_study WHERE " "study_id = %s") inv = conn_handler.execute_fetchone(sql, (self._id, )) return inv[0] if inv is not None else inv @property def sample_template(self): """ Returns sample_template information id Returns ------- SampleTemplate id """ return self._id @property def data_types(self): """Returns list of the data types for this study Returns ------- list of str """ conn_handler = SQLConnectionHandler() sql = ("SELECT DISTINCT DT.data_type FROM qiita.study_raw_data SRD " "JOIN qiita.prep_template PT ON SRD.raw_data_id = " "PT.raw_data_id JOIN qiita.data_type DT ON PT.data_type_id = " "DT.data_type_id WHERE SRD.study_id = %s") return [x[0] for x in conn_handler.execute_fetchall(sql, (self._id,))] @property def owner(self): """Gets the owner of the study Returns ------- str The email (id) of the user that owns this study """ conn_handler = SQLConnectionHandler() sql = """select email from qiita.{} where study_id = %s""".format( self._table) return conn_handler.execute_fetchone(sql, [self._id])[0] @property def environmental_packages(self): """Gets the environmental packages associated with the study Returns ------- list of str The environmental package names associated with the study """ conn_handler = SQLConnectionHandler() env_pkgs = conn_handler.execute_fetchall( "SELECT environmental_package_name FROM " "qiita.study_environmental_package WHERE study_id = %s", (self._id,)) return [pkg[0] for pkg in env_pkgs] @environmental_packages.setter def environmental_packages(self, values): """Sets the environmental packages for the study Parameters ---------- values : list of str The list of environmental package names to associate with the study Raises ------ TypeError If values is not a list ValueError If any environmental packages listed on values is not recognized """ # Get the connection to the database conn_handler = SQLConnectionHandler() # The environmental packages can be changed only if the study is # sandboxed self._lock_non_sandbox(conn_handler) # Check that a list is actually passed if not isinstance(values, list): raise TypeError('Environmental packages should be a list') # Get all the environmental packages env_pkgs = [pkg[0] for pkg in get_environmental_packages( conn_handler=conn_handler)] # Check that all the passed values are valid environmental packages missing = set(values).difference(env_pkgs) if missing: raise ValueError('Environmetal package(s) not recognized: %s' % ', '.join(missing)) # Create a queue for the operations that we need to do queue = "%d_env_pkgs_setter" % self._id conn_handler.create_queue(queue) # Delete the previous environmental packages associated with the study sql = "DELETE FROM qiita.study_environmental_package WHERE study_id=%s" sql_args = (self._id,) conn_handler.add_to_queue(queue, sql, sql_args) # Set the new ones sql = ("INSERT INTO qiita.study_environmental_package " "(study_id, environmental_package_name) VALUES (%s, %s)") sql_args = [(self._id, val) for val in values] conn_handler.add_to_queue(queue, sql, sql_args, many=True) # Execute the queue conn_handler.execute_queue(queue) # --- methods --- def raw_data(self, data_type=None): """ Returns list of data ids for raw data info Parameters ---------- data_type : str, optional If given, retrieve only raw_data for given datatype. Default None. Returns ------- list of RawData ids """ spec_data = "" if data_type: spec_data = " AND data_type_id = %d" % convert_to_id(data_type, "data_type") conn_handler = SQLConnectionHandler() sql = ("SELECT raw_data_id FROM qiita.study_raw_data WHERE " "study_id = %s{0}".format(spec_data)) return [x[0] for x in conn_handler.execute_fetchall(sql, (self._id,))] def add_raw_data(self, raw_data): """ Adds raw_data to the current study Parameters ---------- raw_data : list of RawData The RawData objects to be added to the study Raises ------ QiitaDBError If the raw_data is already linked to the current study """ conn_handler = SQLConnectionHandler() self._lock_non_sandbox(conn_handler) queue = "%d_add_raw_data" % self.id sql = ("SELECT EXISTS(SELECT * FROM qiita.study_raw_data WHERE " "study_id=%s AND raw_data_id=%s)") conn_handler.create_queue(queue) sql_args = [(self.id, rd.id) for rd in raw_data] conn_handler.add_to_queue(queue, sql, sql_args, many=True) linked = conn_handler.execute_queue(queue) if any(linked): raise QiitaDBError("Some of the passed raw datas have been already" " linked to the study %s" % self.id) conn_handler.executemany( "INSERT INTO qiita.study_raw_data (study_id, raw_data_id) " "VALUES (%s, %s)", sql_args) def preprocessed_data(self, data_type=None): """ Returns list of data ids for preprocessed data info Parameters ---------- data_type : str, optional If given, retrieve only raw_data for given datatype. Default None. Returns ------- list of PreprocessedData ids """ spec_data = "" if data_type: spec_data = " AND data_type_id = %d" % convert_to_id(data_type, "data_type") conn_handler = SQLConnectionHandler() sql = ("SELECT preprocessed_data_id FROM qiita.study_preprocessed_data" " WHERE study_id = %s{0}".format(spec_data)) return [x[0] for x in conn_handler.execute_fetchall(sql, (self._id,))] def processed_data(self, data_type=None): """ Returns list of data ids for processed data info Parameters ---------- data_type : str, optional If given, retrieve only for given datatype. Default None. Returns ------- list of ProcessedData ids """ spec_data = "" if data_type: spec_data = " AND p.data_type_id = %d" % convert_to_id(data_type, "data_type") conn_handler = SQLConnectionHandler() sql = ("SELECT p.processed_data_id FROM qiita.processed_data p JOIN " "qiita.study_processed_data sp ON p.processed_data_id = " "sp.processed_data_id WHERE " "sp.study_id = %s{0}".format(spec_data)) return [x[0] for x in conn_handler.execute_fetchall(sql, (self._id,))] def add_pmid(self, pmid): """Adds PMID to study Parameters ---------- pmid : str pmid to associate with study """ conn_handler = SQLConnectionHandler() sql = ("INSERT INTO qiita.{0}_pmid (study_id, pmid) " "VALUES (%s, %s)".format(self._table)) conn_handler.execute(sql, (self._id, pmid)) def has_access(self, user, no_public=False): """Returns whether the given user has access to the study Parameters ---------- user : User object User we are checking access for no_public: bool If we should ignore those studies shared with the user. Defaults to False Returns ------- bool Whether user has access to study or not """ # if admin or superuser, just return true if user.level in {'superuser', 'admin'}: return True if no_public: return self._id in user.user_studies + user.shared_studies else: return self._id in user.user_studies + user.shared_studies \ + self.get_by_status('public') def share(self, user): """Share the study with another user Parameters ---------- user: User object The user to share the study with """ conn_handler = SQLConnectionHandler() # Make sure the study is not already shared with the given user if user.id in self.shared_with: return # Do not allow the study to be shared with the owner if user.id == self.owner: return sql = ("INSERT INTO qiita.study_users (study_id, email) VALUES " "(%s, %s)") conn_handler.execute(sql, (self._id, user.id)) def unshare(self, user): """Unshare the study with another user Parameters ---------- user: User object The user to unshare the study with """ conn_handler = SQLConnectionHandler() sql = ("DELETE FROM qiita.study_users WHERE study_id = %s AND " "email = %s") conn_handler.execute(sql, (self._id, user.id)) class StudyPerson(QiitaObject): r"""Object handling information pertaining to people involved in a study Attributes ---------- name : str name of the person email : str email of the person affiliation : str institution with which the person is affiliated address : str or None address of the person phone : str or None phone number of the person """ _table = "study_person" @classmethod def iter(cls): """Iterate over all study people in the database Returns ------- generator Yields a `StudyPerson` object for each person in the database, in order of ascending study_person_id """ conn = SQLConnectionHandler() sql = "select study_person_id from qiita.{} order by study_person_id" results = conn.execute_fetchall(sql.format(cls._table)) for result in results: ID = result[0] yield StudyPerson(ID) @classmethod def exists(cls, name, affiliation): """Checks if a person exists Parameters ---------- name: str Name of the person affiliation : str institution with which the person is affiliated Returns ------- bool True if person exists else false """ conn_handler = SQLConnectionHandler() sql = ("SELECT exists(SELECT * FROM qiita.{0} WHERE " "name = %s AND affiliation = %s)".format(cls._table)) return conn_handler.execute_fetchone(sql, (name, affiliation))[0] @classmethod def create(cls, name, email, affiliation, address=None, phone=None): """Create a StudyPerson object, checking if person already exists. Parameters ---------- name : str name of person email : str email of person affiliation : str institution with which the person is affiliated address : str, optional address of person phone : str, optional phone number of person Returns ------- New StudyPerson object """ if cls.exists(name, affiliation): sql = ("SELECT study_person_id from qiita.{0} WHERE name = %s and" " affiliation = %s".format(cls._table)) conn_handler = SQLConnectionHandler() spid = conn_handler.execute_fetchone(sql, (name, affiliation)) # Doesn't exist so insert new person else: sql = ("INSERT INTO qiita.{0} (name, email, affiliation, address, " "phone) VALUES" " (%s, %s, %s, %s, %s) RETURNING " "study_person_id".format(cls._table)) conn_handler = SQLConnectionHandler() spid = conn_handler.execute_fetchone(sql, (name, email, affiliation, address, phone)) return cls(spid[0]) # Properties @property def name(self): """Returns the name of the person Returns ------- str Name of person """ conn_handler = SQLConnectionHandler() sql = ("SELECT name FROM qiita.{0} WHERE " "study_person_id = %s".format(self._table)) return conn_handler.execute_fetchone(sql, (self._id, ))[0] @property def email(self): """Returns the email of the person Returns ------- str Email of person """ conn_handler = SQLConnectionHandler() sql = ("SELECT email FROM qiita.{0} WHERE " "study_person_id = %s".format(self._table)) return conn_handler.execute_fetchone(sql, (self._id, ))[0] @property def affiliation(self): """Returns the affiliation of the person Returns ------- str Affiliation of person """ conn_handler = SQLConnectionHandler() sql = ("SELECT affiliation FROM qiita.{0} WHERE " "study_person_id = %s".format(self._table)) return conn_handler.execute_fetchone(sql, [self._id])[0] @property def address(self): """Returns the address of the person Returns ------- str or None address or None if no address in database """ conn_handler = SQLConnectionHandler() sql = ("SELECT address FROM qiita.{0} WHERE study_person_id =" " %s".format(self._table)) return conn_handler.execute_fetchone(sql, (self._id, ))[0] @address.setter def address(self, value): """Set/update the address of the person Parameters ---------- value : str New address for person """ conn_handler = SQLConnectionHandler() sql = ("UPDATE qiita.{0} SET address = %s WHERE " "study_person_id = %s".format(self._table)) conn_handler.execute(sql, (value, self._id)) @property def phone(self): """Returns the phone number of the person Returns ------- str or None phone or None if no address in database """ conn_handler = SQLConnectionHandler() sql = ("SELECT phone FROM qiita.{0} WHERE " "study_person_id = %s".format(self._table)) return conn_handler.execute_fetchone(sql, (self._id, ))[0] @phone.setter def phone(self, value): """Set/update the phone number of the person Parameters ---------- value : str New phone number for person """ conn_handler = SQLConnectionHandler() sql = ("UPDATE qiita.{0} SET phone = %s WHERE " "study_person_id = %s".format(self._table)) conn_handler.execute(sql, (value, self._id))
# Copyright (c) 2013 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. # TeamCity fails to run this test because it can't import the C++ module. # I think it's because the C++ part gets built in another directory. import unittest import random import numpy from annoy import AnnoyIndex try: xrange except NameError: # Python 3 compat xrange = range class TestCase(unittest.TestCase): def assertAlmostEquals(self, x, y): # Annoy uses float precision, so we override the default precision super(TestCase, self).assertAlmostEquals(x, y, 4) class AngularIndexTest(TestCase): def test_get_nns_by_vector(self): f = 3 i = AnnoyIndex(f) i.add_item(0, [0, 0, 1]) i.add_item(1, [0, 1, 0]) i.add_item(2, [1, 0, 0]) i.build(10) self.assertEqual(i.get_nns_by_vector([3, 2, 1], 3), [2, 1, 0]) self.assertEqual(i.get_nns_by_vector([1, 2, 3], 3), [0, 1, 2]) self.assertEqual(i.get_nns_by_vector([2, 0, 1], 3), [2, 0, 1]) def test_get_nns_by_item(self): f = 3 i = AnnoyIndex(f) i.add_item(0, [2, 1, 0]) i.add_item(1, [1, 2, 0]) i.add_item(2, [0, 0, 1]) i.build(10) self.assertEqual(i.get_nns_by_item(0, 3), [0, 1, 2]) self.assertEqual(i.get_nns_by_item(1, 3), [1, 0, 2]) self.assertTrue(i.get_nns_by_item(2, 3) in [[2, 0, 1], [2, 1, 0]]) # could be either def test_dist(self): f = 2 i = AnnoyIndex(f) i.add_item(0, [0, 1]) i.add_item(1, [1, 1]) self.assertAlmostEqual(i.get_distance(0, 1), 2 * (1.0 - 2 ** -0.5)) def test_dist_2(self): f = 2 i = AnnoyIndex(f) i.add_item(0, [1000, 0]) i.add_item(1, [10, 0]) self.assertAlmostEqual(i.get_distance(0, 1), 0) def test_dist_3(self): f = 2 i = AnnoyIndex(f) i.add_item(0, [97, 0]) i.add_item(1, [42, 42]) dist = (1 - 2 ** -0.5) ** 2 + (2 ** -0.5) ** 2 self.assertAlmostEqual(i.get_distance(0, 1), dist) def test_dist_degen(self): f = 2 i = AnnoyIndex(f) i.add_item(0, [1, 0]) i.add_item(1, [0, 0]) self.assertAlmostEqual(i.get_distance(0, 1), 2.0) def test_large_index(self): # Generate pairs of random points where the pair is super close f = 10 i = AnnoyIndex(f) for j in xrange(0, 10000, 2): p = [random.gauss(0, 1) for z in xrange(f)] f1 = random.random() + 1 f2 = random.random() + 1 x = [f1 * pi + random.gauss(0, 1e-2) for pi in p] y = [f2 * pi + random.gauss(0, 1e-2) for pi in p] i.add_item(j, x) i.add_item(j+1, y) i.build(10) for j in xrange(0, 10000, 2): self.assertEqual(i.get_nns_by_item(j, 2), [j, j+1]) self.assertEqual(i.get_nns_by_item(j+1, 2), [j+1, j]) def precision(self, n, n_trees=10, n_points=10000, n_rounds=10): found = 0 for r in xrange(n_rounds): # create random points at distance x from (1000, 0, 0, ...) f = 10 i = AnnoyIndex(f, 'euclidean') for j in xrange(n_points): p = [random.gauss(0, 1) for z in xrange(f - 1)] norm = sum([pi ** 2 for pi in p]) ** 0.5 x = [1000] + [pi / norm * j for pi in p] i.add_item(j, x) i.build(n_trees) nns = i.get_nns_by_vector([1000] + [0] * (f-1), n) self.assertEqual(nns, sorted(nns)) # should be in order # The number of gaps should be equal to the last item minus n-1 found += len([x for x in nns if x < n]) return 1.0 * found / (n * n_rounds) def test_precision_1(self): self.assertTrue(self.precision(1) >= 0.98) def test_precision_10(self): self.assertTrue(self.precision(10) >= 0.98) def test_precision_100(self): self.assertTrue(self.precision(100) >= 0.98) def test_precision_1000(self): self.assertTrue(self.precision(1000) >= 0.98) def test_load_save_get_item_vector(self): f = 3 i = AnnoyIndex(f) i.add_item(0, [1.1, 2.2, 3.3]) i.add_item(1, [4.4, 5.5, 6.6]) i.add_item(2, [7.7, 8.8, 9.9]) numpy.testing.assert_array_almost_equal(i.get_item_vector(0), [1.1, 2.2, 3.3]) self.assertTrue(i.build(10)) self.assertTrue(i.save('blah.ann')) numpy.testing.assert_array_almost_equal(i.get_item_vector(1), [4.4, 5.5, 6.6]) j = AnnoyIndex(f) self.assertTrue(j.load('blah.ann')) numpy.testing.assert_array_almost_equal(j.get_item_vector(2), [7.7, 8.8, 9.9]) def test_get_nns_search_k(self): f = 3 i = AnnoyIndex(f) i.add_item(0, [0, 0, 1]) i.add_item(1, [0, 1, 0]) i.add_item(2, [1, 0, 0]) i.build(10) self.assertEqual(i.get_nns_by_item(0, 3, 10), [0, 1, 2]) self.assertEqual(i.get_nns_by_vector([3, 2, 1], 3, 10), [2, 1, 0]) class EuclideanIndexTest(TestCase): def test_get_nns_by_vector(self): f = 2 i = AnnoyIndex(f, 'euclidean') i.add_item(0, [2, 2]) i.add_item(1, [3, 2]) i.add_item(2, [3, 3]) i.build(10) self.assertEqual(i.get_nns_by_vector([4, 4], 3), [2, 1, 0]) self.assertEqual(i.get_nns_by_vector([1, 1], 3), [0, 1, 2]) self.assertEqual(i.get_nns_by_vector([4, 2], 3), [1, 2, 0]) def test_get_nns_by_item(self): f = 2 i = AnnoyIndex(f, 'euclidean') i.add_item(0, [2, 2]) i.add_item(1, [3, 2]) i.add_item(2, [3, 3]) i.build(10) self.assertEqual(i.get_nns_by_item(0, 3), [0, 1, 2]) self.assertEqual(i.get_nns_by_item(2, 3), [2, 1, 0]) def test_dist(self): f = 2 i = AnnoyIndex(f, 'euclidean') i.add_item(0, [0, 1]) i.add_item(1, [1, 1]) self.assertAlmostEqual(i.get_distance(0, 1), 1.0) def test_large_index(self): # Generate pairs of random points where the pair is super close f = 10 q = [random.gauss(0, 10) for z in xrange(f)] i = AnnoyIndex(f, 'euclidean') for j in xrange(0, 10000, 2): p = [random.gauss(0, 1) for z in xrange(f)] x = [1 + pi + random.gauss(0, 1e-2) for pi in p] # todo: should be q[i] y = [1 + pi + random.gauss(0, 1e-2) for pi in p] i.add_item(j, x) i.add_item(j+1, y) i.build(10) for j in xrange(0, 10000, 2): self.assertEqual(i.get_nns_by_item(j, 2), [j, j+1]) self.assertEqual(i.get_nns_by_item(j+1, 2), [j+1, j]) def precision(self, n, n_trees=10, n_points=10000, n_rounds=10): found = 0 for r in xrange(n_rounds): # create random points at distance x f = 10 i = AnnoyIndex(f, 'euclidean') for j in xrange(n_points): p = [random.gauss(0, 1) for z in xrange(f)] norm = sum([pi ** 2 for pi in p]) ** 0.5 x = [pi / norm * j for pi in p] i.add_item(j, x) i.build(n_trees) nns = i.get_nns_by_vector([0] * f, n) self.assertEqual(nns, sorted(nns)) # should be in order # The number of gaps should be equal to the last item minus n-1 found += len([x for x in nns if x < n]) return 1.0 * found / (n * n_rounds) def test_precision_1(self): self.assertTrue(self.precision(1) >= 0.98) def test_precision_10(self): self.assertTrue(self.precision(10) >= 0.98) def test_precision_100(self): self.assertTrue(self.precision(100) >= 0.98) def test_precision_1000(self): self.assertTrue(self.precision(1000) >= 0.98) def test_get_nns_with_distances(self): f = 3 i = AnnoyIndex(f, 'euclidean') i.add_item(0, [0, 0, 2]) i.add_item(1, [0, 1, 1]) i.add_item(2, [1, 0, 0]) i.build(10) l, d = i.get_nns_by_item(0, 3, -1, True) self.assertEquals(l, [0, 1, 2]) self.assertAlmostEquals(d[0]**2, 0.0) self.assertAlmostEquals(d[1]**2, 2.0) self.assertAlmostEquals(d[2]**2, 5.0) l, d = i.get_nns_by_vector([2, 2, 2], 3, -1, True) self.assertEquals(l, [1, 0, 2]) self.assertAlmostEquals(d[0]**2, 6.0) self.assertAlmostEquals(d[1]**2, 8.0) self.assertAlmostEquals(d[2]**2, 9.0) class IndexTest(TestCase): def test_not_found_tree(self): i = AnnoyIndex(10) self.assertRaises(IOError, i.load, 'nonexists.tree') def test_binary_compatibility(self): i = AnnoyIndex(10) i.load('test/test.tree') # This might change in the future if we change the search algorithm, but in that case let's update the test self.assertEquals(i.get_nns_by_item(0, 10), [0, 85, 42, 11, 54, 38, 53, 66, 19, 31]) class TypesTest(TestCase): def test_numpy(self, n_points=1000, n_trees=10): f = 10 i = AnnoyIndex(f, 'euclidean') for j in xrange(n_points): a = numpy.random.normal(size=f) a = a.astype(random.choice([numpy.float64, numpy.float32, numpy.uint8, numpy.int16])) i.add_item(j, a) i.build(n_trees) def test_tuple(self, n_points=1000, n_trees=10): f = 10 i = AnnoyIndex(f, 'euclidean') for j in xrange(n_points): i.add_item(j, (random.gauss(0, 1) for x in xrange(f))) i.build(n_trees) def test_wrong_length(self, n_points=1000, n_trees=10): f = 10 i = AnnoyIndex(f, 'euclidean') i.add_item(0, [random.gauss(0, 1) for x in xrange(f)]) self.assertRaises(IndexError, i.add_item, 1, [random.gauss(0, 1) for x in xrange(f+1000)]) self.assertRaises(IndexError, i.add_item, 2, []) i.build(n_trees)
from threading import Thread from ..decorators import vendor_required from app import os, create_app import app import boto from config import Config from flask import ( render_template, abort, redirect, flash, url_for, send_from_directory, jsonify, request ) import json from flask.ext.login import login_required, current_user from forms import (ChangeListingInformation, NewItemForm, NewCSVForm, EditProfileForm) from . import vendor from ..models import Listing, Order, Status, User from ..models.listing import Updated from ..models.user import Vendor import csv import re import copy from .. import db from ..email import send_email from flask.ext.rq import get_queue from werkzeug.utils import secure_filename from uuid import uuid4 from pint import UnitRegistry, UndefinedUnitError @vendor.route('/') @login_required @vendor_required def index(): tut_completed = User.query.filter_by(id=current_user.id).first().tutorial_completed return render_template('vendor/index.html', tut_completed=tut_completed) @vendor.route('/tutorial_completed', methods=['POST']) @login_required @vendor_required def tutorial_completed(): current_tutorial_status = User.query.filter_by(id=current_user.id).first().tutorial_completed; User.query.filter_by(id=current_user.id).first().tutorial_completed = \ not User.query.filter_by(id=current_user.id).first().tutorial_completed; db.session.commit(); return '', 204 @vendor.route('/new-item', methods=['GET', 'POST']) @login_required @vendor_required def new_listing(): tut_completed = User.query.filter_by(id=current_user.id).first().tutorial_completed """Create a new item.""" form = NewItemForm() if form.validate_on_submit(): listing = Listing( name=form.listing_name.data, description=form.listing_description.data, available=True, unit= form.listing_unit.data, quantity= form.listing_quantity.data, price=form.listing_price.data, vendor_id=current_user.id, product_id=form.listing_productID.data ) db.session.add(listing) db.session.commit() flash('Item {} successfully created'.format(listing.name), 'form-success') return redirect(url_for('.new_listing', tut_completed=tut_completed)) return render_template('vendor/new_listing.html', form=form, tut_completed=tut_completed) def isclose(a, b, rel_tol=1e-09, abs_tol=0.000001): b = float(b) print "ABS", abs(a-b) print "MAX", max(rel_tol * max(abs(a), abs(b)), abs_tol) return abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol) @vendor.route('/csv-row-upload', methods=['POST']) @login_required @vendor_required def row_upload(): data = json.loads(request.form['json']) print data if data['action'] == 'replace': listings_delete = db.session.query(Listing).filter_by(vendor_id = current_user.id) if listings_delete.first(): listings_delete.first().delete_listing() return jsonify({"status": "Prep", "message": "Prepared current items for replacement. {} left".format(listings_delete.count())}) if data['action'] == 'add': row = data['row'] name = row['name'] description = row['description'] unit = row['unit'] quantity = row['quantity'] price = row['price'] print name, description, unit, quantity, price print re.findall("\d+\.\d+", price) formatted_raw_price = re.findall("\d+\.*\d*", price) product_id = row['productId'] if not (is_number(formatted_raw_price)): message_string = ("Skipping {} (Product Id: {}), due to fact that price was unable to be interpreted as a number. Found {}". format(name, product_id, price)) return jsonify({"status": "Failure", "message": message_string}) formatted_price = re.findall("\d+\.*\d*", price)[0] queried_listing = Listing.query.filter_by(product_id=product_id, vendor_id = current_user.id).first() if queried_listing: changed = False if queried_listing.name != name: print "name" changed = True queried_listing.name = name if queried_listing.description != description: print "desc" changed = True queried_listing.description = description if queried_listing.unit != unit: print "unit" changed = True queried_listing.unit = unit if queried_listing.quantity != quantity: print "quantity" changed = True queried_listing.quantity = quantity if (isclose(queried_listing.price,formatted_price)) == False: changed = True queried_listing.price = formatted_price if changed is True: queried_listing.available = True db.session.commit() return jsonify({"status": "Success", "message": "Successfully merged {} (Product Id: {}) with price ${}".format(name, product_id, formatted_price)}) else: return jsonify({"status": "Prep", "message": "No change {} (Product Id: {})".format(name, product_id)}) else: Listing.add_listing(Listing(product_id, current_user.id, unit, name, True, formatted_price, description, Updated.NEW_ITEM, quantity)) return jsonify({"status": "Success", "message": "Successfully added {} (Product Id: {}) with price ${}".format(name, product_id, formatted_price)}) @vendor.route('/csv-upload', methods=['GET', 'POST']) @login_required @vendor_required def csv_upload(): tut_completed = User.query.filter_by(id=current_user.id).first().tutorial_completed """Create a new item.""" form = NewCSVForm() listings = [] count = db.session.query(Listing).filter_by(vendor_id = current_user.id).count() current_row = 0 if form.validate_on_submit(): if test_csv(form): csv_field = form.file_upload buff = csv_field.data.stream buff.seek(0) csv_data = csv.DictReader(buff, delimiter=',') #for each row in csv, create a listing current_vendor = Vendor.get_vendor_by_user_id(user_id=current_user.id) if form.replace_or_merge.data == 'replace': listings_delete = db.session.query(Listing).filter_by(vendor_id=current_user.id).all() for listing in listings_delete: listing.available = False for row in csv_data: #cheap way to skip weird 'categorical' lines if (row[current_vendor.product_id_col]).strip().isdigit() and form.replace_or_merge.data == 'merge': safe_price = row[current_vendor.price_col] description = row[current_vendor.listing_description_col] name = row[current_vendor.name_col] unit = row[current_vendor.unit_col] quantity = row[current_vendor.quantity_col] proposed_listing = Listing.add_csv_row_as_listing(csv_row=row, price=safe_price) queried_listing = Listing.get_listing_by_product_id(product_id=row[current_vendor.product_id_col]) if queried_listing: # case: listing exists and price has not changed queried_listing.available = True if ( queried_listing.price == float(safe_price) and queried_listing.description == description and queried_listing.name == name and queried_listing.unit == unit and queried_listing.quantity == quantity): proposed_listing.updated = Updated.NO_CHANGE listings.append(proposed_listing) # case: listing exists and price has changed else: queried_listing.price = float(safe_price) proposed_listing.price = float(safe_price) proposed_listing.description = description proposed_listing.name = name proposed_listing.unit = unit proposed_listing.quantity = quantity proposed_listing.updated = Updated.PRICE_CHANGE listings.append(proposed_listing) db.session.commit() #case: listing does not yet exist else: proposed_listing.updated = Updated.NEW_ITEM listings.append(proposed_listing) Listing.add_listing(new_listing=proposed_listing) elif (row[current_vendor.product_id_col]).strip().isdigit() and form.replace_or_merge.data == 'replace': safe_price = row[current_vendor.price_col] proposed_listing = Listing.add_csv_row_as_listing(csv_row=row, price=safe_price) proposed_listing.updated = Updated.NEW_ITEM listings.append(proposed_listing) Listing.add_listing(new_listing=proposed_listing) return render_template('vendor/new_csv.html', tut_completed=tut_completed, form=form, listings=listings, count=count) #get rid of those pesky dollar signs that mess up parsing def stripPriceHelper(price): r = re.compile("\$(\d+.\d+)") return r.search(price.replace(',','')).group(1) def is_number(s): if len(s) == 0: return False try: complex(s[0]) # for int, long, float and complex except ValueError: return False return True def is_numeric_col(current_vendor, row, col, row_count): if not is_number(row[col]) and row[col]: flash("Error parsing {}'s CSV file. Bad entry in {} column, at row {}. Must be number (no letters/characters). Found <b>{}</b>" .format(current_vendor.full_name(),col, row_count, row[col]), 'form-error') return False return True def is_proper_unit(vendor_name, unit, row, row_count): return True @vendor_required def test_csv(form): current_vendor = Vendor.get_vendor_by_user_id(user_id=current_user.id) if current_vendor is None: abort(404) columns = [current_vendor.product_id_col,current_vendor.listing_description_col, current_vendor.unit_col, current_vendor.price_col, current_vendor.name_col, current_vendor.quantity_col] csv_file = form.file_upload print csv_file.data.filename if '.csv' not in csv_file.data.filename: flash("Must be a .csv file", 'form-error') return False buff = csv_file.data.stream csv_data = csv.DictReader(buff, delimiter=',') c = current_vendor.product_id_col row_count = 0 for row in csv_data: if len(row.keys()) > 1: row_count += 1 for c in columns: if c not in row: flash("Error parsing {}'s CSV file. Couldn't find {} column at row {}" .format(current_vendor.full_name(),c, row_count), 'form-error') return False if row[current_vendor.product_id_col]=="" and row[current_vendor.listing_description_col]=="": flash("Successfully parsed {}'s CSV file!" .format(current_vendor.full_name()), 'form-success') return True if not( is_numeric_col(current_vendor=current_vendor, row=row, col=current_vendor.price_col, row_count=row_count) and is_numeric_col(current_vendor=current_vendor, row=row, col=current_vendor.quantity_col,row_count=row_count) and is_numeric_col(current_vendor=current_vendor, row=row, col=current_vendor.product_id_col,row_count=row_count)): return False if not is_proper_unit(current_vendor.full_name(), current_vendor.unit_col,row, row_count): return False return True @vendor.route('/itemslist/') @vendor.route('/itemslist/<int:page>') @login_required @vendor_required def current_listings(page=1): """View all current listings.""" tut_completed = User.query.filter_by(id=current_user.id).first().tutorial_completed main_search_term = request.args.get('main-search', "", type=str) sort_by = request.args.get('sort-by', "", type=str) avail = request.args.get('avail', "", type=str) search = request.args.get('search', "", type=str) listings_raw = Listing.search( sort_by=sort_by, main_search_term=main_search_term, avail=avail ) listings_raw = listings_raw.filter(Listing.vendor_id == current_user.id) if search != "False": page = 1 listings_paginated = listings_raw.paginate(page, 21, False) result_count = listings_raw.count() if result_count > 0: header = "Search Results: {} in total".format(result_count) else: header = "No Search Results" return render_template( 'vendor/current_listings.html', listings=listings_paginated, main_search_term=main_search_term, sort_by=sort_by, count=result_count, header=header, tut_completed=tut_completed ) @vendor.route('/items/<int:listing_id>') @vendor.route('/items/<int:listing_id>/info') @login_required @vendor_required def listing_info(listing_id): """View a listing's info.""" listing = Listing.query.filter_by(id=listing_id).first() if listing is None: abort(404) elif listing.vendor_id != current_user.id: abort(403) return render_template('vendor/manage_listing.html', listing=listing) @vendor.route('/items/<int:listing_id>/edit-item', methods=['GET', 'POST']) @login_required @vendor_required def change_listing_info(listing_id): """Change a listings's info.""" listing = Listing.query.filter_by( id=listing_id, vendor_id=current_user.id ).first() if listing is None: abort(404) form = ChangeListingInformation() form.listing_id = listing_id if form.validate_on_submit(): listing.name = form.listing_name.data listing.description = form.listing_description.data listing.unit = form.listing_unit.data listing.quantity = form.listing_quantity.data if form.listing_available.data: listing.available = True else: listing.disable_listing() listing.price = form.listing_price.data listing.vendor_id = current_user.id flash('Information for item {} successfully changed.' .format(listing.name), 'form-success') form.listing_name.default = listing.name form.listing_description.default = listing.description form.listing_price.default = listing.price form.listing_unit.default = listing.unit form.listing_quantity.default = listing.quantity form.listing_available.default = listing.available form.process() return render_template( 'vendor/manage_listing.html', listing=listing, form=form ) @vendor.route('/item/<int:listing_id>/delete') @login_required @vendor_required def delete_listing_request(listing_id): """Request deletion of an item""" listing = Listing.query.filter_by( id=listing_id, vendor_id=current_user.id ).first() if listing is None: abort(404) return render_template('vendor/manage_listing.html', listing=listing) @vendor.route('/item/<int:listing_id>/_delete') @login_required @vendor_required def delete_listing(listing_id): """Delete an item.""" listing = Listing.query.filter_by( id=listing_id, vendor_id=current_user.id ).first() listing.delete_listing() flash('Successfully deleted item %s.' % listing.name, 'success') return redirect(url_for('vendor.current_listings')) @vendor.route('/orders') @login_required @vendor_required def view_orders(): orders = (Order.query.filter_by(vendor_id=current_user.id) .order_by(Order.id.desc())) status_filter = request.args.get('status') if status_filter == 'approved': orders = orders.filter_by(status=Status.APPROVED) elif status_filter == 'declined': orders = orders.filter_by(status=Status.DECLINED) elif status_filter == 'pending': orders = orders.filter_by(status=Status.PENDING) else: status_filter = None return render_template( 'vendor/orders.html', orders=orders.all(), status_filter=status_filter ) @vendor.route('/approve/<int:order_id>', methods=['POST']) @login_required @vendor_required def approve_order(order_id): order = Order.query.filter_by(id = order_id).first() if not order or order.vendor_id != current_user.id: abort(404) if order.status != Status.PENDING: abort(400) order.status = Status.APPROVED order.comment = request.json['comment'] db.session.commit() merchant_id = order.merchant_id merchant = User.query.filter_by(id=merchant_id).first() vendor_name = order.company_name purchases = order.purchases comment = order.comment send_email(merchant.email, 'Vendor order request approved', 'vendor/email/approved_order', vendor_name=vendor_name, order=order, purchases=purchases, comment=comment) return jsonify({'order_id': order_id, 'status': 'approved', 'comment': comment}) @vendor.route('/decline/<int:order_id>', methods=['POST']) @login_required @vendor_required def decline_order(order_id): order = Order.query.filter_by(id=order_id).first() if not order or order.vendor_id != current_user.id: abort(404) if order.status != Status.PENDING: abort(400) order.status = Status.DECLINED order.comment = request.json['comment'] db.session.commit() merchant_id = order.merchant_id merchant = User.query.filter_by(id=merchant_id).first() vendor_name = order.company_name vendor_email = current_user.email purchases = order.purchases comment = order.comment send_email(merchant.email, 'Vendor order request declined', 'vendor/email/declined_order', vendor_name=vendor_name, vendor_email=vendor_email, order=order, purchases=purchases, comment=comment) return jsonify({'order_id': order_id, 'status': 'declined', 'comment': comment}) @vendor.route('/profile', methods=['GET']) @login_required @vendor_required def view_profile(): return render_template('vendor/profile.html', vendor=current_user) @vendor.route('/picture/<filename>', methods=['GET']) @login_required def get_picture(filename): c = Config() return send_from_directory(c.UPLOAD_FOLDER, filename) @vendor.route('/suggestions/<search>', methods=['GET']) @login_required def get_suggestions(search): listings_raw = Listing.search( available=True, strict_name_search=search, sort_by='alphaAZ' ).filter_by(vendor_id=current_user.id).limit(10) final_arr = [] for a in listings_raw: final_arr.append(a.name) return jsonify({'json_list': final_arr}); @vendor.route('/profile/edit', methods=['GET', 'POST']) @login_required @vendor_required def edit_profile(): form = EditProfileForm() c = Config() if form.validate_on_submit(): current_user.bio = form.bio.data current_user.address = form.address.data current_user.phone_number = form.phone_number.data current_user.website = form.website.data current_user.public_email = form.email.data current_user.f1 = form.featured1.data if form.image.data: filename = form.image.data.filename get_queue().enqueue(process_image, type='image', filename=filename, data =form.image.data.read(), user_id=current_user.id) if form.pdf.data: filename = form.pdf.data.filename get_queue().enqueue(process_image, type='pdf', filename=filename, data =form.pdf.data.read(), user_id=current_user.id) db.session.commit() return redirect(url_for('vendor.view_profile')) form.bio.data = current_user.bio form.address.data = current_user.address form.phone_number.data = current_user.phone_number form.website.data = current_user.website form.email.data = current_user.public_email form.featured1.data = current_user.f1 return render_template('vendor/edit_profile.html', form=form) def process_image(filename, type, data, user_id): app = create_app(os.getenv('FLASK_CONFIG') or 'default') with app.app_context(): source_filename = secure_filename(filename) source_extension = os.path.splitext(source_filename)[1] destination_filename = uuid4().hex + source_extension conn = boto.connect_s3(os.environ["AWS_ACCESS_KEY_ID"], os.environ["AWS_SECRET_ACCESS_KEY"]) b = conn.get_bucket(os.environ["S3_BUCKET"]) sml = b.new_key("/".join([destination_filename])) sml.set_contents_from_string(data) sml.set_acl('public-read') user = User.query.filter_by(id=user_id).first() if type == 'image': user.image = 'https://s3-us-west-2.amazonaws.com/{}/{}'.format(os.environ["S3_BUCKET"], destination_filename) if type == 'pdf': user.pdf = 'https://s3-us-west-2.amazonaws.com/{}/{}'.format(os.environ["S3_BUCKET"], destination_filename) db.session.commit()
# encoding: utf-8 import os import fcntl from select import select from collections import namedtuple from evdev import _input, _uinput, ecodes, util from evdev.events import InputEvent #-------------------------------------------------------------------------- class EvdevError(Exception): pass #-------------------------------------------------------------------------- _AbsInfo = namedtuple('AbsInfo', ['value', 'min', 'max', 'fuzz', 'flat', 'resolution']) _KbdInfo = namedtuple('KbdInfo', ['repeat', 'delay']) _DeviceInfo = namedtuple('DeviceInfo', ['bustype', 'vendor', 'product', 'version']) class AbsInfo(_AbsInfo): ''' A ``namedtuple`` for storing absolut axis information - corresponds to the ``input_absinfo`` struct: **value** Latest reported value for the axis. **min** Specifies minimum value for the axis. **max** Specifies maximum value for the axis. **fuzz** Specifies fuzz value that is used to filter noise from the event stream. **flat** Values that are within this value will be discarded by joydev interface and reported as 0 instead. **resolution** Specifies resolution for the values reported for the axis. Resolution for main axes (``ABS_X, ABS_Y, ABS_Z``) is reported in units per millimeter (units/mm), resolution for rotational axes (``ABS_RX, ABS_RY, ABS_RZ``) is reported in units per radian. .. note: The input core does not clamp reported values to the ``[minimum, maximum]`` limits, such task is left to userspace. ''' def __str__(self): return 'val {}, min {}, max {}, fuzz {}, flat {}, res {}'.format(*self) class KbdInfo(_KbdInfo): ''' Keyboard repeat rate: **repeat** Keyboard repeat rate in characters per second. **delay** Amount of time that a key must be depressed before it will start to repeat (in milliseconds). ''' def __str__(self): return 'repeat {}, delay {}'.format(*self) class DeviceInfo(_DeviceInfo): def __str__(self): msg = 'bus: {:04x}, vendor {:04x}, product {:04x}, version {:04x}' return msg.format(*self) class InputDevice(object): ''' A linux input device from which input events can be read. ''' __slots__ = ('fn', 'fd', 'info', 'name', 'phys', '_rawcapabilities', 'version', 'ff_effects_count') def __init__(self, dev): ''' :param dev: path to input device ''' #: Path to input device. self.fn = dev # Certain operations are possible only when the device is opened in # read-write mode. try: fd = os.open(dev, os.O_RDWR | os.O_NONBLOCK) except OSError: fd = os.open(dev, os.O_RDONLY | os.O_NONBLOCK) #: A non-blocking file descriptor to the device file. self.fd = fd # Returns (bustype, vendor, product, version, name, phys, capabilities). info_res = _input.ioctl_devinfo(self.fd) #: A :class:`DeviceInfo <evdev.device.DeviceInfo>` instance. self.info = DeviceInfo(*info_res[:4]) #: The name of the event device. self.name = info_res[4] #: The physical topology of the device. self.phys = info_res[5] #: The evdev protocol version. self.version = _input.ioctl_EVIOCGVERSION(self.fd) #: The raw dictionary of device capabilities - see `:func:capabilities()`. self._rawcapabilities = _input.ioctl_capabilities(self.fd) #: The number of force feedback effects the device can keep in its memory. self.ff_effects_count = _input.ioctl_EVIOCGEFFECTS(self.fd) def __del__(self): if hasattr(self, 'fd') and self.fd is not None: try: self.close() except OSError: pass def _capabilities(self, absinfo=True): res = {} for etype, ecodes in self._rawcapabilities.items(): for code in ecodes: l = res.setdefault(etype, []) if isinstance(code, tuple): if absinfo: a = code[1] # (0, 0, 0, 255, 0, 0) i = AbsInfo(*a) l.append((code[0], i)) else: l.append(code[0]) else: l.append(code) return res def capabilities(self, verbose=False, absinfo=True): ''' Return the event types that this device supports as a mapping of supported event types to lists of handled event codes. Example:: { 1: [272, 273, 274], 2: [0, 1, 6, 8] } If ``verbose`` is ``True``, event codes and types will be resolved to their names. Example:: { ('EV_KEY', 1): [('BTN_MOUSE', 272), ('BTN_RIGHT', 273), ('BTN_MIDDLE', 273)], ('EV_REL', 2): [('REL_X', 0), ('REL_Y', 1), ('REL_HWHEEL', 6), ('REL_WHEEL', 8)] } Unknown codes or types will be resolved to ``'?'``. If ``absinfo`` is ``True``, the list of capabilities will also include absolute axis information in the form of :class:`AbsInfo` instances:: { 3: [ (0, AbsInfo(min=0, max=255, fuzz=0, flat=0)), (1, AbsInfo(min=0, max=255, fuzz=0, flat=0)) ]} Combined with ``verbose`` the above becomes:: { ('EV_ABS', 3): [ (('ABS_X', 0), AbsInfo(min=0, max=255, fuzz=0, flat=0)), (('ABS_Y', 1), AbsInfo(min=0, max=255, fuzz=0, flat=0)) ]} ''' if verbose: return dict(util.resolve_ecodes(self._capabilities(absinfo))) else: return self._capabilities(absinfo) def need_write(func): ''' Decorator that raises EvdevError() if there is no write access to the input device. ''' def wrapper(*args): fd = args[0].fd if fcntl.fcntl(fd, fcntl.F_GETFL) & os.O_RDWR: return func(*args) msg = 'no write access to device "%s"' % args[0].fn raise EvdevError(msg) return wrapper def leds(self, verbose=False): ''' Return currently set LED keys. For example:: [0, 1, 8, 9] If ``verbose`` is ``True``, event codes are resolved to their names. Unknown codes are resolved to ``'?'``. For example:: [('LED_NUML', 0), ('LED_CAPSL', 1), ('LED_MISC', 8), ('LED_MAIL', 9)] ''' leds = _input.get_sw_led_snd(self.fd, ecodes.EV_LED) if verbose: return [(ecodes.LED[l] if l in ecodes.LED else '?', l) for l in leds] return leds @need_write def set_led(self, led_num, value): ''' Set the state of the selected LED. For example:: device.set_led(ecodes.LED_NUML, 1) .. ''' _uinput.write(self.fd, ecodes.EV_LED, led_num, value) def __eq__(self, other): '''Two devices are equal if their :data:`info` attributes are equal.''' return isinstance(other, self.__class__) and self.info == other.info def __str__(self): msg = 'device {}, name "{}", phys "{}"' return msg.format(self.fn, self.name, self.phys) def __repr__(self): msg = (self.__class__.__name__, self.fn) return '{}({!r})'.format(*msg) def close(self): if self.fd > -1: try: os.close(self.fd) finally: self.fd = -1 def fileno(self): ''' Return the file descriptor to the open event device. This makes it possible to pass pass ``InputDevice`` instances directly to :func:`select.select()` and :class:`asyncore.file_dispatcher`.''' return self.fd def read_one(self): ''' Read and return a single input event as an instance of :class:`InputEvent <evdev.events.InputEvent>`. Return ``None`` if there are no pending input events. ''' # event -> (sec, usec, type, code, val) event = _input.device_read(self.fd) if event: return InputEvent(*event) def read_loop(self): '''Enter an endless ``select()`` loop that yields input events.''' while True: r, w, x = select([self.fd], [], []) for event in self.read(): yield event def read(self): ''' Read multiple input events from device. Return a generator object that yields :class:`InputEvent <evdev.events.InputEvent>` instances. Raises `BlockingIOError` if there are no available events at the moment. ''' # events -> [(sec, usec, type, code, val), ...] events = _input.device_read_many(self.fd) for i in events: yield InputEvent(*i) def grab(self): ''' Grab input device using ``EVIOCGRAB`` - other applications will be unable to receive events until the device is released. Only one process can hold a ``EVIOCGRAB`` on a device. .. warning:: Grabbing an already grabbed device will raise an ``IOError``.''' _input.ioctl_EVIOCGRAB(self.fd, 1) def ungrab(self): '''Release device if it has been already grabbed (uses `EVIOCGRAB`). .. warning:: Releasing an already released device will raise an ``IOError('Invalid argument')``.''' _input.ioctl_EVIOCGRAB(self.fd, 0) def upload_effect(self, effect): '''Upload a force feedback effect to a force feedback device.''' data = bytes(buffer(effect)[:]) ff_id = _input.upload_effect(self.fd, data) return ff_id def erase_effect(self, ff_id): '''Erase a force effect from a force feedback device. This also stops the effect.''' _input.erase_effect(self.fd, ff_id) @property def repeat(self): '''Get or set the keyboard repeat rate (in characters per minute) and delay (in milliseconds).''' return KbdInfo(*_input.ioctl_EVIOCGREP(self.fd)) @repeat.setter def repeat(self, value): return _input.ioctl_EVIOCSREP(self.fd, *value) def active_keys(self, verbose=False): ''' Return currently active keys. Example:: [1, 42] If ``verbose`` is ``True``, key codes are resolved to their verbose names. Unknown codes are resolved to ``'?'``. For example:: [('KEY_ESC', 1), ('KEY_LEFTSHIFT', 42)] ''' active_keys = _input.ioctl_EVIOCGKEY(self.fd) if verbose: return [(ecodes.KEY[k] if k in ecodes.KEY else '?', k) for k in active_keys] return active_keys
"""Unit tests for raw_wind_io.py.""" import unittest import numpy import pandas from gewittergefahr.gg_io import raw_wind_io TOLERANCE = 1e-6 # The following constants are used to test _check_data_source. FAKE_PRIMARY_DATA_SOURCE = 'foo' FAKE_SECONDARY_DATA_SOURCE = 'bar' # The following constants are used to test # _primary_and_secondary_sources_to_table. PRIMARY_SOURCE_BY_PAIR = [ raw_wind_io.OK_MESONET_DATA_SOURCE, raw_wind_io.STORM_EVENTS_DATA_SOURCE, raw_wind_io.HFMETAR_DATA_SOURCE] PRIMARY_SOURCE_BY_PAIR += ( [raw_wind_io.MADIS_DATA_SOURCE] * len(raw_wind_io.SECONDARY_DATA_SOURCES)) SECONDARY_SOURCE_BY_PAIR = [None] * 3 + raw_wind_io.SECONDARY_DATA_SOURCES PRIMARY_AND_SECONDARY_SOURCE_PAIRS_AS_DICT = { raw_wind_io.PRIMARY_SOURCE_COLUMN: PRIMARY_SOURCE_BY_PAIR, raw_wind_io.SECONDARY_SOURCE_COLUMN: SECONDARY_SOURCE_BY_PAIR} PRIMARY_AND_SECONDARY_SOURCE_PAIRS_AS_TABLE = pandas.DataFrame.from_dict( PRIMARY_AND_SECONDARY_SOURCE_PAIRS_AS_DICT) # The following constants are used to test _check_elevations. ELEVATIONS_M_ASL = numpy.array( [-1000., 0., 1000., 5000., 10000., numpy.nan, None], dtype=numpy.float64) ELEV_INVALID_INDICES = numpy.array([0, 4, 5, 6], dtype=int) # The following constants are used to test check_wind_speeds. SIGNED_WIND_SPEEDS_M_S01 = numpy.array( [-100., -50., -10., 0., 10., 50., 100., numpy.nan, None], dtype=numpy.float64) ABSOLUTE_WIND_SPEEDS_M_S01 = numpy.array( [-100., -50., -10., 0., 10., 50., 100., numpy.nan, None], dtype=numpy.float64) SIGNED_SPEED_INVALID_INDICES = numpy.array([0, 6, 7, 8], dtype=int) ABSOLUTE_SPEED_INVALID_INDICES = numpy.array([0, 1, 2, 6, 7, 8], dtype=int) # The following constants are used to test _check_wind_directions. WIND_DIRECTIONS_DEG = numpy.array( [-10., 0., 180., 359.99, 360., 5000., numpy.nan, None], dtype=numpy.float64) DIRECTION_INVALID_INDICES = numpy.array([0, 4, 5, 6, 7], dtype=int) # The following constants are used to test append_source_to_station_id. STATION_ID_NO_SOURCE = 'CYEG' NON_MADIS_PRIMARY_SOURCE = 'ok_mesonet' STATION_ID_NON_MADIS = 'CYEG_ok-mesonet' SECONDARY_DATA_SOURCE = 'sao' STATION_ID_MADIS = 'CYEG_madis_sao' # The following constants are used to test _remove_duplicate_observations. THESE_LATITUDES_DEG = numpy.array( [51.1, 51.102, 51.104, 51.106, 53.5, 53.501, 53.502, 53.503]) THESE_LONGITUDES_DEG = numpy.array( [246.0, 246.001, 246.002, 246.1, 246.5, 246.501, 246.502, 246.6]) THESE_TIMES_UNIX_SEC = numpy.array([0, 0, 1, 0, 2, 2, 2, 2], dtype=int) THESE_U_WINDS_M_S01 = numpy.array( [5., 4.999, 5.001, 5.003, 8., 8.001, 8.002, 7.999]) THESE_V_WINDS_M_S01 = numpy.array( [-4., -4.001, -4.002, -3.999, 17., 17., 18., 17.]) WIND_DICT_WITH_DUPLICATES = {raw_wind_io.LATITUDE_COLUMN: THESE_LATITUDES_DEG, raw_wind_io.LONGITUDE_COLUMN: THESE_LONGITUDES_DEG, raw_wind_io.TIME_COLUMN: THESE_TIMES_UNIX_SEC, raw_wind_io.U_WIND_COLUMN: THESE_U_WINDS_M_S01, raw_wind_io.V_WIND_COLUMN: THESE_V_WINDS_M_S01} WIND_TABLE_WITH_DUPLICATES = pandas.DataFrame.from_dict( WIND_DICT_WITH_DUPLICATES) WITH_TABLE_SANS_DUPLICATES = WIND_TABLE_WITH_DUPLICATES.iloc[[0, 2, 3, 4, 6, 7]] # The following constants are used to test _get_pathless_processed_file_name. FILE_START_TIME_UNIX_SEC = 1506999600 # 0300 UTC 3 Oct 2017 FILE_END_TIME_UNIX_SEC = 1507003200 # 0400 UTC 3 Oct 2017 PATHLESS_FILE_NAME_MADIS = ( 'wind-observations_madis_sao_2017-10-03-030000_2017-10-03-040000.csv') PATHLESS_FILE_NAME_NON_MADIS = ( 'wind-observations_ok-mesonet_2017-10-03-030000_2017-10-03-040000.csv') # The following constants are used to test find_processed_file. TOP_DIRECTORY_NAME = 'wind' PROCESSED_FILE_NAME_MADIS = ( 'wind/madis/sao/201710/wind-observations_madis_sao_2017-10-03-030000_' '2017-10-03-040000.csv') PROCESSED_FILE_NAME_NON_MADIS = ( 'wind/ok_mesonet/201710/wind-observations_ok-mesonet_2017-10-03-030000_' '2017-10-03-040000.csv') # The following constants are used to test find_processed_hourly_files. PERIOD_START_TIME_UNIX_SEC = 1506993753 # 012233 UTC 3 Oct 2017 PERIOD_END_TIME_UNIX_SEC = 1507002295 # 034455 UTC 3 Oct 2017 PROCESSED_HOURLY_FILE_NAMES_MADIS = [ 'wind/madis/sao/201710/' 'wind-observations_madis_sao_2017-10-03-010000_2017-10-03-015959.csv', 'wind/madis/sao/201710/' 'wind-observations_madis_sao_2017-10-03-020000_2017-10-03-025959.csv', 'wind/madis/sao/201710/' 'wind-observations_madis_sao_2017-10-03-030000_2017-10-03-035959.csv'] PROCESSED_HOURLY_FILE_NAMES_NON_MADIS = [ 'wind/ok_mesonet/201710/' 'wind-observations_ok-mesonet_2017-10-03-010000_2017-10-03-015959.csv', 'wind/ok_mesonet/201710/' 'wind-observations_ok-mesonet_2017-10-03-020000_2017-10-03-025959.csv', 'wind/ok_mesonet/201710/' 'wind-observations_ok-mesonet_2017-10-03-030000_2017-10-03-035959.csv' ] # The following constants are used to test get_max_of_sustained_and_gust. WIND_SPEEDS_TO_CONVERT_M_S01 = numpy.array( [5., 10., 20., 30., numpy.nan, 6.6, 0., 40.]) WIND_GUST_SPEEDS_TO_CONVERT_M_S01 = numpy.array( [numpy.nan, 12.5, 17.5, 34., 0., numpy.nan, 1.7, 38.]) WIND_DIRECTIONS_TO_CONVERT_DEG = numpy.array( [0., 70., 90., 145., 200., 225., 280., 315.]) WIND_GUST_DIRECTIONS_TO_CONVERT_DEG = numpy.array( [20., 45., 105., 135., 180., 230.1, 270., 335.]) MAX_WIND_SPEEDS_M_S01 = numpy.array( [5., 12.5, 20., 34., 0., 6.6, 1.7, 40.]) MAX_WIND_DIRECTIONS_DEG = numpy.array( [0., 45., 90., 135., 180., 225., 270., 315.]) MAX_WIND_DIRECTIONS_WITH_NAN_DEG = numpy.array( [numpy.nan, 45., 90., 135., 180., 225., 270., 315.]) # The following constants are used to test speed_and_direction_to_uv and # uv_to_speed_and_direction. HALF_SQRT_OF_TWO = numpy.sqrt(2.) / 2 EXPECTED_MAX_U_WINDS_M_S01 = numpy.array( [0., -12.5 * HALF_SQRT_OF_TWO, -20., -34. * HALF_SQRT_OF_TWO, 0., 6.6 * HALF_SQRT_OF_TWO, 1.7, 40. * HALF_SQRT_OF_TWO]) EXPECTED_MAX_V_WINDS_M_S01 = numpy.array( [-5., -12.5 * HALF_SQRT_OF_TWO, 0., 34. * HALF_SQRT_OF_TWO, 0., 6.6 * HALF_SQRT_OF_TWO, 0., -40. * HALF_SQRT_OF_TWO]) class RawWindIoTests(unittest.TestCase): """Each method is a unit test for raw_wind_io.py.""" def test_check_data_sources_fake_primary(self): """Ensures correct output from check_data_sources. In this case, primary data source is fake. """ with self.assertRaises(ValueError): raw_wind_io.check_data_sources( primary_source=FAKE_PRIMARY_DATA_SOURCE) def test_check_data_sources_merged_not_allowed(self): """Ensures correct output from check_data_sources. In this case, primary data source is "merged", which is not allowed. """ with self.assertRaises(ValueError): raw_wind_io.check_data_sources( primary_source=raw_wind_io.MERGED_DATA_SOURCE, allow_merged=False) def test_check_data_sources_merged_allowed(self): """Ensures correct output from check_data_sources. In this case, primary data source is "merged", which is allowed. """ raw_wind_io.check_data_sources( primary_source=raw_wind_io.MERGED_DATA_SOURCE, allow_merged=True) def test_check_data_sources_fake_secondary(self): """Ensures correct output from check_data_sources. In this case, secondary data source is fake. """ with self.assertRaises(ValueError): raw_wind_io.check_data_sources( primary_source=raw_wind_io.MADIS_DATA_SOURCE, secondary_source=FAKE_SECONDARY_DATA_SOURCE) def test_check_data_sources_madis(self): """Ensures correct output from check_data_sources. In this case, primary source is MADIS and secondary source is valid. """ raw_wind_io.check_data_sources( primary_source=raw_wind_io.MADIS_DATA_SOURCE, secondary_source=SECONDARY_DATA_SOURCE) def test_check_data_sources_non_madis(self): """Ensures correct output from check_data_sources. In this case, primary source is non-MADIS. """ raw_wind_io.check_data_sources(primary_source=NON_MADIS_PRIMARY_SOURCE) def test_primary_and_secondary_sources_to_table(self): """Ensures correctness of _primary_and_secondary_sources_to_table.""" this_actual_table = raw_wind_io._primary_and_secondary_sources_to_table() this_actual_table.sort_values( raw_wind_io.PRIMARY_SOURCE_COLUMN, axis=0, ascending=True, inplace=True) this_actual_table.fillna(value='FOO', axis=1, inplace=True) this_actual_table.reset_index(inplace=True, drop=True) this_expected_table = ( PRIMARY_AND_SECONDARY_SOURCE_PAIRS_AS_TABLE.sort_values( raw_wind_io.PRIMARY_SOURCE_COLUMN, axis=0, ascending=True, inplace=False) ) this_expected_table.fillna(value='FOO', axis=1, inplace=True) this_expected_table.reset_index(inplace=True, drop=True) self.assertTrue(this_actual_table.equals(this_expected_table)) def test_check_elevations(self): """Ensures correct output from _check_elevations.""" these_invalid_indices = raw_wind_io._check_elevations(ELEVATIONS_M_ASL) self.assertTrue(numpy.array_equal(these_invalid_indices, ELEV_INVALID_INDICES)) def test_check_wind_speeds_signed(self): """Ensures correct output from check_wind_speeds. In this case wind speeds are signed (either u- or v-component), so they can be negative. """ these_invalid_indices = raw_wind_io.check_wind_speeds( SIGNED_WIND_SPEEDS_M_S01, one_component=True) self.assertTrue(numpy.array_equal(these_invalid_indices, SIGNED_SPEED_INVALID_INDICES)) def test_check_wind_speeds_absolute(self): """Ensures correct output from check_wind_speeds. In this case wind speeds are absolute (vector magnitudes), so they cannot be negative. """ these_invalid_indices = raw_wind_io.check_wind_speeds( ABSOLUTE_WIND_SPEEDS_M_S01, one_component=False) self.assertTrue(numpy.array_equal(these_invalid_indices, ABSOLUTE_SPEED_INVALID_INDICES)) def test_check_wind_directions(self): """Ensures correct output from _check_wind_directions.""" these_invalid_indices = raw_wind_io._check_wind_directions( WIND_DIRECTIONS_DEG) self.assertTrue(numpy.array_equal(these_invalid_indices, DIRECTION_INVALID_INDICES)) def test_remove_duplicate_observations(self): """Ensures correct output from _remove_duplicate_observations.""" this_wind_table = raw_wind_io._remove_duplicate_observations( WIND_TABLE_WITH_DUPLICATES) self.assertTrue(this_wind_table.equals(WITH_TABLE_SANS_DUPLICATES)) def test_get_pathless_processed_file_name_madis(self): """Ensures correct output from _get_pathless_processed_file_name. In this case, primary data source is MADIS. """ this_pathless_file_name = raw_wind_io._get_pathless_processed_file_name( start_time_unix_sec=FILE_START_TIME_UNIX_SEC, end_time_unix_sec=FILE_END_TIME_UNIX_SEC, primary_source=raw_wind_io.MADIS_DATA_SOURCE, secondary_source=SECONDARY_DATA_SOURCE) self.assertTrue(this_pathless_file_name == PATHLESS_FILE_NAME_MADIS) def test_get_pathless_processed_file_name_non_madis(self): """Ensures correct output from _get_pathless_processed_file_name. In this case, primary data source is non-MADIS. """ this_pathless_file_name = raw_wind_io._get_pathless_processed_file_name( start_time_unix_sec=FILE_START_TIME_UNIX_SEC, end_time_unix_sec=FILE_END_TIME_UNIX_SEC, primary_source=NON_MADIS_PRIMARY_SOURCE) self.assertTrue(this_pathless_file_name == PATHLESS_FILE_NAME_NON_MADIS) def test_append_source_to_station_id_madis(self): """Ensures correct output from append_source_to_station_id. In this case, primary data source is MADIS. """ this_station_id = raw_wind_io.append_source_to_station_id( STATION_ID_NO_SOURCE, primary_source=raw_wind_io.MADIS_DATA_SOURCE, secondary_source=SECONDARY_DATA_SOURCE) self.assertTrue(this_station_id == STATION_ID_MADIS) def test_append_source_to_station_id_non_madis(self): """Ensures correct output from append_source_to_station_id. In this case, primary data source is non-MADIS. """ this_station_id = raw_wind_io.append_source_to_station_id( STATION_ID_NO_SOURCE, primary_source=NON_MADIS_PRIMARY_SOURCE) self.assertTrue(this_station_id == STATION_ID_NON_MADIS) def test_get_max_of_sustained_and_gust(self): """Ensures correct output from get_max_of_sustained_and_gust.""" these_max_wind_speeds_m_s01, these_max_wind_directions_deg = ( raw_wind_io.get_max_of_sustained_and_gust( WIND_SPEEDS_TO_CONVERT_M_S01, WIND_GUST_SPEEDS_TO_CONVERT_M_S01, WIND_DIRECTIONS_TO_CONVERT_DEG, WIND_GUST_DIRECTIONS_TO_CONVERT_DEG)) self.assertTrue(numpy.allclose( these_max_wind_speeds_m_s01, MAX_WIND_SPEEDS_M_S01, atol=TOLERANCE, equal_nan=True)) self.assertTrue(numpy.allclose( these_max_wind_directions_deg, MAX_WIND_DIRECTIONS_DEG, atol=TOLERANCE)) def test_speed_and_direction_to_uv_with_nan(self): """Ensures correct output from speed_and_direction_to_uv. In this case, input directions include NaN. """ these_u_winds_m_s01, these_v_winds_m_s01 = ( raw_wind_io.speed_and_direction_to_uv( MAX_WIND_SPEEDS_M_S01, MAX_WIND_DIRECTIONS_WITH_NAN_DEG)) self.assertTrue(numpy.allclose( these_u_winds_m_s01, EXPECTED_MAX_U_WINDS_M_S01, atol=TOLERANCE)) self.assertTrue(numpy.allclose( these_v_winds_m_s01, EXPECTED_MAX_V_WINDS_M_S01, atol=TOLERANCE)) def test_speed_and_direction_to_uv_without_nan(self): """Ensures correct output from speed_and_direction_to_uv. In this case, input directions do not include NaN. """ these_u_winds_m_s01, these_v_winds_m_s01 = ( raw_wind_io.speed_and_direction_to_uv( MAX_WIND_SPEEDS_M_S01, MAX_WIND_DIRECTIONS_DEG)) self.assertTrue(numpy.allclose( these_u_winds_m_s01, EXPECTED_MAX_U_WINDS_M_S01, atol=TOLERANCE)) self.assertTrue(numpy.allclose( these_v_winds_m_s01, EXPECTED_MAX_V_WINDS_M_S01, atol=TOLERANCE)) def test_uv_to_speed_and_direction(self): """Ensures correct output from uv_to_speed_and_direction.""" these_wind_speeds_m_s01, these_wind_directions_deg = ( raw_wind_io.uv_to_speed_and_direction( EXPECTED_MAX_U_WINDS_M_S01, EXPECTED_MAX_V_WINDS_M_S01)) self.assertTrue(numpy.allclose( these_wind_speeds_m_s01, MAX_WIND_SPEEDS_M_S01, atol=TOLERANCE)) self.assertTrue(numpy.allclose( these_wind_directions_deg, MAX_WIND_DIRECTIONS_DEG, atol=TOLERANCE)) def test_find_processed_file_madis(self): """Ensures correct output from find_processed_file. In this case, primary data source is MADIS. """ this_file_name = raw_wind_io.find_processed_file( start_time_unix_sec=FILE_START_TIME_UNIX_SEC, end_time_unix_sec=FILE_END_TIME_UNIX_SEC, primary_source=raw_wind_io.MADIS_DATA_SOURCE, secondary_source=SECONDARY_DATA_SOURCE, top_directory_name=TOP_DIRECTORY_NAME, raise_error_if_missing=False) self.assertTrue(this_file_name == PROCESSED_FILE_NAME_MADIS) def test_find_processed_file_non_madis(self): """Ensures correct output from find_processed_file. In this case, primary data source is non-MADIS. """ this_file_name = raw_wind_io.find_processed_file( start_time_unix_sec=FILE_START_TIME_UNIX_SEC, end_time_unix_sec=FILE_END_TIME_UNIX_SEC, primary_source=NON_MADIS_PRIMARY_SOURCE, top_directory_name=TOP_DIRECTORY_NAME, raise_error_if_missing=False) self.assertTrue(this_file_name == PROCESSED_FILE_NAME_NON_MADIS) def test_find_processed_hourly_files_madis(self): """Ensures correct output from find_processed_hourly_files. In this case, primary data source is MADIS. """ these_file_names, _ = raw_wind_io.find_processed_hourly_files( start_time_unix_sec=PERIOD_START_TIME_UNIX_SEC, end_time_unix_sec=PERIOD_END_TIME_UNIX_SEC, primary_source=raw_wind_io.MADIS_DATA_SOURCE, secondary_source=SECONDARY_DATA_SOURCE, top_directory_name=TOP_DIRECTORY_NAME, raise_error_if_missing=False) self.assertTrue(these_file_names == PROCESSED_HOURLY_FILE_NAMES_MADIS) def test_find_processed_hourly_files_non_madis(self): """Ensures correct output from find_processed_hourly_files. In this case, primary data source is non-MADIS. """ these_file_names, _ = raw_wind_io.find_processed_hourly_files( start_time_unix_sec=PERIOD_START_TIME_UNIX_SEC, end_time_unix_sec=PERIOD_END_TIME_UNIX_SEC, primary_source=NON_MADIS_PRIMARY_SOURCE, top_directory_name=TOP_DIRECTORY_NAME, raise_error_if_missing=False) self.assertTrue( these_file_names == PROCESSED_HOURLY_FILE_NAMES_NON_MADIS) if __name__ == '__main__': unittest.main()
import array import gc import os from math import sqrt from rubikscolorresolver.base import ( LabColor, RubiksColorSolverGenericBase, Square, lab_distance, html_color, rgb2lab, ) from rubikscolorresolver.tsp_solver_greedy import solve_tsp from rubikscolorresolver.permutations import ( even_cube_center_color_permutations, len_even_cube_center_color_permutations, odd_cube_center_color_permutations, ) # from rubikscolorresolver.profile import timed_function, print_profile_data import sys if sys.version_info < (3, 4): raise SystemError("Must be using Python 3.4 or higher") def is_micropython(): return sys.implementation.name == "micropython" ALL_COLORS = ("Bu", "Gr", "OR", "Rd", "Wh", "Ye") SIDES_COUNT = 6 if is_micropython(): HTML_FILENAME = "rubiks-color-resolver.html" else: HTML_FILENAME = "/tmp/rubiks-color-resolver.html" try: os.unlink(HTML_FILENAME) except Exception: pass # @timed_function def median(list_foo): list_foo = sorted(list_foo) list_foo_len = len(list_foo) if list_foo_len < 1: return None # Even number of entries if list_foo_len % 2 == 0: return ( list_foo[int((list_foo_len - 1) / 2)] + list_foo[int((list_foo_len + 1) / 2)] ) / 2.0 # Odd number of entries else: return list_foo[int((list_foo_len - 1) / 2)] def tsp_matrix_corners(corners): len_corners = len(corners) # build a full matrix of color to color distances # init the 2d list with 0s matrix = [x[:] for x in [[0] * len_corners] * len_corners] color_names = set(("Wh", "Ye", "OR", "Rd", "Bu", "Gr")) for x in range(len_corners): x_corner = corners[x] for y in range(x + 1, len_corners): y_corner = corners[y] if ( x_corner[0].position in color_names and y_corner[0].position in color_names ): distance = 999 elif ( x_corner[0].position not in color_names and y_corner[0].position not in color_names ): distance = 999 else: distance_012 = ( lab_distance(x_corner[0].lab, y_corner[0].lab) + lab_distance(x_corner[1].lab, y_corner[1].lab) + lab_distance(x_corner[2].lab, y_corner[2].lab) ) distance_201 = ( lab_distance(x_corner[0].lab, y_corner[2].lab) + lab_distance(x_corner[1].lab, y_corner[0].lab) + lab_distance(x_corner[2].lab, y_corner[1].lab) ) distance_120 = ( lab_distance(x_corner[0].lab, y_corner[1].lab) + lab_distance(x_corner[1].lab, y_corner[2].lab) + lab_distance(x_corner[2].lab, y_corner[0].lab) ) distance = min(distance_012, distance_201, distance_120) matrix[x][y] = distance matrix[y][x] = distance # print("corners matrix") # for row in matrix: # print(row) return matrix def corner_distance(corner1, corner2): return ( lab_distance(corner1[0].lab, corner2[0].lab) + lab_distance(corner1[1].lab, corner2[1].lab) + lab_distance(corner1[2].lab, corner2[2].lab) ) def traveling_salesman_corners(corners, desc): matrix = tsp_matrix_corners(corners) path = solve_tsp(matrix, desc=desc) sorted_corners = [corners[x] for x in path] for x in range(0, len(sorted_corners), 2): corner1 = sorted_corners[x] corner2 = sorted_corners[x + 1] distance_012 = ( lab_distance(corner1[0].lab, corner2[0].lab) + lab_distance(corner1[1].lab, corner2[1].lab) + lab_distance(corner1[2].lab, corner2[2].lab) ) distance_201 = ( lab_distance(corner1[0].lab, corner2[2].lab) + lab_distance(corner1[1].lab, corner2[0].lab) + lab_distance(corner1[2].lab, corner2[1].lab) ) distance_120 = ( lab_distance(corner1[0].lab, corner2[1].lab) + lab_distance(corner1[1].lab, corner2[2].lab) + lab_distance(corner1[2].lab, corner2[0].lab) ) distance = min(distance_012, distance_201, distance_120) if distance == distance_012: pass elif distance == distance_201: sorted_corners[x + 1] = (corner2[2], corner2[0], corner2[1]) elif distance == distance_120: sorted_corners[x + 1] = (corner2[1], corner2[2], corner2[0]) else: raise ValueError(distance) while True: max_delta = 0 max_delta_corners_to_swap = None for x in range(0, len(sorted_corners), 2): corner1 = sorted_corners[x] corner2 = sorted_corners[x + 1] distance12 = corner_distance(corner1, corner2) for y in range(x + 2, len(sorted_corners), 2): corner3 = sorted_corners[y] corner4 = sorted_corners[y + 1] distance34 = corner_distance(corner3, corner4) # If we were to swap corner2 with corner4, what would that do to the corner1->corner2 distance plus the corner3->corner4 distance? distance14 = corner_distance(corner1, corner4) distance32 = corner_distance(corner3, corner2) if distance14 + distance32 < distance12 + distance34: delta = (distance12 + distance34) - (distance14 + distance32) if delta > max_delta: max_delta = delta max_delta_corners_to_swap = (x + 1, y + 1) if max_delta_corners_to_swap: (x, y) = max_delta_corners_to_swap orig_x = sorted_corners[x] sorted_corners[x] = sorted_corners[y] sorted_corners[y] = orig_x else: break return sorted_corners def tsp_matrix_edge_pairs(edge_pairs): len_edge_pairs = len(edge_pairs) # build a full matrix of color to color distances # init the 2d list with 0s matrix = [x[:] for x in [[0] * len_edge_pairs] * len_edge_pairs] color_names = set(("Wh", "Ye", "OR", "Rd", "Bu", "Gr")) for x in range(len_edge_pairs): x_edge_pair = edge_pairs[x] for y in range(x + 1, len_edge_pairs): y_edge_pair = edge_pairs[y] if ( x_edge_pair[0].position in color_names and y_edge_pair[0].position in color_names ): distance = 999 elif ( x_edge_pair[0].position not in color_names and y_edge_pair[0].position not in color_names ): distance = 999 else: distance_01 = lab_distance( x_edge_pair[0].lab, y_edge_pair[0].lab ) + lab_distance(x_edge_pair[1].lab, y_edge_pair[1].lab) distance_10 = lab_distance( x_edge_pair[0].lab, y_edge_pair[1].lab ) + lab_distance(x_edge_pair[1].lab, y_edge_pair[0].lab) distance = min(distance_01, distance_10) matrix[x][y] = distance matrix[y][x] = distance return matrix def edge_pair_distance(pair1, pair2, normal): if normal: return lab_distance(pair1[0].lab, pair2[0].lab) + lab_distance( pair1[1].lab, pair2[1].lab ) else: return lab_distance(pair1[0].lab, pair2[1].lab) + lab_distance( pair1[1].lab, pair2[0].lab ) def traveling_salesman_edge_pairs(edge_pairs, desc): matrix = tsp_matrix_edge_pairs(edge_pairs) path = solve_tsp(matrix, desc=desc) sorted_edge_pairs = [edge_pairs[x] for x in path] for x in range(0, len(sorted_edge_pairs), 2): pair1 = sorted_edge_pairs[x] pair2 = sorted_edge_pairs[x + 1] distance_01 = edge_pair_distance(pair1, pair2, normal=True) distance_10 = edge_pair_distance(pair1, pair2, normal=False) if distance_10 < distance_01: sorted_edge_pairs[x + 1] = ( sorted_edge_pairs[x + 1][1], sorted_edge_pairs[x + 1][0], ) while True: max_delta = 0 max_delta_edges_to_swap = None for x in range(0, len(sorted_edge_pairs), 2): pair1 = sorted_edge_pairs[x] pair2 = sorted_edge_pairs[x + 1] distance12 = edge_pair_distance(pair1, pair2, True) for y in range(x + 2, len(sorted_edge_pairs), 2): pair3 = sorted_edge_pairs[y] pair4 = sorted_edge_pairs[y + 1] distance34 = edge_pair_distance(pair3, pair4, True) # If we were to swap pair2 with pair4, what would that do to the pair1->pair2 distance plus the pair3->pair4 distance? distance14 = edge_pair_distance(pair1, pair4, True) distance32 = edge_pair_distance(pair3, pair2, True) if distance14 + distance32 < distance12 + distance34: delta = (distance12 + distance34) - (distance14 + distance32) if delta > max_delta: max_delta = delta max_delta_edges_to_swap = (x + 1, y + 1) if max_delta_edges_to_swap: (x, y) = max_delta_edges_to_swap orig_x = sorted_edge_pairs[x] sorted_edge_pairs[x] = sorted_edge_pairs[y] sorted_edge_pairs[y] = orig_x else: break return sorted_edge_pairs """ def path_streak_cost(squares): if len(squares) <= 1: return 0 cost = 0 prev_square = squares[0] for square in squares[1:]: cost += lab_distance(prev_square.lab, square.lab) prev_square = square return cost def best_path_streak(sorted_squares, streak_length, middle_squares, edge_pairs, corners): max_cost_start = len(sorted_squares) - streak_length min_cost = 999 min_cost_start = None # print(middle_squares) len_edge_pairs = len(edge_pairs) if len_edge_pairs == 0: pass elif len_edge_pairs == 12: target_edges_in_streak = 4 else: raise ValueError(len_edge_pairs) for x in range(0, max_cost_start): squares_for_streak = sorted_squares[x:x + streak_length] cost = path_streak_cost(squares_for_streak) valid = True if middle_squares: middle_squares_in_streak = [square for square in squares_for_streak if square in middle_squares] valid = bool(len(middle_squares_in_streak) == 1) # print(middle_squares_in_streak) ''' if valid and edge_pairs: for edge_pair in edge_pairs: edges_in_pair_in_streak = [square for square in squares_for_streak if square in edge_pair] valid = bool(len(edges_in_pair_in_streak) == target_edges_in_streak) ''' if valid and corners: # print(f"corners {corners}") corners_in_streak = [] for corner in corners: corner_in_streak = [square for square in squares_for_streak if square in corner] corners_in_streak.extend(corner_in_streak) # print(f"corner_in_streak {len(corner_in_streak)}") valid = bool(len(corner_in_streak) <= 1) if not valid: break if valid: valid = bool(len(corners_in_streak) == 4) # print(f"corners_in_streak {len(corners_in_streak)}") if valid and cost < min_cost: min_cost = cost min_cost_start = x return sorted_squares[min_cost_start : min_cost_start + streak_length] """ def tsp_matrix(squares): len_squares = len(squares) r_len_squares = range(len_squares) # build a full matrix of color to color distances # init the 2d list with 0s matrix = [x[:] for x in [[0] * len_squares] * len_squares] for x in r_len_squares: x_lab = squares[x].lab for y in range(x + 1, len_squares): y_lab = squares[y].lab distance = lab_distance(x_lab, y_lab) matrix[x][y] = distance matrix[y][x] = distance # convert to tuple of tuples for (row_index, row) in enumerate(matrix): matrix[row_index] = tuple(row) matrix = tuple(matrix) return matrix # @timed_function def traveling_salesman(squares, desc, middle_squares=[], edge_pairs=[], corners=[]): """ SQUARES_PER_ROW = int(len(squares) / SIDES_COUNT) results = [] _squares = squares[:] for x in range(SIDES_COUNT - 1): if x == 4: matrix = tsp_matrix(_squares) path = solve_tsp(matrix, desc=desc) path_squares = [_squares[x] for x in path] results.extend(path_squares) else: matrix = tsp_matrix(_squares) path = solve_tsp(matrix, desc=desc) path_squares = [_squares[x] for x in path] results.extend(best_path_streak(path_squares, SQUARES_PER_ROW, middle_squares, edge_pairs, corners)) _squares = [square for square in squares if square not in results] return results """ matrix = tsp_matrix(squares) path = solve_tsp(matrix, desc=desc) return [squares[x] for x in path] def traveling_salesman_two_colors(squares, endpoints=None, desc=None): matrix = tsp_matrix(squares) if endpoints: start_index = squares.index(endpoints[0]) end_index = squares.index(endpoints[1]) endpoints = (start_index, end_index) path = solve_tsp(matrix, endpoints=endpoints, desc=desc) return [squares[x] for x in path] # @timed_function def get_important_square_indexes(size): squares_per_side = size * size max_square = squares_per_side * 6 first_squares = [] last_squares = [] for index in range(1, max_square + 1): if (index - 1) % squares_per_side == 0: first_squares.append(index) elif index % squares_per_side == 0: last_squares.append(index) last_UBD_squares = (last_squares[0], last_squares[4], last_squares[5]) return (first_squares, last_squares, last_UBD_squares) # @timed_function def hex_to_rgb(rgb_string): """ Takes #112233 and returns the RGB values in decimal """ if rgb_string.startswith("#"): rgb_string = rgb_string[1:] red = int(rgb_string[0:2], 16) green = int(rgb_string[2:4], 16) blue = int(rgb_string[4:6], 16) return (red, green, blue) # @timed_function def hashtag_rgb_to_labcolor(rgb_string): (red, green, blue) = hex_to_rgb(rgb_string) # lab = rgb2lab((red, green, blue)) # print("LabColor({}, {}, {}, {}, {}, {}),".format(lab.L, lab.a, lab.b, lab.red, lab.green, lab.blue)) # return lab return rgb2lab((red, green, blue)) crayola_colors = { # Handy website for converting RGB tuples to hex # http://www.w3schools.com/colors/colors_converter.asp # # These are the RGB values as seen via a webcam # white = (235, 254, 250) # green = (20, 105, 74) # yellow = (210, 208, 2) # orange = (148, 53, 9) # blue = (22, 57, 103) # red = (104, 4, 2) # # "Wh": hashtag_rgb_to_labcolor("#FFFFFF"), # "Gr": hashtag_rgb_to_labcolor("#14694a"), # "Ye": hashtag_rgb_to_labcolor("#FFFF00"), # "OR": hashtag_rgb_to_labcolor("#943509"), # "Bu": hashtag_rgb_to_labcolor("#163967"), # "Rd": hashtag_rgb_to_labcolor("#680402"), "Wh": LabColor(100.0, 0.00526049995830391, -0.01040818452526793, 255, 255, 255), "Gr": LabColor( 39.14982168015123, -32.45052099773829, 10.60519920674466, 20, 105, 74 ), "Ye": LabColor( 97.13824698129729, -21.55590833483229, 94.48248544644462, 255, 255, 0 ), "OR": LabColor(35.71689493804023, 38.18518746791636, 43.98251678431012, 148, 53, 9), "Bu": LabColor( 23.92144819784853, 5.28400492805528, -30.63998357385018, 22, 57, 103 ), "Rd": LabColor(20.18063311070288, 40.48184409611946, 29.94038922869042, 104, 4, 2), } # @timed_function def get_row_color_distances(squares, row_baseline_lab): """ 'colors' is list if (index, (red, green, blue)) tuples 'row_baseline_lab' is a list of Lab colors, one for each row of colors Return the total distance of the colors in a row vs their baseline """ results = [] squares_per_row = int(len(squares) / 6) count = 0 row_index = 0 distance = 0 baseline_lab = row_baseline_lab[row_index] for square in squares: baseline_lab = row_baseline_lab[row_index] distance += lab_distance(baseline_lab, square.lab) count += 1 if count % squares_per_row == 0: results.append(int(distance)) row_index += 1 distance = 0 return results # @timed_function def get_squares_for_row(squares, target_row_index): results = [] squares_per_row = int(len(squares) / 6) count = 0 row_index = 0 for square in squares: if row_index == target_row_index: results.append(square) count += 1 if count % squares_per_row == 0: row_index += 1 return results # @timed_function def square_list_to_lab(squares): reds = array.array("B") greens = array.array("B") blues = array.array("B") for square in squares: (red, green, blue) = (square.lab.red, square.lab.green, square.lab.blue) reds.append(red) greens.append(green) blues.append(blue) median_red = int(median(reds)) median_green = int(median(greens)) median_blue = int(median(blues)) return rgb2lab((median_red, median_green, median_blue)) class RubiksColorSolverGeneric(RubiksColorSolverGenericBase): # @timed_function def www_header(self): """ Write the <head> including css """ side_margin = 10 square_size = 40 size = self.width # 3 for 3x3x3, etc with open(HTML_FILENAME, "a") as fh: fh.write( """<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <style> div.clear { clear: both; } div.clear_left { clear: left; } div.side { margin: %dpx; float: left; } """ % side_margin ) for x in range(1, size - 1): fh.write("div.col%d,\n" % x) fh.write( """div.col%d { float: left; } div.col%d { margin-left: %dpx; } div#upper, div#down { margin-left: %dpx; } """ % ( size - 1, size, (size - 1) * square_size, (size * square_size) + (3 * side_margin), ) ) fh.write( """ span.half_square { width: %dpx; height: %dpx; white-space-collapsing: discard; display: inline-block; color: black; font-weight: bold; line-height: %dpx; text-align: center; } span.square { width: %dpx; height: %dpx; white-space-collapsing: discard; display: inline-block; color: black; font-weight: bold; line-height: %dpx; text-align: center; } div.square { width: %dpx; height: %dpx; color: black; font-weight: bold; line-height: %dpx; text-align: center; } div.square span { display: inline-block; vertical-align: middle; line-height: normal; } div#colormapping { float: left; } div#bottom { cursor: pointer; } div#bottom div.initial_rgb_values { display: none; } </style> <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script> <script> $(document).ready(function() { $("div#bottom").click(function(event) { if ($("div#bottom div.final_cube").is(":visible")) { $("div#bottom div.initial_rgb_values").show(); $("div#bottom div.final_cube").hide(); } else { $("div#bottom div.initial_rgb_values").hide(); $("div#bottom div.final_cube").show(); } }) }); </script> <title>Rubiks Cube Color Resolver</title> </head> <body> """ % ( int(square_size / 2), square_size, square_size, square_size, square_size, square_size, square_size, square_size, square_size, ) ) def write_color_corners(self, desc, corners): with open(HTML_FILENAME, "a") as fh: fh.write("<div class='clear colors'>\n") fh.write("<h2>%s</h2>\n" % desc) for row_index in range(3): for (index, (corner0, corner1, corner2)) in enumerate(corners): if row_index == 0: square = corner0 elif row_index == 1: square = corner1 elif row_index == 2: square = corner2 else: raise ValueError(row_index) (red, green, blue) = ( square.lab.red, square.lab.green, square.lab.blue, ) if index and index % 2 == 0: fh.write("<span class='half_square'></span>") fh.write( "<span class='square' style='background-color:#%02x%02x%02x' title='RGB (%s, %s, %s), Lab (%s, %s, %s), color %s, side %s'>%s</span>\n" % ( red, green, blue, red, green, blue, int(square.lab.L), int(square.lab.a), int(square.lab.b), square.color_name, square.side_name, square.position, ) ) fh.write("<br>") fh.write("</div>\n") def write_color_edge_pairs(self, desc, square_pairs): with open(HTML_FILENAME, "a") as fh: fh.write("<div class='clear colors'>\n") fh.write("<h2>%s</h2>\n" % desc) for use_square1 in (True, False): for (index, (square1, square2)) in enumerate(square_pairs): if use_square1: square = square1 else: square = square2 (red, green, blue) = ( square.lab.red, square.lab.green, square.lab.blue, ) if index and index % 2 == 0: fh.write("<span class='half_square'></span>") fh.write( "<span class='square' style='background-color:#%02x%02x%02x' title='RGB (%s, %s, %s), Lab (%s, %s, %s), color %s, side %s'>%s</span>\n" % ( red, green, blue, red, green, blue, int(square.lab.L), int(square.lab.a), int(square.lab.b), square.color_name, square.side_name, square.position, ) ) fh.write("<br>") fh.write("</div>\n") # @timed_function def write_colors(self, desc, squares): with open(HTML_FILENAME, "a") as fh: squares_per_row = int(len(squares) / 6) fh.write("<div class='clear colors'>\n") fh.write("<h2>%s</h2>\n" % desc) count = 0 for square in squares: (red, green, blue) = (square.lab.red, square.lab.green, square.lab.blue) fh.write( "<span class='square' style='background-color:#%02x%02x%02x' title='RGB (%s, %s, %s), Lab (%s, %s, %s), color %s, side %s'>%d</span>\n" % ( red, green, blue, red, green, blue, int(square.lab.L), int(square.lab.a), int(square.lab.b), square.color_name, square.side_name, square.position, ) ) count += 1 if count % squares_per_row == 0: fh.write("<br>") fh.write("</div>\n") # @timed_function def www_footer(self): with open(HTML_FILENAME, "a") as fh: fh.write( """ </body> </html> """ ) # @timed_function def enter_scan_data(self, scan_data): for (position, (red, green, blue)) in scan_data.items(): position = int(position) side = self.pos2side[position] side.set_square(position, red, green, blue) if self.write_debug_file: self.www_header() with open(HTML_FILENAME, "a") as fh: fh.write("<h1>RGB Input</h1>\n") fh.write("<pre>{}</pre>\n".format(scan_data)) self.calculate_pos2square() # @timed_function def html_cube(self, desc, use_html_colors, div_class): cube = ["dummy"] for side in ( self.sideU, self.sideL, self.sideF, self.sideR, self.sideB, self.sideD, ): for position in range(side.min_pos, side.max_pos + 1): square = side.squares[position] if use_html_colors: red = html_color[square.color_name]["red"] green = html_color[square.color_name]["green"] blue = html_color[square.color_name]["blue"] else: red = square.lab.red green = square.lab.green blue = square.lab.blue cube.append((red, green, blue, square.color_name, square.lab)) col = 1 squares_per_side = self.width * self.width max_square = squares_per_side * 6 sides = ("upper", "left", "front", "right", "back", "down") side_index = -1 (first_squares, last_squares, last_UBD_squares) = get_important_square_indexes( self.width ) html = [] html.append("<div class='cube {}'>".format(div_class)) html.append("<h1>%s</h1>\n" % desc) for index in range(1, max_square + 1): if index in first_squares: side_index += 1 html.append("<div class='side' id='%s'>\n" % sides[side_index]) (red, green, blue, color_name, lab) = cube[index] html.append( " <div class='square col%d' title='RGB (%d, %d, %d), Lab (%s, %s, %s), " "color %s' style='background-color: #%02x%02x%02x;'><span>%02d</span></div>\n" % ( col, red, green, blue, int(lab.L), int(lab.a), int(lab.b), color_name, red, green, blue, index, ) ) if index in last_squares: html.append("</div>\n") if index in last_UBD_squares: html.append("<div class='clear'></div>\n") col += 1 if col == self.width + 1: col = 1 html.append("</div>") return "".join(html) def write_html(self, html): with open(HTML_FILENAME, "a") as fh: fh.write(html) def _write_colors(self, desc, box): with open(HTML_FILENAME, "a") as fh: fh.write("<div class='clear colors'>\n") fh.write("<h2>{}</h2>\n".format(desc)) for color_name in ("Wh", "Ye", "Gr", "Bu", "OR", "Rd"): lab = box[color_name] fh.write( "<span class='square' style='background-color:#%02x%02x%02x' title='RGB (%s, %s, %s), Lab (%s, %s, %s), color %s'>%s</span>\n" % ( lab.red, lab.green, lab.blue, lab.red, lab.green, lab.blue, int(lab.L), int(lab.a), int(lab.b), color_name, color_name, ) ) fh.write("<br>") fh.write("</div>\n") # @timed_function def write_crayola_colors(self): self._write_colors("crayola box", crayola_colors) # @timed_function def write_color_box(self): self._write_colors("color_box", self.color_box) # @timed_function def set_state(self): self.state = [] # odd cube if self.sideU.mid_pos is not None: # Assign a color name to each center square. Compute # which naming scheme results in the least total color distance in # terms of the assigned color name vs. the colors in crayola_colors. min_distance = None min_distance_permutation = None # Build a list of all center squares center_squares = [] for side in ( self.sideU, self.sideL, self.sideF, self.sideR, self.sideB, self.sideD, ): square = side.squares[side.mid_pos] center_squares.append(square) # desc = "middle center" # log.info("center_squares: %s".format(center_squares)) for permutation in odd_cube_center_color_permutations: distance = 0 for (index, center_square) in enumerate(center_squares): color_name = permutation[index] color_obj = crayola_colors[color_name] distance += lab_distance(center_square.lab, color_obj) if min_distance is None or distance < min_distance: min_distance = distance min_distance_permutation = permutation """ log.info("{} PERMUTATION {}, DISTANCE {:,} (NEW MIN)".format(desc, permutation, int(distance))) else: log.info("{} PERMUTATION {}, DISTANCE {}".format(desc, permutation, distance)) """ self.color_to_side_name = { min_distance_permutation[0]: "U", min_distance_permutation[1]: "L", min_distance_permutation[2]: "F", min_distance_permutation[3]: "R", min_distance_permutation[4]: "B", min_distance_permutation[5]: "D", } # log.info("{} FINAL PERMUTATION {}".format(desc, min_distance_permutation)) # even cube else: self.color_to_side_name = { "Wh": "U", "OR": "L", "Gr": "F", "Rd": "R", "Bu": "B", "Ye": "D", } for side in ( self.sideU, self.sideR, self.sideF, self.sideD, self.sideL, self.sideB, ): for x in range(side.min_pos, side.max_pos + 1): square = side.squares[x] square.side_name = self.color_to_side_name[square.color_name] # @timed_function def cube_for_json(self): """ Return a dictionary of the cube data so that we can json dump it """ data = {} data["kociemba"] = "".join(self.cube_for_kociemba_strict()) data["sides"] = {} data["squares"] = {} for side in ( self.sideU, self.sideR, self.sideF, self.sideD, self.sideL, self.sideB, ): for x in range(side.min_pos, side.max_pos + 1): square = side.squares[x] color = square.color_name side_name = self.color_to_side_name[color] if side_name not in data["sides"]: data["sides"][side_name] = {} data["sides"][side_name]["colorName"] = color data["sides"][side_name]["colorHTML"] = {} data["sides"][side_name]["colorHTML"]["red"] = html_color[color][ "red" ] data["sides"][side_name]["colorHTML"]["green"] = html_color[color][ "green" ] data["sides"][side_name]["colorHTML"]["blue"] = html_color[color][ "blue" ] data["squares"][square.position] = {"finalSide": side_name} return data # @timed_function def assign_color_names( self, desc, squares_lists_all, color_permutations, color_box ): """ Assign a color name to each square in each squares_list. Compute which naming scheme results in the least total color distance in terms of the assigned color name vs. the colors in color_box. """ ref_even_cube_center_color_permutations = even_cube_center_color_permutations # print("\n\n\n") # print("assign_color_names '{}' via {}".format(desc, color_permutations)) def get_even_cube_center_color_permutation(permutation_index): LINE_LENGTH = 18 start = permutation_index * LINE_LENGTH end = start + LINE_LENGTH return ref_even_cube_center_color_permutations[start:end].split() ref_ALL_COLORS = ALL_COLORS # squares_lists_all is sorted by color. Split that list into 6 even buckets (squares_lists). squares_per_row = int(len(squares_lists_all) / 6) squares_lists = [] square_list = [] for square in squares_lists_all: square_list.append(square) if len(square_list) == squares_per_row: squares_lists.append(tuple(square_list)) square_list = [] # Compute the distance for each color in the color_box vs each squares_list # in squares_lists. Store this in distances_of_square_list_per_color distances_of_square_list_per_color = {} for color_name in ref_ALL_COLORS: color_lab = color_box[color_name] distances_of_square_list_per_color[color_name] = [] for (index, squares_list) in enumerate(squares_lists): distance = 0 for square in squares_list: distance += lab_distance(square.lab, color_lab) distances_of_square_list_per_color[color_name].append(int(distance)) distances_of_square_list_per_color[ color_name ] = distances_of_square_list_per_color[color_name] min_distance = 99999 min_distance_permutation = None if color_permutations == "even_cube_center_color_permutations": # before sorting """ print("\n".join(map(str, squares_lists))) for color_name in ref_ALL_COLORS: print("pre distances_of_square_list_per_color {} : {}".format(color_name, distances_of_square_list_per_color[color_name])) print("") """ # Move the squares_list row that is closest to Bu to the front, then Gr, OR, Rd, Wh, Ye. # This will allow us to skip many more entries later. for (insert_index, color_name) in enumerate(ref_ALL_COLORS): min_color_name_distance = 99999 min_color_name_distance_index = None for (index, distance) in enumerate( distances_of_square_list_per_color[color_name] ): if distance < min_color_name_distance: min_color_name_distance = distance min_color_name_distance_index = index tmp_square_list = squares_lists[min_color_name_distance_index] squares_lists.pop(min_color_name_distance_index) squares_lists.insert(insert_index, tmp_square_list) for color_name in ref_ALL_COLORS: blue_distance = distances_of_square_list_per_color[color_name][ min_color_name_distance_index ] distances_of_square_list_per_color[color_name].pop( min_color_name_distance_index ) distances_of_square_list_per_color[color_name].insert( insert_index, blue_distance ) # after sorting """ print("\n".join(map(str, squares_lists))) for color_name in ref_ALL_COLORS: print("post distances_of_square_list_per_color {} : {}".format(color_name, distances_of_square_list_per_color[color_name])) print("") """ permutation_len = len_even_cube_center_color_permutations permutation_index = 0 # total = 0 # skip_total = 0 r = range(6) while permutation_index < permutation_len: permutation = get_even_cube_center_color_permutation(permutation_index) distance = 0 skip_by = 0 for x in r: distance += distances_of_square_list_per_color[permutation[x]][x] if distance > min_distance: if x == 0: skip_by = 120 elif x == 1: skip_by = 24 elif x == 2: skip_by = 6 elif x == 3: skip_by = 2 # if skip_by: # print("{} PERMUTATION {} - {}, x {} distance {:,} > min {}, skip_by {}".format( # desc, permutation_index, permutation, x, distance, min_distance, skip_by)) break if skip_by: permutation_index += skip_by # skip_total += skip_by continue if distance < min_distance: # print("{} PERMUTATION {} - {}, DISTANCE {:,} vs min {} (NEW MIN)".format(desc, permutation_index, permutation, distance, min_distance)) # log.info("{} PERMUTATION {}, DISTANCE {:,} (NEW MIN)".format(desc, permutation, int(distance))) min_distance = distance min_distance_permutation = permutation # else: # print("{} PERMUTATION {} - {}, DISTANCE {} vs min {}".format(desc, permutation_index, permutation, distance, min_distance)) # #log.info("{} PERMUTATION {}, DISTANCE {}".format(desc, permutation, distance)) # total += 1 permutation_index += 1 # print("total {}".format(total)) # print("skip total {}".format(skip_total)) # print("") elif color_permutations == "odd_cube_center_color_permutations": p = odd_cube_center_color_permutations for permutation in p: distance = ( distances_of_square_list_per_color[permutation[0]][0] + distances_of_square_list_per_color[permutation[1]][1] + distances_of_square_list_per_color[permutation[2]][2] + distances_of_square_list_per_color[permutation[3]][3] + distances_of_square_list_per_color[permutation[4]][4] + distances_of_square_list_per_color[permutation[5]][5] ) if distance < min_distance: min_distance = distance min_distance_permutation = permutation # print("{} PERMUTATION {} - {}, DISTANCE {:,} (NEW MIN)".format(desc, permutation_index, permutation, int(distance))) # log.info("{} PERMUTATION {}, DISTANCE {:,} (NEW MIN)".format(desc, permutation, int(distance))) # else: # print("{} PERMUTATION {}, DISTANCE {}".format(desc, permutation, distance)) # log.info("{} PERMUTATION {}, DISTANCE {}".format(desc, permutation, distance)) # Assign the color name to the Square object for (index, squares_list) in enumerate(squares_lists): color_name = min_distance_permutation[index] for square in squares_list: square.color_name = color_name def get_squares_by_color_name(self): white_squares = [] yellow_squares = [] orange_squares = [] red_squares = [] green_squares = [] blue_squares = [] for side in ( self.sideU, self.sideR, self.sideF, self.sideD, self.sideL, self.sideB, ): for square in side.center_squares + side.corner_squares + side.edge_squares: if square.color_name == "Wh": white_squares.append(square) elif square.color_name == "Ye": yellow_squares.append(square) elif square.color_name == "OR": orange_squares.append(square) elif square.color_name == "Rd": red_squares.append(square) elif square.color_name == "Gr": green_squares.append(square) elif square.color_name == "Bu": blue_squares.append(square) return ( white_squares, yellow_squares, orange_squares, red_squares, green_squares, blue_squares, ) # @timed_function def resolve_color_box(self): """ Temporarily assign names to all squares, use crayola colors as reference point. We use these name assignments to build our "color_box" which will be our references Wh, Ye, OR, Rd, Gr, Bu colors for assigning color names to edge and center squares. """ if self.width == 3 or is_micropython(): # If we are solving a 3x3x3 or we are using micropython then we are most likely on an # underpowered platform like a LEGO EV3. Save a lot of CPU cycles by only using the # corner squares to create the color box. corner_squares = [] for side in ( self.sideU, self.sideR, self.sideF, self.sideD, self.sideL, self.sideB, ): for square in side.corner_squares: corner_squares.append(square) sorted_corner_squares = traveling_salesman(corner_squares, "corner") self.assign_color_names( "corner squares for color_box", sorted_corner_squares, "even_cube_center_color_permutations", crayola_colors, ) if self.write_debug_file: self.write_colors("corners for color_box", sorted_corner_squares) else: # use all squares to create the color box...this takes much more CPU all_squares = [] middle_squares = [] for side in ( self.sideU, self.sideR, self.sideF, self.sideD, self.sideL, self.sideB, ): for square in ( side.center_squares + side.corner_squares + side.edge_squares ): all_squares.append(square) if side.mid_pos: middle_squares.append(side.squares[side.mid_pos]) edge_pairs = [] if self.width == 2: from rubikscolorresolver.cube_222 import corner_tuples elif self.width == 3: from rubikscolorresolver.cube_333 import corner_tuples elif self.width == 4: from rubikscolorresolver.cube_444 import corner_tuples elif self.width == 5: from rubikscolorresolver.cube_555 import corner_tuples elif self.width == 6: from rubikscolorresolver.cube_666 import corner_tuples elif self.width == 7: from rubikscolorresolver.cube_777 import corner_tuples corners = [] for corner_tuple in corner_tuples: corners.append( ( self.pos2square[corner_tuple[0]], self.pos2square[corner_tuple[1]], self.pos2square[corner_tuple[2]], ) ) # ====== # pass 1 # ====== sorted_all_squares = traveling_salesman( all_squares, "all", middle_squares, edge_pairs, corners ) self.assign_color_names( "squares for color_box (pass 1)", sorted_all_squares, "even_cube_center_color_permutations", crayola_colors, ) if self.write_debug_file: self.write_colors("squares for color_box (pass 1)", sorted_all_squares) # ====== # pass 2 # ====== ( white_squares, yellow_squares, orange_squares, red_squares, green_squares, blue_squares, ) = self.get_squares_by_color_name() green_blue_endpoints = None white_yellow_endpoints = None red_orange_endpoints = None # odd cube if self.width % 2 == 1: white_center = None yellow_center = None orange_center = None red_center = None green_center = None blue_center = None for side in ( self.sideU, self.sideR, self.sideF, self.sideD, self.sideL, self.sideB, ): square = self.pos2square[side.mid_pos] if square.color_name == "Wh": white_center = square elif square.color_name == "Ye": yellow_center = square elif square.color_name == "OR": orange_center = square elif square.color_name == "Rd": red_center = square elif square.color_name == "Gr": green_center = square elif square.color_name == "Bu": blue_center = square if white_center and yellow_center: white_yellow_endpoints = (white_center, yellow_center) if green_center and blue_center: green_blue_endpoints = (green_center, blue_center) if red_center and orange_center: red_orange_endpoints = (red_center, orange_center) # Nuke all color names (they were temporary) for side in ( self.sideU, self.sideR, self.sideF, self.sideD, self.sideL, self.sideB, ): for square in ( side.center_squares + side.corner_squares + side.edge_squares ): square.color_name = None sorted_green_blue = traveling_salesman_two_colors( green_squares + blue_squares, endpoints=green_blue_endpoints, desc="green blue", ) sorted_white_yellow = traveling_salesman_two_colors( white_squares + yellow_squares, endpoints=white_yellow_endpoints, desc="white yellow", ) sorted_red_orange = traveling_salesman_two_colors( red_squares + orange_squares, endpoints=red_orange_endpoints, desc="white yellow", ) sorted_all_squares = ( sorted_green_blue + sorted_white_yellow + sorted_red_orange ) self.assign_color_names( "squares for color_box (pass 2)", sorted_all_squares, "even_cube_center_color_permutations", crayola_colors, ) if self.write_debug_file: self.write_colors("squares for color_box (pass 2)", sorted_all_squares) ( white_squares, yellow_squares, orange_squares, red_squares, green_squares, blue_squares, ) = self.get_squares_by_color_name() self.color_box = {} self.color_box["Wh"] = square_list_to_lab(white_squares) self.color_box["Ye"] = square_list_to_lab(yellow_squares) self.color_box["OR"] = square_list_to_lab(orange_squares) self.color_box["Rd"] = square_list_to_lab(red_squares) self.color_box["Gr"] = square_list_to_lab(green_squares) self.color_box["Bu"] = square_list_to_lab(blue_squares) self.orange_baseline = self.color_box["OR"] self.red_baseline = self.color_box["Rd"] # Nuke all color names (they were temporary) for side in ( self.sideU, self.sideR, self.sideF, self.sideD, self.sideL, self.sideB, ): for square in side.center_squares + side.corner_squares + side.edge_squares: square.color_name = None if self.write_debug_file: self.write_color_box() # @timed_function def resolve_corner_squares(self): """ Assign names to the corner squares """ white = Square( None, "Wh", self.color_box["Wh"].red, self.color_box["Wh"].green, self.color_box["Wh"].blue, ) yellow = Square( None, "Ye", self.color_box["Ye"].red, self.color_box["Ye"].green, self.color_box["Ye"].blue, ) orange = Square( None, "OR", self.color_box["OR"].red, self.color_box["OR"].green, self.color_box["OR"].blue, ) red = Square( None, "Rd", self.color_box["Rd"].red, self.color_box["Rd"].green, self.color_box["Rd"].blue, ) green = Square( None, "Gr", self.color_box["Gr"].red, self.color_box["Gr"].green, self.color_box["Gr"].blue, ) blue = Square( None, "Bu", self.color_box["Bu"].red, self.color_box["Bu"].green, self.color_box["Bu"].blue, ) white.color_name = "Wh" yellow.color_name = "Ye" orange.color_name = "OR" red.color_name = "Rd" green.color_name = "Gr" blue.color_name = "Bu" target_corners = [ (white, green, orange), (white, red, green), (white, orange, blue), (white, blue, red), (yellow, orange, green), (yellow, green, red), (yellow, blue, orange), (yellow, red, blue), ] if self.width == 2: from rubikscolorresolver.cube_222 import corner_tuples elif self.width == 3: from rubikscolorresolver.cube_333 import corner_tuples elif self.width == 4: from rubikscolorresolver.cube_444 import corner_tuples elif self.width == 5: from rubikscolorresolver.cube_555 import corner_tuples elif self.width == 6: from rubikscolorresolver.cube_666 import corner_tuples elif self.width == 7: from rubikscolorresolver.cube_777 import corner_tuples corners = [] for corner_tuple in corner_tuples: corners.append( [ self.pos2square[corner_tuple[0]], self.pos2square[corner_tuple[1]], self.pos2square[corner_tuple[2]], ] ) sorted_corners = traveling_salesman_corners(target_corners + corners, "corners") # assign color names for x in range(0, len(sorted_corners), 2): corner1 = sorted_corners[x] corner2 = sorted_corners[x + 1] corner2[0].color_name = corner1[0].position corner2[1].color_name = corner1[1].position corner2[2].color_name = corner1[2].position if self.write_debug_file: self.write_color_corners("corners", sorted_corners) # @timed_function def resolve_edge_squares(self): """ Use traveling salesman algorithm to sort the colors """ # Nothing to be done for 2x2x2 if self.width == 2: return elif self.width == 3: from rubikscolorresolver.cube_333 import edge_orbit_id elif self.width == 4: from rubikscolorresolver.cube_444 import edge_orbit_id elif self.width == 5: from rubikscolorresolver.cube_555 import edge_orbit_id elif self.width == 6: from rubikscolorresolver.cube_666 import edge_orbit_id elif self.width == 7: from rubikscolorresolver.cube_777 import edge_orbit_id white = Square( None, "Wh", self.color_box["Wh"].red, self.color_box["Wh"].green, self.color_box["Wh"].blue, ) yellow = Square( None, "Ye", self.color_box["Ye"].red, self.color_box["Ye"].green, self.color_box["Ye"].blue, ) orange = Square( None, "OR", self.color_box["OR"].red, self.color_box["OR"].green, self.color_box["OR"].blue, ) red = Square( None, "Rd", self.color_box["Rd"].red, self.color_box["Rd"].green, self.color_box["Rd"].blue, ) green = Square( None, "Gr", self.color_box["Gr"].red, self.color_box["Gr"].green, self.color_box["Gr"].blue, ) blue = Square( None, "Bu", self.color_box["Bu"].red, self.color_box["Bu"].green, self.color_box["Bu"].blue, ) white.color_name = "Wh" yellow.color_name = "Ye" orange.color_name = "OR" red.color_name = "Rd" green.color_name = "Gr" blue.color_name = "Bu" for target_orbit_id in range(self.orbits): edge_pairs = [] for side in (self.sideU, self.sideD, self.sideL, self.sideR): for square in side.edge_squares: orbit_id = edge_orbit_id[square.position] if orbit_id == target_orbit_id: partner_index = side.get_wing_partner(square.position) partner = self.pos2square[partner_index] edge_pair = (square, partner) if ( edge_pair not in edge_pairs and (edge_pair[1], edge_pair[0]) not in edge_pairs ): edge_pairs.append(edge_pair) if len(edge_pairs) == 12: target_edge_pairs = [ (white, orange), (white, red), (white, green), (white, blue), (green, orange), (green, red), (blue, orange), (blue, red), (yellow, orange), (yellow, red), (yellow, green), (yellow, blue), ] elif len(edge_pairs) == 24: target_edge_pairs = [ (white, orange), (white, orange), (white, red), (white, red), (white, green), (white, green), (white, blue), (white, blue), (green, orange), (green, orange), (green, red), (green, red), (blue, orange), (blue, orange), (blue, red), (blue, red), (yellow, orange), (yellow, orange), (yellow, red), (yellow, red), (yellow, green), (yellow, green), (yellow, blue), (yellow, blue), ] else: raise ValueError("found {} edge pairs".format(len(edge_pairs))) sorted_edge_pairs = traveling_salesman_edge_pairs( target_edge_pairs + edge_pairs, "edge pairs" ) # assign color names for x in range(0, len(sorted_edge_pairs), 2): pair1 = sorted_edge_pairs[x] pair2 = sorted_edge_pairs[x + 1] pair2[0].color_name = pair1[0].position pair2[1].color_name = pair1[1].position if self.write_debug_file: self.write_color_edge_pairs( "edges - orbit %d" % target_orbit_id, sorted_edge_pairs ) # @timed_function def resolve_center_squares(self): """ Use traveling salesman algorithm to sort the squares by color """ if self.width == 2: return elif self.width == 3: from rubikscolorresolver.cube_333 import center_groups elif self.width == 4: from rubikscolorresolver.cube_444 import center_groups elif self.width == 5: from rubikscolorresolver.cube_555 import center_groups elif self.width == 6: from rubikscolorresolver.cube_666 import center_groups elif self.width == 7: from rubikscolorresolver.cube_777 import center_groups for (desc, centers_squares) in center_groups: # log.debug("\n\n\n\n") # log.info("Resolve {}".format(desc)) center_squares = [] for position in centers_squares: square = self.pos2square[position] center_squares.append(square) if desc == "centers": sorted_center_squares = center_squares[:] permutations = "odd_cube_center_color_permutations" else: sorted_center_squares = traveling_salesman(center_squares, desc) permutations = "even_cube_center_color_permutations" self.assign_color_names( desc, sorted_center_squares, permutations, self.color_box ) if self.write_debug_file: self.write_colors(desc, sorted_center_squares) # @timed_function def crunch_colors(self): if self.write_debug_file: html_init_cube = self.html_cube( "Initial RGB values", False, "initial_rgb_values" ) self.write_html(html_init_cube) self.write_crayola_colors() gc.collect() self.resolve_color_box() # corners gc.collect() self.resolve_corner_squares() # centers gc.collect() self.resolve_center_squares() # edges gc.collect() self.resolve_edge_squares() gc.collect() self.set_state() gc.collect() self.sanity_check_edge_squares() gc.collect() self.validate_all_corners_found() gc.collect() self.validate_odd_cube_midge_vs_corner_parity() gc.collect() if self.write_debug_file: html_final_cube = self.html_cube("Final Cube", True, "final_cube") html = "<div id='bottom'>{}{}</div>".format(html_init_cube, html_final_cube) self.write_html(html) self.www_footer() def print_profile_data(self): # print_profile_data() pass # @timed_function def resolve_colors(argv): help_string = """usage: rubiks-color-resolver.py [-h] [-j] [--filename FILENAME] [--rgb RGB] optional arguments: -h, --help show this help message and exit -j, --json Print json results --filename FILENAME Print json results --rgb RGB RGB json """ filename = None rgb = None use_json = False argv_index = 1 while argv_index < len(argv): if argv[argv_index] == "--help": print(help_string) sys.exit(0) elif argv[argv_index] == "--filename": filename = argv[argv_index + 1] argv_index += 2 elif argv[argv_index] == "--rgb": rgb = argv[argv_index + 1] argv_index += 2 elif argv[argv_index] == "--json" or argv[argv_index] == "-j": use_json = True argv_index += 1 else: print(help_string) sys.exit(1) if filename: with open(filename, "r") as fh: rgb = "".join(fh.readlines()) elif rgb: pass else: print("ERROR: Neither --filename or --rgb was specified") sys.exit(1) argv = None scan_data = eval(rgb) for key, value in scan_data.items(): scan_data[key] = tuple(value) square_count = len(list(scan_data.keys())) square_count_per_side = int(square_count / 6) width = int(sqrt(square_count_per_side)) cube = RubiksColorSolverGeneric(width) cube.write_debug_file = True cube.enter_scan_data(scan_data) cube.crunch_colors() cube.print_profile_data() cube.print_cube() if use_json: from json import dumps as json_dumps result = json_dumps(cube.cube_for_json(), indent=4, sort_keys=True) else: result = "".join(cube.cube_for_kociemba_strict()) print(result) return result
# -*- coding: utf-8 -*- # # Copyright (c) 2016 Intel Corp. # """ Test the node_power plugin implementation. """ import unittest import time import os import json from ....os_remote_access.mock.os_remote_access import OsRemoteAccessMock from ....utilities.utilities import Utilities, SubprocessOutput from ....plugin.manager import PluginManager from ....utilities.remote_access_data import RemoteAccessData from ....bmc.mock.bmc import BmcMock from ..node_power import NodePower class MockUtilities(Utilities): """Mock class fake low level system call helpers.""" def __init__(self): super(MockUtilities, self).__init__() self.stack = [] self.ping_stack = [] def execute_no_capture(self, command): """Execute a command list suppressing output and returning the return code.""" if len(self.stack) == 0: return 0 else: result = self.stack[0] self.stack = self.stack[1:] return result def execute_with_capture(self, command): """Execute a command list capturing output and returning the return code, stdout, stderr""" if len(self.stack) == 0: return '' else: result = self.stack[0] self.stack = self.stack[1:] return result def ping_check(self, address): """Check if a network address has a OS responding to pings.""" if len(self.ping_stack) == 0: return True else: value = self.ping_stack[0] self.ping_stack = self.ping_stack[1:] return value class MockSwitch(object): """Mock class for switches (PDUs)""" def __init__(self): self.state = True def get_switch_state(self, access, outlet): """Return the mocked state.""" return self.state class MockOsAccess(object): """Mock up OS access plugin for certain tests.""" def __init__(self): self.stack = [] self.dfx_test_stack = [] def execute(self, cmd, remote_access_data, capture=False, other=None): """Mocked call to execute.""" if len(self.stack) == 0: return SubprocessOutput(0, None, None) else: result = self.stack[0] self.stack = self.stack[1:] if result: return SubprocessOutput(0, None, None) else: return SubprocessOutput(255, None, None) def test_connection(self, remote_access_data): if len(self.dfx_test_stack) == 0: return True else: rv = self.dfx_test_stack[0] self.dfx_test_stack = self.dfx_test_stack[1:] return rv class MockBmcAccess(BmcMock): """Mock the bmc mock class.""" def __init__(self): super(MockBmcAccess, self).__init__() self.state_stack = [] self.set_failure = False def get_chassis_state(self, remote_access): """Get the fake chassis state.""" if len(self.state_stack) == 0: return True else: result = self.state_stack[0] self.state_stack = self.state_stack[1:] return result class MockNodePower(NodePower): """Mocking parts of NodePower.""" def __init__(self, **options): super(MockNodePower, self).__init__(**options) self.shutdown_succeed = None self.graceful_fail = False self.bmc_access = MockBmcAccess() self.bmc_credentials = RemoteAccessData('127.0.0.2', 0, 'admin', None) self.os_credentials = RemoteAccessData('127.0.0.1', 22, 'admin', None) def wait_for_chassis_state(self, state, timeout): """Test access to _wait_for_chassis_state()""" return self._wait_for_chassis_state(state, timeout) def graceful_os_halt(self): """Mock the graceful shutdown to fail.""" return self.shutdown_succeed def _graceful_os_halt(self): if self.graceful_fail: self.graceful_fail = False return False else: return NodePower._graceful_os_halt(self) def bmc_access_state_stack(self, state_list): self.bmc_access.state_stack = state_list def os_access_set_dfx_test_stack(self, state_list): with open('/tmp/mock_os_test_results', 'w+') as fd: json.dump(state_list, fd) class TestNodePower(unittest.TestCase): """Test the NodePower class.""" def setUp(self): self._real_sleep = time.sleep time.sleep = self._my_sleep self.__utilities = MockUtilities() self.manager = PluginManager() self.manager.register_plugin_class(NodePower) self.manager.register_plugin_class(BmcMock) self.manager.register_plugin_class(OsRemoteAccessMock) self.os_access = RemoteAccessData('127.0.0.1', 22, 'admin', None) self.bmc_access = RemoteAccessData('127.0.0.2', 0, 'admin', None) self.bmc_plugin = self.manager.create_instance('bmc', 'mock') self.bmc_plugin.set_chassis_state(self.bmc_access, 'off') self.os_plugin = MockOsAccess() self.switch_access1 = RemoteAccessData('127.0.0.3', 22, 'admin', None) self.switch_access2 = RemoteAccessData('127.0.0.3', 22, 'admin', None) self.switch_plugin1 = MockSwitch() self.switch_plugin2 = MockSwitch() self.__options = { 'plugin_manager': self.manager, 'device_list': [{ 'device_id': 'test_node', 'hostname': 'test_node', 'device_type': 'node', 'access_type': 'mock', 'bmc': 'test_bmc', 'pdu_list': [ (self.switch_access1, self.switch_plugin1, '3'), (self.switch_access2, self.switch_plugin2, '1') ], "ip_address": "127.0.0.1", "port": 21, 'os_shutdown_timeout_seconds': .2, 'os_boot_timeout_seconds': .2, 'os_network_to_halt_time': .2, 'bmc_boot_timeout_seconds': .2, 'bmc_chassis_off_wait': .1 }, { 'device_id': 'test_node_1', 'hostname': 'test_node_1', 'device_type': 'node', 'access_type': 'mock', 'bmc': 'test_bmc_1', 'pdu_list': [ (self.switch_access1, self.switch_plugin1, '3'), (self.switch_access2, self.switch_plugin2, '1') ], "ip_address": "127.0.0.1", "port": 21, 'os_shutdown_timeout_seconds': .2, 'os_boot_timeout_seconds': .2, 'os_network_to_halt_time': .2, 'bmc_boot_timeout_seconds': .2, 'bmc_chassis_off_wait': .1 } ], 'bmc_list': [{ 'device_name': 'test_node', 'hostname': 'test_bmc', 'device_type': 'bmc', 'access_type': 'mock', "ip_address": "127.0.0.2", "port": 21 }], } self.controller = self.manager.create_instance('power_control', 'node_power', **self.__options) self.controller.utilities = self.__utilities def tearDown(self): time.sleep = self._real_sleep file_path = os.path.join(os.path.sep, 'tmp', 'mock_os_test_results') if os.path.exists(file_path): os.unlink(file_path) def _my_sleep(self, seconds): self._real_sleep(float(seconds) / 100.0) def test_ctor(self): self.assertIsNotNone(self.controller) def test_no_options(self): with self.assertRaises(RuntimeError): self.controller = self.manager.create_instance('power_control', 'node_power') def test_get_current_device_power_state(self): self.__utilities.returned_value = True result = self.controller.get_current_device_power_state() self.assertEqual('Off', result['test_node']) def test_set_device_power_state(self): result = self.controller.set_device_power_state('On:bios') self.assertTrue(result) self.os_plugin.dfx_test_stack = [True, False] result = self.controller.set_device_power_state('Off') self.assertTrue(result) self.os_plugin.dfx_test_stack = [False, True] result = self.controller.set_device_power_state('On:bmc_on') self.assertTrue(result) self.os_plugin.dfx_test_stack = [False, True] result = self.controller.set_device_power_state('On') self.assertTrue(result) def test__parse_options(self): self.__options['device_list'][0]['device_type'] = 'network_switch' self.controller = self.manager.create_instance('power_control', 'node_power', **self.__options) result=self.controller.get_current_device_power_state() self.assertEqual('NodePower controller used on a non-node type device!', result[self.__options['device_list'][0]['hostname']]) self.__options['device_list'][0]['device_type'] = 'node' del self.__options['device_list'][0]['os_shutdown_timeout_seconds'] self.controller = self.manager.create_instance('power_control', 'node_power', **self.__options) self.controller.get_current_device_power_state() del self.__options['device_list'][0]['os_boot_timeout_seconds'] self.controller = self.manager.create_instance('power_control', 'node_power', **self.__options) self.controller.get_current_device_power_state() del self.__options['device_list'][0]['os_network_to_halt_time'] self.controller = self.manager.create_instance('power_control', 'node_power', **self.__options) self.controller.get_current_device_power_state() del self.__options['device_list'][0]['bmc_boot_timeout_seconds'] self.controller = self.manager.create_instance('power_control', 'node_power', **self.__options) self.controller.get_current_device_power_state() del self.__options['device_list'][0]['bmc_chassis_off_wait'] self.controller = self.manager.create_instance('power_control', 'node_power', **self.__options) self.controller.get_current_device_power_state() del self.__options['device_list'][0]['pdu_list'] self.controller = self.manager.create_instance('power_control', 'node_power', **self.__options) self.controller.get_current_device_power_state() del self.__options['device_list'][0]['device_id'] self.controller = self.manager.create_instance('power_control', 'node_power', **self.__options) self.controller.get_current_device_power_state() del self.__options['plugin_manager'] self.controller = self.manager.create_instance('power_control', 'node_power', **self.__options) self.controller.get_current_device_power_state() self.controller.set_device_power_state('On') def test_set_with_off(self): result = self.controller.set_device_power_state('Off') self.assertTrue(result['test_node']) def test_wait_for_chassis_state(self): power = MockNodePower(**self.__options) power.bmc_access_state_stack([False, True]) result = power.wait_for_chassis_state(True, 3) self.assertTrue(result) def test_target_on_to_state(self): mock_os = MockOsAccess() self.__options['os'] = (self.os_access, mock_os) power = NodePower(**self.__options) power.utilities = self.__utilities self.assertTrue(power.set_device_power_state('On:on')) mock_os.dfx_test_stack = [True, False] self.assertTrue(power.set_device_power_state('On:efi')) def test_target_on_to_state_2(self): mock_os = MockOsAccess() self.__options['os'] = (self.os_access, mock_os) power = MockNodePower(**self.__options) power.utilities = self.__utilities mock_os.dfx_test_stack = [False, True] self.assertTrue(power.set_device_power_state('On')) mock_os.dfx_test_stack = [True, False] self.assertTrue(power.set_device_power_state('On:efi')) def test_target_off(self): mock_os = MockOsAccess() self.__options['os'] = (self.os_access, mock_os) power = MockNodePower(**self.__options) power.utilities = self.__utilities self.assertTrue(power.set_device_power_state('On:efi')) mock_os.dfx_test_stack = [False] result = power.get_current_device_power_state() self.assertEqual('On', result['test_node']) mock_os.dfx_test_stack = [False] self.assertTrue(power.set_device_power_state('Off')) def test_target_off_force(self): power = MockNodePower(**self.__options) power.utilities = self.__utilities self.assertTrue(power.set_device_power_state('On:bmc_on')) power.os_access_set_dfx_test_stack([True]) result = power.get_current_device_power_state() self.assertEqual('On:bmc_on', result['test_node']) power.os_access_set_dfx_test_stack([True]) self.assertTrue(power.set_device_power_state('Off', True)) def test_target_on_force(self): power = MockNodePower(**self.__options) power.utilities = self.__utilities self.assertTrue(power.set_device_power_state('On:bmc_on')) power.os_access_set_dfx_test_stack([True]) result = power.get_current_device_power_state() self.assertEqual('On:bmc_on', result['test_node']) power.os_access_set_dfx_test_stack([False, False]) self.graceful_fail = True power.os_access_set_dfx_test_stack([True, False]) self.assertFalse(power.set_device_power_state('On:bmc_on', True)['test_node']) def test__do_bmc_power_state(self): mock_os = MockOsAccess() mock_bmc = MockBmcAccess() self.__options['os'] = (self.os_access, mock_os) self.__options['bmc'] = (self.bmc_access, mock_bmc) power = MockNodePower(**self.__options) power.utilities = self.__utilities mock_bmc.state_stack = [False, False] mock_bmc.set_failure = True self.assertFalse(power.set_device_power_state('On:bmc_on')['test_node']) def test_target_on_shutdown_failed(self): power = MockNodePower(**self.__options) power.utilities = self.__utilities self.assertTrue(power.set_device_power_state('On:bmc_on')) power.os_access_set_dfx_test_stack([True]) result = power.get_current_device_power_state() self.assertEqual('On:bmc_on', result['test_node']) self.graceful_fail = True power.os_access_set_dfx_test_stack([True]) self.assertFalse(power.set_device_power_state('On:bmc_on')['test_node'])
# Databricks notebook source # MAGIC %md # MAGIC ScaDaMaLe Course [site](https://lamastex.github.io/scalable-data-science/sds/3/x/) and [book](https://lamastex.github.io/ScaDaMaLe/index.html) # COMMAND ---------- # MAGIC %md # MAGIC # U-Net model for image segmentation # MAGIC # MAGIC This is a modified version of Tensorflows tutorial regarding image segmentation which can be found [here](https://www.tensorflow.org/tutorials/images/segmentation). Using a modified [U-Net](https://arxiv.org/abs/1505.04597) approach, with a [VGG16](https://arxiv.org/abs/1409.1556) as the encoder and then using traditional Conv2DTranspose layers for upsampling the dimensions. After 1 epoch a validation accuracy of 84.5 % was achieved on the [Oxford Pets Data Set](https://www.robots.ox.ac.uk/~vgg/data/pets/). # COMMAND ---------- import tensorflow as tf import tensorflow_datasets as tfds import matplotlib.pyplot as plt from IPython.display import clear_output dataset, info = tfds.load('oxford_iiit_pet:3.*.*', with_info=True) def normalize(input_image, input_mask): input_image = tf.cast(input_image, tf.float32) / 255.0 input_mask -= 1 return input_image, input_mask @tf.function def load_image_train(datapoint): input_image = tf.image.resize(datapoint['image'], (128, 128)) input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128)) if tf.random.uniform(()) > 0.5: input_image = tf.image.flip_left_right(input_image) input_mask = tf.image.flip_left_right(input_mask) input_image, input_mask = normalize(input_image, input_mask) return input_image, input_mask def load_image_test(datapoint): input_image = tf.image.resize(datapoint['image'], (128, 128)) input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128)) input_image, input_mask = normalize(input_image, input_mask) return input_image, input_mask TRAIN_LENGTH = info.splits['train'].num_examples BATCH_SIZE = 64 BUFFER_SIZE = 1000 STEPS_PER_EPOCH = TRAIN_LENGTH // BATCH_SIZE train = dataset['train'].map(load_image_train, num_parallel_calls=tf.data.experimental.AUTOTUNE) test = dataset['test'].map(load_image_test) train_dataset = train.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat() train_dataset = train_dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE) test_dataset = test.batch(BATCH_SIZE) def display(display_list): plt.figure(figsize=(15, 15)) title = ['Input Image', 'True Mask', 'Predicted Mask'] for i in range(len(display_list)): plt.subplot(1, len(display_list), i+1) plt.title(title[i]) plt.imshow(tf.keras.preprocessing.image.array_to_img(display_list[i])) plt.axis('off') plt.show() for image, mask in train.take(1): sample_image, sample_mask = image, mask display([sample_image, sample_mask]) # COMMAND ---------- # MAGIC %md # MAGIC Now that the dataset has been loaded into memory, the model can further be defined. # COMMAND ---------- from tensorflow.keras.layers import * from tensorflow.keras.models import * from tensorflow.keras.applications import VGG16 def encoder_VGG16(input_shape): base_model=VGG16(include_top=False, weights='imagenet', input_shape=input_shape) layers=[layer.output for layer in base_model.layers] base_model = tf.keras.Model(inputs=base_model.input, outputs=layers[-2]) base_model.summary() x = [] fourth_layer = base_model.get_layer('block1_conv1').output x.append(fourth_layer) third_layer = base_model.get_layer('block2_conv2').output x.append(third_layer) secondary_layer = base_model.get_layer('block3_conv3').output x.append(secondary_layer) last_layer = base_model.get_layer('block4_conv3').output x.append(last_layer) output_layer = base_model.get_layer('block5_conv3').output x.append(output_layer) return base_model, x # COMMAND ---------- # MAGIC %md # MAGIC Here, the decoder part is defined where upsampling takes place to convert the encoded part to the same dimensions as the input image for height and width, with the same amount of channels as there are classes. # COMMAND ---------- def unet(image_width: int, image_heigth: int, n_channels: int, n_depth: int, n_classes: int): #if n_depth<1 or n_depth>5: #+ add more cases # raise Exception("Unsupported number of layers/upsamples") input_shape = [image_heigth, image_width, n_channels] encoded_model, x = encoder_VGG16(input_shape) encoded_model.trainable=False intermediate_model = x[n_depth-1] intermediate_model = tf.keras.layers.Dropout(0.5)(intermediate_model) for i in reversed(range(0,n_depth-1)): next_filters = x[i+1].shape[3]/2 intermediate_model = Conv2DTranspose(filters=next_filters ,kernel_size=3,strides=2,padding='same')(intermediate_model) intermediate_model = tf.keras.layers.Concatenate()([intermediate_model,x[i]]) intermediate_model = tf.keras.layers.BatchNormalization()(intermediate_model) intermediate_model = tf.keras.layers.ReLU()(intermediate_model) intermediate_model = Conv2D(filters=next_filters, kernel_size=3, activation ='relu', padding='same')(intermediate_model) intermediate_model = Conv2D(filters=next_filters, kernel_size=3, activation ='relu', padding='same')(intermediate_model) outputs=Conv2D(filters=n_classes,kernel_size=(1,1),strides=(1),padding='same')(intermediate_model) x = Reshape((image_heigth*image_width, n_classes))(outputs) x = Activation(tf.nn.softmax)(x) outputs = Reshape((image_heigth,image_width, n_classes))(x) print(outputs.shape[2]) final_model=tf.keras.models.Model(inputs=encoded_model.input ,outputs=[outputs]) return(final_model) shape=[128, 128, 3] this_model = unet(shape[0],shape[1],shape[2],5,3) this_model.summary() this_model.outputs # COMMAND ---------- # MAGIC %md # MAGIC The model is then compiled. # COMMAND ---------- this_model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) def create_mask(pred_mask): pred_mask = tf.argmax(pred_mask, axis=-1) pred_mask = pred_mask[..., tf.newaxis] return pred_mask[0] def show_predictions(dataset=None, num=1): if dataset: for image, mask in dataset.take(num): pred_mask = this_model.predict(image) display([image[0], mask[0], create_mask(pred_mask)]) else: display([sample_image, sample_mask, create_mask(this_model.predict(sample_image[tf.newaxis, ...]))]) show_predictions() # COMMAND ---------- # MAGIC %md # MAGIC Below, the model is fitted against the training data and validated on the validation set after each epoch. A validation accuracy of 84.5 % is achieved after one epoch. # COMMAND ---------- TRAIN_LENGTH = info.splits['train'].num_examples BATCH_SIZE = 64 BUFFER_SIZE = 1000 STEPS_PER_EPOCH = TRAIN_LENGTH // BATCH_SIZE EPOCHS = 20 VAL_SUBSPLITS = 5 VALIDATION_STEPS = info.splits['test'].num_examples//BATCH_SIZE//VAL_SUBSPLITS model_history = this_model.fit(train_dataset, epochs=EPOCHS, steps_per_epoch=STEPS_PER_EPOCH, validation_steps=VALIDATION_STEPS, validation_data=test_dataset) #scores = model_history.evaluate(X_test, y_test, verbose=2) # COMMAND ---------- show_predictions(test_dataset,num=10) # COMMAND ---------- loss = model_history.history['loss'] val_loss = model_history.history['val_loss'] epochs = range(EPOCHS) plt.figure() plt.plot(epochs, loss, 'r', label='Training loss') plt.plot(epochs, val_loss, 'bo', label='Validation loss') plt.title('Training and Validation Loss') plt.xlabel('Epoch') plt.ylabel('Loss Value') plt.ylim([0, 1]) plt.legend() plt.show() # COMMAND ----------
import os import re import json import base64 import logging import datetime import time import copy import decimal import cgi import numpy import pymongo from lib import config, util, util_litecoin D = decimal.Decimal def get_market_price(price_data, vol_data): assert len(price_data) == len(vol_data) assert len(price_data) <= config.MARKET_PRICE_DERIVE_NUM_POINTS market_price = numpy.average(price_data, weights=vol_data) return market_price def get_market_price_summary(asset1, asset2, with_last_trades=0, start_dt=None, end_dt=None): """Gets a synthesized trading "market price" for a specified asset pair (if available), as well as additional info. If no price is available, False is returned. """ mongo_db = config.mongo_db if not end_dt: end_dt = datetime.datetime.utcnow() if not start_dt: start_dt = end_dt - datetime.timedelta(days=10) #default to 10 days in the past #look for the last max 6 trades within the past 10 day window base_asset, quote_asset = util.assets_to_asset_pair(asset1, asset2) base_asset_info = mongo_db.tracked_assets.find_one({'asset': base_asset}) quote_asset_info = mongo_db.tracked_assets.find_one({'asset': quote_asset}) if not isinstance(with_last_trades, int) or with_last_trades < 0 or with_last_trades > 30: raise Exception("Invalid with_last_trades") if not base_asset_info or not quote_asset_info: raise Exception("Invalid asset(s)") last_trades = mongo_db.trades.find({ "base_asset": base_asset, "quote_asset": quote_asset, 'block_time': { "$gte": start_dt, "$lte": end_dt } }, {'_id': 0, 'block_index': 1, 'block_time': 1, 'unit_price': 1, 'base_quantity_normalized': 1, 'quote_quantity_normalized': 1} ).sort("block_time", pymongo.DESCENDING).limit(max(config.MARKET_PRICE_DERIVE_NUM_POINTS, with_last_trades)) if not last_trades.count(): return None #no suitable trade data to form a market price (return None, NOT False here) last_trades = list(last_trades) last_trades.reverse() #from newest to oldest market_price = get_market_price( [last_trades[i]['unit_price'] for i in xrange(min(len(last_trades), config.MARKET_PRICE_DERIVE_NUM_POINTS))], [(last_trades[i]['base_quantity_normalized'] + last_trades[i]['quote_quantity_normalized']) for i in xrange(min(len(last_trades), config.MARKET_PRICE_DERIVE_NUM_POINTS))]) result = { 'market_price': float(D(market_price)), 'base_asset': base_asset, 'quote_asset': quote_asset, } if with_last_trades: #[0]=block_time, [1]=unit_price, [2]=base_quantity_normalized, [3]=quote_quantity_normalized, [4]=block_index result['last_trades'] = [[ t['block_time'], t['unit_price'], t['base_quantity_normalized'], t['quote_quantity_normalized'], t['block_index'] ] for t in last_trades] else: result['last_trades'] = [] return result def calc_inverse(quantity): return float( (D(1) / D(quantity) )) def calc_price_change(open, close): return float((D(100) * (D(close) - D(open)) / D(open))) def get_price_primatives(start_dt=None, end_dt=None): mps_xlt_ltc = get_market_price_summary(config.XLT, config.LTC, start_dt=start_dt, end_dt=end_dt) xlt_ltc_price = mps_xlt_ltc['market_price'] if mps_xlt_ltc else None # == XLT/LTC ltc_xlt_price = calc_inverse(mps_xlt_ltc['market_price']) if mps_xlt_ltc else None #LTC/XLT return mps_xlt_ltc, xlt_ltc_price, ltc_xlt_price def get_asset_info(asset, at_dt=None): mongo_db = config.mongo_db asset_info = mongo_db.tracked_assets.find_one({'asset': asset}) if asset not in (config.XLT, config.LTC) and at_dt and asset_info['_at_block_time'] > at_dt: #get the asset info at or before the given at_dt datetime for e in reversed(asset_info['_history']): #newest to oldest if e['_at_block_time'] <= at_dt: asset_info = e break else: #asset was created AFTER at_dt asset_info = None if asset_info is None: return None assert asset_info['_at_block_time'] <= at_dt #modify some of the properties of the returned asset_info for LTC and XLT if asset == config.LTC: if at_dt: start_block_index, end_block_index = util.get_block_indexes_for_dates(end_dt=at_dt) asset_info['total_issued'] = util_litecoin.get_ltc_supply(normalize=False, at_block_index=end_block_index) asset_info['total_issued_normalized'] = util_litecoin.normalize_quantity(asset_info['total_issued']) else: asset_info['total_issued'] = util_litecoin.get_ltc_supply(normalize=False) asset_info['total_issued_normalized'] = util_litecoin.normalize_quantity(asset_info['total_issued']) elif asset == config.XLT: #BUG: this does not take end_dt (if specified) into account. however, the deviation won't be too big # as XLT doesn't deflate quickly at all, and shouldn't matter that much since there weren't any/much trades # before the end of the burn period (which is what is involved with how we use at_dt with currently) asset_info['total_issued'] = util.call_jsonrpc_api("get_xlt_supply", abort_on_error=True)['result'] asset_info['total_issued_normalized'] = util_litecoin.normalize_quantity(asset_info['total_issued']) if not asset_info: raise Exception("Invalid asset: %s" % asset) return asset_info def get_xlt_ltc_price_info(asset, mps_xlt_ltc, xlt_ltc_price, ltc_xlt_price, with_last_trades=0, start_dt=None, end_dt=None): if asset not in [config.LTC, config.XLT]: #get price data for both the asset with XLT, as well as LTC price_summary_in_xlt = get_market_price_summary(asset, config.XLT, with_last_trades=with_last_trades, start_dt=start_dt, end_dt=end_dt) price_summary_in_ltc = get_market_price_summary(asset, config.LTC, with_last_trades=with_last_trades, start_dt=start_dt, end_dt=end_dt) #aggregated (averaged) price (expressed as XLT) for the asset on both the XLT and LTC markets if price_summary_in_xlt: # no trade data price_in_xlt = price_summary_in_xlt['market_price'] if xlt_ltc_price: aggregated_price_in_xlt = float(((D(price_summary_in_xlt['market_price']) + D(xlt_ltc_price)) / D(2))) else: aggregated_price_in_xlt = None else: price_in_xlt = None aggregated_price_in_xlt = None if price_summary_in_ltc: # no trade data price_in_ltc = price_summary_in_ltc['market_price'] if ltc_xlt_price: aggregated_price_in_ltc = float(((D(price_summary_in_ltc['market_price']) + D(ltc_xlt_price)) / D(2))) else: aggregated_price_in_ltc = None else: aggregated_price_in_ltc = None price_in_ltc = None else: #here we take the normal XLT/LTC pair, and invert it to LTC/XLT, to get XLT's data in terms of a LTC base # (this is the only area we do this, as LTC/XLT is NOT standard pair ordering) price_summary_in_xlt = mps_xlt_ltc #might be None price_summary_in_ltc = copy.deepcopy(mps_xlt_ltc) if mps_xlt_ltc else None #must invert this -- might be None if price_summary_in_ltc: price_summary_in_ltc['market_price'] = calc_inverse(price_summary_in_ltc['market_price']) price_summary_in_ltc['base_asset'] = config.LTC price_summary_in_ltc['quote_asset'] = config.XLT for i in xrange(len(price_summary_in_ltc['last_trades'])): #[0]=block_time, [1]=unit_price, [2]=base_quantity_normalized, [3]=quote_quantity_normalized, [4]=block_index price_summary_in_ltc['last_trades'][i][1] = calc_inverse(price_summary_in_ltc['last_trades'][i][1]) price_summary_in_ltc['last_trades'][i][2], price_summary_in_ltc['last_trades'][i][3] = \ price_summary_in_ltc['last_trades'][i][3], price_summary_in_ltc['last_trades'][i][2] #swap if asset == config.XLT: price_in_xlt = 1.0 price_in_ltc = price_summary_in_ltc['market_price'] if price_summary_in_ltc else None aggregated_price_in_xlt = 1.0 aggregated_price_in_ltc = ltc_xlt_price #might be None else: assert asset == config.LTC price_in_xlt = price_summary_in_xlt['market_price'] if price_summary_in_xlt else None price_in_ltc = 1.0 aggregated_price_in_xlt = xlt_ltc_price #might be None aggregated_price_in_ltc = 1.0 return (price_summary_in_xlt, price_summary_in_ltc, price_in_xlt, price_in_ltc, aggregated_price_in_xlt, aggregated_price_in_ltc) def calc_market_cap(asset_info, price_in_xlt, price_in_ltc): market_cap_in_xlt = float( (D(asset_info['total_issued_normalized']) / D(price_in_xlt))) if price_in_xlt else None market_cap_in_ltc = float( (D(asset_info['total_issued_normalized']) / D(price_in_ltc))) if price_in_ltc else None return market_cap_in_xlt, market_cap_in_ltc def compile_summary_market_info(asset, mps_xlt_ltc, xlt_ltc_price, ltc_xlt_price): """Returns information related to capitalization, volume, etc for the supplied asset(s) NOTE: in_ltc == base asset is LTC, in_xlt == base asset is XLT @param assets: A list of one or more assets """ asset_info = get_asset_info(asset) (price_summary_in_xlt, price_summary_in_ltc, price_in_xlt, price_in_ltc, aggregated_price_in_xlt, aggregated_price_in_ltc ) = get_xlt_ltc_price_info(asset, mps_xlt_ltc, xlt_ltc_price, ltc_xlt_price, with_last_trades=30) market_cap_in_xlt, market_cap_in_ltc = calc_market_cap(asset_info, price_in_xlt, price_in_ltc) return { 'price_in_{}'.format(config.XLT.lower()): price_in_xlt, #current price of asset vs XLT (e.g. how many units of asset for 1 unit XLT) 'price_in_{}'.format(config.LTC.lower()): price_in_ltc, #current price of asset vs LTC (e.g. how many units of asset for 1 unit LTC) 'price_as_{}'.format(config.XLT.lower()): calc_inverse(price_in_xlt) if price_in_xlt else None, #current price of asset AS XLT 'price_as_{}'.format(config.LTC.lower()): calc_inverse(price_in_ltc) if price_in_ltc else None, #current price of asset AS LTC 'aggregated_price_in_{}'.format(config.XLT.lower()): aggregated_price_in_xlt, 'aggregated_price_in_{}'.format(config.LTC.lower()): aggregated_price_in_ltc, 'aggregated_price_as_{}'.format(config.XLT.lower()): calc_inverse(aggregated_price_in_xlt) if aggregated_price_in_xlt else None, 'aggregated_price_as_{}'.format(config.LTC.lower()): calc_inverse(aggregated_price_in_ltc) if aggregated_price_in_ltc else None, 'total_supply': asset_info['total_issued_normalized'], 'market_cap_in_{}'.format(config.XLT.lower()): market_cap_in_xlt, 'market_cap_in_{}'.format(config.LTC.lower()): market_cap_in_ltc, } def compile_24h_market_info(asset): asset_data = {} start_dt_1d = datetime.datetime.utcnow() - datetime.timedelta(days=1) mongo_db = config.mongo_db #perform aggregation to get 24h statistics #TOTAL volume and count across all trades for the asset (on ALL markets, not just XLT and LTC pairings) _24h_vols = {'vol': 0, 'count': 0} _24h_vols_as_base = mongo_db.trades.aggregate([ {"$match": { "base_asset": asset, "block_time": {"$gte": start_dt_1d } }}, {"$project": { "base_quantity_normalized": 1 #to derive volume }}, {"$group": { "_id": 1, "vol": {"$sum": "$base_quantity_normalized"}, "count": {"$sum": 1}, }} ]) _24h_vols_as_base = {} if not _24h_vols_as_base['ok'] \ or not len(_24h_vols_as_base['result']) else _24h_vols_as_base['result'][0] _24h_vols_as_quote = mongo_db.trades.aggregate([ {"$match": { "quote_asset": asset, "block_time": {"$gte": start_dt_1d } }}, {"$project": { "quote_quantity_normalized": 1 #to derive volume }}, {"$group": { "_id": 1, "vol": {"$sum": "quote_quantity_normalized"}, "count": {"$sum": 1}, }} ]) _24h_vols_as_quote = {} if not _24h_vols_as_quote['ok'] \ or not len(_24h_vols_as_quote['result']) else _24h_vols_as_quote['result'][0] _24h_vols['vol'] = _24h_vols_as_base.get('vol', 0) + _24h_vols_as_quote.get('vol', 0) _24h_vols['count'] = _24h_vols_as_base.get('count', 0) + _24h_vols_as_quote.get('count', 0) #XLT market volume with stats if asset != config.XLT: _24h_ohlc_in_xlt = mongo_db.trades.aggregate([ {"$match": { "base_asset": config.XLT, "quote_asset": asset, "block_time": {"$gte": start_dt_1d } }}, {"$project": { "unit_price": 1, "base_quantity_normalized": 1 #to derive volume }}, {"$group": { "_id": 1, "open": {"$first": "$unit_price"}, "high": {"$max": "$unit_price"}, "low": {"$min": "$unit_price"}, "close": {"$last": "$unit_price"}, "vol": {"$sum": "$base_quantity_normalized"}, "count": {"$sum": 1}, }} ]) _24h_ohlc_in_xlt = {} if not _24h_ohlc_in_xlt['ok'] \ or not len(_24h_ohlc_in_xlt['result']) else _24h_ohlc_in_xlt['result'][0] if _24h_ohlc_in_xlt: del _24h_ohlc_in_xlt['_id'] else: _24h_ohlc_in_xlt = {} #LTC market volume with stats if asset != config.LTC: _24h_ohlc_in_ltc = mongo_db.trades.aggregate([ {"$match": { "base_asset": config.LTC, "quote_asset": asset, "block_time": {"$gte": start_dt_1d } }}, {"$project": { "unit_price": 1, "base_quantity_normalized": 1 #to derive volume }}, {"$group": { "_id": 1, "open": {"$first": "$unit_price"}, "high": {"$max": "$unit_price"}, "low": {"$min": "$unit_price"}, "close": {"$last": "$unit_price"}, "vol": {"$sum": "$base_quantity_normalized"}, "count": {"$sum": 1}, }} ]) _24h_ohlc_in_ltc = {} if not _24h_ohlc_in_ltc['ok'] \ or not len(_24h_ohlc_in_ltc['result']) else _24h_ohlc_in_ltc['result'][0] if _24h_ohlc_in_ltc: del _24h_ohlc_in_ltc['_id'] else: _24h_ohlc_in_ltc = {} return { '24h_summary': _24h_vols, #^ total quantity traded of that asset in all markets in last 24h '24h_ohlc_in_{}'.format(config.XLT.lower()): _24h_ohlc_in_xlt, #^ quantity of asset traded with LTC in last 24h '24h_ohlc_in_{}'.format(config.LTC.lower()): _24h_ohlc_in_ltc, #^ quantity of asset traded with XLT in last 24h '24h_vol_price_change_in_{}'.format(config.XLT.lower()): calc_price_change(_24h_ohlc_in_xlt['open'], _24h_ohlc_in_xlt['close']) if _24h_ohlc_in_xlt else None, #^ aggregated price change from 24h ago to now, expressed as a signed float (e.g. .54 is +54%, -1.12 is -112%) '24h_vol_price_change_in_{}'.format(config.LTC.lower()): calc_price_change(_24h_ohlc_in_ltc['open'], _24h_ohlc_in_ltc['close']) if _24h_ohlc_in_ltc else None, } def compile_7d_market_info(asset): mongo_db = config.mongo_db start_dt_7d = datetime.datetime.utcnow() - datetime.timedelta(days=7) #get XLT and LTC market summarized trades over a 7d period (quantize to hour long slots) _7d_history_in_xlt = None # xlt/asset market (or xlt/ltc for xlt or ltc) _7d_history_in_ltc = None # ltc/asset market (or ltc/xlt for xlt or ltc) if asset not in [config.LTC, config.XLT]: for a in [config.XLT, config.LTC]: _7d_history = mongo_db.trades.aggregate([ {"$match": { "base_asset": a, "quote_asset": asset, "block_time": {"$gte": start_dt_7d } }}, {"$project": { "year": {"$year": "$block_time"}, "month": {"$month": "$block_time"}, "day": {"$dayOfMonth": "$block_time"}, "hour": {"$hour": "$block_time"}, "unit_price": 1, "base_quantity_normalized": 1 #to derive volume }}, {"$sort": {"block_time": pymongo.ASCENDING}}, {"$group": { "_id": {"year": "$year", "month": "$month", "day": "$day", "hour": "$hour"}, "price": {"$avg": "$unit_price"}, "vol": {"$sum": "$base_quantity_normalized"}, }}, ]) _7d_history = [] if not _7d_history['ok'] else _7d_history['result'] if a == config.XLT: _7d_history_in_xlt = _7d_history else: _7d_history_in_ltc = _7d_history else: #get the XLT/LTC market and invert for LTC/XLT (_7d_history_in_ltc) _7d_history = mongo_db.trades.aggregate([ {"$match": { "base_asset": config.XLT, "quote_asset": config.LTC, "block_time": {"$gte": start_dt_7d } }}, {"$project": { "year": {"$year": "$block_time"}, "month": {"$month": "$block_time"}, "day": {"$dayOfMonth": "$block_time"}, "hour": {"$hour": "$block_time"}, "unit_price": 1, "base_quantity_normalized": 1 #to derive volume }}, {"$sort": {"block_time": pymongo.ASCENDING}}, {"$group": { "_id": {"year": "$year", "month": "$month", "day": "$day", "hour": "$hour"}, "price": {"$avg": "$unit_price"}, "vol": {"$sum": "$base_quantity_normalized"}, }}, ]) _7d_history = [] if not _7d_history['ok'] else _7d_history['result'] _7d_history_in_xlt = _7d_history _7d_history_in_ltc = copy.deepcopy(_7d_history_in_xlt) for i in xrange(len(_7d_history_in_ltc)): _7d_history_in_ltc[i]['price'] = calc_inverse(_7d_history_in_ltc[i]['price']) _7d_history_in_ltc[i]['vol'] = calc_inverse(_7d_history_in_ltc[i]['vol']) for l in [_7d_history_in_xlt, _7d_history_in_ltc]: for e in l: #convert our _id field out to be an epoch ts (in ms), and delete _id e['when'] = time.mktime(datetime.datetime(e['_id']['year'], e['_id']['month'], e['_id']['day'], e['_id']['hour']).timetuple()) * 1000 del e['_id'] return { '7d_history_in_{}'.format(config.XLT.lower()): [[e['when'], e['price']] for e in _7d_history_in_xlt], '7d_history_in_{}'.format(config.LTC.lower()): [[e['when'], e['price']] for e in _7d_history_in_ltc], } def compile_asset_pair_market_info(): """Compiles the pair-level statistics that show on the View Prices page of litetokenswallet, for instance""" #loop through all open orders, and compile a listing of pairs, with a count of open orders for each pair mongo_db = config.mongo_db end_dt = datetime.datetime.utcnow() start_dt = end_dt - datetime.timedelta(days=1) start_block_index, end_block_index = util.get_block_indexes_for_dates(start_dt=start_dt, end_dt=end_dt) open_orders = util.call_jsonrpc_api("get_orders", { 'filters': [ {'field': 'give_remaining', 'op': '>', 'value': 0}, {'field': 'get_remaining', 'op': '>', 'value': 0}, {'field': 'fee_required_remaining', 'op': '>=', 'value': 0}, {'field': 'fee_provided_remaining', 'op': '>=', 'value': 0}, ], 'status': 'open', 'show_expired': False, }, abort_on_error=True)['result'] pair_data = {} asset_info = {} def get_price(base_quantity_normalized, quote_quantity_normalized): return float(D(quote_quantity_normalized / base_quantity_normalized )) #COMPOSE order depth, lowest ask, and highest bid column data for o in open_orders: (base_asset, quote_asset) = util.assets_to_asset_pair(o['give_asset'], o['get_asset']) pair = '%s/%s' % (base_asset, quote_asset) base_asset_info = asset_info.get(base_asset, mongo_db.tracked_assets.find_one({ 'asset': base_asset })) if base_asset not in asset_info: asset_info[base_asset] = base_asset_info quote_asset_info = asset_info.get(quote_asset, mongo_db.tracked_assets.find_one({ 'asset': quote_asset })) if quote_asset not in asset_info: asset_info[quote_asset] = quote_asset_info pair_data.setdefault(pair, {'open_orders_count': 0, 'lowest_ask': None, 'highest_bid': None, 'completed_trades_count': 0, 'vol_base': 0, 'vol_quote': 0}) #^ highest ask = open order selling base, highest bid = open order buying base #^ we also initialize completed_trades_count, vol_base, vol_quote because every pair inited here may # not have cooresponding data out of the trades_data_by_pair aggregation below pair_data[pair]['open_orders_count'] += 1 base_quantity_normalized = util_litecoin.normalize_quantity(o['give_quantity'] if base_asset == o['give_asset'] else o['get_quantity'], base_asset_info['divisible']) quote_quantity_normalized = util_litecoin.normalize_quantity(o['give_quantity'] if quote_asset == o['give_asset'] else o['get_quantity'], quote_asset_info['divisible']) order_price = get_price(base_quantity_normalized, quote_quantity_normalized) if base_asset == o['give_asset']: #selling base if pair_data[pair]['lowest_ask'] is None or order_price < pair_data[pair]['lowest_ask']: pair_data[pair]['lowest_ask'] = order_price elif base_asset == o['get_asset']: #buying base if pair_data[pair]['highest_bid'] is None or order_price > pair_data[pair]['highest_bid']: pair_data[pair]['highest_bid'] = order_price #COMPOSE volume data (in XLT and LTC), and % change data #loop through all trade volume over the past 24h, and match that to the open orders trades_data_by_pair = mongo_db.trades.aggregate([ {"$match": { "block_time": {"$gte": start_dt, "$lte": end_dt } } }, {"$project": { "base_asset": 1, "quote_asset": 1, "base_quantity_normalized": 1, #to derive base volume "quote_quantity_normalized": 1 #to derive quote volume }}, {"$group": { "_id": {"base_asset": "$base_asset", "quote_asset": "$quote_asset"}, "vol_base": {"$sum": "$base_quantity_normalized"}, "vol_quote": {"$sum": "$quote_quantity_normalized"}, "count": {"$sum": 1}, }} ]) trades_data_by_pair = [] if not trades_data_by_pair['ok'] else trades_data_by_pair['result'] for e in trades_data_by_pair: pair = '%s/%s' % (e['_id']['base_asset'], e['_id']['quote_asset']) pair_data.setdefault(pair, {'open_orders_count': 0, 'lowest_ask': None, 'highest_bid': None}) #^ initialize an empty pair in the event there are no open orders for that pair, but there ARE completed trades for it pair_data[pair]['completed_trades_count'] = e['count'] pair_data[pair]['vol_base'] = e['vol_base'] pair_data[pair]['vol_quote'] = e['vol_quote'] #compose price data, relative to LTC and XLT mps_xlt_ltc, xlt_ltc_price, ltc_xlt_price = get_price_primatives() for pair, e in pair_data.iteritems(): base_asset, quote_asset = pair.split('/') _24h_vol_in_ltc = None _24h_vol_in_xlt = None #derive asset price data, expressed in LTC and XLT, for the given volumes if base_asset == config.XLT: _24h_vol_in_xlt = e['vol_base'] _24h_vol_in_ltc = util_litecoin.round_out(e['vol_base'] * xlt_ltc_price) if xlt_ltc_price else 0 elif base_asset == config.LTC: _24h_vol_in_xlt = util_litecoin.round_out(e['vol_base'] * ltc_xlt_price) if ltc_xlt_price else 0 _24h_vol_in_ltc = e['vol_base'] else: #base is not XLT or LTC price_summary_in_xlt, price_summary_in_ltc, price_in_xlt, price_in_ltc, aggregated_price_in_xlt, aggregated_price_in_ltc = \ get_xlt_ltc_price_info(base_asset, mps_xlt_ltc, xlt_ltc_price, ltc_xlt_price, with_last_trades=0, start_dt=start_dt, end_dt=end_dt) if price_in_xlt: _24h_vol_in_xlt = util_litecoin.round_out(e['vol_base'] * price_in_xlt) if price_in_ltc: _24h_vol_in_ltc = util_litecoin.round_out(e['vol_base'] * price_in_ltc) if _24h_vol_in_xlt is None or _24h_vol_in_ltc is None: #the base asset didn't have price data against LTC or XLT, or both...try against the quote asset instead price_summary_in_xlt, price_summary_in_ltc, price_in_xlt, price_in_ltc, aggregated_price_in_xlt, aggregated_price_in_ltc = \ get_xlt_ltc_price_info(quote_asset, mps_xlt_ltc, xlt_ltc_price, ltc_xlt_price, with_last_trades=0, start_dt=start_dt, end_dt=end_dt) if _24h_vol_in_xlt is None and price_in_xlt: _24h_vol_in_xlt = util_litecoin.round_out(e['vol_quote'] * price_in_xlt) if _24h_vol_in_ltc is None and price_in_ltc: _24h_vol_in_ltc = util_litecoin.round_out(e['vol_quote'] * price_in_ltc) pair_data[pair]['24h_vol_in_{}'.format(config.XLT.lower())] = _24h_vol_in_xlt #might still be None pair_data[pair]['24h_vol_in_{}'.format(config.LTC.lower())] = _24h_vol_in_ltc #might still be None #get % change stats -- start by getting the first trade directly before the 24h period starts prev_trade = mongo_db.trades.find({ "base_asset": base_asset, "quote_asset": quote_asset, "block_time": {'$lt': start_dt}}).sort('block_time', pymongo.DESCENDING).limit(1) latest_trade = mongo_db.trades.find({ "base_asset": base_asset, "quote_asset": quote_asset}).sort('block_time', pymongo.DESCENDING).limit(1) if not prev_trade.count(): #no previous trade before this 24hr period pair_data[pair]['24h_pct_change'] = None else: prev_trade = prev_trade[0] latest_trade = latest_trade[0] prev_trade_price = get_price(prev_trade['base_quantity_normalized'], prev_trade['quote_quantity_normalized']) latest_trade_price = get_price(latest_trade['base_quantity_normalized'], latest_trade['quote_quantity_normalized']) pair_data[pair]['24h_pct_change'] = ((latest_trade_price - prev_trade_price) / prev_trade_price) * 100 pair_data[pair]['last_updated'] = end_dt #print "PRODUCED", pair, pair_data[pair] mongo_db.asset_pair_market_info.update( {'base_asset': base_asset, 'quote_asset': quote_asset}, {"$set": pair_data[pair]}, upsert=True) #remove any old pairs that were not just updated mongo_db.asset_pair_market_info.remove({'last_updated': {'$lt': end_dt}}) logging.info("Recomposed 24h trade statistics for %i asset pairs: %s" % (len(pair_data), ', '.join(pair_data.keys()))) def compile_asset_market_info(): """Run through all assets and compose and store market ranking information.""" mongo_db = config.mongo_db if not config.CAUGHT_UP: logging.warn("Not updating asset market info as CAUGHT_UP is false.") return False #grab the last block # we processed assets data off of last_block_assets_compiled = mongo_db.app_config.find_one()['last_block_assets_compiled'] last_block_time_assets_compiled = util.get_block_time(last_block_assets_compiled) #logging.debug("Comping info for assets traded since block %i" % last_block_assets_compiled) current_block_index = config.CURRENT_BLOCK_INDEX #store now as it may change as we are compiling asset data :) current_block_time = util.get_block_time(current_block_index) if current_block_index == last_block_assets_compiled: #all caught up -- call again in 10 minutes return True mps_xlt_ltc, xlt_ltc_price, ltc_xlt_price = get_price_primatives() all_traded_assets = list(set(list([config.LTC, config.XLT]) + list(mongo_db.trades.find({}, {'quote_asset': 1, '_id': 0}).distinct('quote_asset')))) ####################### #get a list of all assets with a trade within the last 24h (not necessarily just against XLT and LTC) # ^ this is important because compiled market info has a 24h vol parameter that designates total volume for the asset across ALL pairings start_dt_1d = datetime.datetime.utcnow() - datetime.timedelta(days=1) assets = list(set( list(mongo_db.trades.find({'block_time': {'$gte': start_dt_1d}}).distinct('quote_asset')) + list(mongo_db.trades.find({'block_time': {'$gte': start_dt_1d}}).distinct('base_asset')) )) for asset in assets: market_info_24h = compile_24h_market_info(asset) mongo_db.asset_market_info.update({'asset': asset}, {"$set": market_info_24h}) #for all others (i.e. no trade in the last 24 hours), zero out the 24h trade data non_traded_assets = list(set(all_traded_assets) - set(assets)) mongo_db.asset_market_info.update( {'asset': {'$in': non_traded_assets}}, {"$set": { '24h_summary': {'vol': 0, 'count': 0}, '24h_ohlc_in_{}'.format(config.XLT.lower()): {}, '24h_ohlc_in_{}'.format(config.LTC.lower()): {}, '24h_vol_price_change_in_{}'.format(config.XLT.lower()): None, '24h_vol_price_change_in_{}'.format(config.LTC.lower()): None, }}, multi=True) logging.info("Block: %s -- Calculated 24h stats for: %s" % (current_block_index, ', '.join(assets))) ####################### #get a list of all assets with a trade within the last 7d up against XLT and LTC start_dt_7d = datetime.datetime.utcnow() - datetime.timedelta(days=7) assets = list(set( list(mongo_db.trades.find({'block_time': {'$gte': start_dt_7d}, 'base_asset': {'$in': [config.XLT, config.LTC]}}).distinct('quote_asset')) + list(mongo_db.trades.find({'block_time': {'$gte': start_dt_7d}}).distinct('base_asset')) )) for asset in assets: market_info_7d = compile_7d_market_info(asset) mongo_db.asset_market_info.update({'asset': asset}, {"$set": market_info_7d}) non_traded_assets = list(set(all_traded_assets) - set(assets)) mongo_db.asset_market_info.update( {'asset': {'$in': non_traded_assets}}, {"$set": { '7d_history_in_{}'.format(config.XLT.lower()): [], '7d_history_in_{}'.format(config.LTC.lower()): [], }}, multi=True) logging.info("Block: %s -- Calculated 7d stats for: %s" % (current_block_index, ', '.join(assets))) ####################### #update summary market data for assets traded since last_block_assets_compiled #get assets that were traded since the last check with either LTC or XLT, and update their market summary data assets = list(set( list(mongo_db.trades.find({'block_index': {'$gt': last_block_assets_compiled}, 'base_asset': {'$in': [config.XLT, config.LTC]}}).distinct('quote_asset')) + list(mongo_db.trades.find({'block_index': {'$gt': last_block_assets_compiled}}).distinct('base_asset')) )) #update our storage of the latest market info in mongo for asset in assets: logging.info("Block: %s -- Updating asset market info for %s ..." % (current_block_index, asset)) summary_info = compile_summary_market_info(asset, mps_xlt_ltc, xlt_ltc_price, ltc_xlt_price) mongo_db.asset_market_info.update( {'asset': asset}, {"$set": summary_info}, upsert=True) ####################### #next, compile market cap historicals (and get the market price data that we can use to update assets with new trades) #NOTE: this algoritm still needs to be fleshed out some...I'm not convinced it's laid out/optimized like it should be #start by getting all trades from when we last compiled this data trades = mongo_db.trades.find({'block_index': {'$gt': last_block_assets_compiled}}).sort('block_index', pymongo.ASCENDING) trades_by_block = [] #tracks assets compiled per block, as we only want to analyze any given asset once per block trades_by_block_mapping = {} #organize trades by block for t in trades: if t['block_index'] in trades_by_block_mapping: assert trades_by_block_mapping[t['block_index']]['block_index'] == t['block_index'] assert trades_by_block_mapping[t['block_index']]['block_time'] == t['block_time'] trades_by_block_mapping[t['block_index']]['trades'].append(t) else: e = {'block_index': t['block_index'], 'block_time': t['block_time'], 'trades': [t,]} trades_by_block.append(e) trades_by_block_mapping[t['block_index']] = e for t_block in trades_by_block: #reverse the tradelist per block, and ensure that we only process an asset that hasn't already been processed for this block # (as there could be multiple trades in a single block for any specific asset). we reverse the list because # we'd rather process a later trade for a given asset, as the market price for that will take into account # the earlier trades on that same block for that asset, and we don't want/need multiple cap points per block assets_in_block = {} mps_xlt_ltc, xlt_ltc_price, ltc_xlt_price = get_price_primatives(end_dt=t_block['block_time']) for t in reversed(t_block['trades']): assets = [] if t['base_asset'] not in assets_in_block: assets.append(t['base_asset']) assets_in_block[t['base_asset']] = True if t['quote_asset'] not in assets_in_block: assets.append(t['quote_asset']) assets_in_block[t['quote_asset']] = True if not len(assets): continue for asset in assets: #recalculate the market cap for the asset this trade is for asset_info = get_asset_info(asset, at_dt=t['block_time']) (price_summary_in_xlt, price_summary_in_ltc, price_in_xlt, price_in_ltc, aggregated_price_in_xlt, aggregated_price_in_ltc ) = get_xlt_ltc_price_info(asset, mps_xlt_ltc, xlt_ltc_price, ltc_xlt_price, with_last_trades=0, end_dt=t['block_time']) market_cap_in_xlt, market_cap_in_ltc = calc_market_cap(asset_info, price_in_xlt, price_in_ltc) #^ this will get price data from the block time of this trade back the standard number of days and trades # to determine our standard market price, relative (anchored) to the time of this trade for market_cap_as in (config.XLT, config.LTC): market_cap = market_cap_in_xlt if market_cap_as == config.XLT else market_cap_in_ltc #if there is a previously stored market cap for this asset, add a new history point only if the two caps differ prev_market_cap_history = mongo_db.asset_marketcap_history.find({'market_cap_as': market_cap_as, 'asset': asset, 'block_index': {'$lt': t['block_index']}}).sort('block_index', pymongo.DESCENDING).limit(1) prev_market_cap_history = list(prev_market_cap_history)[0] if prev_market_cap_history.count() == 1 else None if market_cap and (not prev_market_cap_history or prev_market_cap_history['market_cap'] != market_cap): mongo_db.asset_marketcap_history.insert({ 'block_index': t['block_index'], 'block_time': t['block_time'], 'asset': asset, 'market_cap': market_cap, 'market_cap_as': market_cap_as, }) logging.info("Block %i -- Calculated market cap history point for %s as %s (mID: %s)" % (t['block_index'], asset, market_cap_as, t['message_index'])) mongo_db.app_config.update({}, {'$set': {'last_block_assets_compiled': current_block_index}}) return True
#!/usr/bin/env python # Zed Attack Proxy (ZAP) and its related class files. # # ZAP is an HTTP/HTTPS proxy for assessing web application security. # # Copyright 2017 ZAP Development Team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script runs a full scan against a target URL using ZAP # # It can either be run 'standalone', in which case depends on # https://pypi.python.org/pypi/python-owasp-zap-v2.4 and Docker, or it can be run # inside one of the ZAP docker containers. It automatically detects if it is # running in docker so the parameters are the same. # # By default it will spider the target URL with no time limit, but you can change # that via the -m parameter. # It will then perform an active scan of all of the URLs found by the spider. # This may take a significant amount of time. # It will exit with codes of: # 0: Success # 1: At least 1 FAIL # 2: At least one WARN and no FAILs # 3: Any other failure # By default all alerts found by ZAP will be treated as WARNings. # You can use the -c or -u parameters to specify a configuration file to override # this. # You can generate a template configuration file using the -g parameter. You will # then need to change 'WARN' to 'FAIL', 'INFO' or 'IGNORE' for the rules you want # to be handled differently. # You can also add your own messages for the rules by appending them after a tab # at the end of each line. # By default all of the active scan rules run but you can prevent rules from # running by supplying a configuration file with the rules set to IGNORE. import getopt import json import logging import os import os.path import sys import time import urllib2 from datetime import datetime from zapv2 import ZAPv2 from zap_common import * config_dict = {} config_msg = {} out_of_scope_dict = {} levels = ["PASS", "IGNORE", "INFO", "WARN", "FAIL"] min_level = 0 # Scan rules that aren't really relevant, eg the examples rules in the alpha set blacklist = ['-1', '50003', '60000', '60001'] # Scan rules that are being addressed in_progress_issues = {} logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') # Hide "Starting new HTTP connection" messages logging.getLogger("requests").setLevel(logging.WARNING) def usage(): print('Usage: zap-full-scan.py -t <target> [options]') print(' -t target target URL including the protocol, eg https://www.example.com') print('Options:') print(' -c config_file config file to use to INFO, IGNORE or FAIL warnings') print(' -u config_url URL of config file to use to INFO, IGNORE or FAIL warnings') print(' -g gen_file generate default config file(all rules set to WARN)') print(' -m mins the number of minutes to spider for (default 1)') print(' -r report_html file to write the full ZAP HTML report') print(' -w report_md file to write the full ZAP Wiki(Markdown) report') print(' -x report_xml file to write the full ZAP XML report') print(' -J report_json file to write the full ZAP JSON document') print(' -a include the alpha passive scan rules as well') print(' -d show debug messages') print(' -P specify listen port') print(' -D delay in seconds to wait for passive scanning ') print(' -i default rules not in the config file to INFO') print(' -j use the Ajax spider in addition to the traditional one') print(' -l level minimum level to show: PASS, IGNORE, INFO, WARN or FAIL, use with -s to hide example URLs') print(' -n context_file context file which will be loaded prior to scanning the target') print(' -p progress_file progress file which specifies issues that are being addressed') print(' -s short output format - dont show PASSes or example URLs') print(' -T max time in minutes to wait for ZAP to start and the passive scan to run') print(' -z zap_options ZAP command line options e.g. -z "-config aaa=bbb -config ccc=ddd"') print('') print('For more details see https://github.com/zaproxy/zaproxy/wiki/ZAP-Full-Scan') def main(argv): global min_level global in_progress_issues cid = '' context_file = '' progress_file = '' config_file = '' config_url = '' mins = 0 generate = '' port = 0 detailed_output = True report_html = '' report_md = '' report_xml = '' report_json = '' target = '' zap_alpha = False info_unspecified = False ajax = False base_dir = '' zap_ip = 'localhost' zap_options = '' delay = 0 timeout = 0 pass_count = 0 warn_count = 0 fail_count = 0 info_count = 0 ignore_count = 0 warn_inprog_count = 0 fail_inprog_count = 0 check_zap_client_version() try: opts, args = getopt.getopt(argv, "t:c:u:g:m:n:r:J:w:x:l:daijp:sz:P:D:T:") except getopt.GetoptError as exc: logging.warning('Invalid option ' + exc.opt + ' : ' + exc.msg) usage() sys.exit(3) for opt, arg in opts: if opt == '-t': target = arg logging.debug('Target: ' + target) elif opt == '-c': config_file = arg elif opt == '-u': config_url = arg elif opt == '-g': generate = arg elif opt == '-d': logging.getLogger().setLevel(logging.DEBUG) elif opt == '-m': mins = int(arg) elif opt == '-P': port = int(arg) elif opt == '-D': delay = int(arg) elif opt == '-n': context_file = arg elif opt == '-p': progress_file = arg elif opt == '-r': report_html = arg elif opt == '-J': report_json = arg elif opt == '-w': report_md = arg elif opt == '-x': report_xml = arg elif opt == '-a': zap_alpha = True elif opt == '-i': info_unspecified = True elif opt == '-j': ajax = True elif opt == '-l': try: min_level = levels.index(arg) except ValueError: logging.warning('Level must be one of ' + str(levels)) usage() sys.exit(3) elif opt == '-z': zap_options = arg elif opt == '-s': detailed_output = False elif opt == '-T': timeout = int(arg) # Check target supplied and ok if len(target) == 0: usage() sys.exit(3) if not (target.startswith('http://') or target.startswith('https://')): logging.warning('Target must start with \'http://\' or \'https://\'') usage() sys.exit(3) if running_in_docker(): base_dir = '/zap/wrk/' if config_file or generate or report_html or report_xml or report_json or progress_file or context_file: # Check directory has been mounted if not os.path.exists(base_dir): logging.warning('A file based option has been specified but the directory \'/zap/wrk\' is not mounted ') usage() sys.exit(3) # Choose a random 'ephemeral' port and check its available if it wasn't specified with -P option if port == 0: port = get_free_port() logging.debug('Using port: ' + str(port)) if config_file: # load config file from filestore with open(base_dir + config_file) as f: load_config(f, config_dict, config_msg, out_of_scope_dict) elif config_url: # load config file from url try: load_config(urllib2.urlopen(config_url), config_dict, config_msg, out_of_scope_dict) except: logging.warning('Failed to read configs from ' + config_url) sys.exit(3) if progress_file: # load progress file from filestore with open(base_dir + progress_file) as f: progress = json.load(f) # parse into something more useful... # in_prog_issues = map of vulnid -> {object with everything in} for issue in progress["issues"]: if issue["state"] == "inprogress": in_progress_issues[issue["id"]] = issue if running_in_docker(): try: params = [ '-config', 'spider.maxDuration=' + str(mins), '-addonupdate', '-addoninstall', 'pscanrulesBeta'] # In case we're running in the stable container if zap_alpha: params.append('-addoninstall') params.append('pscanrulesAlpha') if zap_options: for zap_opt in zap_options.split(" "): params.append(zap_opt) start_zap(port, params) except OSError: logging.warning('Failed to start ZAP :(') sys.exit(3) else: # Not running in docker, so start one mount_dir = '' if context_file: mount_dir = os.path.dirname(os.path.abspath(context_file)) params = [ '-config', 'spider.maxDuration=' + str(mins), '-addonupdate', '-addoninstall', 'pscanrulesBeta'] # In case we're running in the stable container if (zap_alpha): params.extend(['-addoninstall', 'pscanrulesAlpha']) if zap_options: for zap_opt in zap_options.split(" "): params.append(zap_opt) try: cid = start_docker_zap('owasp/zap2docker-weekly', port, params, mount_dir) zap_ip = ipaddress_for_cid(cid) logging.debug('Docker ZAP IP Addr: ' + zap_ip) except OSError: logging.warning('Failed to start ZAP in docker :(') sys.exit(3) try: zap = ZAPv2(proxies={'http': 'http://' + zap_ip + ':' + str(port), 'https': 'http://' + zap_ip + ':' + str(port)}) wait_for_zap_start(zap, timeout * 60) if context_file: # handle the context file, cant use base_dir as it might not have been set up res = zap.context.import_context('/zap/wrk/' + os.path.basename(context_file)) if res.startswith("ZAP Error"): logging.error('Failed to load context file ' + context_file + ' : ' + res) zap_access_target(zap, target) if target.count('/') > 2: # The url can include a valid path, but always reset to spider the host target = target[0:target.index('/', 8)+1] time.sleep(2) # Spider target zap_spider(zap, target) if (ajax): zap_ajax_spider(zap, target, mins) if (delay): start_scan = datetime.now() while ((datetime.now() - start_scan).seconds < delay): time.sleep(5) logging.debug('Delay active scan ' + str(delay -(datetime.now() - start_scan).seconds) + ' seconds') if target.count('/') > 2: # The url can include a valid path, but always reset to scan the host target = target[0:target.index('/', 8)+1] # Set up the scan policy scan_policy = 'Default Policy' if config_dict: # They have supplied a config file, use this to define the ascan rules zap.ascan.enable_all_scanners(scanpolicyname=scan_policy) for scanner, state in config_dict.items(): if state == 'IGNORE': # Dont bother checking the result - this will fail for pscan rules zap.ascan.set_scanner_alert_threshold(id=scanner, alertthreshold='OFF', scanpolicyname=scan_policy) zap_active_scan(zap, target, scan_policy) zap_wait_for_passive_scan(zap, timeout * 60) # Print out a count of the number of urls num_urls = len(zap.core.urls) if num_urls == 0: logging.warning('No URLs found - is the target URL accessible? Local services may not be accessible from the Docker container') else: if detailed_output: print('Total of ' + str(num_urls) + ' URLs') alert_dict = zap_get_alerts(zap, target, blacklist, out_of_scope_dict) all_ascan_rules = zap.ascan.scanners('Default Policy') all_pscan_rules = zap.pscan.scanners all_dict = {} for rule in all_pscan_rules: plugin_id = rule.get('id') if plugin_id in blacklist: continue all_dict[plugin_id] = rule.get('name') + ' - Passive/' + rule.get('quality') for rule in all_ascan_rules: plugin_id = rule.get('id') if plugin_id in blacklist: continue all_dict[plugin_id] = rule.get('name') + ' - Active/' + rule.get('quality') if generate: # Create the config file with open(base_dir + generate, 'w') as f: f.write('# zap-full-scan rule configuration file\n') f.write('# Change WARN to IGNORE to ignore rule or FAIL to fail if rule matches\n') f.write('# Active scan rules set to IGNORE will not be run which will speed up the scan\n') f.write('# Only the rule identifiers are used - the names are just for info\n') f.write('# You can add your own messages to each rule by appending them after a tab on each line.\n') for key, rule in sorted(all_dict.iteritems()): f.write(key + '\tWARN\t(' + rule + ')\n') # print out the passing rules pass_dict = {} for rule in all_pscan_rules: plugin_id = rule.get('id') if plugin_id in blacklist: continue if (not alert_dict.has_key(plugin_id)): pass_dict[plugin_id] = rule.get('name') for rule in all_ascan_rules: plugin_id = rule.get('id') if plugin_id in blacklist: continue if not alert_dict.has_key(plugin_id) and not(config_dict.has_key(plugin_id) and config_dict[plugin_id] == 'IGNORE'): pass_dict[plugin_id] = rule.get('name') if min_level == levels.index("PASS") and detailed_output: for key, rule in sorted(pass_dict.iteritems()): print('PASS: ' + rule + ' [' + key + ']') pass_count = len(pass_dict) if detailed_output: # print out the ignored ascan rules(there will be no alerts for these as they were not run) for rule in all_ascan_rules: plugin_id = rule.get('id') if plugin_id in blacklist: continue if config_dict.has_key(plugin_id) and config_dict[plugin_id] == 'IGNORE': print('SKIP: ' + rule.get('name') + ' [' + plugin_id + ']') # print out the ignored rules ignore_count, not_used = print_rules(alert_dict, 'IGNORE', config_dict, config_msg, min_level, levels, inc_ignore_rules, True, detailed_output, {}) # print out the info rules info_count, not_used = print_rules(alert_dict, 'INFO', config_dict, config_msg, min_level, levels, inc_info_rules, info_unspecified, detailed_output, in_progress_issues) # print out the warning rules warn_count, warn_inprog_count = print_rules(alert_dict, 'WARN', config_dict, config_msg, min_level, levels, inc_warn_rules, not info_unspecified, detailed_output, in_progress_issues) # print out the failing rules fail_count, fail_inprog_count = print_rules(alert_dict, 'FAIL', config_dict, config_msg, min_level, levels, inc_fail_rules, True, detailed_output, in_progress_issues) if report_html: # Save the report write_report(base_dir + report_html, zap.core.htmlreport()) if report_json: # Save the report write_report(base_dir + report_json, zap._request_other(zap.base_other + 'core/other/jsonreport/')) if report_md: # Save the report write_report(base_dir + report_md, zap.core.mdreport()) if report_xml: # Save the report write_report(base_dir + report_xml, zap.core.xmlreport()) print('FAIL-NEW: ' + str(fail_count) + '\tFAIL-INPROG: ' + str(fail_inprog_count) + '\tWARN-NEW: ' + str(warn_count) + '\tWARN-INPROG: ' + str(warn_inprog_count) + '\tINFO: ' + str(info_count) + '\tIGNORE: ' + str(ignore_count) + '\tPASS: ' + str(pass_count)) # Stop ZAP zap.core.shutdown() except IOError as e: if hasattr(e, 'args') and len(e.args) > 1: errno, strerror = e print("ERROR " + str(strerror)) logging.warning('I/O error(' + str(errno) + '): ' + str(strerror)) else: print("ERROR %s" % e) logging.warning('I/O error: ' + str(e)) dump_log_file(cid) except: print("ERROR " + str(sys.exc_info()[0])) logging.warning('Unexpected error: ' + str(sys.exc_info()[0])) dump_log_file(cid) if not running_in_docker(): stop_docker(cid) if fail_count > 0: sys.exit(1) elif warn_count > 0: sys.exit(2) elif pass_count > 0: sys.exit(0) else: sys.exit(3) if __name__ == "__main__": main(sys.argv[1:])
import unittest from mock import Mock, MagicMock, patch, call from test_treeSetUp import TreeSetUp, node1FEMmembers, node1XFEMmembers, node2FEMmembers, node3FEMmembers, node3XFEMmembers, node5XFEMmembers, node10FEMmembers, node10XFEMmembers from trees import TreeNode, createTreeFromDbKeys, nodesPerLevel, tracePath, createTreeOfKeys, maxNodesPerLevel, nodeNamesPerLevel class TestTreeNode_constructor_parent_child_members_methods(unittest.TestCase): def test_constructor(self): tn = TreeNode('nodeName') self.assertEqual('nodeName', tn.name) self.assertIsNone(tn.parent) self.assertEqual(0, len(tn.children)) self.assertTrue(isinstance(tn.children, (set, list, tuple))) self.assertEqual(set([]), tn.failedMembers) self.assertEqual(set([]), tn.successfulMembers) def test_setParent_with_None(self): tn = TreeNode('nodeName') tn.setParent(None) self.assertIsNone(tn.parent) def test_setParent_with_TreeNode_instance(self): tn = TreeNode('nodeName') pn = TreeNode('parentNodeName') tn.setParent(pn) self.assertIs(pn, tn.parent) def test_setParent_with_Str_set_tuple(self): tn = TreeNode('nodeName') self.assertRaises(TypeError, tn.setParent, 'pnode') self.assertRaises(TypeError, tn.setParent, [1, 2]) self.assertRaises(TypeError, tn.setParent, (1, 2)) self.assertRaises(TypeError, tn.setParent, set([1, 2])) def test_setChild_with_invalid_argument(self): tn = TreeNode('nodeName') sortMock = MagicMock() with patch('trees.TreeNode.sortChildren') as sortMock: self.assertRaises(TypeError, tn.setChild, 'child') self.assertRaises(TypeError, tn.setChild, ('child',)) self.assertRaises(TypeError, tn.setChild, ['child']) self.assertRaises(TypeError, tn.setChild, set(['child'])) self.assertFalse(sortMock.called) def test_setChild_with_TreeNode_instances(self): tn = TreeNode('nodeName') cn1 = TreeNode('childNode1') cn2 = TreeNode('childNode2') sortMock = MagicMock() with patch('trees.TreeNode.sortChildren') as sortMock: tn.setChild(cn1) self.assertEqual([cn1], tn.children) sortMock.assert_called_once_with() tn.setChild(cn2) self.assertEqual(set([cn1, cn2]), set(tn.children)) self.assertEqual([call(), call()], sortMock.mock_calls) def test_sortChildren_with_children_names_string_numbers(self): tn = TreeNode('nodeName') ch1Mock = MagicMock() ch2Mock = MagicMock() ch3Mock = MagicMock() ch1Mock.getName.return_value = '10' ch2Mock.getName.return_value = '9' ch3Mock.getName.return_value = '9.5' tn.children = [ch1Mock, ch2Mock, ch3Mock] tn.sortChildren() self.assertEqual([ch2Mock, ch3Mock, ch1Mock], tn.children) def test_sortChildren_with_strings(self): tn = TreeNode('nodeName') ch1Mock = MagicMock() ch2Mock = MagicMock() ch3Mock = MagicMock() ch1Mock.getName.return_value = 'a' ch2Mock.getName.return_value = 'b' ch3Mock.getName.return_value = 'c' tn.children = [ch2Mock, ch3Mock, ch1Mock] tn.sortChildren() self.assertEqual([ch1Mock, ch2Mock, ch3Mock], tn.children) def test_addMembers_with_str_member(self): tn = TreeNode('nodeName') tn.addMembers('simid1', 'successful') self.assertEqual(set(['simid1']), tn.successfulMembers) tn.addMembers('simid2', 'successful') tn.addMembers('simid3', 'failed') self.assertEqual(set(['simid3']), tn.failedMembers) tn.addMembers('simid4', 'failed') self.assertEqual(set(['simid3', 'simid4']), tn.failedMembers) self.assertEqual(set(['simid1', 'simid2']), tn.successfulMembers) def test_addMembers_with_sequence(self): tn = TreeNode('nodeName') tn.addMembers(['simid1', 'simid2'], 'successful') self.assertEqual(set(['simid1', 'simid2']), tn.successfulMembers) self.assertEqual(set([]), tn.failedMembers) tn.addMembers(['simid3', 'simid4'], 'failed') self.assertEqual(set(['simid3', 'simid4']), tn.failedMembers) self.assertEqual(set(['simid1', 'simid2']), tn.successfulMembers) def test_addMembers_with_None(self): tn = TreeNode('nodeName') tn.addMembers(None, 'successful') tn.addMembers(None, 'failed') self.assertEqual(set([]), tn.successfulMembers) self.assertEqual(set([]), tn.failedMembers) def test_addMembers_with_invalid_arguments(self): tn = TreeNode('nodeName') self.assertRaises(AssertionError, tn.addMembers, None, 'unknownType') self.assertRaises(AssertionError, tn.addMembers, 1, 'successful') def test_addFailedMember(self): tn = TreeNode('nodeName') tn.addFailedMember(None) self.assertEqual(set([]), tn.failedMembers) tn.addFailedMember('simid1') self.assertEqual(set(['simid1']), tn.failedMembers) tn.addFailedMember('simid2') self.assertEqual(set(['simid1', 'simid2']), tn.failedMembers) def test_addSuccessfulMember(self): tn = TreeNode('nodeName') tn.addSuccessfulMember(None) self.assertEqual(set([]), tn.successfulMembers) tn.addSuccessfulMember('simid1') self.assertEqual(set(['simid1']), tn.successfulMembers) tn.addSuccessfulMember('simid2') self.assertEqual(set(['simid1', 'simid2']), tn.successfulMembers) def test_addMember_with_successful_simid(self): sMock1 = MagicMock() sMock1.getEntryKey.return_value = 'simid1' sMock1.getAnalysisSuccess.return_value = True sMock2 = MagicMock() sMock2.getEntryKey.return_value = 'simid2' sMock2.getAnalysisSuccess.return_value = True tn = TreeNode('nodeName') tn.addMember(sMock1) self.assertEqual(set(['simid1']), tn.successfulMembers) tn.addMember(sMock2) self.assertEqual(set(['simid1', 'simid2']), tn.successfulMembers) self.assertEqual(set([]), tn.failedMembers) def test_addMember_with_failed_simid(self): fMock1 = MagicMock() fMock1.getEntryKey.return_value = 'simid1' fMock1.getAnalysisSuccess.return_value = False fMock2 = MagicMock() fMock2.getEntryKey.return_value = 'simid2' fMock2.getAnalysisSuccess.return_value = False tn = TreeNode('nodeName') tn.addMember(fMock1) self.assertEqual(set(['simid1']), tn.failedMembers) self.assertEqual(set([]), tn.successfulMembers) tn.addMember(fMock2) self.assertEqual(set(['simid1', 'simid2']), tn.failedMembers) self.assertEqual(set([]), tn.successfulMembers) def test__eq__(self): tn0 = TreeNode(0) tn1 = TreeNode(1) tn01 = TreeNode(0) self.assertFalse(tn0.__eq__(tn1)) self.assertTrue(tn0.__eq__(tn01)) self.assertRaises(AssertionError, tn0.__eq__, 0) class TestTreeNode_tree_browsing(TreeSetUp): def test_getRootNode_with_nonroot_node_argument(self): self.assertIs(self.root, self.node1FEMs.getRootNode()) self.assertIs(self.root, self.node1XFEMmpLR.getRootNode()) self.assertIs(self.root, self.node2FEMsQF.getRootNode()) self.assertIs(self.root, self.node3FEMeQR.getRootNode()) self.assertIs(self.root, self.node5XFEMcp.getRootNode()) self.assertIs(self.root, self.node10.getRootNode()) self.assertIs(self.root, self.node10FEMeLF.getRootNode()) def test_getRootNode_with_root_node_argument(self): self.assertIs(self.root, self.root.getRootNode()) def test_getNodeLevelInTree(self): self.assertEqual(0, self.root.getNodeLevelInTree()) self.assertEqual(1, self.node1.getNodeLevelInTree()) self.assertEqual(1, self.node10.getNodeLevelInTree()) self.assertEqual(1, self.node3.getNodeLevelInTree()) self.assertEqual(2, self.node1FEM.getNodeLevelInTree()) self.assertEqual(2, self.node1XFEM.getNodeLevelInTree()) self.assertEqual(2, self.node2FEM.getNodeLevelInTree()) self.assertEqual(3, self.node1FEMe.getNodeLevelInTree()) self.assertEqual(3, self.node1FEMs.getNodeLevelInTree()) self.assertEqual(3, self.node1XFEMcp.getNodeLevelInTree()) self.assertEqual(3, self.node2FEMs.getNodeLevelInTree()) self.assertEqual(4, self.node1FEMsQR.getNodeLevelInTree()) self.assertEqual(4, self.node1FEMeQF.getNodeLevelInTree()) self.assertEqual(4, self.node10FEMeLF.getNodeLevelInTree()) self.assertEqual(4, self.node2FEMsQF.getNodeLevelInTree()) def test_hasChildNode_with_existing_child_nodes(self): self.assertTrue(self.root.hasChildNode('1.0')) self.assertTrue(self.root.hasChildNode('10.0')) self.assertTrue(self.root.hasChildNode('5.0')) self.assertTrue(self.node1.hasChildNode('FEM')) self.assertTrue(self.node2FEMs.hasChildNode('QF')) def test_hasChildNode_with_non_existing_child_nodes(self): self.assertFalse(self.node10XFEMcp.hasChildNode('')) self.assertFalse(self.node5XFEM.hasChildNode('mp')) self.assertFalse(self.node2FEMs.hasChildNode('QR')) self.assertFalse(self.root.hasChildNode('sampleNode')) self.assertFalse(self.node1FEM.hasChildNode('FEM')) self.assertFalse(self.node1FEMsQR.hasChildNode('FEM')) self.assertFalse(self.node1XFEMmpLR.hasChildNode('mp')) self.assertFalse(self.node2FEMsQF.hasChildNode('2.0')) self.assertFalse(self.node10XFEMcpLR.hasChildNode('LF')) def test_getTreeBranch_with_ambiguous_path(self): self.assertRaises( KeyError, self.root.getTreeBranch, [ 'XFEM', 'cp', 'LT']) self.assertRaises(KeyError, self.root.getTreeBranch, ['QR']) self.assertRaises(KeyError, self.root.getTreeBranch, ['FEM', 'elliptic', 'QF']) self.assertRaises(KeyError, self.root.getTreeBranch, ['FEM', 'elliptic', 'LF']) def test_getTreeBranch_with_nonexisting_path(self): self.assertRaises(KeyError, self.root.getTreeBranch, ['1.0', 'FEM', 'scale', 'QF']) self.assertRaises( KeyError, self.node2.getTreeBranch, [ '11', 'FEM', 'cp']) def test_getTreeBranch_with_existing_and_unique_path(self): self.assertIs(self.node1FEMs, self.root.getTreeBranch(['1.0', 'FEM', 'scale'])) self.assertIs(self.node1FEMsQR, self.root.getTreeBranch(['1.0', 'FEM', 'scale', 'QR'])) self.assertIs(self.node1XFEMcpLT, self.node1.getTreeBranch(['1.0', 'XFEM', 'cp', 'LT'])) self.assertIs(self.node5XFEMcpLT, self.root.getTreeBranch(['5.0', 'XFEM', 'cp', 'LT'])) self.assertIs(self.node1XFEMmpLR, self.node1XFEM.getTreeBranch(['mp', 'LR'])) def test_countNumberOfTreeLevels(self): self.assertEqual(4, self.root.countNumberOfTreeLevels()) tn0 = TreeNode('nodeLevel0') self.assertEqual(0, tn0.countNumberOfTreeLevels()) tn1a = TreeNode('nodeLevel1a') tn1b = TreeNode('nodeLevel1b') tn0.setChild(tn1a) tn0.setChild(tn1b) tn1a.setParent(tn0) tn1b.setParent(tn0) self.assertEqual(1, tn0.countNumberOfTreeLevels()) tn2a = TreeNode('nodeLevel2a') tn2a.setParent(tn1a) tn1a.setChild(tn2a) self.assertEqual(2, tn1b.countNumberOfTreeLevels()) tn3a = TreeNode('nodeLevel3a') tn3a.setParent(tn2a) tn2a.setChild(tn3a) self.assertEqual(3, tn1b.countNumberOfTreeLevels()) tn2b = TreeNode('nodeLevel2b') tn1b.setChild(tn2b) tn2b.setParent(tn1b) self.assertEqual(3, tn2b.countNumberOfTreeLevels()) def test_getNodeLevel(self): self.assertEqual(0, self.root.getNodeLevel(self.root)) self.assertEqual(1, self.node1.getNodeLevel(self.node1)) self.assertEqual(1, self.root.getNodeLevel(self.node10)) self.assertEqual(2, self.node1FEMs.getNodeLevel(self.node10XFEM)) self.assertEqual(3, self.node5.getNodeLevel(self.node10XFEMcp)) self.assertEqual(3, self.root.getNodeLevel(self.node3XFEMmp)) self.assertEqual(4, self.root.getNodeLevel(self.node1FEMsQR)) def test_getChildLeafNodes(self): self.assertEqual(set([]), set( self.node1FEMsQR.getChildLeafNodes(self.node10XFEMcpLR))) self.assertEqual(set([self.node1FEMsQR, self.node1FEMsLR]), set(self.root.getChildLeafNodes(self.node1FEMs))) self.assertEqual(set([self.node1FEMsQR, self.node1FEMsLR, self.node1FEMeQF, self.node1FEMeLF]), set(self.root.getChildLeafNodes(self.node1FEM))) self.assertEqual(set([self.node2FEMsQF]), set(self.root.getChildLeafNodes(self.node2))) self.assertEqual(set([self.node3FEMeQR, self.node3XFEMmpLF]), set(self.root.getChildLeafNodes(self.node3))) self.assertEqual(set([ self.node1FEMsQR, self.node1FEMsLR, self.node1FEMeQF, self.node1FEMeLF, self.node1XFEMcpLT, self.node1XFEMmpLR, self.node2FEMsQF, self.node3FEMeQR, self.node3XFEMmpLF, self.node5XFEMcpLT, self.node10FEMeQF, self.node10FEMeLF, self.node10XFEMcpLR]), set(self.root.getChildLeafNodes(self.root))) class TestTreeNode_member_assignment(TreeSetUp): def setUp_assignMemberAsFailed(self): tn0 = TreeNode('nodeLevel0') tn1a = TreeNode('nodeLevel1a') tn1b = TreeNode('nodeLevel1b') tn0.setChild(tn1a) tn0.setChild(tn1b) tn1a.setParent(tn0) tn1b.setParent(tn0) tn1a.successfulMembers = set(['a1', 'a2', 'a3', 'a4']) tn1b.successfulMembers = set(['b1', 'b2', 'b3', 'b4']) return tn0, tn1a, tn1b def test_assignMemberAsFailed_existing_member_called_on_root_node_with_print( self): prMock1 = MagicMock() with patch('trees.TreeNode.printNode') as prMock1: res = self.root.assignMemberAsFailed( 'node2FEMsQF_sm_1', printChanges=True, rowlen=21) prMock1.assert_called_once_with(self.node2FEMsQF, 21) self.assertEqual(1, res) self.assertEqual(set(['node2FEMsQF_sm_2']), self.node2FEMsQF.successfulMembers) self.assertEqual(set(['node2FEMsQF_sm_1']), self.node2FEMsQF.failedMembers) node1FEMmembers(self) node1XFEMmembers(self) node3FEMmembers(self) node3XFEMmembers(self) node5XFEMmembers(self) node10FEMmembers(self) node10XFEMmembers(self) def test_assignMemberAsFailed_existing_member_called_on_root_without_print( self): prMock1 = MagicMock() with patch('trees.TreeNode.printNode') as prMock1: res = self.root.assignMemberAsFailed( 'node3FEMeQR_sm_1', printChanges=False) self.assertFalse(prMock1.called) self.assertEqual(1, res) self.assertEqual(set([]), set(self.node3FEMeQR.successfulMembers)) self.assertEqual(set([ 'node3FEMeQR_sm_1', 'node3FEMeQR_fm_1', 'node3FEMeQR_fm_2']), set(self.node3FEMeQR.failedMembers)) node1FEMmembers(self) node1XFEMmembers(self) node2FEMmembers(self) node3XFEMmembers(self) node5XFEMmembers(self) node10FEMmembers(self) node10XFEMmembers(self) def test_assignMemberAsFailed_existing_member_called_on_nonroot_without_print( self): res = self.node1FEM.assignMemberAsFailed( 'node5XFEMcpLT_sm_2', printChanges=False) self.assertEqual(1, res) self.assertEqual(set(['node5XFEMcpLT_sm_1']), set(self.node5XFEMcpLT.successfulMembers)) self.assertEqual(set(['node5XFEMcpLT_sm_2', 'node5XFEMcpLT_fm_1', 'node5XFEMcpLT_fm_2', 'node5XFEMcpLT_fm_3']), self.node5XFEMcpLT.failedMembers) node1FEMmembers(self) node1XFEMmembers(self) node2FEMmembers(self) node3FEMmembers(self) node3XFEMmembers(self) node10FEMmembers(self) node10XFEMmembers(self) def test_assignMemberAsFailed_nonexisting_member_without_print(self): res = self.root.assignMemberAsFailed('c1', printChanges=False) self.assertEqual(0, res) node1FEMmembers(self) node1XFEMmembers(self) node2FEMmembers(self) node3FEMmembers(self) node3XFEMmembers(self) node5XFEMmembers(self) node10FEMmembers(self) node10XFEMmembers(self) def test_assignMemberAsFailed_with_failed_member_without_print(self): res = self.root.assignMemberAsFailed( 'node5XFEMcpLT_fm_1', printChanges=False) self.assertEqual(0, res) node1FEMmembers(self) node1XFEMmembers(self) node2FEMmembers(self) node3FEMmembers(self) node3XFEMmembers(self) node5XFEMmembers(self) node10FEMmembers(self) node10XFEMmembers(self) class TestCreateTreeFromDbKeys(unittest.TestCase): def adMock_sf_1(self, param): parDict = { 'crackRatio': '1.0', 'analysisType': 'FEM', 'modelType': 'elliptic', 'elements': 'LinearRI'} return parDict[param] def adMock_sf_2(self, param): parDict = { 'crackRatio': '1.0', 'analysisType': 'XFEM', 'modelType': 'elliptic', 'elements': 'QuadraticFI'} return parDict[param] def mockFunc(self, key): if key == 'key1': self.adMock = MagicMock() self.adMock.getParameter.side_effect = self.adMock_sf_1 self.adMock.getEntryKey.return_value = key self.adMock.getAnalysisSuccess.return_value = True elif key == 'key2': self.adMock = MagicMock() self.adMock.getParameter.side_effect = self.adMock_sf_2 self.adMock.getAnalysisSuccess.return_value = False self.adMock.getEntryKey.return_value = key return self.adMock def setUp(self): self.adMock = MagicMock(side_effect=self.mockFunc) self.adPatch = patch( 'dataProcessing.AnalysisData', self.adMock) self.adPatch.start() def tearDown(self): self.adPatch.stop() def test_createTreeFromDbKeys(self): root = createTreeFromDbKeys(['key1', 'key2']) self.assertIsNone(root.getParent()) self.assertEqual(1, len(root.getChildren())) cnode = root.getChildren()[0] self.assertEqual('1.0', cnode.getName()) self.assertEqual(2, len(cnode.getChildren())) self.assertEqual(set(['XFEM', 'FEM']), set( [n.getName() for n in cnode.getChildren()])) nodeFEM, nodeXFEM = cnode.getChildren() if nodeXFEM.getName() == 'FEM': nodeFEM, nodeXFEM = nodeXFEM, nodeFEM nodeXmt = nodeXFEM.getChildren()[0] nodeXel = nodeXmt.getChildren()[0] self.assertEqual(1, len(nodeXFEM.getChildren())) self.assertEqual(1, len(nodeXmt.getChildren())) self.assertEqual(0, len(nodeXel.getChildren())) self.assertEqual('XFEM', nodeXFEM.getName()) self.assertEqual('elliptic', nodeXmt.getName()) self.assertEqual('QuadraticFI', nodeXel.getName()) self.assertEqual(set(['key2']), nodeXel.failedMembers) nodeFmt = nodeFEM.getChildren()[0] nodeFel = nodeFmt.getChildren()[0] self.assertEqual(1, len(nodeFEM.getChildren())) self.assertEqual(1, len(nodeFmt.getChildren())) self.assertEqual(0, len(nodeFel.getChildren())) self.assertEqual('FEM', nodeFEM.getName()) self.assertEqual('elliptic', nodeFmt.getName()) self.assertEqual('LinearRI', nodeFel.getName()) self.assertEqual(set(['key1']), nodeFel.successfulMembers) class TreeSetUp(unittest.TestCase): def setUp(self): self.root = TreeNode('root_0') self.node_1a_0 = TreeNode('nodeLevel_1a_0') self.node_1b_0 = TreeNode('nodeLevel_1b_0') self.root.setChild(self.node_1a_0) self.root.setChild(self.node_1b_0) self.node_1a_0.setParent(self.root) self.node_1b_0.setParent(self.root) self.levels = {0: set([self.root]), 1: set( [self.node_1a_0, self.node_1b_0])} self.node_2_1a = TreeNode('nodeLevel_2_1a') self.node_1a_0.setChild(self.node_2_1a) self.node_2_1a.setParent(self.node_1a_0) self.node_2a_1b = TreeNode('nodeLevel_2a_1b') self.node_2a_1b.setParent(self.node_1b_0) self.node_1b_0.setChild(self.node_2a_1b) self.node_2b_1b = TreeNode('nodeLevel_2b_1b') self.node_2b_1b.setParent(self.node_1b_0) self.node_1b_0.setChild(self.node_2b_1b) self.levels[2] = set( [self.node_2_1a, self.node_2a_1b, self.node_2b_1b]) self.node_3_2 = TreeNode('nodeLevel_3_2') self.node_3_2.setParent(self.node_2_1a) self.node_2_1a.setChild(self.node_3_2) self.node_3_2a = TreeNode('nodeLevel_3_2a') self.node_3_2a.setParent(self.node_2a_1b) self.node_2a_1b.setChild(self.node_3_2a) self.levels[3] = set([self.node_3_2a, self.node_3_2]) class TestMaxNodesPerLevel(TreeSetUp): def testMaxNodesPerLevel(self): exp = {0: 1, 1: 2, 2: 2, 3: 1} self.assertEqual(exp, maxNodesPerLevel(self.root)) class TestNodeNamesPerLevel(TreeSetUp): def test_nodeNamesPerLevel(self): exp = { 0: ['root_0'], 1: sorted(['nodeLevel_1a_0', 'nodeLevel_1b_0']), 2: sorted(['nodeLevel_2_1a', 'nodeLevel_2a_1b', 'nodeLevel_2b_1b']), 3: sorted(['nodeLevel_3_2', 'nodeLevel_3_2a'])} self.assertEqual(exp, nodeNamesPerLevel(self.root)) class TestNodesPerLevel(TreeSetUp): def test_nodesPerLevel(self): self.assertEqual(self.levels, nodesPerLevel(self.root)) class TestTracePath(TreeSetUp): def test_tracePath_with_limitLevel_None(self): exp = [self.root, self.node_1a_0, self.node_2_1a, self.node_3_2] self.assertEqual(exp, tracePath(self.node_3_2, limitLevel=None)) exp = [self.root, self.node_1b_0, self.node_2a_1b, self.node_3_2a] self.assertEqual(exp, tracePath(self.node_3_2a, limitLevel=None)) exp = [self.root, self.node_1b_0, self.node_2b_1b] self.assertEqual(exp, tracePath(self.node_2b_1b, limitLevel=None)) def test_tracePath_with_limitLevel_zero(self): exp = [self.root, self.node_1a_0, self.node_2_1a, self.node_3_2] self.assertEqual(exp, tracePath(self.node_3_2, limitLevel=0)) def test_tracePath_with_limitLevel_between_zero_and_max_tree_depth(self): exp = [self.node_1a_0, self.node_2_1a, self.node_3_2] self.assertEqual(exp, tracePath(self.node_3_2, limitLevel=1)) exp = [self.node_2a_1b, self.node_3_2a] self.assertEqual(exp, tracePath(self.node_3_2a, limitLevel=2)) exp = [self.node_3_2a] self.assertEqual(exp, tracePath(self.node_3_2a, limitLevel=3)) exp = [] self.assertEqual(exp, tracePath(self.node_3_2, limitLevel=4)) def test_tracePath_with_limitLevel_higher_than_tree_depth(self): self.assertRaises(IndexError, tracePath, self.node_3_2, limitLevel=5) class TestCreateTreeOfKeys(unittest.TestCase): def setUp(self): self.root = TreeNode('root') node1 = TreeNode('1.0') self.root.setChild(node1) node1.setParent(self.root) node1fem = TreeNode('FEM') node1fem.setParent(node1) node1.setChild(node1fem) node1femellip = TreeNode('elliptic') node1femellip.setParent(node1fem) node1fem.setChild(node1femellip) node1femellipL = TreeNode('LinearRI') node1femellipL.setParent(node1femellip) node1femellip.setChild(node1femellipL) node1xfem = TreeNode('XFEM') node1xfem.setParent(node1) node1.setChild(node1xfem) node1xfemCP = TreeNode('cp') node1xfemCP.setParent(node1xfem) node1xfem.setChild(node1xfemCP) node1xfemCPLT = TreeNode('LinearTet') node1xfemCPLT.setParent(node1xfemCP) node1xfemCP.setChild(node1xfemCPLT) node2 = TreeNode('2.0') self.root.setChild(node2) node2.setParent(self.root) node2fem = TreeNode('FEM') node2fem.setParent(node2) node2.setChild(node2fem) node2femscale = TreeNode('scale') node2femscale.setParent(node2fem) node2fem.setChild(node2femscale) node2femscaleQR = TreeNode('QuadRI') node2femscaleQR.setParent(node2femscale) node2femscale.setChild(node2femscaleQR) node2xfem = TreeNode('XFEM') node2xfem.setParent(node2) node2.setChild(node2xfem) node2xfemmp = TreeNode('mp') node2xfem.setChild(node2xfemmp) node2xfemmp.setParent(node2xfem) node2xfemmpLF = TreeNode('LinearFI') node2xfemmp.setChild(node2xfemmpLF) node2xfemmpLF.setParent(node2xfemmp) node3 = TreeNode('3.0') self.root.setChild(node3) node3.setParent(self.root) node3fem = TreeNode('FEM') node3.setChild(node3fem) node3fem.setParent(node3) node3femellip = TreeNode('elliptic') node3fem.setChild(node3femellip) node3femellip.setParent(node3fem) node3femellipQR = TreeNode('QuadRI') node3femellipQR.setParent(node3femellip) node3femellip.setChild(node3femellipQR) node3xfem = TreeNode('XFEM') node3xfem.setParent(node3) node3.setChild(node3xfem) node3xfemmp = TreeNode('mp') node3xfem.setChild(node3xfemmp) node3xfemmp.setParent(node3xfem) node3xfemmpQF = TreeNode('QuadFI') node3xfemmp.setChild(node3xfemmpQF) node3xfemmpQF.setParent(node3xfemmp) def test_createTreeOfKeys(self): nr = createTreeOfKeys(self.root) self.assertEqual(set(['FEM', 'XFEM']), set([n.getName() for n in nr.getChildren()])) nodeF, nodeX = nr.getChildren() if nodeX.getName() == 'FEM': nodeX, nodeF = nodeF, nodeX self.assertEqual('FEM', nodeF.getName()) self.assertEqual('XFEM', nodeX.getName()) self.assertEqual(sorted(['elliptic', 'scale']), sorted([n.getName() for n in nodeF.getChildren()])) nodeFe, nodeFs = nodeF.getChildren() if nodeFe.getName() == 'scale': nodeFe, nodeFs = nodeFs, nodeFe self.assertEqual('scale', nodeFs.getName()) self.assertEqual('elliptic', nodeFe.getName()) self.assertEqual(sorted(['LinearRI', 'QuadRI']), sorted([n.getName() for n in nodeFe.getChildren()])) self.assertEqual(1, len(nodeFs.getChildren())) self.assertEqual('QuadRI', nodeFs.getChildren()[0].getName()) self.assertEqual(sorted(['mp', 'cp']), sorted([n.getName() for n in nodeX.getChildren()])) nodeXm, nodeXc = nodeX.getChildren() if nodeXm.getName() == 'cp': nodeXm, nodeXc = nodeXc, nodeXm self.assertEqual('cp', nodeXc.getName()) self.assertEqual('mp', nodeXm.getName()) self.assertEqual(1, len(nodeXc.getChildren())) self.assertEqual('LinearTet', nodeXc.getChildren()[0].getName()) self.assertEqual(sorted(['LinearFI', 'QuadFI']), sorted([n.getName() for n in nodeXm.getChildren()]))
""" Some models for pulling data from Trac. Initially generated by inspectdb then modified heavily by hand, often by consulting http://trac.edgewall.org/wiki/TracDev/DatabaseSchema. These are far from perfect: many (most?) Trac tables have composite primary keys, which Django can't represent. This means a lot of built-in Django stuff (the admin, for example) won't work at all with these models. I haven't investigated just how deeply down thess failures go, but I suspect all sorts of things just won't work. However, they're Good Enough(tm) to let me pull some basic (read-only) data out, and that's all I really need. Some potential TODOs: * Add some convienance manager functions to deal with ticket_custom. Right now you can query with a join:: Ticket.objects.filter(custom_fields__name='ui_ux', custom_fields__value='1') Perhaps we might be able to get something like:: Ticket.objects.with_custom(ui_ux=True) Or even a custom .filter() that intercepts and figures it out? * Trac stores SVN repository revisions as '0000003744' grar. This makes querying awkward. There's probably some tricky manager manger that we could do here. * The whole Revision model will fall apart if we ever had a second repository to Trac. And a few notes on tables that're left out and why: * All the session and permission tables: they're just not needd. * Enum: I don't know what this is or what it's for. * NodeChange: Ditto. """ import datetime from django.db import models _epoc = datetime.datetime(1970, 1, 1, tzinfo=datetime.timezone.utc) class time_property: """ Convert Trac timestamps into UTC datetimes. See http://trac.edgewall.org/browser//branches/0.12-stable/trac/util/datefmt.py for Trac's version of all this. Mine's something of a simplification. Like the rest of this module this is far from perfect -- no setters, for example! That's good enough for now. """ def __init__(self, fieldname): self.fieldname = fieldname def __get__(self, instance, owner): if instance is None: return self timestamp = getattr(instance, self.fieldname) return _epoc + datetime.timedelta(microseconds=timestamp) class Ticket(models.Model): id = models.IntegerField(primary_key=True) type = models.TextField() _time = models.BigIntegerField(db_column='time') time = time_property('_time') _changetime = models.BigIntegerField(db_column='changetime') changetime = time_property('_changetime') component = models.ForeignKey( 'Component', related_name='tickets', db_column='component', on_delete=models.DO_NOTHING, ) severity = models.TextField() owner = models.TextField() reporter = models.TextField() cc = models.TextField() version = models.ForeignKey( 'Version', related_name='tickets', db_column='version', on_delete=models.DO_NOTHING, ) milestone = models.ForeignKey( 'Milestone', related_name='tickets', db_column='milestone', on_delete=models.DO_NOTHING, ) priority = models.TextField() status = models.TextField() resolution = models.TextField() summary = models.TextField() description = models.TextField() keywords = models.TextField() class Meta: db_table = 'ticket' managed = False def __str__(self): return "#%s: %s" % (self.id, self.summary) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Munge custom fields onto this object. This sucks since it implies # querying will work (it won't!) and that writing will work (ditto). # Also notice that *nasty* mapping of Trac's "booleanish" things to # real booleans. This can fail in a bunch of ways, but not in our # particular install. for name, value in self.custom_fields.values_list('name', 'value'): if value in ('0', '1'): value = bool(int(value)) setattr(self, name, value) class TicketCustom(models.Model): ticket = models.ForeignKey( Ticket, related_name='custom_fields', db_column='ticket', primary_key=True, on_delete=models.DO_NOTHING, ) name = models.TextField() value = models.TextField() class Meta: db_table = 'ticket_custom' managed = False def __str__(self): return "%s: %s" % (self.name, self.value) class TicketChange(models.Model): ticket = models.ForeignKey( Ticket, related_name='changes', db_column='ticket', primary_key=True, on_delete=models.DO_NOTHING, ) author = models.TextField() field = models.TextField() oldvalue = models.TextField() newvalue = models.TextField() _time = models.BigIntegerField(db_column='time') time = time_property('_time') class Meta: db_table = 'ticket_change' managed = False ordering = ['_time'] def __str__(self): return "#%s: changed %s" % (self.ticket.id, self.field) class Component(models.Model): name = models.TextField(primary_key=True) owner = models.TextField() description = models.TextField() class Meta: db_table = 'component' managed = False def __str__(self): return self.name class Version(models.Model): name = models.TextField(primary_key=True) description = models.TextField() _time = models.BigIntegerField(db_column='time') time = time_property('_time') class Meta: db_table = 'version' managed = False def __str__(self): return self.name class Milestone(models.Model): name = models.TextField(primary_key=True) description = models.TextField() _due = models.BigIntegerField(db_column='_due') due = time_property('due') _completed = models.BigIntegerField(db_column='_completed') completed = time_property('completed') class Meta: db_table = 'milestone' managed = False def __str__(self): return self.name class SingleRepoRevisionManager(models.Manager): """ Forces Revision to only query against a single repo, thus making Revision.rev behave something like a primary key. """ def __init__(self, repo_id): self.repo_id = repo_id super().__init__() def get_queryset(self): qs = super().get_queryset() return qs.filter(repos=self.repo_id) SINGLE_REPO_ID = 1 class Revision(models.Model): repos = models.IntegerField() rev = models.TextField(primary_key=True) _time = models.BigIntegerField(db_column='time') time = time_property('time') author = models.TextField() message = models.TextField() objects = SingleRepoRevisionManager(repo_id=SINGLE_REPO_ID) class Meta: db_table = 'revision' managed = False def __str__(self): return '[%s] %s' % (self.rev, self.message.split('\n', 1)[0]) # The Wiki table uses a composite primary key (name, version). Since # Django doesn't support this, this model sits on top of a simple view. # CREATE VIEW "wiki_django_view" AS # SELECT "name" || '.' || "version" AS "django_id", * # FROM wiki; class Wiki(models.Model): django_id = models.TextField(primary_key=True) name = models.TextField() version = models.IntegerField() _time = models.BigIntegerField(db_column='time') time = time_property('time') author = models.TextField() ipnr = models.TextField() text = models.TextField() comment = models.TextField() readonly = models.IntegerField() class Meta: db_table = 'wiki_django_view' managed = False def __str__(self): return '%s (v%s)' % (self.name, self.version) # Same story as for Wiki: attachment's PK is (type, id, filename), so again # there's a simple view this is on top of. # CREATE VIEW "attachment_django_view" AS # SELECT "type" || '.' || "id" || '.' || "filename" AS "django_id", * # FROM attachment; class Attachment(models.Model): django_id = models.TextField(primary_key=True) type = models.TextField() id = models.TextField() filename = models.TextField() size = models.IntegerField() _time = models.BigIntegerField(db_column='time') time = time_property('time') description = models.TextField() author = models.TextField() ipnr = models.TextField() class Meta: db_table = 'attachment_django_view' managed = False def __str__(self): attached_to = ('#%s' % self.id) if self.type == 'ticket' else self.id return '%s (on %s)' % (self.filename, attached_to)
# Copyright 2013 IBM Corp. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import time from tempest_lib import exceptions as lib_exc from tempest.api.compute import base from tempest import config from tempest import exceptions from tempest import test CONF = config.CONF class AttachInterfacesTestJSON(base.BaseV2ComputeTest): @classmethod def skip_checks(cls): super(AttachInterfacesTestJSON, cls).skip_checks() if not CONF.service_available.neutron: raise cls.skipException("Neutron is required") if not CONF.compute_feature_enabled.interface_attach: raise cls.skipException("Interface attachment is not available.") @classmethod def setup_credentials(cls): # This test class requires network and subnet cls.set_network_resources(network=True, subnet=True) super(AttachInterfacesTestJSON, cls).setup_credentials() @classmethod def setup_clients(cls): super(AttachInterfacesTestJSON, cls).setup_clients() cls.client = cls.os.interfaces_client def wait_for_interface_status(self, server, port_id, status): """Waits for a interface to reach a given status.""" body = (self.client.show_interface(server, port_id) ['interfaceAttachment']) interface_status = body['port_state'] start = int(time.time()) while(interface_status != status): time.sleep(self.build_interval) body = (self.client.show_interface(server, port_id) ['interfaceAttachment']) interface_status = body['port_state'] timed_out = int(time.time()) - start >= self.build_timeout if interface_status != status and timed_out: message = ('Interface %s failed to reach %s status ' '(current %s) within the required time (%s s).' % (port_id, status, interface_status, self.build_timeout)) raise exceptions.TimeoutException(message) return body def _check_interface(self, iface, port_id=None, network_id=None, fixed_ip=None, mac_addr=None): self.assertIn('port_state', iface) if port_id: self.assertEqual(iface['port_id'], port_id) if network_id: self.assertEqual(iface['net_id'], network_id) if fixed_ip: self.assertEqual(iface['fixed_ips'][0]['ip_address'], fixed_ip) if mac_addr: self.assertEqual(iface['mac_addr'], mac_addr) def _create_server_get_interfaces(self): server = self.create_test_server(wait_until='ACTIVE') ifs = (self.client.list_interfaces(server['id']) ['interfaceAttachments']) body = self.wait_for_interface_status( server['id'], ifs[0]['port_id'], 'ACTIVE') ifs[0]['port_state'] = body['port_state'] return server, ifs def _test_create_interface(self, server): iface = (self.client.create_interface(server['id']) ['interfaceAttachment']) iface = self.wait_for_interface_status( server['id'], iface['port_id'], 'ACTIVE') self._check_interface(iface) return iface def _test_create_interface_by_network_id(self, server, ifs): network_id = ifs[0]['net_id'] iface = self.client.create_interface( server['id'], net_id=network_id)['interfaceAttachment'] iface = self.wait_for_interface_status( server['id'], iface['port_id'], 'ACTIVE') self._check_interface(iface, network_id=network_id) return iface def _test_show_interface(self, server, ifs): iface = ifs[0] _iface = self.client.show_interface( server['id'], iface['port_id'])['interfaceAttachment'] self._check_interface(iface, port_id=_iface['port_id'], network_id=_iface['net_id'], fixed_ip=_iface['fixed_ips'][0]['ip_address'], mac_addr=_iface['mac_addr']) def _test_delete_interface(self, server, ifs): # NOTE(danms): delete not the first or last, but one in the middle iface = ifs[1] self.client.delete_interface(server['id'], iface['port_id']) _ifs = (self.client.list_interfaces(server['id']) ['interfaceAttachments']) start = int(time.time()) while len(ifs) == len(_ifs): time.sleep(self.build_interval) _ifs = (self.client.list_interfaces(server['id']) ['interfaceAttachments']) timed_out = int(time.time()) - start >= self.build_timeout if len(ifs) == len(_ifs) and timed_out: message = ('Failed to delete interface within ' 'the required time: %s sec.' % self.build_timeout) raise exceptions.TimeoutException(message) self.assertNotIn(iface['port_id'], [i['port_id'] for i in _ifs]) return _ifs def _compare_iface_list(self, list1, list2): # NOTE(danms): port_state will likely have changed, so just # confirm the port_ids are the same at least list1 = [x['port_id'] for x in list1] list2 = [x['port_id'] for x in list2] self.assertEqual(sorted(list1), sorted(list2)) @test.idempotent_id('73fe8f02-590d-4bf1-b184-e9ca81065051') @test.services('network') def test_create_list_show_delete_interfaces(self): server, ifs = self._create_server_get_interfaces() interface_count = len(ifs) self.assertTrue(interface_count > 0) self._check_interface(ifs[0]) try: iface = self._test_create_interface(server) except lib_exc.BadRequest as e: msg = ('Multiple possible networks found, use a Network ID to be ' 'more specific.') if not CONF.compute.fixed_network_name and e.message == msg: raise else: ifs.append(iface) iface = self._test_create_interface_by_network_id(server, ifs) ifs.append(iface) _ifs = (self.client.list_interfaces(server['id']) ['interfaceAttachments']) self._compare_iface_list(ifs, _ifs) self._test_show_interface(server, ifs) _ifs = self._test_delete_interface(server, ifs) self.assertEqual(len(ifs) - 1, len(_ifs)) @test.attr(type='smoke') @test.idempotent_id('c7e0e60b-ee45-43d0-abeb-8596fd42a2f9') @test.services('network') def test_add_remove_fixed_ip(self): # Add and Remove the fixed IP to server. server, ifs = self._create_server_get_interfaces() interface_count = len(ifs) self.assertTrue(interface_count > 0) self._check_interface(ifs[0]) network_id = ifs[0]['net_id'] self.client.add_fixed_ip(server['id'], networkId=network_id) # Remove the fixed IP from server. server_detail = self.os.servers_client.show_server( server['id']) # Get the Fixed IP from server. fixed_ip = None for ip_set in server_detail['addresses']: for ip in server_detail['addresses'][ip_set]: if ip['OS-EXT-IPS:type'] == 'fixed': fixed_ip = ip['addr'] break if fixed_ip is not None: break self.client.remove_fixed_ip(server['id'], address=fixed_ip)
# Copyright 2011 Piston Cloud Computing, Inc. # All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Test of Policy Engine For Nova.""" import os.path import mock from oslo_policy import policy as oslo_policy from oslo_serialization import jsonutils import requests_mock import nova.conf from nova import context from nova import exception from nova import policy from nova import test from nova.tests.unit import fake_policy from nova.tests.unit import policy_fixture from nova import utils CONF = nova.conf.CONF class PolicyFileTestCase(test.NoDBTestCase): def setUp(self): super(PolicyFileTestCase, self).setUp() self.context = context.RequestContext('fake', 'fake') self.target = {} def test_modified_policy_reloads(self): with utils.tempdir() as tmpdir: tmpfilename = os.path.join(tmpdir, 'policy') self.flags(policy_file=tmpfilename, group='oslo_policy') # NOTE(uni): context construction invokes policy check to determine # is_admin or not. As a side-effect, policy reset is needed here # to flush existing policy cache. policy.reset() policy.init() rule = oslo_policy.RuleDefault('example:test', "") policy._ENFORCER.register_defaults([rule]) action = "example:test" with open(tmpfilename, "w") as policyfile: policyfile.write('{"example:test": ""}') policy.authorize(self.context, action, self.target) with open(tmpfilename, "w") as policyfile: policyfile.write('{"example:test": "!"}') policy._ENFORCER.load_rules(True) self.assertRaises(exception.PolicyNotAuthorized, policy.authorize, self.context, action, self.target) class PolicyTestCase(test.NoDBTestCase): def setUp(self): super(PolicyTestCase, self).setUp() rules = [ oslo_policy.RuleDefault("true", '@'), oslo_policy.RuleDefault("example:allowed", '@'), oslo_policy.RuleDefault("example:denied", "!"), oslo_policy.RuleDefault("example:get_http", "http://www.example.com"), oslo_policy.RuleDefault("example:my_file", "role:compute_admin or " "project_id:%(project_id)s"), oslo_policy.RuleDefault("example:early_and_fail", "! and @"), oslo_policy.RuleDefault("example:early_or_success", "@ or !"), oslo_policy.RuleDefault("example:lowercase_admin", "role:admin or role:sysadmin"), oslo_policy.RuleDefault("example:uppercase_admin", "role:ADMIN or role:sysadmin"), ] policy.reset() policy.init() # before a policy rule can be used, its default has to be registered. policy._ENFORCER.register_defaults(rules) self.context = context.RequestContext('fake', 'fake', roles=['member']) self.target = {} def test_authorize_nonexistent_action_throws(self): action = "example:noexist" self.assertRaises(oslo_policy.PolicyNotRegistered, policy.authorize, self.context, action, self.target) def test_authorize_bad_action_throws(self): action = "example:denied" self.assertRaises(exception.PolicyNotAuthorized, policy.authorize, self.context, action, self.target) def test_authorize_bad_action_noraise(self): action = "example:denied" result = policy.authorize(self.context, action, self.target, False) self.assertFalse(result) def test_authorize_good_action(self): action = "example:allowed" result = policy.authorize(self.context, action, self.target) self.assertTrue(result) @requests_mock.mock() def test_authorize_http_true(self, req_mock): req_mock.post('http://www.example.com/', text='True') action = "example:get_http" target = {} result = policy.authorize(self.context, action, target) self.assertTrue(result) @requests_mock.mock() def test_authorize_http_false(self, req_mock): req_mock.post('http://www.example.com/', text='False') action = "example:get_http" target = {} self.assertRaises(exception.PolicyNotAuthorized, policy.authorize, self.context, action, target) def test_templatized_authorization(self): target_mine = {'project_id': 'fake'} target_not_mine = {'project_id': 'another'} action = "example:my_file" policy.authorize(self.context, action, target_mine) self.assertRaises(exception.PolicyNotAuthorized, policy.authorize, self.context, action, target_not_mine) def test_early_AND_authorization(self): action = "example:early_and_fail" self.assertRaises(exception.PolicyNotAuthorized, policy.authorize, self.context, action, self.target) def test_early_OR_authorization(self): action = "example:early_or_success" policy.authorize(self.context, action, self.target) def test_ignore_case_role_check(self): lowercase_action = "example:lowercase_admin" uppercase_action = "example:uppercase_admin" # NOTE(dprince) we mix case in the Admin role here to ensure # case is ignored admin_context = context.RequestContext('admin', 'fake', roles=['AdMiN']) policy.authorize(admin_context, lowercase_action, self.target) policy.authorize(admin_context, uppercase_action, self.target) @mock.patch.object(policy.LOG, 'warning') def test_warning_when_deprecated_user_based_rule_used(self, mock_warning): policy._warning_for_deprecated_user_based_rules( [("os_compute_api:servers:index", "project_id:%(project_id)s or user_id:%(user_id)s")]) mock_warning.assert_called_once_with( u"The user_id attribute isn't supported in the rule " "'%s'. All the user_id based policy enforcement will be removed " "in the future.", "os_compute_api:servers:index") @mock.patch.object(policy.LOG, 'warning') def test_no_warning_for_user_based_resource(self, mock_warning): policy._warning_for_deprecated_user_based_rules( [("os_compute_api:os-keypairs:index", "user_id:%(user_id)s")]) mock_warning.assert_not_called() @mock.patch.object(policy.LOG, 'warning') def test_no_warning_for_no_user_based_rule(self, mock_warning): policy._warning_for_deprecated_user_based_rules( [("os_compute_api:servers:index", "project_id:%(project_id)s")]) mock_warning.assert_not_called() class IsAdminCheckTestCase(test.NoDBTestCase): def setUp(self): super(IsAdminCheckTestCase, self).setUp() policy.init() def test_init_true(self): check = policy.IsAdminCheck('is_admin', 'True') self.assertEqual(check.kind, 'is_admin') self.assertEqual(check.match, 'True') self.assertTrue(check.expected) def test_init_false(self): check = policy.IsAdminCheck('is_admin', 'nottrue') self.assertEqual(check.kind, 'is_admin') self.assertEqual(check.match, 'False') self.assertFalse(check.expected) def test_call_true(self): check = policy.IsAdminCheck('is_admin', 'True') self.assertTrue(check('target', dict(is_admin=True), policy._ENFORCER)) self.assertFalse(check('target', dict(is_admin=False), policy._ENFORCER)) def test_call_false(self): check = policy.IsAdminCheck('is_admin', 'False') self.assertFalse(check('target', dict(is_admin=True), policy._ENFORCER)) self.assertTrue(check('target', dict(is_admin=False), policy._ENFORCER)) class AdminRolePolicyTestCase(test.NoDBTestCase): def setUp(self): super(AdminRolePolicyTestCase, self).setUp() self.policy = self.useFixture(policy_fixture.RoleBasedPolicyFixture()) self.context = context.RequestContext('fake', 'fake', roles=['member']) self.actions = policy.get_rules().keys() self.target = {} def test_authorize_admin_actions_with_nonadmin_context_throws(self): """Check if non-admin context passed to admin actions throws Policy not authorized exception """ for action in self.actions: self.assertRaises(exception.PolicyNotAuthorized, policy.authorize, self.context, action, self.target) class RealRolePolicyTestCase(test.NoDBTestCase): def setUp(self): super(RealRolePolicyTestCase, self).setUp() self.policy = self.useFixture(policy_fixture.RealPolicyFixture()) self.non_admin_context = context.RequestContext('fake', 'fake', roles=['member']) self.admin_context = context.RequestContext('fake', 'fake', True, roles=['member']) self.target = {} self.fake_policy = jsonutils.loads(fake_policy.policy_data) self.admin_only_rules = ( "cells_scheduler_filter:DifferentCellFilter", "cells_scheduler_filter:TargetCellFilter", "network:attach_external_network", "os_compute_api:servers:create:forced_host", "os_compute_api:servers:detail:get_all_tenants", "os_compute_api:servers:index:get_all_tenants", "os_compute_api:servers:show:host_status", "os_compute_api:servers:migrations:force_complete", "os_compute_api:servers:migrations:delete", "os_compute_api:os-admin-actions:reset_network", "os_compute_api:os-admin-actions:inject_network_info", "os_compute_api:os-admin-actions:reset_state", "os_compute_api:os-aggregates:index", "os_compute_api:os-aggregates:create", "os_compute_api:os-aggregates:show", "os_compute_api:os-aggregates:update", "os_compute_api:os-aggregates:delete", "os_compute_api:os-aggregates:add_host", "os_compute_api:os-aggregates:remove_host", "os_compute_api:os-aggregates:set_metadata", "os_compute_api:os-agents", "os_compute_api:os-baremetal-nodes", "os_compute_api:os-cells", "os_compute_api:os-cells:create", "os_compute_api:os-cells:delete", "os_compute_api:os-cells:update", "os_compute_api:os-cells:sync_instances", "os_compute_api:os-evacuate", "os_compute_api:os-extended-server-attributes", "os_compute_api:os-fixed-ips", "os_compute_api:os-flavor-access:remove_tenant_access", "os_compute_api:os-flavor-access:add_tenant_access", "os_compute_api:os-flavor-extra-specs:create", "os_compute_api:os-flavor-extra-specs:update", "os_compute_api:os-flavor-extra-specs:delete", "os_compute_api:os-flavor-manage", "os_compute_api:os-floating-ips-bulk", "os_compute_api:os-floating-ip-dns:domain:delete", "os_compute_api:os-floating-ip-dns:domain:update", "os_compute_api:os-fping:all_tenants", "os_compute_api:os-hosts", "os_compute_api:os-hypervisors", "os_compute_api:os-instance-actions:events", "os_compute_api:os-instance-usage-audit-log", "os_compute_api:os-lock-server:unlock:unlock_override", "os_compute_api:os-migrate-server:migrate", "os_compute_api:os-migrate-server:migrate_live", "os_compute_api:os-networks", "os_compute_api:os-networks-associate", "os_compute_api:os-quota-sets:update", "os_compute_api:os-quota-sets:delete", "os_compute_api:os-security-group-default-rules", "os_compute_api:os-server-diagnostics", "os_compute_api:os-services", "os_compute_api:os-shelve:shelve_offload", "os_compute_api:os-simple-tenant-usage:list", "os_compute_api:os-availability-zone:detail", "os_compute_api:os-used-limits", "os_compute_api:os-migrations:index", "os_compute_api:os-assisted-volume-snapshots:create", "os_compute_api:os-assisted-volume-snapshots:delete", "os_compute_api:os-console-auth-tokens", "os_compute_api:os-quota-class-sets:update", "os_compute_api:os-server-external-events:create", "os_compute_api:os-volumes-attachments:update", "os_compute_api:servers:migrations:index", "os_compute_api:servers:migrations:show", ) self.admin_or_owner_rules = ( "os_compute_api:servers:start", "os_compute_api:servers:stop", "os_compute_api:servers:trigger_crash_dump", "os_compute_api:os-create-backup", "os_compute_api:ips:index", "os_compute_api:ips:show", "os_compute_api:os-keypairs:create", "os_compute_api:os-keypairs:delete", "os_compute_api:os-keypairs:index", "os_compute_api:os-keypairs:show", "os_compute_api:os-lock-server:lock", "os_compute_api:os-lock-server:unlock", "os_compute_api:os-pause-server:pause", "os_compute_api:os-pause-server:unpause", "os_compute_api:os-quota-sets:show", "os_compute_api:os-quota-sets:detail", "os_compute_api:server-metadata:index", "os_compute_api:server-metadata:show", "os_compute_api:server-metadata:delete", "os_compute_api:server-metadata:create", "os_compute_api:server-metadata:update", "os_compute_api:server-metadata:update_all", "os_compute_api:os-simple-tenant-usage:show", "os_compute_api:os-suspend-server:suspend", "os_compute_api:os-suspend-server:resume", "os_compute_api:os-tenant-networks", "os_compute_api:extensions", "os_compute_api:os-config-drive", "os_compute_api:servers:confirm_resize", "os_compute_api:servers:create", "os_compute_api:servers:create:attach_network", "os_compute_api:servers:create:attach_volume", "os_compute_api:servers:create_image", "os_compute_api:servers:delete", "os_compute_api:servers:detail", "os_compute_api:servers:index", "os_compute_api:servers:reboot", "os_compute_api:servers:rebuild", "os_compute_api:servers:resize", "os_compute_api:servers:revert_resize", "os_compute_api:servers:show", "os_compute_api:servers:update", "os_compute_api:servers:create_image:allow_volume_backed", "os_compute_api:os-admin-password", "os_compute_api:os-attach-interfaces", "os_compute_api:os-attach-interfaces:create", "os_compute_api:os-attach-interfaces:delete", "os_compute_api:os-consoles:create", "os_compute_api:os-consoles:delete", "os_compute_api:os-consoles:index", "os_compute_api:os-consoles:show", "os_compute_api:os-console-output", "os_compute_api:os-remote-consoles", "os_compute_api:os-deferred-delete", "os_compute_api:os-extended-status", "os_compute_api:os-extended-availability-zone", "os_compute_api:os-extended-volumes", "os_compute_api:os-flavor-access", "os_compute_api:os-flavor-rxtx", "os_compute_api:flavors", "os_compute_api:os-flavor-extra-specs:index", "os_compute_api:os-flavor-extra-specs:show", "os_compute_api:os-floating-ip-dns", "os_compute_api:os-floating-ip-pools", "os_compute_api:os-floating-ips", "os_compute_api:os-fping", "os_compute_api:image-size", "os_compute_api:os-instance-actions", "os_compute_api:os-keypairs", "os_compute_api:limits", "os_compute_api:os-multinic", "os_compute_api:os-networks:view", "os_compute_api:os-rescue", "os_compute_api:os-security-groups", "os_compute_api:os-server-password", "os_compute_api:os-server-usage", "os_compute_api:os-server-groups", "os_compute_api:os-server-tags:delete", "os_compute_api:os-server-tags:delete_all", "os_compute_api:os-server-tags:index", "os_compute_api:os-server-tags:show", "os_compute_api:os-server-tags:update", "os_compute_api:os-server-tags:update_all", "os_compute_api:os-server-groups:index", "os_compute_api:os-server-groups:show", "os_compute_api:os-server-groups:create", "os_compute_api:os-server-groups:delete", "os_compute_api:os-shelve:shelve", "os_compute_api:os-shelve:unshelve", "os_compute_api:os-virtual-interfaces", "os_compute_api:os-volumes", "os_compute_api:os-volumes-attachments:index", "os_compute_api:os-volumes-attachments:show", "os_compute_api:os-volumes-attachments:create", "os_compute_api:os-volumes-attachments:delete", "os_compute_api:os-availability-zone:list", ) self.non_admin_only_rules = ( "os_compute_api:os-hide-server-addresses",) self.allow_all_rules = ( "os_compute_api:os-quota-sets:defaults", ) def test_all_rules_in_sample_file(self): special_rules = ["context_is_admin", "admin_or_owner", "default"] for (name, rule) in self.fake_policy.items(): if name in special_rules: continue self.assertIn(name, policy.get_rules()) def test_admin_only_rules(self): for rule in self.admin_only_rules: self.assertRaises(exception.PolicyNotAuthorized, policy.authorize, self.non_admin_context, rule, {'project_id': 'fake', 'user_id': 'fake'}) policy.authorize(self.admin_context, rule, self.target) def test_non_admin_only_rules(self): for rule in self.non_admin_only_rules: self.assertRaises(exception.PolicyNotAuthorized, policy.authorize, self.admin_context, rule, self.target) policy.authorize(self.non_admin_context, rule, self.target) def test_admin_or_owner_rules(self): for rule in self.admin_or_owner_rules: self.assertRaises(exception.PolicyNotAuthorized, policy.authorize, self.non_admin_context, rule, self.target) policy.authorize(self.non_admin_context, rule, {'project_id': 'fake', 'user_id': 'fake'}) def test_allow_all_rules(self): for rule in self.allow_all_rules: policy.authorize(self.non_admin_context, rule, self.target) def test_rule_missing(self): rules = policy.get_rules() # eliqiao os_compute_api:os-quota-class-sets:show requires # admin=True or quota_class match, this rule won't belong to # admin_only, non_admin, admin_or_user, empty_rule special_rules = ('admin_api', 'admin_or_owner', 'context_is_admin', 'os_compute_api:os-quota-class-sets:show') result = set(rules.keys()) - set(self.admin_only_rules + self.admin_or_owner_rules + self.non_admin_only_rules + self.allow_all_rules + special_rules) self.assertEqual(set([]), result)
__author__ = 'Henri Bunting' import sys import numpy as np from pypet.parameter import BaseParameter import unittest try: import brian2 from brian2.units.stdunits import mV, mA, kHz, ms from pypet.brian2.parameter import Brian2Parameter, Brian2Result, get_unit_fast except ImportError: brian2 = None from pypet.parameter import PickleParameter, ArrayParameter, SparseParameter from pypet.tests.unittests.parameter_test import ParameterTest, ResultTest from pypet.tests.testutils.ioutils import parse_args, run_suite from pypet.utils.explore import cartesian_product import logging logging.basicConfig(level=logging.DEBUG) @unittest.skipIf(brian2 is None, 'Can only be run with brian2!') class Brian2ParameterTest(ParameterTest): tags = 'unittest', 'brian2', 'parameter', 'henri' def setUp(self): if not hasattr(self, 'data'): self.data = {} self.data['mV1'] = 42.0*mV self.data['ampere1'] = 1*mA self.data['integer'] = 16 #self.data['kHz05'] = 0.5*kHz self.data['nested_array'] = np.array([[6.,7.,8.],[9.,10.,11.]]) * ms self.data['b2a'] = np.array([1., 2.]) * mV self.data['complex'] = np.array([1., 2.]) * mV*mV/mA**2.73 super(Brian2ParameterTest, self).setUp() self.dynamic_imports = [Brian2Parameter] def make_params(self): self.param = {} for key, val in self.data.items(): self.param[key] = Brian2Parameter(self.location+'.'+key, val, comment=key) def explore(self): self.explore_dict = cartesian_product({ #'npstr': [np.array(['Uno', 'Dos', 'Tres']), # np.array(['Cinco', 'Seis', 'Siette']), # np.array(['Ocho', 'Nueve', 'Diez'])], 'ampere1': [1*mA], #'val0': [1, 2, 3], 'mV1': [42.0*mV, 3*mV, 4*mV], 'b2a': [np.array([1., 2.]) * mV]}) ## Explore the parameter: for key, vallist in self.explore_dict.items(): self.param[key]._explore(vallist) self.assertTrue(self.param[key].v_explored and self.param[key].f_has_range()) def test_supports(self): for key, val in self.data.items(): self.assertTrue(self.param[key].f_supports(val)) def test_false_on_values_not_of_same_type(self): self.assertFalse(self.param[list(self.param.keys())[0]]._values_of_same_type(11, 99*mV)) @unittest.skipIf(brian2 is None, 'Can only be run with brian2!') class Brian2ParameterDuplicatesInStoreTest(unittest.TestCase): tags = 'unittest', 'brian2', 'parameter', 'store', 'henri' def setUp(self): self.data = {} self.data['brian2_single_a'] = 1. * mV self.data['brian2_array_b'] = np.array([3., 3., 4.]) * mV self.data['brian2_array_c'] = np.array([5.]) * mV self.data['brian2_array_d'] = np.array([[6.,7.,8.],[9.,10.,11.]]) * ms #self.data['brian2_mixedtype_array_a'] = np.array([9., 10.]) * mV self.data['brian2_mixedtype_array_b'] = np.array([13., 14.]) * mV self.location = 'MyName.Is.myParam' self.make_params() self.explore() def make_params(self): self.param = {} for key, val in self.data.items(): self.param[key] = Brian2Parameter(self.location+'.'+key, val, comment=key) def explore(self): self.explore_dict = cartesian_product({#'brian2_array_a': [np.array([1., 2.]) * mV], # 'brian2_array_b': [2 * mV], # Arrays need to be of the same size! 'brian2_array_c': [np.array([5., 8.]) * mV, np.array([7., 8.]) * mV], }) ## Explore the parameter: for key, vallist in self.explore_dict.items(): self.param[key]._explore(vallist) self.assertTrue(self.param[key].v_explored and self.param[key].f_has_range()) def test_storage_and_loading(self): for key, param in self.param.items(): store_dict = param._store() # Due to smart storing the storage dict should be small and only contain 5 items or less # 1 for data, 1 for reference, and 3 for the array/matrices/items if param.f_has_range(): if isinstance(param,(ArrayParameter, PickleParameter)) and not isinstance(param, SparseParameter): self.assertTrue(len(store_dict)<7) # For sparse parameter it is more: if isinstance(param, SparseParameter): self.assertTrue(len(store_dict)<23) constructor = param.__class__ param.f_unlock() param.f_empty() param = constructor('') param._load(store_dict) param._rename(self.location+'.'+key) self.param[key] = param self.test_the_insertion_made_implicetly_in_setUp() self.test_exploration() self.test_meta_settings() def test_the_insertion_made_implicetly_in_setUp(self): for key, val in self.data.items(): if not key in self.explore_dict: self.param[key]._restore_default() param_val = self.param[key].f_get() self.assertTrue(np.all(repr(val) == repr(param_val)),'%s != %s' %(str(val),str(param_val))) def test_exploration(self): for key, vallist in self.explore_dict.items(): param = self.param[key] for idx, val in enumerate(vallist): assert isinstance(param, BaseParameter) param._set_parameter_access(idx) self.assertTrue(np.all(repr(param.f_get())==repr(val))),'%s != %s'%( str(param.f_get()),str(val)) param_val = self.param[key].f_get_range()[idx] self.assertTrue(np.all(str(val) == str(param_val)),'%s != %s' %(str(val),str(param_val))) param._restore_default() self.assertTrue(param.v_explored and param.f_has_range(), 'Error for %s' % key) val = self.data[key] self.assertTrue(np.all(repr(param.f_get())==repr(val))),'%s != %s'%( str(param.f_get()),str(val)) def test_expanding(self): for key, vallist in self.explore_dict.items(): param = self.param[key] copy_list = vallist.copy() old_len = len(vallist) param.f_unlock() param._expand(copy_list) new_len = len(param.f_get_range()) self.assertEqual(new_len, 2 * old_len) def test_loading_and_expanding(self): # Regression test for issue #50 # https://github.com/SmokinCaterpillar/pypet/issues/50 for key, vallist in self.explore_dict.items(): param = self.param[key] copy_list = vallist.copy() old_len = len(vallist) store_dict = param._store() param.f_unlock() param._load(store_dict) param.f_unlock() param._expand(copy_list) new_len = len(param.f_get_range()) self.assertEqual(new_len, 2 * old_len) def test_meta_settings(self): for key, param in self.param.items(): self.assertEqual(param.v_full_name, self.location+'.'+key) self.assertEqual(param.v_name, key) self.assertEqual(param.v_location, self.location) @unittest.skipIf(brian2 is None, 'Can only be run with brian2!') class Brian2ResultTest(ResultTest): tags = 'unittest', 'brian2', 'result', 'henri' def make_constructor(self): self.Constructor = Brian2Result self.dynamic_imports = [Brian2Result] def test_illegal_naming(self): for res in self.results.values(): data_dict = {'val'+Brian2Result.IDENTIFIER:42} with self.assertRaises(AttributeError): res.f_set(**data_dict) def setUp(self): if not hasattr(self,'data'): self.data = {} self.data['mV1'] = 1*mV self.data['ampere1'] = 1*mA self.data['msecond17'] = 16*ms self.data['kHz05'] = 0.5*kHz self.data['mV_array'] = np.ones(20) * mV self.data['integer'] = 444 self.data['complex'] = np.array([1., 2.]) * mV*mV/mA**-2.7343 super(Brian2ResultTest, self).setUp() @unittest.skipIf(brian2 is None, 'Can only be run with brian2!') class Brian2GetUnitFastTest(unittest.TestCase): tags = 'unittest', 'brian2' def test_get_unit_fast(self): unit = get_unit_fast(42 * mV) self.assertEquals(unit, 1000 * mV) if __name__ == '__main__': opt_args = parse_args() run_suite(**opt_args)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import time import os import traceback import functools import subprocess import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.core as core import six import sys sys.path.append("..") import models import utils from reader import train, val from utility import add_arguments, print_arguments from batch_merge import copyback_repeat_bn_params, append_bn_repeat_init_op from dist_utils import pserver_prepare, nccl2_prepare from env import dist_env def parse_args(): parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('batch_size', int, 256, "Minibatch size.") add_arg('use_gpu', bool, True, "Whether to use GPU or not.") add_arg('total_images', int, 1281167, "Training image number.") add_arg('num_epochs', int, 120, "number of epochs.") add_arg('class_dim', int, 1000, "Class number.") add_arg('image_shape', str, "3,224,224", "input image size") add_arg('model_save_dir', str, "output", "model save directory") add_arg('with_mem_opt', bool, False, "Whether to use memory optimization or not.") add_arg('pretrained_model', str, None, "Whether to use pretrained model.") add_arg('checkpoint', str, None, "Whether to resume checkpoint.") add_arg('lr', float, 0.1, "set learning rate.") add_arg('lr_strategy', str, "piecewise_decay", "Set the learning rate decay strategy.") add_arg('model', str, "DistResNet", "Set the network to use.") add_arg('enable_ce', bool, False, "If set True, enable continuous evaluation job.") add_arg('data_dir', str, "./data/ILSVRC2012", "The ImageNet dataset root dir.") add_arg('model_category', str, "models", "Whether to use models_name or not, valid value:'models','models_name'" ) add_arg('fp16', bool, False, "Enable half precision training with fp16." ) add_arg('scale_loss', float, 1.0, "Scale loss for fp16." ) add_arg('reduce_master_grad', bool, False, "Whether to allreduce fp32 gradients." ) # for distributed add_arg('update_method', str, "local", "Can be local, pserver, nccl2.") add_arg('multi_batch_repeat', int, 1, "Batch merge repeats.") add_arg('start_test_pass', int, 0, "Start test after x passes.") add_arg('num_threads', int, 8, "Use num_threads to run the fluid program.") add_arg('split_var', bool, True, "Split params on pserver.") add_arg('async_mode', bool, False, "Async distributed training, only for pserver mode.") add_arg('reduce_strategy', str, "allreduce", "Choose from reduce or allreduce.") add_arg('skip_unbalanced_data', bool, False, "Skip data not if data not balanced on nodes.") add_arg('enable_sequential_execution', bool, False, "Skip data not if data not balanced on nodes.") # yapf: enable args = parser.parse_args() return args def get_device_num(): if os.getenv("CPU_NUM"): return int(os.getenv("CPU_NUM")) visible_device = os.getenv('CUDA_VISIBLE_DEVICES') if visible_device: device_num = len(visible_device.split(',')) else: device_num = subprocess.check_output(['nvidia-smi', '-L']).decode().count('\n') return device_num def prepare_reader(is_train, pyreader, args, pass_id=0): if is_train: reader = train(data_dir=args.data_dir, pass_id_as_seed=pass_id) else: reader = val(data_dir=args.data_dir) if is_train: bs = args.batch_size / get_device_num() else: bs = 16 pyreader.decorate_paddle_reader( paddle.batch( reader, batch_size=bs)) def build_program(is_train, main_prog, startup_prog, args): pyreader = None class_dim = args.class_dim image_shape = [int(m) for m in args.image_shape.split(",")] trainer_count = args.dist_env["num_trainers"] device_num_per_worker = get_device_num() with fluid.program_guard(main_prog, startup_prog): pyreader = fluid.layers.py_reader( capacity=16, shapes=([-1] + image_shape, (-1, 1)), dtypes=('float32', 'int64'), name="train_reader" if is_train else "test_reader", use_double_buffer=True) with fluid.unique_name.guard(): image, label = fluid.layers.read_file(pyreader) if args.fp16: image = fluid.layers.cast(image, "float16") model_def = models.__dict__[args.model](layers=50, is_train=is_train) predict = model_def.net(image, class_dim=class_dim) cost, pred = fluid.layers.softmax_with_cross_entropy(predict, label, return_softmax=True) if args.scale_loss > 1: avg_cost = fluid.layers.mean(x=cost) * float(args.scale_loss) else: avg_cost = fluid.layers.mean(x=cost) batch_acc1 = fluid.layers.accuracy(input=pred, label=label, k=1) batch_acc5 = fluid.layers.accuracy(input=pred, label=label, k=5) optimizer = None if is_train: start_lr = args.lr end_lr = args.lr * trainer_count * args.multi_batch_repeat if os.getenv("FLAGS_selected_gpus"): # in multi process mode, "trainer_count" will be total devices # in the whole cluster, and we need to scale num_of nodes. end_lr /= device_num_per_worker total_images = args.total_images / trainer_count step = int(total_images / (args.batch_size * args.multi_batch_repeat) + 1) warmup_steps = step * 5 # warmup 5 passes epochs = [30, 60, 80] bd = [step * e for e in epochs] base_lr = end_lr lr = [] lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)] print("start lr: %s, end lr: %s, decay boundaries: %s" % ( start_lr, end_lr, bd )) # NOTE: we put weight decay in layers config, and remove # weight decay on bn layers, so don't add weight decay in # optimizer config. optimizer = fluid.optimizer.Momentum( learning_rate=utils.learning_rate.lr_warmup( fluid.layers.piecewise_decay( boundaries=bd, values=lr), warmup_steps, start_lr, end_lr), momentum=0.9) if args.fp16: params_grads = optimizer.backward(avg_cost) master_params_grads = utils.create_master_params_grads( params_grads, main_prog, startup_prog, args.scale_loss, reduce_master_grad = args.reduce_master_grad) optimizer.apply_gradients(master_params_grads) utils.master_param_to_train_param(master_params_grads, params_grads, main_prog) else: optimizer.minimize(avg_cost) # prepare reader for current program prepare_reader(is_train, pyreader, args) return pyreader, avg_cost, batch_acc1, batch_acc5 def test_single(exe, test_prog, args, pyreader, fetch_list): acc1 = fluid.metrics.Accuracy() acc5 = fluid.metrics.Accuracy() test_losses = [] pyreader.start() while True: try: acc_rets = exe.run(program=test_prog, fetch_list=fetch_list) test_losses.append(acc_rets[0]) acc1.update(value=np.array(acc_rets[1]), weight=args.batch_size) acc5.update(value=np.array(acc_rets[2]), weight=args.batch_size) except fluid.core.EOFException: pyreader.reset() break test_avg_loss = np.mean(np.array(test_losses)) return test_avg_loss, np.mean(acc1.eval()), np.mean(acc5.eval()) def test_parallel(exe, test_prog, args, pyreader, fetch_list): acc1 = fluid.metrics.Accuracy() acc5 = fluid.metrics.Accuracy() test_losses = [] pyreader.start() while True: try: acc_rets = exe.run(fetch_list=fetch_list) test_losses.append(acc_rets[0]) acc1.update(value=np.array(acc_rets[1]), weight=args.batch_size) acc5.update(value=np.array(acc_rets[2]), weight=args.batch_size) except fluid.core.EOFException: pyreader.reset() break test_avg_loss = np.mean(np.array(test_losses)) return test_avg_loss, np.mean(acc1.eval()), np.mean(acc5.eval()) def run_pserver(train_prog, startup_prog): server_exe = fluid.Executor(fluid.CPUPlace()) server_exe.run(startup_prog) server_exe.run(train_prog) def train_parallel(args): train_prog = fluid.Program() test_prog = fluid.Program() startup_prog = fluid.Program() train_pyreader, train_cost, train_acc1, train_acc5 = build_program(True, train_prog, startup_prog, args) test_pyreader, test_cost, test_acc1, test_acc5 = build_program(False, test_prog, startup_prog, args) if args.update_method == "pserver": train_prog, startup_prog = pserver_prepare(args, train_prog, startup_prog) elif args.update_method == "nccl2": nccl2_prepare(args, startup_prog) if args.dist_env["training_role"] == "PSERVER": run_pserver(train_prog, startup_prog) exit(0) if args.use_gpu: # NOTE: for multi process mode: one process per GPU device. gpu_id = 0 if os.getenv("FLAGS_selected_gpus"): gpu_id = int(os.getenv("FLAGS_selected_gpus")) place = core.CUDAPlace(gpu_id) if args.use_gpu else core.CPUPlace() startup_exe = fluid.Executor(place) if args.multi_batch_repeat > 1: append_bn_repeat_init_op(train_prog, startup_prog, args.multi_batch_repeat) startup_exe.run(startup_prog) if args.checkpoint: fluid.io.load_persistables(startup_exe, args.checkpoint, main_program=train_prog) strategy = fluid.ExecutionStrategy() strategy.num_threads = args.num_threads build_strategy = fluid.BuildStrategy() build_strategy.enable_inplace = False build_strategy.memory_optimize = False build_strategy.enable_sequential_execution = bool(args.enable_sequential_execution) if args.reduce_strategy == "reduce": build_strategy.reduce_strategy = fluid.BuildStrategy( ).ReduceStrategy.Reduce else: build_strategy.reduce_strategy = fluid.BuildStrategy( ).ReduceStrategy.AllReduce if args.update_method == "pserver" or args.update_method == "local": # parameter server mode distributed training, merge # gradients on local server, do not initialize # ParallelExecutor with multi server all-reduce mode. num_trainers = 1 trainer_id = 0 else: num_trainers = args.dist_env["num_trainers"] trainer_id = args.dist_env["trainer_id"] # Set this to let build_strategy to add "allreduce_deps_pass" automatically build_strategy.num_trainers = num_trainers build_strategy.trainer_id = trainer_id if args.multi_batch_repeat > 1: pass_builder = build_strategy._finalize_strategy_and_create_passes() mypass = pass_builder.insert_pass( len(pass_builder.all_passes()) - 4, "multi_batch_merge_pass") mypass.set("num_repeats", args.multi_batch_repeat) exe = fluid.ParallelExecutor( True, train_cost.name, main_program=train_prog, exec_strategy=strategy, build_strategy=build_strategy, num_trainers=num_trainers, trainer_id=trainer_id) # Uncomment below lines to use ParallelExecutor to run test. # test_exe = fluid.ParallelExecutor( # True, # main_program=test_prog, # share_vars_from=exe, # scope=fluid.global_scope().new_scope() # ) over_all_start = time.time() fetch_list = [train_cost.name, train_acc1.name, train_acc5.name] steps_per_pass = args.total_images / args.batch_size / args.dist_env["num_trainers"] for pass_id in range(args.num_epochs): num_samples = 0 start_time = time.time() batch_id = 1 # use pass_id+1 as per pass global shuffle for distributed training prepare_reader(True, train_pyreader, args, pass_id + 1) train_pyreader.start() while True: try: if batch_id % 30 == 0: fetch_ret = exe.run(fetch_list) fetched_data = [np.mean(np.array(d)) for d in fetch_ret] print("Pass [%d/%d], batch [%d/%d], loss %s, acc1: %s, acc5: %s, avg batch time %.4f" % (pass_id, args.num_epochs, batch_id, steps_per_pass, fetched_data[0], fetched_data[1], fetched_data[2], (time.time()-start_time) / batch_id)) else: fetch_ret = exe.run([]) except fluid.core.EOFException: break except fluid.core.EnforceNotMet: traceback.print_exc() break num_samples += args.batch_size batch_id += 1 if args.skip_unbalanced_data and batch_id >= steps_per_pass: break print_train_time(start_time, time.time(), num_samples) train_pyreader.reset() if pass_id >= args.start_test_pass: if args.multi_batch_repeat > 1: copyback_repeat_bn_params(train_prog) test_fetch_list = [test_cost.name, test_acc1.name, test_acc5.name] test_ret = test_single(startup_exe, test_prog, args, test_pyreader,test_fetch_list) # NOTE: switch to below line if you use ParallelExecutor to run test. # test_ret = test_parallel(test_exe, test_prog, args, test_pyreader,test_fetch_list) print("Pass: %d, Test Loss %s, test acc1: %s, test acc5: %s\n" % (pass_id, test_ret[0], test_ret[1], test_ret[2])) model_path = os.path.join(args.model_save_dir + '/' + args.model, str(pass_id)) print("saving model to ", model_path) if not os.path.isdir(model_path): os.makedirs(model_path) fluid.io.save_persistables(startup_exe, model_path, main_program=train_prog) startup_exe.close() print("total train time: ", time.time() - over_all_start) def print_train_time(start_time, end_time, num_samples): train_elapsed = end_time - start_time examples_per_sec = num_samples / train_elapsed print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' % (num_samples, train_elapsed, examples_per_sec)) def print_paddle_envs(): print('----------- Configuration envs -----------') for k in os.environ: if "PADDLE_" in k: print("ENV %s:%s" % (k, os.environ[k])) print('------------------------------------------------') def main(): args = parse_args() print_arguments(args) print_paddle_envs() args.dist_env = dist_env() train_parallel(args) if __name__ == "__main__": main()
# -------------------------------------------------------- # Deformable Convolutional Networks # Copyright (c) 2017 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Yuwen Xiong, Xizhou Zhu # -------------------------------------------------------- import cPickle import mxnet as mx from utils.symbol import Symbol from operator_py.proposal import * from operator_py.proposal_target import * from operator_py.box_annotator_ohem import * class resnet_v1_101_convnew3(Symbol): def __init__(self): """ Use __init__ to define parameter network needs """ self.eps = 1e-5 self.use_global_stats = True self.workspace = 512 self.units = (3, 4, 23, 3) # use for 101 self.filter_list = [256, 512, 1024, 2048] def get_resnet_v1_conv4(self, data): conv1 = mx.symbol.Convolution(name='conv1', data=data, num_filter=64, pad=(3, 3), kernel=(7, 7), stride=(2, 2), no_bias=True) bn_conv1 = mx.symbol.BatchNorm(name='bn_conv1', data=conv1, use_global_stats=True, fix_gamma=False, eps=self.eps) scale_conv1 = bn_conv1 conv1_relu = mx.symbol.Activation(name='conv1_relu', data=scale_conv1, act_type='relu') pool1 = mx.symbol.Pooling(name='pool1', data=conv1_relu, pooling_convention='full', pad=(0, 0), kernel=(3, 3), stride=(2, 2), pool_type='max') res2a_branch1 = mx.symbol.Convolution(name='res2a_branch1', data=pool1, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn2a_branch1 = mx.symbol.BatchNorm(name='bn2a_branch1', data=res2a_branch1, use_global_stats=True, fix_gamma=False, eps=self.eps) scale2a_branch1 = bn2a_branch1 res2a_branch2a = mx.symbol.Convolution(name='res2a_branch2a', data=pool1, num_filter=64, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn2a_branch2a = mx.symbol.BatchNorm(name='bn2a_branch2a', data=res2a_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale2a_branch2a = bn2a_branch2a res2a_branch2a_relu = mx.symbol.Activation(name='res2a_branch2a_relu', data=scale2a_branch2a, act_type='relu') res2a_branch2b = mx.symbol.Convolution(name='res2a_branch2b', data=res2a_branch2a_relu, num_filter=64, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn2a_branch2b = mx.symbol.BatchNorm(name='bn2a_branch2b', data=res2a_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale2a_branch2b = bn2a_branch2b res2a_branch2b_relu = mx.symbol.Activation(name='res2a_branch2b_relu', data=scale2a_branch2b, act_type='relu') res2a_branch2c = mx.symbol.Convolution(name='res2a_branch2c', data=res2a_branch2b_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn2a_branch2c = mx.symbol.BatchNorm(name='bn2a_branch2c', data=res2a_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale2a_branch2c = bn2a_branch2c res2a = mx.symbol.broadcast_add(name='res2a', *[scale2a_branch1, scale2a_branch2c]) res2a_relu = mx.symbol.Activation(name='res2a_relu', data=res2a, act_type='relu') res2b_branch2a = mx.symbol.Convolution(name='res2b_branch2a', data=res2a_relu, num_filter=64, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn2b_branch2a = mx.symbol.BatchNorm(name='bn2b_branch2a', data=res2b_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale2b_branch2a = bn2b_branch2a res2b_branch2a_relu = mx.symbol.Activation(name='res2b_branch2a_relu', data=scale2b_branch2a, act_type='relu') res2b_branch2b = mx.symbol.Convolution(name='res2b_branch2b', data=res2b_branch2a_relu, num_filter=64, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn2b_branch2b = mx.symbol.BatchNorm(name='bn2b_branch2b', data=res2b_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale2b_branch2b = bn2b_branch2b res2b_branch2b_relu = mx.symbol.Activation(name='res2b_branch2b_relu', data=scale2b_branch2b, act_type='relu') res2b_branch2c = mx.symbol.Convolution(name='res2b_branch2c', data=res2b_branch2b_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn2b_branch2c = mx.symbol.BatchNorm(name='bn2b_branch2c', data=res2b_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale2b_branch2c = bn2b_branch2c res2b = mx.symbol.broadcast_add(name='res2b', *[res2a_relu, scale2b_branch2c]) res2b_relu = mx.symbol.Activation(name='res2b_relu', data=res2b, act_type='relu') res2c_branch2a = mx.symbol.Convolution(name='res2c_branch2a', data=res2b_relu, num_filter=64, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn2c_branch2a = mx.symbol.BatchNorm(name='bn2c_branch2a', data=res2c_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale2c_branch2a = bn2c_branch2a res2c_branch2a_relu = mx.symbol.Activation(name='res2c_branch2a_relu', data=scale2c_branch2a, act_type='relu') res2c_branch2b = mx.symbol.Convolution(name='res2c_branch2b', data=res2c_branch2a_relu, num_filter=64, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn2c_branch2b = mx.symbol.BatchNorm(name='bn2c_branch2b', data=res2c_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale2c_branch2b = bn2c_branch2b res2c_branch2b_relu = mx.symbol.Activation(name='res2c_branch2b_relu', data=scale2c_branch2b, act_type='relu') res2c_branch2c = mx.symbol.Convolution(name='res2c_branch2c', data=res2c_branch2b_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn2c_branch2c = mx.symbol.BatchNorm(name='bn2c_branch2c', data=res2c_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale2c_branch2c = bn2c_branch2c res2c = mx.symbol.broadcast_add(name='res2c', *[res2b_relu, scale2c_branch2c]) res2c_relu = mx.symbol.Activation(name='res2c_relu', data=res2c, act_type='relu') res3a_branch1 = mx.symbol.Convolution(name='res3a_branch1', data=res2c_relu, num_filter=512, pad=(0, 0), kernel=(1, 1), stride=(2, 2), no_bias=True) bn3a_branch1 = mx.symbol.BatchNorm(name='bn3a_branch1', data=res3a_branch1, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3a_branch1 = bn3a_branch1 res3a_branch2a = mx.symbol.Convolution(name='res3a_branch2a', data=res2c_relu, num_filter=128, pad=(0, 0), kernel=(1, 1), stride=(2, 2), no_bias=True) bn3a_branch2a = mx.symbol.BatchNorm(name='bn3a_branch2a', data=res3a_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3a_branch2a = bn3a_branch2a res3a_branch2a_relu = mx.symbol.Activation(name='res3a_branch2a_relu', data=scale3a_branch2a, act_type='relu') res3a_branch2b = mx.symbol.Convolution(name='res3a_branch2b', data=res3a_branch2a_relu, num_filter=128, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn3a_branch2b = mx.symbol.BatchNorm(name='bn3a_branch2b', data=res3a_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3a_branch2b = bn3a_branch2b res3a_branch2b_relu = mx.symbol.Activation(name='res3a_branch2b_relu', data=scale3a_branch2b, act_type='relu') res3a_branch2c = mx.symbol.Convolution(name='res3a_branch2c', data=res3a_branch2b_relu, num_filter=512, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn3a_branch2c = mx.symbol.BatchNorm(name='bn3a_branch2c', data=res3a_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3a_branch2c = bn3a_branch2c res3a = mx.symbol.broadcast_add(name='res3a', *[scale3a_branch1, scale3a_branch2c]) res3a_relu = mx.symbol.Activation(name='res3a_relu', data=res3a, act_type='relu') res3b1_branch2a = mx.symbol.Convolution(name='res3b1_branch2a', data=res3a_relu, num_filter=128, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn3b1_branch2a = mx.symbol.BatchNorm(name='bn3b1_branch2a', data=res3b1_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3b1_branch2a = bn3b1_branch2a res3b1_branch2a_relu = mx.symbol.Activation(name='res3b1_branch2a_relu', data=scale3b1_branch2a, act_type='relu') res3b1_branch2b = mx.symbol.Convolution(name='res3b1_branch2b', data=res3b1_branch2a_relu, num_filter=128, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn3b1_branch2b = mx.symbol.BatchNorm(name='bn3b1_branch2b', data=res3b1_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3b1_branch2b = bn3b1_branch2b res3b1_branch2b_relu = mx.symbol.Activation(name='res3b1_branch2b_relu', data=scale3b1_branch2b, act_type='relu') res3b1_branch2c = mx.symbol.Convolution(name='res3b1_branch2c', data=res3b1_branch2b_relu, num_filter=512, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn3b1_branch2c = mx.symbol.BatchNorm(name='bn3b1_branch2c', data=res3b1_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3b1_branch2c = bn3b1_branch2c res3b1 = mx.symbol.broadcast_add(name='res3b1', *[res3a_relu, scale3b1_branch2c]) res3b1_relu = mx.symbol.Activation(name='res3b1_relu', data=res3b1, act_type='relu') res3b2_branch2a = mx.symbol.Convolution(name='res3b2_branch2a', data=res3b1_relu, num_filter=128, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn3b2_branch2a = mx.symbol.BatchNorm(name='bn3b2_branch2a', data=res3b2_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3b2_branch2a = bn3b2_branch2a res3b2_branch2a_relu = mx.symbol.Activation(name='res3b2_branch2a_relu', data=scale3b2_branch2a, act_type='relu') res3b2_branch2b = mx.symbol.Convolution(name='res3b2_branch2b', data=res3b2_branch2a_relu, num_filter=128, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn3b2_branch2b = mx.symbol.BatchNorm(name='bn3b2_branch2b', data=res3b2_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3b2_branch2b = bn3b2_branch2b res3b2_branch2b_relu = mx.symbol.Activation(name='res3b2_branch2b_relu', data=scale3b2_branch2b, act_type='relu') res3b2_branch2c = mx.symbol.Convolution(name='res3b2_branch2c', data=res3b2_branch2b_relu, num_filter=512, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn3b2_branch2c = mx.symbol.BatchNorm(name='bn3b2_branch2c', data=res3b2_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3b2_branch2c = bn3b2_branch2c res3b2 = mx.symbol.broadcast_add(name='res3b2', *[res3b1_relu, scale3b2_branch2c]) res3b2_relu = mx.symbol.Activation(name='res3b2_relu', data=res3b2, act_type='relu') res3b3_branch2a = mx.symbol.Convolution(name='res3b3_branch2a', data=res3b2_relu, num_filter=128, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn3b3_branch2a = mx.symbol.BatchNorm(name='bn3b3_branch2a', data=res3b3_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3b3_branch2a = bn3b3_branch2a res3b3_branch2a_relu = mx.symbol.Activation(name='res3b3_branch2a_relu', data=scale3b3_branch2a, act_type='relu') res3b3_branch2b = mx.symbol.Convolution(name='res3b3_branch2b', data=res3b3_branch2a_relu, num_filter=128, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn3b3_branch2b = mx.symbol.BatchNorm(name='bn3b3_branch2b', data=res3b3_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3b3_branch2b = bn3b3_branch2b res3b3_branch2b_relu = mx.symbol.Activation(name='res3b3_branch2b_relu', data=scale3b3_branch2b, act_type='relu') res3b3_branch2c = mx.symbol.Convolution(name='res3b3_branch2c', data=res3b3_branch2b_relu, num_filter=512, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn3b3_branch2c = mx.symbol.BatchNorm(name='bn3b3_branch2c', data=res3b3_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale3b3_branch2c = bn3b3_branch2c res3b3 = mx.symbol.broadcast_add(name='res3b3', *[res3b2_relu, scale3b3_branch2c]) res3b3_relu = mx.symbol.Activation(name='res3b3_relu', data=res3b3, act_type='relu') res4a_branch1 = mx.symbol.Convolution(name='res4a_branch1', data=res3b3_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(2, 2), no_bias=True) bn4a_branch1 = mx.symbol.BatchNorm(name='bn4a_branch1', data=res4a_branch1, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4a_branch1 = bn4a_branch1 res4a_branch2a = mx.symbol.Convolution(name='res4a_branch2a', data=res3b3_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(2, 2), no_bias=True) bn4a_branch2a = mx.symbol.BatchNorm(name='bn4a_branch2a', data=res4a_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4a_branch2a = bn4a_branch2a res4a_branch2a_relu = mx.symbol.Activation(name='res4a_branch2a_relu', data=scale4a_branch2a, act_type='relu') res4a_branch2b = mx.symbol.Convolution(name='res4a_branch2b', data=res4a_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4a_branch2b = mx.symbol.BatchNorm(name='bn4a_branch2b', data=res4a_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4a_branch2b = bn4a_branch2b res4a_branch2b_relu = mx.symbol.Activation(name='res4a_branch2b_relu', data=scale4a_branch2b, act_type='relu') res4a_branch2c = mx.symbol.Convolution(name='res4a_branch2c', data=res4a_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4a_branch2c = mx.symbol.BatchNorm(name='bn4a_branch2c', data=res4a_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4a_branch2c = bn4a_branch2c res4a = mx.symbol.broadcast_add(name='res4a', *[scale4a_branch1, scale4a_branch2c]) res4a_relu = mx.symbol.Activation(name='res4a_relu', data=res4a, act_type='relu') res4b1_branch2a = mx.symbol.Convolution(name='res4b1_branch2a', data=res4a_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b1_branch2a = mx.symbol.BatchNorm(name='bn4b1_branch2a', data=res4b1_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b1_branch2a = bn4b1_branch2a res4b1_branch2a_relu = mx.symbol.Activation(name='res4b1_branch2a_relu', data=scale4b1_branch2a, act_type='relu') res4b1_branch2b = mx.symbol.Convolution(name='res4b1_branch2b', data=res4b1_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b1_branch2b = mx.symbol.BatchNorm(name='bn4b1_branch2b', data=res4b1_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b1_branch2b = bn4b1_branch2b res4b1_branch2b_relu = mx.symbol.Activation(name='res4b1_branch2b_relu', data=scale4b1_branch2b, act_type='relu') res4b1_branch2c = mx.symbol.Convolution(name='res4b1_branch2c', data=res4b1_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b1_branch2c = mx.symbol.BatchNorm(name='bn4b1_branch2c', data=res4b1_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b1_branch2c = bn4b1_branch2c res4b1 = mx.symbol.broadcast_add(name='res4b1', *[res4a_relu, scale4b1_branch2c]) res4b1_relu = mx.symbol.Activation(name='res4b1_relu', data=res4b1, act_type='relu') res4b2_branch2a = mx.symbol.Convolution(name='res4b2_branch2a', data=res4b1_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b2_branch2a = mx.symbol.BatchNorm(name='bn4b2_branch2a', data=res4b2_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b2_branch2a = bn4b2_branch2a res4b2_branch2a_relu = mx.symbol.Activation(name='res4b2_branch2a_relu', data=scale4b2_branch2a, act_type='relu') res4b2_branch2b = mx.symbol.Convolution(name='res4b2_branch2b', data=res4b2_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b2_branch2b = mx.symbol.BatchNorm(name='bn4b2_branch2b', data=res4b2_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b2_branch2b = bn4b2_branch2b res4b2_branch2b_relu = mx.symbol.Activation(name='res4b2_branch2b_relu', data=scale4b2_branch2b, act_type='relu') res4b2_branch2c = mx.symbol.Convolution(name='res4b2_branch2c', data=res4b2_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b2_branch2c = mx.symbol.BatchNorm(name='bn4b2_branch2c', data=res4b2_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b2_branch2c = bn4b2_branch2c res4b2 = mx.symbol.broadcast_add(name='res4b2', *[res4b1_relu, scale4b2_branch2c]) res4b2_relu = mx.symbol.Activation(name='res4b2_relu', data=res4b2, act_type='relu') res4b3_branch2a = mx.symbol.Convolution(name='res4b3_branch2a', data=res4b2_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b3_branch2a = mx.symbol.BatchNorm(name='bn4b3_branch2a', data=res4b3_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b3_branch2a = bn4b3_branch2a res4b3_branch2a_relu = mx.symbol.Activation(name='res4b3_branch2a_relu', data=scale4b3_branch2a, act_type='relu') res4b3_branch2b = mx.symbol.Convolution(name='res4b3_branch2b', data=res4b3_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b3_branch2b = mx.symbol.BatchNorm(name='bn4b3_branch2b', data=res4b3_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b3_branch2b = bn4b3_branch2b res4b3_branch2b_relu = mx.symbol.Activation(name='res4b3_branch2b_relu', data=scale4b3_branch2b, act_type='relu') res4b3_branch2c = mx.symbol.Convolution(name='res4b3_branch2c', data=res4b3_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b3_branch2c = mx.symbol.BatchNorm(name='bn4b3_branch2c', data=res4b3_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b3_branch2c = bn4b3_branch2c res4b3 = mx.symbol.broadcast_add(name='res4b3', *[res4b2_relu, scale4b3_branch2c]) res4b3_relu = mx.symbol.Activation(name='res4b3_relu', data=res4b3, act_type='relu') res4b4_branch2a = mx.symbol.Convolution(name='res4b4_branch2a', data=res4b3_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b4_branch2a = mx.symbol.BatchNorm(name='bn4b4_branch2a', data=res4b4_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b4_branch2a = bn4b4_branch2a res4b4_branch2a_relu = mx.symbol.Activation(name='res4b4_branch2a_relu', data=scale4b4_branch2a, act_type='relu') res4b4_branch2b = mx.symbol.Convolution(name='res4b4_branch2b', data=res4b4_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b4_branch2b = mx.symbol.BatchNorm(name='bn4b4_branch2b', data=res4b4_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b4_branch2b = bn4b4_branch2b res4b4_branch2b_relu = mx.symbol.Activation(name='res4b4_branch2b_relu', data=scale4b4_branch2b, act_type='relu') res4b4_branch2c = mx.symbol.Convolution(name='res4b4_branch2c', data=res4b4_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b4_branch2c = mx.symbol.BatchNorm(name='bn4b4_branch2c', data=res4b4_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b4_branch2c = bn4b4_branch2c res4b4 = mx.symbol.broadcast_add(name='res4b4', *[res4b3_relu, scale4b4_branch2c]) res4b4_relu = mx.symbol.Activation(name='res4b4_relu', data=res4b4, act_type='relu') res4b5_branch2a = mx.symbol.Convolution(name='res4b5_branch2a', data=res4b4_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b5_branch2a = mx.symbol.BatchNorm(name='bn4b5_branch2a', data=res4b5_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b5_branch2a = bn4b5_branch2a res4b5_branch2a_relu = mx.symbol.Activation(name='res4b5_branch2a_relu', data=scale4b5_branch2a, act_type='relu') res4b5_branch2b = mx.symbol.Convolution(name='res4b5_branch2b', data=res4b5_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b5_branch2b = mx.symbol.BatchNorm(name='bn4b5_branch2b', data=res4b5_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b5_branch2b = bn4b5_branch2b res4b5_branch2b_relu = mx.symbol.Activation(name='res4b5_branch2b_relu', data=scale4b5_branch2b, act_type='relu') res4b5_branch2c = mx.symbol.Convolution(name='res4b5_branch2c', data=res4b5_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b5_branch2c = mx.symbol.BatchNorm(name='bn4b5_branch2c', data=res4b5_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b5_branch2c = bn4b5_branch2c res4b5 = mx.symbol.broadcast_add(name='res4b5', *[res4b4_relu, scale4b5_branch2c]) res4b5_relu = mx.symbol.Activation(name='res4b5_relu', data=res4b5, act_type='relu') res4b6_branch2a = mx.symbol.Convolution(name='res4b6_branch2a', data=res4b5_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b6_branch2a = mx.symbol.BatchNorm(name='bn4b6_branch2a', data=res4b6_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b6_branch2a = bn4b6_branch2a res4b6_branch2a_relu = mx.symbol.Activation(name='res4b6_branch2a_relu', data=scale4b6_branch2a, act_type='relu') res4b6_branch2b = mx.symbol.Convolution(name='res4b6_branch2b', data=res4b6_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b6_branch2b = mx.symbol.BatchNorm(name='bn4b6_branch2b', data=res4b6_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b6_branch2b = bn4b6_branch2b res4b6_branch2b_relu = mx.symbol.Activation(name='res4b6_branch2b_relu', data=scale4b6_branch2b, act_type='relu') res4b6_branch2c = mx.symbol.Convolution(name='res4b6_branch2c', data=res4b6_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b6_branch2c = mx.symbol.BatchNorm(name='bn4b6_branch2c', data=res4b6_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b6_branch2c = bn4b6_branch2c res4b6 = mx.symbol.broadcast_add(name='res4b6', *[res4b5_relu, scale4b6_branch2c]) res4b6_relu = mx.symbol.Activation(name='res4b6_relu', data=res4b6, act_type='relu') res4b7_branch2a = mx.symbol.Convolution(name='res4b7_branch2a', data=res4b6_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b7_branch2a = mx.symbol.BatchNorm(name='bn4b7_branch2a', data=res4b7_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b7_branch2a = bn4b7_branch2a res4b7_branch2a_relu = mx.symbol.Activation(name='res4b7_branch2a_relu', data=scale4b7_branch2a, act_type='relu') res4b7_branch2b = mx.symbol.Convolution(name='res4b7_branch2b', data=res4b7_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b7_branch2b = mx.symbol.BatchNorm(name='bn4b7_branch2b', data=res4b7_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b7_branch2b = bn4b7_branch2b res4b7_branch2b_relu = mx.symbol.Activation(name='res4b7_branch2b_relu', data=scale4b7_branch2b, act_type='relu') res4b7_branch2c = mx.symbol.Convolution(name='res4b7_branch2c', data=res4b7_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b7_branch2c = mx.symbol.BatchNorm(name='bn4b7_branch2c', data=res4b7_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b7_branch2c = bn4b7_branch2c res4b7 = mx.symbol.broadcast_add(name='res4b7', *[res4b6_relu, scale4b7_branch2c]) res4b7_relu = mx.symbol.Activation(name='res4b7_relu', data=res4b7, act_type='relu') res4b8_branch2a = mx.symbol.Convolution(name='res4b8_branch2a', data=res4b7_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b8_branch2a = mx.symbol.BatchNorm(name='bn4b8_branch2a', data=res4b8_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b8_branch2a = bn4b8_branch2a res4b8_branch2a_relu = mx.symbol.Activation(name='res4b8_branch2a_relu', data=scale4b8_branch2a, act_type='relu') res4b8_branch2b = mx.symbol.Convolution(name='res4b8_branch2b', data=res4b8_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b8_branch2b = mx.symbol.BatchNorm(name='bn4b8_branch2b', data=res4b8_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b8_branch2b = bn4b8_branch2b res4b8_branch2b_relu = mx.symbol.Activation(name='res4b8_branch2b_relu', data=scale4b8_branch2b, act_type='relu') res4b8_branch2c = mx.symbol.Convolution(name='res4b8_branch2c', data=res4b8_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b8_branch2c = mx.symbol.BatchNorm(name='bn4b8_branch2c', data=res4b8_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b8_branch2c = bn4b8_branch2c res4b8 = mx.symbol.broadcast_add(name='res4b8', *[res4b7_relu, scale4b8_branch2c]) res4b8_relu = mx.symbol.Activation(name='res4b8_relu', data=res4b8, act_type='relu') res4b9_branch2a = mx.symbol.Convolution(name='res4b9_branch2a', data=res4b8_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b9_branch2a = mx.symbol.BatchNorm(name='bn4b9_branch2a', data=res4b9_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b9_branch2a = bn4b9_branch2a res4b9_branch2a_relu = mx.symbol.Activation(name='res4b9_branch2a_relu', data=scale4b9_branch2a, act_type='relu') res4b9_branch2b = mx.symbol.Convolution(name='res4b9_branch2b', data=res4b9_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b9_branch2b = mx.symbol.BatchNorm(name='bn4b9_branch2b', data=res4b9_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b9_branch2b = bn4b9_branch2b res4b9_branch2b_relu = mx.symbol.Activation(name='res4b9_branch2b_relu', data=scale4b9_branch2b, act_type='relu') res4b9_branch2c = mx.symbol.Convolution(name='res4b9_branch2c', data=res4b9_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b9_branch2c = mx.symbol.BatchNorm(name='bn4b9_branch2c', data=res4b9_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b9_branch2c = bn4b9_branch2c res4b9 = mx.symbol.broadcast_add(name='res4b9', *[res4b8_relu, scale4b9_branch2c]) res4b9_relu = mx.symbol.Activation(name='res4b9_relu', data=res4b9, act_type='relu') res4b10_branch2a = mx.symbol.Convolution(name='res4b10_branch2a', data=res4b9_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b10_branch2a = mx.symbol.BatchNorm(name='bn4b10_branch2a', data=res4b10_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b10_branch2a = bn4b10_branch2a res4b10_branch2a_relu = mx.symbol.Activation(name='res4b10_branch2a_relu', data=scale4b10_branch2a, act_type='relu') res4b10_branch2b = mx.symbol.Convolution(name='res4b10_branch2b', data=res4b10_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b10_branch2b = mx.symbol.BatchNorm(name='bn4b10_branch2b', data=res4b10_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b10_branch2b = bn4b10_branch2b res4b10_branch2b_relu = mx.symbol.Activation(name='res4b10_branch2b_relu', data=scale4b10_branch2b, act_type='relu') res4b10_branch2c = mx.symbol.Convolution(name='res4b10_branch2c', data=res4b10_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b10_branch2c = mx.symbol.BatchNorm(name='bn4b10_branch2c', data=res4b10_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b10_branch2c = bn4b10_branch2c res4b10 = mx.symbol.broadcast_add(name='res4b10', *[res4b9_relu, scale4b10_branch2c]) res4b10_relu = mx.symbol.Activation(name='res4b10_relu', data=res4b10, act_type='relu') res4b11_branch2a = mx.symbol.Convolution(name='res4b11_branch2a', data=res4b10_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b11_branch2a = mx.symbol.BatchNorm(name='bn4b11_branch2a', data=res4b11_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b11_branch2a = bn4b11_branch2a res4b11_branch2a_relu = mx.symbol.Activation(name='res4b11_branch2a_relu', data=scale4b11_branch2a, act_type='relu') res4b11_branch2b = mx.symbol.Convolution(name='res4b11_branch2b', data=res4b11_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b11_branch2b = mx.symbol.BatchNorm(name='bn4b11_branch2b', data=res4b11_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b11_branch2b = bn4b11_branch2b res4b11_branch2b_relu = mx.symbol.Activation(name='res4b11_branch2b_relu', data=scale4b11_branch2b, act_type='relu') res4b11_branch2c = mx.symbol.Convolution(name='res4b11_branch2c', data=res4b11_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b11_branch2c = mx.symbol.BatchNorm(name='bn4b11_branch2c', data=res4b11_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b11_branch2c = bn4b11_branch2c res4b11 = mx.symbol.broadcast_add(name='res4b11', *[res4b10_relu, scale4b11_branch2c]) res4b11_relu = mx.symbol.Activation(name='res4b11_relu', data=res4b11, act_type='relu') res4b12_branch2a = mx.symbol.Convolution(name='res4b12_branch2a', data=res4b11_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b12_branch2a = mx.symbol.BatchNorm(name='bn4b12_branch2a', data=res4b12_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b12_branch2a = bn4b12_branch2a res4b12_branch2a_relu = mx.symbol.Activation(name='res4b12_branch2a_relu', data=scale4b12_branch2a, act_type='relu') res4b12_branch2b = mx.symbol.Convolution(name='res4b12_branch2b', data=res4b12_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b12_branch2b = mx.symbol.BatchNorm(name='bn4b12_branch2b', data=res4b12_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b12_branch2b = bn4b12_branch2b res4b12_branch2b_relu = mx.symbol.Activation(name='res4b12_branch2b_relu', data=scale4b12_branch2b, act_type='relu') res4b12_branch2c = mx.symbol.Convolution(name='res4b12_branch2c', data=res4b12_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b12_branch2c = mx.symbol.BatchNorm(name='bn4b12_branch2c', data=res4b12_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b12_branch2c = bn4b12_branch2c res4b12 = mx.symbol.broadcast_add(name='res4b12', *[res4b11_relu, scale4b12_branch2c]) res4b12_relu = mx.symbol.Activation(name='res4b12_relu', data=res4b12, act_type='relu') res4b13_branch2a = mx.symbol.Convolution(name='res4b13_branch2a', data=res4b12_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b13_branch2a = mx.symbol.BatchNorm(name='bn4b13_branch2a', data=res4b13_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b13_branch2a = bn4b13_branch2a res4b13_branch2a_relu = mx.symbol.Activation(name='res4b13_branch2a_relu', data=scale4b13_branch2a, act_type='relu') res4b13_branch2b = mx.symbol.Convolution(name='res4b13_branch2b', data=res4b13_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b13_branch2b = mx.symbol.BatchNorm(name='bn4b13_branch2b', data=res4b13_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b13_branch2b = bn4b13_branch2b res4b13_branch2b_relu = mx.symbol.Activation(name='res4b13_branch2b_relu', data=scale4b13_branch2b, act_type='relu') res4b13_branch2c = mx.symbol.Convolution(name='res4b13_branch2c', data=res4b13_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b13_branch2c = mx.symbol.BatchNorm(name='bn4b13_branch2c', data=res4b13_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b13_branch2c = bn4b13_branch2c res4b13 = mx.symbol.broadcast_add(name='res4b13', *[res4b12_relu, scale4b13_branch2c]) res4b13_relu = mx.symbol.Activation(name='res4b13_relu', data=res4b13, act_type='relu') res4b14_branch2a = mx.symbol.Convolution(name='res4b14_branch2a', data=res4b13_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b14_branch2a = mx.symbol.BatchNorm(name='bn4b14_branch2a', data=res4b14_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b14_branch2a = bn4b14_branch2a res4b14_branch2a_relu = mx.symbol.Activation(name='res4b14_branch2a_relu', data=scale4b14_branch2a, act_type='relu') res4b14_branch2b = mx.symbol.Convolution(name='res4b14_branch2b', data=res4b14_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b14_branch2b = mx.symbol.BatchNorm(name='bn4b14_branch2b', data=res4b14_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b14_branch2b = bn4b14_branch2b res4b14_branch2b_relu = mx.symbol.Activation(name='res4b14_branch2b_relu', data=scale4b14_branch2b, act_type='relu') res4b14_branch2c = mx.symbol.Convolution(name='res4b14_branch2c', data=res4b14_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b14_branch2c = mx.symbol.BatchNorm(name='bn4b14_branch2c', data=res4b14_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b14_branch2c = bn4b14_branch2c res4b14 = mx.symbol.broadcast_add(name='res4b14', *[res4b13_relu, scale4b14_branch2c]) res4b14_relu = mx.symbol.Activation(name='res4b14_relu', data=res4b14, act_type='relu') res4b15_branch2a = mx.symbol.Convolution(name='res4b15_branch2a', data=res4b14_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b15_branch2a = mx.symbol.BatchNorm(name='bn4b15_branch2a', data=res4b15_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b15_branch2a = bn4b15_branch2a res4b15_branch2a_relu = mx.symbol.Activation(name='res4b15_branch2a_relu', data=scale4b15_branch2a, act_type='relu') res4b15_branch2b = mx.symbol.Convolution(name='res4b15_branch2b', data=res4b15_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b15_branch2b = mx.symbol.BatchNorm(name='bn4b15_branch2b', data=res4b15_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b15_branch2b = bn4b15_branch2b res4b15_branch2b_relu = mx.symbol.Activation(name='res4b15_branch2b_relu', data=scale4b15_branch2b, act_type='relu') res4b15_branch2c = mx.symbol.Convolution(name='res4b15_branch2c', data=res4b15_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b15_branch2c = mx.symbol.BatchNorm(name='bn4b15_branch2c', data=res4b15_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b15_branch2c = bn4b15_branch2c res4b15 = mx.symbol.broadcast_add(name='res4b15', *[res4b14_relu, scale4b15_branch2c]) res4b15_relu = mx.symbol.Activation(name='res4b15_relu', data=res4b15, act_type='relu') res4b16_branch2a = mx.symbol.Convolution(name='res4b16_branch2a', data=res4b15_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b16_branch2a = mx.symbol.BatchNorm(name='bn4b16_branch2a', data=res4b16_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b16_branch2a = bn4b16_branch2a res4b16_branch2a_relu = mx.symbol.Activation(name='res4b16_branch2a_relu', data=scale4b16_branch2a, act_type='relu') res4b16_branch2b = mx.symbol.Convolution(name='res4b16_branch2b', data=res4b16_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b16_branch2b = mx.symbol.BatchNorm(name='bn4b16_branch2b', data=res4b16_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b16_branch2b = bn4b16_branch2b res4b16_branch2b_relu = mx.symbol.Activation(name='res4b16_branch2b_relu', data=scale4b16_branch2b, act_type='relu') res4b16_branch2c = mx.symbol.Convolution(name='res4b16_branch2c', data=res4b16_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b16_branch2c = mx.symbol.BatchNorm(name='bn4b16_branch2c', data=res4b16_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b16_branch2c = bn4b16_branch2c res4b16 = mx.symbol.broadcast_add(name='res4b16', *[res4b15_relu, scale4b16_branch2c]) res4b16_relu = mx.symbol.Activation(name='res4b16_relu', data=res4b16, act_type='relu') res4b17_branch2a = mx.symbol.Convolution(name='res4b17_branch2a', data=res4b16_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b17_branch2a = mx.symbol.BatchNorm(name='bn4b17_branch2a', data=res4b17_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b17_branch2a = bn4b17_branch2a res4b17_branch2a_relu = mx.symbol.Activation(name='res4b17_branch2a_relu', data=scale4b17_branch2a, act_type='relu') res4b17_branch2b = mx.symbol.Convolution(name='res4b17_branch2b', data=res4b17_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b17_branch2b = mx.symbol.BatchNorm(name='bn4b17_branch2b', data=res4b17_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b17_branch2b = bn4b17_branch2b res4b17_branch2b_relu = mx.symbol.Activation(name='res4b17_branch2b_relu', data=scale4b17_branch2b, act_type='relu') res4b17_branch2c = mx.symbol.Convolution(name='res4b17_branch2c', data=res4b17_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b17_branch2c = mx.symbol.BatchNorm(name='bn4b17_branch2c', data=res4b17_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b17_branch2c = bn4b17_branch2c res4b17 = mx.symbol.broadcast_add(name='res4b17', *[res4b16_relu, scale4b17_branch2c]) res4b17_relu = mx.symbol.Activation(name='res4b17_relu', data=res4b17, act_type='relu') res4b18_branch2a = mx.symbol.Convolution(name='res4b18_branch2a', data=res4b17_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b18_branch2a = mx.symbol.BatchNorm(name='bn4b18_branch2a', data=res4b18_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b18_branch2a = bn4b18_branch2a res4b18_branch2a_relu = mx.symbol.Activation(name='res4b18_branch2a_relu', data=scale4b18_branch2a, act_type='relu') res4b18_branch2b = mx.symbol.Convolution(name='res4b18_branch2b', data=res4b18_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b18_branch2b = mx.symbol.BatchNorm(name='bn4b18_branch2b', data=res4b18_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b18_branch2b = bn4b18_branch2b res4b18_branch2b_relu = mx.symbol.Activation(name='res4b18_branch2b_relu', data=scale4b18_branch2b, act_type='relu') res4b18_branch2c = mx.symbol.Convolution(name='res4b18_branch2c', data=res4b18_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b18_branch2c = mx.symbol.BatchNorm(name='bn4b18_branch2c', data=res4b18_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b18_branch2c = bn4b18_branch2c res4b18 = mx.symbol.broadcast_add(name='res4b18', *[res4b17_relu, scale4b18_branch2c]) res4b18_relu = mx.symbol.Activation(name='res4b18_relu', data=res4b18, act_type='relu') res4b19_branch2a = mx.symbol.Convolution(name='res4b19_branch2a', data=res4b18_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b19_branch2a = mx.symbol.BatchNorm(name='bn4b19_branch2a', data=res4b19_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b19_branch2a = bn4b19_branch2a res4b19_branch2a_relu = mx.symbol.Activation(name='res4b19_branch2a_relu', data=scale4b19_branch2a, act_type='relu') res4b19_branch2b = mx.symbol.Convolution(name='res4b19_branch2b', data=res4b19_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b19_branch2b = mx.symbol.BatchNorm(name='bn4b19_branch2b', data=res4b19_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b19_branch2b = bn4b19_branch2b res4b19_branch2b_relu = mx.symbol.Activation(name='res4b19_branch2b_relu', data=scale4b19_branch2b, act_type='relu') res4b19_branch2c = mx.symbol.Convolution(name='res4b19_branch2c', data=res4b19_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b19_branch2c = mx.symbol.BatchNorm(name='bn4b19_branch2c', data=res4b19_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b19_branch2c = bn4b19_branch2c res4b19 = mx.symbol.broadcast_add(name='res4b19', *[res4b18_relu, scale4b19_branch2c]) res4b19_relu = mx.symbol.Activation(name='res4b19_relu', data=res4b19, act_type='relu') res4b20_branch2a = mx.symbol.Convolution(name='res4b20_branch2a', data=res4b19_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b20_branch2a = mx.symbol.BatchNorm(name='bn4b20_branch2a', data=res4b20_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b20_branch2a = bn4b20_branch2a res4b20_branch2a_relu = mx.symbol.Activation(name='res4b20_branch2a_relu', data=scale4b20_branch2a, act_type='relu') res4b20_branch2b = mx.symbol.Convolution(name='res4b20_branch2b', data=res4b20_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b20_branch2b = mx.symbol.BatchNorm(name='bn4b20_branch2b', data=res4b20_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b20_branch2b = bn4b20_branch2b res4b20_branch2b_relu = mx.symbol.Activation(name='res4b20_branch2b_relu', data=scale4b20_branch2b, act_type='relu') res4b20_branch2c = mx.symbol.Convolution(name='res4b20_branch2c', data=res4b20_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b20_branch2c = mx.symbol.BatchNorm(name='bn4b20_branch2c', data=res4b20_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b20_branch2c = bn4b20_branch2c res4b20 = mx.symbol.broadcast_add(name='res4b20', *[res4b19_relu, scale4b20_branch2c]) res4b20_relu = mx.symbol.Activation(name='res4b20_relu', data=res4b20, act_type='relu') res4b21_branch2a = mx.symbol.Convolution(name='res4b21_branch2a', data=res4b20_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b21_branch2a = mx.symbol.BatchNorm(name='bn4b21_branch2a', data=res4b21_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b21_branch2a = bn4b21_branch2a res4b21_branch2a_relu = mx.symbol.Activation(name='res4b21_branch2a_relu', data=scale4b21_branch2a, act_type='relu') res4b21_branch2b = mx.symbol.Convolution(name='res4b21_branch2b', data=res4b21_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b21_branch2b = mx.symbol.BatchNorm(name='bn4b21_branch2b', data=res4b21_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b21_branch2b = bn4b21_branch2b res4b21_branch2b_relu = mx.symbol.Activation(name='res4b21_branch2b_relu', data=scale4b21_branch2b, act_type='relu') res4b21_branch2c = mx.symbol.Convolution(name='res4b21_branch2c', data=res4b21_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b21_branch2c = mx.symbol.BatchNorm(name='bn4b21_branch2c', data=res4b21_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b21_branch2c = bn4b21_branch2c res4b21 = mx.symbol.broadcast_add(name='res4b21', *[res4b20_relu, scale4b21_branch2c]) res4b21_relu = mx.symbol.Activation(name='res4b21_relu', data=res4b21, act_type='relu') res4b22_branch2a = mx.symbol.Convolution(name='res4b22_branch2a', data=res4b21_relu, num_filter=256, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b22_branch2a = mx.symbol.BatchNorm(name='bn4b22_branch2a', data=res4b22_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b22_branch2a = bn4b22_branch2a res4b22_branch2a_relu = mx.symbol.Activation(name='res4b22_branch2a_relu', data=scale4b22_branch2a, act_type='relu') res4b22_branch2b = mx.symbol.Convolution(name='res4b22_branch2b', data=res4b22_branch2a_relu, num_filter=256, pad=(1, 1), kernel=(3, 3), stride=(1, 1), no_bias=True) bn4b22_branch2b = mx.symbol.BatchNorm(name='bn4b22_branch2b', data=res4b22_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b22_branch2b = bn4b22_branch2b res4b22_branch2b_relu = mx.symbol.Activation(name='res4b22_branch2b_relu', data=scale4b22_branch2b, act_type='relu') res4b22_branch2c = mx.symbol.Convolution(name='res4b22_branch2c', data=res4b22_branch2b_relu, num_filter=1024, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn4b22_branch2c = mx.symbol.BatchNorm(name='bn4b22_branch2c', data=res4b22_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale4b22_branch2c = bn4b22_branch2c res4b22 = mx.symbol.broadcast_add(name='res4b22', *[res4b21_relu, scale4b22_branch2c]) res4b22_relu = mx.symbol.Activation(name='res4b22_relu', data=res4b22, act_type='relu') return res4b22_relu def get_resnet_v1_conv5(self, conv_feat): res5a_branch1 = mx.symbol.Convolution(name='res5a_branch1', data=conv_feat, num_filter=2048, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn5a_branch1 = mx.symbol.BatchNorm(name='bn5a_branch1', data=res5a_branch1, use_global_stats=True, fix_gamma=False, eps=self.eps) scale5a_branch1 = bn5a_branch1 res5a_branch2a = mx.symbol.Convolution(name='res5a_branch2a', data=conv_feat, num_filter=512, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn5a_branch2a = mx.symbol.BatchNorm(name='bn5a_branch2a', data=res5a_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale5a_branch2a = bn5a_branch2a res5a_branch2a_relu = mx.symbol.Activation(name='res5a_branch2a_relu', data=scale5a_branch2a, act_type='relu') res5a_branch2b = mx.symbol.Convolution(name='res5a_branch2b', data=res5a_branch2a_relu, num_filter=512, pad=(2, 2), kernel=(3, 3), stride=(1, 1), dilate=(2, 2), no_bias=True) bn5a_branch2b = mx.symbol.BatchNorm(name='bn5a_branch2b', data=res5a_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale5a_branch2b = bn5a_branch2b res5a_branch2b_relu = mx.symbol.Activation(name='res5a_branch2b_relu', data=scale5a_branch2b, act_type='relu') res5a_branch2c = mx.symbol.Convolution(name='res5a_branch2c', data=res5a_branch2b_relu, num_filter=2048, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn5a_branch2c = mx.symbol.BatchNorm(name='bn5a_branch2c', data=res5a_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale5a_branch2c = bn5a_branch2c res5a = mx.symbol.broadcast_add(name='res5a', *[scale5a_branch1, scale5a_branch2c]) res5a_relu = mx.symbol.Activation(name='res5a_relu', data=res5a, act_type='relu') res5b_branch2a = mx.symbol.Convolution(name='res5b_branch2a', data=res5a_relu, num_filter=512, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn5b_branch2a = mx.symbol.BatchNorm(name='bn5b_branch2a', data=res5b_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale5b_branch2a = bn5b_branch2a res5b_branch2a_relu = mx.symbol.Activation(name='res5b_branch2a_relu', data=scale5b_branch2a, act_type='relu') res5b_branch2b = mx.symbol.Convolution(name='res5b_branch2b', data=res5b_branch2a_relu, num_filter=512, pad=(2, 2), kernel=(3, 3), stride=(1, 1), dilate=(2, 2), no_bias=True) bn5b_branch2b = mx.symbol.BatchNorm(name='bn5b_branch2b', data=res5b_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale5b_branch2b = bn5b_branch2b res5b_branch2b_relu = mx.symbol.Activation(name='res5b_branch2b_relu', data=scale5b_branch2b, act_type='relu') res5b_branch2c = mx.symbol.Convolution(name='res5b_branch2c', data=res5b_branch2b_relu, num_filter=2048, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn5b_branch2c = mx.symbol.BatchNorm(name='bn5b_branch2c', data=res5b_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale5b_branch2c = bn5b_branch2c res5b = mx.symbol.broadcast_add(name='res5b', *[res5a_relu, scale5b_branch2c]) res5b_relu = mx.symbol.Activation(name='res5b_relu', data=res5b, act_type='relu') res5c_branch2a = mx.symbol.Convolution(name='res5c_branch2a', data=res5b_relu, num_filter=512, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn5c_branch2a = mx.symbol.BatchNorm(name='bn5c_branch2a', data=res5c_branch2a, use_global_stats=True, fix_gamma=False, eps=self.eps) scale5c_branch2a = bn5c_branch2a res5c_branch2a_relu = mx.symbol.Activation(name='res5c_branch2a_relu', data=scale5c_branch2a, act_type='relu') res5c_branch2b = mx.symbol.Convolution(name='res5c_branch2b', data=res5c_branch2a_relu, num_filter=512, pad=(2, 2), kernel=(3, 3), stride=(1, 1), dilate=(2, 2), no_bias=True) bn5c_branch2b = mx.symbol.BatchNorm(name='bn5c_branch2b', data=res5c_branch2b, use_global_stats=True, fix_gamma=False, eps=self.eps) scale5c_branch2b = bn5c_branch2b res5c_branch2b_relu = mx.symbol.Activation(name='res5c_branch2b_relu', data=scale5c_branch2b, act_type='relu') res5c_branch2c = mx.symbol.Convolution(name='res5c_branch2c', data=res5c_branch2b_relu, num_filter=2048, pad=(0, 0), kernel=(1, 1), stride=(1, 1), no_bias=True) bn5c_branch2c = mx.symbol.BatchNorm(name='bn5c_branch2c', data=res5c_branch2c, use_global_stats=True, fix_gamma=False, eps=self.eps) scale5c_branch2c = bn5c_branch2c res5c = mx.symbol.broadcast_add(name='res5c', *[res5b_relu, scale5c_branch2c]) res5c_relu = mx.symbol.Activation(name='res5c_relu', data=res5c, act_type='relu') return res5c_relu def get_rpn(self, conv_feat, num_anchors): rpn_conv = mx.sym.Convolution( data=conv_feat, kernel=(3, 3), pad=(1, 1), num_filter=512, name="rpn_conv_3x3") rpn_relu = mx.sym.Activation(data=rpn_conv, act_type="relu", name="rpn_relu") rpn_cls_score = mx.sym.Convolution( data=rpn_relu, kernel=(1, 1), pad=(0, 0), num_filter=2 * num_anchors, name="rpn_cls_score") rpn_bbox_pred = mx.sym.Convolution( data=rpn_relu, kernel=(1, 1), pad=(0, 0), num_filter=4 * num_anchors, name="rpn_bbox_pred") return rpn_cls_score, rpn_bbox_pred def get_symbol(self, cfg, is_train=True): # config alias for convenient num_classes = cfg.dataset.NUM_CLASSES num_reg_classes = (2 if cfg.CLASS_AGNOSTIC else num_classes) num_anchors = cfg.network.NUM_ANCHORS # input init if is_train: data = mx.sym.Variable(name="data") im_info = mx.sym.Variable(name="im_info") gt_boxes = mx.sym.Variable(name="gt_boxes") rpn_label = mx.sym.Variable(name='label') rpn_bbox_target = mx.sym.Variable(name='bbox_target') rpn_bbox_weight = mx.sym.Variable(name='bbox_weight') else: data = mx.sym.Variable(name="data") im_info = mx.sym.Variable(name="im_info") # shared convolutional layers conv_feat = self.get_resnet_v1_conv4(data) # res5 relu1 = self.get_resnet_v1_conv5(conv_feat) rpn_cls_score, rpn_bbox_pred = self.get_rpn(conv_feat, num_anchors) if is_train: # prepare rpn data rpn_cls_score_reshape = mx.sym.Reshape( data=rpn_cls_score, shape=(0, 2, -1, 0), name="rpn_cls_score_reshape") # classification rpn_cls_prob = mx.sym.SoftmaxOutput(data=rpn_cls_score_reshape, label=rpn_label, multi_output=True, normalization='valid', use_ignore=True, ignore_label=-1, name="rpn_cls_prob") # bounding box regression rpn_bbox_loss_ = rpn_bbox_weight * mx.sym.smooth_l1(name='rpn_bbox_loss_', scalar=3.0, data=(rpn_bbox_pred - rpn_bbox_target)) rpn_bbox_loss = mx.sym.MakeLoss(name='rpn_bbox_loss', data=rpn_bbox_loss_, grad_scale=1.0 / cfg.TRAIN.RPN_BATCH_SIZE) # ROI proposal rpn_cls_act = mx.sym.SoftmaxActivation( data=rpn_cls_score_reshape, mode="channel", name="rpn_cls_act") rpn_cls_act_reshape = mx.sym.Reshape( data=rpn_cls_act, shape=(0, 2 * num_anchors, -1, 0), name='rpn_cls_act_reshape') if cfg.TRAIN.CXX_PROPOSAL: rois = mx.contrib.sym.Proposal( cls_prob=rpn_cls_act_reshape, bbox_pred=rpn_bbox_pred, im_info=im_info, name='rois', feature_stride=cfg.network.RPN_FEAT_STRIDE, scales=tuple(cfg.network.ANCHOR_SCALES), ratios=tuple(cfg.network.ANCHOR_RATIOS), rpn_pre_nms_top_n=cfg.TRAIN.RPN_PRE_NMS_TOP_N, rpn_post_nms_top_n=cfg.TRAIN.RPN_POST_NMS_TOP_N, threshold=cfg.TRAIN.RPN_NMS_THRESH, rpn_min_size=cfg.TRAIN.RPN_MIN_SIZE) else: rois = mx.sym.Custom( cls_prob=rpn_cls_act_reshape, bbox_pred=rpn_bbox_pred, im_info=im_info, name='rois', op_type='proposal', feat_stride=cfg.network.RPN_FEAT_STRIDE, scales=tuple(cfg.network.ANCHOR_SCALES), ratios=tuple(cfg.network.ANCHOR_RATIOS), rpn_pre_nms_top_n=cfg.TRAIN.RPN_PRE_NMS_TOP_N, rpn_post_nms_top_n=cfg.TRAIN.RPN_POST_NMS_TOP_N, threshold=cfg.TRAIN.RPN_NMS_THRESH, rpn_min_size=cfg.TRAIN.RPN_MIN_SIZE) # ROI proposal target gt_boxes_reshape = mx.sym.Reshape(data=gt_boxes, shape=(-1, 5), name='gt_boxes_reshape') rois, label, bbox_target, bbox_weight = mx.sym.Custom(rois=rois, gt_boxes=gt_boxes_reshape, op_type='proposal_target', num_classes=num_reg_classes, batch_images=cfg.TRAIN.BATCH_IMAGES, batch_rois=cfg.TRAIN.BATCH_ROIS, cfg=cPickle.dumps(cfg), fg_fraction=cfg.TRAIN.FG_FRACTION) else: # ROI Proposal rpn_cls_score_reshape = mx.sym.Reshape( data=rpn_cls_score, shape=(0, 2, -1, 0), name="rpn_cls_score_reshape") rpn_cls_prob = mx.sym.SoftmaxActivation( data=rpn_cls_score_reshape, mode="channel", name="rpn_cls_prob") rpn_cls_prob_reshape = mx.sym.Reshape( data=rpn_cls_prob, shape=(0, 2 * num_anchors, -1, 0), name='rpn_cls_prob_reshape') if cfg.TEST.CXX_PROPOSAL: rois = mx.contrib.sym.Proposal( cls_prob=rpn_cls_prob_reshape, bbox_pred=rpn_bbox_pred, im_info=im_info, name='rois', feature_stride=cfg.network.RPN_FEAT_STRIDE, scales=tuple(cfg.network.ANCHOR_SCALES), ratios=tuple(cfg.network.ANCHOR_RATIOS), rpn_pre_nms_top_n=cfg.TEST.RPN_PRE_NMS_TOP_N, rpn_post_nms_top_n=cfg.TEST.RPN_POST_NMS_TOP_N, threshold=cfg.TEST.RPN_NMS_THRESH, rpn_min_size=cfg.TEST.RPN_MIN_SIZE) else: rois = mx.sym.Custom( cls_prob=rpn_cls_prob_reshape, bbox_pred=rpn_bbox_pred, im_info=im_info, name='rois', op_type='proposal', feat_stride=cfg.network.RPN_FEAT_STRIDE, scales=tuple(cfg.network.ANCHOR_SCALES), ratios=tuple(cfg.network.ANCHOR_RATIOS), rpn_pre_nms_top_n=cfg.TEST.RPN_PRE_NMS_TOP_N, rpn_post_nms_top_n=cfg.TEST.RPN_POST_NMS_TOP_N, threshold=cfg.TEST.RPN_NMS_THRESH, rpn_min_size=cfg.TEST.RPN_MIN_SIZE) # conv_new_1 conv_new_1 = mx.sym.Convolution(data=relu1, kernel=(1, 1), num_filter=1024, name="conv_new_1", lr_mult=3.0) relu_new_1 = mx.sym.Activation(data=conv_new_1, act_type='relu', name='relu1') # rfcn_cls/rfcn_bbox rfcn_cls = mx.sym.Convolution(data=relu_new_1, kernel=(1, 1), num_filter=7*7*num_classes, name="rfcn_cls") rfcn_bbox = mx.sym.Convolution(data=relu_new_1, kernel=(1, 1), num_filter=7*7*4*num_reg_classes, name="rfcn_bbox") psroipooled_cls_rois = mx.contrib.sym.PSROIPooling(name='psroipooled_cls_rois', data=rfcn_cls, rois=rois, group_size=7, pooled_size=7, output_dim=num_classes, spatial_scale=0.0625) psroipooled_loc_rois = mx.contrib.sym.PSROIPooling(name='psroipooled_loc_rois', data=rfcn_bbox, rois=rois, group_size=7, pooled_size=7, output_dim=8, spatial_scale=0.0625) cls_score = mx.sym.Pooling(name='ave_cls_scors_rois', data=psroipooled_cls_rois, pool_type='avg', global_pool=True, kernel=(7, 7)) bbox_pred = mx.sym.Pooling(name='ave_bbox_pred_rois', data=psroipooled_loc_rois, pool_type='avg', global_pool=True, kernel=(7, 7)) cls_score = mx.sym.Reshape(name='cls_score_reshape', data=cls_score, shape=(-1, num_classes)) bbox_pred = mx.sym.Reshape(name='bbox_pred_reshape', data=bbox_pred, shape=(-1, 4 * num_reg_classes)) if is_train: if cfg.TRAIN.ENABLE_OHEM: labels_ohem, bbox_weights_ohem = mx.sym.Custom(op_type='BoxAnnotatorOHEM', num_classes=num_classes, num_reg_classes=num_reg_classes, roi_per_img=cfg.TRAIN.BATCH_ROIS_OHEM, cls_score=cls_score, bbox_pred=bbox_pred, labels=label, bbox_targets=bbox_target, bbox_weights=bbox_weight) cls_prob = mx.sym.SoftmaxOutput(name='cls_prob', data=cls_score, label=labels_ohem, normalization='valid', use_ignore=True, ignore_label=-1) bbox_loss_ = bbox_weights_ohem * mx.sym.smooth_l1(name='bbox_loss_', scalar=1.0, data=(bbox_pred - bbox_target)) bbox_loss = mx.sym.MakeLoss(name='bbox_loss', data=bbox_loss_, grad_scale=1.0 / cfg.TRAIN.BATCH_ROIS_OHEM) rcnn_label = labels_ohem else: cls_prob = mx.sym.SoftmaxOutput(name='cls_prob', data=cls_score, label=label, normalization='valid') bbox_loss_ = bbox_weight * mx.sym.smooth_l1(name='bbox_loss_', scalar=1.0, data=(bbox_pred - bbox_target)) bbox_loss = mx.sym.MakeLoss(name='bbox_loss', data=bbox_loss_, grad_scale=1.0 / cfg.TRAIN.BATCH_ROIS) rcnn_label = label # reshape output rcnn_label = mx.sym.Reshape(data=rcnn_label, shape=(cfg.TRAIN.BATCH_IMAGES, -1), name='label_reshape') cls_prob = mx.sym.Reshape(data=cls_prob, shape=(cfg.TRAIN.BATCH_IMAGES, -1, num_classes), name='cls_prob_reshape') bbox_loss = mx.sym.Reshape(data=bbox_loss, shape=(cfg.TRAIN.BATCH_IMAGES, -1, 4 * num_reg_classes), name='bbox_loss_reshape') group = mx.sym.Group([rpn_cls_prob, rpn_bbox_loss, cls_prob, bbox_loss, mx.sym.BlockGrad(rcnn_label)]) else: cls_prob = mx.sym.SoftmaxActivation(name='cls_prob', data=cls_score) cls_prob = mx.sym.Reshape(data=cls_prob, shape=(cfg.TEST.BATCH_IMAGES, -1, num_classes), name='cls_prob_reshape') bbox_pred = mx.sym.Reshape(data=bbox_pred, shape=(cfg.TEST.BATCH_IMAGES, -1, 4 * num_reg_classes), name='bbox_pred_reshape') group = mx.sym.Group([rois, cls_prob, bbox_pred]) self.sym = group return group def get_symbol_rpn(self, cfg, is_train=True): # config alias for convenient num_anchors = cfg.network.NUM_ANCHORS # input init if is_train: data = mx.sym.Variable(name="data") rpn_label = mx.sym.Variable(name='label') rpn_bbox_target = mx.sym.Variable(name='bbox_target') rpn_bbox_weight = mx.sym.Variable(name='bbox_weight') else: data = mx.sym.Variable(name="data") im_info = mx.sym.Variable(name="im_info") # shared convolutional layers conv_feat = self.get_resnet_v1_conv4(data) rpn_cls_score, rpn_bbox_pred = self.get_rpn(conv_feat, num_anchors) if is_train: # prepare rpn data rpn_cls_score_reshape = mx.sym.Reshape( data=rpn_cls_score, shape=(0, 2, -1, 0), name="rpn_cls_score_reshape") # classification rpn_cls_prob = mx.sym.SoftmaxOutput(data=rpn_cls_score_reshape, label=rpn_label, multi_output=True, normalization='valid', use_ignore=True, ignore_label=-1, name="rpn_cls_prob", grad_scale=1.0) # bounding box regression rpn_bbox_loss_ = rpn_bbox_weight * mx.sym.smooth_l1(name='rpn_bbox_loss_', scalar=3.0, data=(rpn_bbox_pred - rpn_bbox_target)) rpn_bbox_loss = mx.sym.MakeLoss(name='rpn_bbox_loss', data=rpn_bbox_loss_, grad_scale=1.0 / cfg.TRAIN.RPN_BATCH_SIZE) group = mx.symbol.Group([rpn_cls_prob, rpn_bbox_loss]) else: # ROI Proposal rpn_cls_score_reshape = mx.sym.Reshape( data=rpn_cls_score, shape=(0, 2, -1, 0), name="rpn_cls_score_reshape") rpn_cls_prob = mx.sym.SoftmaxActivation( data=rpn_cls_score_reshape, mode="channel", name="rpn_cls_prob") rpn_cls_prob_reshape = mx.sym.Reshape( data=rpn_cls_prob, shape=(0, 2 * num_anchors, -1, 0), name='rpn_cls_prob_reshape') if cfg.TEST.CXX_PROPOSAL: rois, score = mx.contrib.sym.Proposal( cls_prob=rpn_cls_prob_reshape, bbox_pred=rpn_bbox_pred, im_info=im_info, name='rois', output_score=True, feature_stride=cfg.network.RPN_FEAT_STRIDE, scales=tuple(cfg.network.ANCHOR_SCALES), ratios=tuple(cfg.network.ANCHOR_RATIOS), rpn_pre_nms_top_n=cfg.TEST.RPN_PRE_NMS_TOP_N, rpn_post_nms_top_n=cfg.TEST.RPN_POST_NMS_TOP_N, threshold=cfg.TEST.RPN_NMS_THRESH, rpn_min_size=cfg.TEST.RPN_MIN_SIZE) else: rois, score = mx.sym.Custom( cls_prob=rpn_cls_prob_reshape, bbox_pred=rpn_bbox_pred, im_info=im_info, name='rois', output_score=True, op_type='proposal', feat_stride=cfg.network.RPN_FEAT_STRIDE, scales=tuple(cfg.network.ANCHOR_SCALES), ratios=tuple(cfg.network.ANCHOR_RATIOS), rpn_pre_nms_top_n=cfg.TEST.RPN_PRE_NMS_TOP_N, rpn_post_nms_top_n=cfg.TEST.RPN_POST_NMS_TOP_N, threshold=cfg.TEST.RPN_NMS_THRESH, rpn_min_size=cfg.TEST.RPN_MIN_SIZE) group = mx.symbol.Group([rois, score]) self.sym = group return group def get_symbol_rfcn(self, cfg, is_train=True): # config alias for convenient num_classes = cfg.dataset.NUM_CLASSES num_reg_classes = (2 if cfg.CLASS_AGNOSTIC else num_classes) # input init if is_train: data = mx.symbol.Variable(name="data") rois = mx.symbol.Variable(name='rois') label = mx.symbol.Variable(name='label') bbox_target = mx.symbol.Variable(name='bbox_target') bbox_weight = mx.symbol.Variable(name='bbox_weight') # reshape input rois = mx.symbol.Reshape(data=rois, shape=(-1, 5), name='rois_reshape') label = mx.symbol.Reshape(data=label, shape=(-1,), name='label_reshape') bbox_target = mx.symbol.Reshape(data=bbox_target, shape=(-1, 4 * num_reg_classes), name='bbox_target_reshape') bbox_weight = mx.symbol.Reshape(data=bbox_weight, shape=(-1, 4 * num_reg_classes), name='bbox_weight_reshape') else: data = mx.sym.Variable(name="data") rois = mx.symbol.Variable(name='rois') # reshape input rois = mx.symbol.Reshape(data=rois, shape=(-1, 5), name='rois_reshape') # shared convolutional layers conv_feat = self.get_resnet_v1_conv4(data) relu1 = self.get_resnet_v1_conv5(conv_feat) # conv_new_1 conv_new_1 = mx.sym.Convolution(data=relu1, kernel=(1, 1), num_filter=1024, name="conv_new_1", lr_mult=3.0) relu_new_1 = mx.sym.Activation(data=conv_new_1, act_type='relu', name='relu1') # rfcn_cls/rfcn_bbox rfcn_cls = mx.sym.Convolution(data=relu_new_1, kernel=(1, 1), num_filter=7*7*num_classes, name="rfcn_cls") rfcn_bbox = mx.sym.Convolution(data=relu_new_1, kernel=(1, 1), num_filter=7*7*4*num_reg_classes, name="rfcn_bbox") psroipooled_cls_rois = mx.contrib.sym.PSROIPooling(name='psroipooled_cls_rois', data=rfcn_cls, rois=rois, group_size=7, pooled_size=7, output_dim=num_classes, spatial_scale=0.0625) psroipooled_loc_rois = mx.contrib.sym.PSROIPooling(name='psroipooled_loc_rois', data=rfcn_bbox, rois=rois, group_size=7, pooled_size=7, output_dim=8, spatial_scale=0.0625) cls_score = mx.sym.Pooling(name='ave_cls_scors_rois', data=psroipooled_cls_rois, pool_type='avg', global_pool=True, kernel=(7, 7)) bbox_pred = mx.sym.Pooling(name='ave_bbox_pred_rois', data=psroipooled_loc_rois, pool_type='avg', global_pool=True, kernel=(7, 7)) cls_score = mx.sym.Reshape(name='cls_score_reshape', data=cls_score, shape=(-1, num_classes)) bbox_pred = mx.sym.Reshape(name='bbox_pred_reshape', data=bbox_pred, shape=(-1, 4 * num_reg_classes)) if is_train: if cfg.TRAIN.ENABLE_OHEM: labels_ohem, bbox_weights_ohem = mx.sym.Custom(op_type='BoxAnnotatorOHEM', num_classes=num_classes, num_reg_classes=num_reg_classes, roi_per_img=cfg.TRAIN.BATCH_ROIS_OHEM, cls_score=cls_score, bbox_pred=bbox_pred, labels=label, bbox_targets=bbox_target, bbox_weights=bbox_weight) cls_prob = mx.sym.SoftmaxOutput(name='cls_prob', data=cls_score, label=labels_ohem, normalization='valid', use_ignore=True, ignore_label=-1, grad_scale=1.0) bbox_loss_ = bbox_weights_ohem * mx.sym.smooth_l1(name='bbox_loss_', scalar=1.0, data=(bbox_pred - bbox_target)) bbox_loss = mx.sym.MakeLoss(name='bbox_loss', data=bbox_loss_, grad_scale=1.0 / cfg.TRAIN.BATCH_ROIS_OHEM) label = labels_ohem else: cls_prob = mx.sym.SoftmaxOutput(name='cls_prob', data=cls_score, label=label, normalization='valid', grad_scale=1.0) bbox_loss_ = bbox_weight * mx.sym.smooth_l1(name='bbox_loss_', scalar=1.0, data=(bbox_pred - bbox_target)) bbox_loss = mx.sym.MakeLoss(name='bbox_loss', data=bbox_loss_, grad_scale=1.0 / cfg.TRAIN.BATCH_ROIS) # reshape output cls_prob = mx.sym.Reshape(data=cls_prob, shape=(cfg.TRAIN.BATCH_IMAGES, -1, num_classes), name='cls_prob_reshape') bbox_loss = mx.sym.Reshape(data=bbox_loss, shape=(cfg.TRAIN.BATCH_IMAGES, -1, 4 * num_reg_classes), name='bbox_loss_reshape') group = mx.sym.Group([cls_prob, bbox_loss, mx.sym.BlockGrad(label)]) if cfg.TRAIN.ENABLE_OHEM else mx.sym.Group([cls_prob, bbox_loss]) else: cls_prob = mx.sym.SoftmaxActivation(name='cls_prob', data=cls_score) cls_prob = mx.sym.Reshape(data=cls_prob, shape=(cfg.TEST.BATCH_IMAGES, -1, num_classes), name='cls_prob_reshape') bbox_pred = mx.sym.Reshape(data=bbox_pred, shape=(cfg.TEST.BATCH_IMAGES, -1, 4 * num_reg_classes), name='bbox_pred_reshape') group = mx.sym.Group([cls_prob, bbox_pred]) self.sym = group return group def init_weight(self, cfg, arg_params, aux_params): arg_params['rpn_conv_3x3_weight'] = mx.random.normal(0, 0.01, shape=self.arg_shape_dict['rpn_conv_3x3_weight']) arg_params['rpn_conv_3x3_bias'] = mx.nd.zeros(shape=self.arg_shape_dict['rpn_conv_3x3_bias']) arg_params['rpn_cls_score_weight'] = mx.random.normal(0, 0.01, shape=self.arg_shape_dict['rpn_cls_score_weight']) arg_params['rpn_cls_score_bias'] = mx.nd.zeros(shape=self.arg_shape_dict['rpn_cls_score_bias']) arg_params['rpn_bbox_pred_weight'] = mx.random.normal(0, 0.01, shape=self.arg_shape_dict['rpn_bbox_pred_weight']) arg_params['rpn_bbox_pred_bias'] = mx.nd.zeros(shape=self.arg_shape_dict['rpn_bbox_pred_bias']) arg_params['conv_new_1_weight'] = mx.random.normal(0, 0.01, shape=self.arg_shape_dict['conv_new_1_weight']) arg_params['conv_new_1_bias'] = mx.nd.zeros(shape=self.arg_shape_dict['conv_new_1_bias']) arg_params['rfcn_cls_weight'] = mx.random.normal(0, 0.01, shape=self.arg_shape_dict['rfcn_cls_weight']) arg_params['rfcn_cls_bias'] = mx.nd.zeros(shape=self.arg_shape_dict['rfcn_cls_bias']) arg_params['rfcn_bbox_weight'] = mx.random.normal(0, 0.01, shape=self.arg_shape_dict['rfcn_bbox_weight']) arg_params['rfcn_bbox_bias'] = mx.nd.zeros(shape=self.arg_shape_dict['rfcn_bbox_bias']) def init_weight_rpn(self, cfg, arg_params, aux_params): arg_params['rpn_conv_3x3_weight'] = mx.random.normal(0, 0.01, shape=self.arg_shape_dict['rpn_conv_3x3_weight']) arg_params['rpn_conv_3x3_bias'] = mx.nd.zeros(shape=self.arg_shape_dict['rpn_conv_3x3_bias']) arg_params['rpn_cls_score_weight'] = mx.random.normal(0, 0.01, shape=self.arg_shape_dict['rpn_cls_score_weight']) arg_params['rpn_cls_score_bias'] = mx.nd.zeros(shape=self.arg_shape_dict['rpn_cls_score_bias']) arg_params['rpn_bbox_pred_weight'] = mx.random.normal(0, 0.01, shape=self.arg_shape_dict['rpn_bbox_pred_weight']) arg_params['rpn_bbox_pred_bias'] = mx.nd.zeros(shape=self.arg_shape_dict['rpn_bbox_pred_bias']) def init_weight_rfcn(self, cfg, arg_params, aux_params): arg_params['conv_new_1_weight'] = mx.random.normal(0, 0.01, shape=self.arg_shape_dict['conv_new_1_weight']) arg_params['conv_new_1_bias'] = mx.nd.zeros(shape=self.arg_shape_dict['conv_new_1_bias']) arg_params['rfcn_cls_weight'] = mx.random.normal(0, 0.01, shape=self.arg_shape_dict['rfcn_cls_weight']) arg_params['rfcn_cls_bias'] = mx.nd.zeros(shape=self.arg_shape_dict['rfcn_cls_bias']) arg_params['rfcn_bbox_weight'] = mx.random.normal(0, 0.01, shape=self.arg_shape_dict['rfcn_bbox_weight']) arg_params['rfcn_bbox_bias'] = mx.nd.zeros(shape=self.arg_shape_dict['rfcn_bbox_bias'])
"""ACME Identifier Validation Challenges.""" import abc import functools import hashlib import logging import socket from cryptography.hazmat.primitives import hashes import OpenSSL import requests from acme import errors from acme import crypto_util from acme import fields from acme import jose from acme import other logger = logging.getLogger(__name__) # pylint: disable=too-few-public-methods class Challenge(jose.TypedJSONObjectWithFields): # _fields_to_partial_json | pylint: disable=abstract-method """ACME challenge.""" TYPES = {} @classmethod def from_json(cls, jobj): try: return super(Challenge, cls).from_json(jobj) except jose.UnrecognizedTypeError as error: logger.debug(error) return UnrecognizedChallenge.from_json(jobj) class ContinuityChallenge(Challenge): # pylint: disable=abstract-method """Client validation challenges.""" class DVChallenge(Challenge): # pylint: disable=abstract-method """Domain validation challenges.""" class ChallengeResponse(jose.TypedJSONObjectWithFields): # _fields_to_partial_json | pylint: disable=abstract-method """ACME challenge response.""" TYPES = {} resource_type = 'challenge' resource = fields.Resource(resource_type) class UnrecognizedChallenge(Challenge): """Unrecognized challenge. ACME specification defines a generic framework for challenges and defines some standard challenges that are implemented in this module. However, other implementations (including peers) might define additional challenge types, which should be ignored if unrecognized. :ivar jobj: Original JSON decoded object. """ def __init__(self, jobj): super(UnrecognizedChallenge, self).__init__() object.__setattr__(self, "jobj", jobj) def to_partial_json(self): # pylint: disable=no-member return self.jobj @classmethod def from_json(cls, jobj): return cls(jobj) class _TokenDVChallenge(DVChallenge): """DV Challenge with token. :ivar bytes token: """ TOKEN_SIZE = 128 / 8 # Based on the entropy value from the spec """Minimum size of the :attr:`token` in bytes.""" # TODO: acme-spec doesn't specify token as base64-encoded value token = jose.Field( "token", encoder=jose.encode_b64jose, decoder=functools.partial( jose.decode_b64jose, size=TOKEN_SIZE, minimum=True)) # XXX: rename to ~token_good_for_url @property def good_token(self): # XXX: @token.decoder """Is `token` good? .. todo:: acme-spec wants "It MUST NOT contain any non-ASCII characters", but it should also warrant that it doesn't contain ".." or "/"... """ # TODO: check that path combined with uri does not go above # URI_ROOT_PATH! return b'..' not in self.token and b'/' not in self.token class KeyAuthorizationChallengeResponse(ChallengeResponse): """Response to Challenges based on Key Authorization. :param unicode key_authorization: """ key_authorization = jose.Field("keyAuthorization") thumbprint_hash_function = hashes.SHA256 def verify(self, chall, account_public_key): """Verify the key authorization. :param KeyAuthorization chall: Challenge that corresponds to this response. :param JWK account_public_key: :return: ``True`` iff verification of the key authorization was successful. :rtype: bool """ parts = self.key_authorization.split('.') # pylint: disable=no-member if len(parts) != 2: logger.debug("Key authorization (%r) is not well formed", self.key_authorization) return False if parts[0] != chall.encode("token"): logger.debug("Mismatching token in key authorization: " "%r instead of %r", parts[0], chall.encode("token")) return False thumbprint = jose.b64encode(account_public_key.thumbprint( hash_function=self.thumbprint_hash_function)).decode() if parts[1] != thumbprint: logger.debug("Mismatching thumbprint in key authorization: " "%r instead of %r", parts[0], thumbprint) return False return True class KeyAuthorizationChallenge(_TokenDVChallenge): # pylint: disable=abstract-class-little-used,too-many-ancestors """Challenge based on Key Authorization. :param response_cls: Subclass of `KeyAuthorizationChallengeResponse` that will be used to generate `response`. """ __metaclass__ = abc.ABCMeta response_cls = NotImplemented thumbprint_hash_function = ( KeyAuthorizationChallengeResponse.thumbprint_hash_function) def key_authorization(self, account_key): """Generate Key Authorization. :param JWK account_key: :rtype unicode: """ return self.encode("token") + "." + jose.b64encode( account_key.thumbprint( hash_function=self.thumbprint_hash_function)).decode() def response(self, account_key): """Generate response to the challenge. :param JWK account_key: :returns: Response (initialized `response_cls`) to the challenge. :rtype: KeyAuthorizationChallengeResponse """ return self.response_cls( key_authorization=self.key_authorization(account_key)) @abc.abstractmethod def validation(self, account_key): """Generate validation for the challenge. Subclasses must implement this method, but they are likely to return completely different data structures, depending on what's necessary to complete the challenge. Interepretation of that return value must be known to the caller. :param JWK account_key: :returns: Challenge-specific validation. """ raise NotImplementedError() # pragma: no cover def response_and_validation(self, account_key): """Generate response and validation. Convenience function that return results of `response` and `validation`. :param JWK account_key: :rtype: tuple """ return (self.response(account_key), self.validation(account_key)) @ChallengeResponse.register class HTTP01Response(KeyAuthorizationChallengeResponse): """ACME http-01 challenge response.""" typ = "http-01" PORT = 80 def simple_verify(self, chall, domain, account_public_key, port=None): """Simple verify. :param challenges.SimpleHTTP chall: Corresponding challenge. :param unicode domain: Domain name being verified. :param account_public_key: Public key for the key pair being authorized. If ``None`` key verification is not performed! :param JWK account_public_key: :param int port: Port used in the validation. :returns: ``True`` iff validation is successful, ``False`` otherwise. :rtype: bool """ if not self.verify(chall, account_public_key): logger.debug("Verification of key authorization in response failed") return False # TODO: ACME specification defines URI template that doesn't # allow to use a custom port... Make sure port is not in the # request URI, if it's standard. if port is not None and port != self.PORT: logger.warning( "Using non-standard port for SimpleHTTP verification: %s", port) domain += ":{0}".format(port) uri = chall.uri(domain) logger.debug("Verifying %s at %s...", chall.typ, uri) try: http_response = requests.get(uri) except requests.exceptions.RequestException as error: logger.error("Unable to reach %s: %s", uri, error) return False logger.debug("Received %s: %s. Headers: %s", http_response, http_response.text, http_response.headers) found_ct = http_response.headers.get( "Content-Type", chall.CONTENT_TYPE) if found_ct != chall.CONTENT_TYPE: logger.debug("Wrong Content-Type: found %r, expected %r", found_ct, chall.CONTENT_TYPE) return False if self.key_authorization != http_response.text: logger.debug("Key authorization from response (%r) doesn't match " "HTTP response (%r)", self.key_authorization, http_response.text) return False return True @Challenge.register # pylint: disable=too-many-ancestors class HTTP01(KeyAuthorizationChallenge): """ACME http-01 challenge.""" response_cls = HTTP01Response typ = response_cls.typ CONTENT_TYPE = "text/plain" """Only valid value for Content-Type if the header is included.""" URI_ROOT_PATH = ".well-known/acme-challenge" """URI root path for the server provisioned resource.""" @property def path(self): """Path (starting with '/') for provisioned resource. :rtype: string """ return '/' + self.URI_ROOT_PATH + '/' + self.encode('token') def uri(self, domain): """Create an URI to the provisioned resource. Forms an URI to the HTTPS server provisioned resource (containing :attr:`~SimpleHTTP.token`). :param unicode domain: Domain name being verified. :rtype: string """ return "http://" + domain + self.path def validation(self, account_key): """Generate validation. :param JWK account_key: :rtype: unicode """ return self.key_authorization(account_key) @Challenge.register # pylint: disable=too-many-ancestors class DVSNI(_TokenDVChallenge): """ACME "dvsni" challenge. :ivar bytes token: Random data, **not** base64-encoded. """ typ = "dvsni" PORT = 443 """Port to perform DVSNI challenge.""" def gen_response(self, account_key, alg=jose.RS256, **kwargs): """Generate response. :param .JWK account_key: Private account key. :rtype: .DVSNIResponse """ return DVSNIResponse(validation=jose.JWS.sign( payload=self.json_dumps(sort_keys=True).encode('utf-8'), key=account_key, alg=alg, **kwargs)) @ChallengeResponse.register class DVSNIResponse(ChallengeResponse): """ACME "dvsni" challenge response. :param bytes s: Random data, **not** base64-encoded. """ typ = "dvsni" DOMAIN_SUFFIX = b".acme.invalid" """Domain name suffix.""" PORT = DVSNI.PORT """Port to perform DVSNI challenge.""" validation = jose.Field("validation", decoder=jose.JWS.from_json) @property def z(self): # pylint: disable=invalid-name """The ``z`` parameter. :rtype: bytes """ # Instance of 'Field' has no 'signature' member # pylint: disable=no-member return hashlib.sha256(self.validation.signature.encode( "signature").encode("utf-8")).hexdigest().encode() @property def z_domain(self): """Domain name for certificate subjectAltName. :rtype: bytes """ z = self.z # pylint: disable=invalid-name return z[:32] + b'.' + z[32:] + self.DOMAIN_SUFFIX @property def chall(self): """Get challenge encoded in the `validation` payload. :rtype: challenges.DVSNI """ # pylint: disable=no-member return DVSNI.json_loads(self.validation.payload.decode('utf-8')) def gen_cert(self, key=None, bits=2048): """Generate DVSNI certificate. :param OpenSSL.crypto.PKey key: Optional private key used in certificate generation. If not provided (``None``), then fresh key will be generated. :param int bits: Number of bits for newly generated key. :rtype: `tuple` of `OpenSSL.crypto.X509` and `OpenSSL.crypto.PKey` """ if key is None: key = OpenSSL.crypto.PKey() key.generate_key(OpenSSL.crypto.TYPE_RSA, bits) return crypto_util.gen_ss_cert(key, [ # z_domain is too big to fit into CN, hence first dummy domain 'dummy', self.z_domain.decode()], force_san=True), key def probe_cert(self, domain, **kwargs): """Probe DVSNI challenge certificate. :param unicode domain: """ if "host" not in kwargs: host = socket.gethostbyname(domain) logging.debug('%s resolved to %s', domain, host) kwargs["host"] = host kwargs.setdefault("port", self.PORT) kwargs["name"] = self.z_domain # TODO: try different methods? # pylint: disable=protected-access return crypto_util.probe_sni(**kwargs) def verify_cert(self, cert): """Verify DVSNI challenge certificate.""" # pylint: disable=protected-access sans = crypto_util._pyopenssl_cert_or_req_san(cert) logging.debug('Certificate %s. SANs: %s', cert.digest('sha1'), sans) return self.z_domain.decode() in sans def simple_verify(self, chall, domain, account_public_key, cert=None, **kwargs): """Simple verify. Verify ``validation`` using ``account_public_key``, optionally probe DVSNI certificate and check using `verify_cert`. :param .challenges.DVSNI chall: Corresponding challenge. :param str domain: Domain name being validated. :param JWK account_public_key: :param OpenSSL.crypto.X509 cert: Optional certificate. If not provided (``None``) certificate will be retrieved using `probe_cert`. :returns: ``True`` iff client's control of the domain has been verified, ``False`` otherwise. :rtype: bool """ # pylint: disable=no-member if not self.validation.verify(key=account_public_key): return False # TODO: it's not checked that payload has exectly 2 fields! try: decoded_chall = self.chall except jose.DeserializationError as error: logger.debug(error, exc_info=True) return False if decoded_chall.token != chall.token: logger.debug("Wrong token: expected %r, found %r", chall.token, decoded_chall.token) return False if cert is None: try: cert = self.probe_cert(domain=domain, **kwargs) except errors.Error as error: logger.debug(error, exc_info=True) return False return self.verify_cert(cert) @Challenge.register class RecoveryContact(ContinuityChallenge): """ACME "recoveryContact" challenge. :ivar unicode activation_url: :ivar unicode success_url: :ivar unicode contact: """ typ = "recoveryContact" activation_url = jose.Field("activationURL", omitempty=True) success_url = jose.Field("successURL", omitempty=True) contact = jose.Field("contact", omitempty=True) @ChallengeResponse.register class RecoveryContactResponse(ChallengeResponse): """ACME "recoveryContact" challenge response. :ivar unicode token: """ typ = "recoveryContact" token = jose.Field("token", omitempty=True) @Challenge.register class ProofOfPossession(ContinuityChallenge): """ACME "proofOfPossession" challenge. :ivar .JWAAlgorithm alg: :ivar bytes nonce: Random data, **not** base64-encoded. :ivar hints: Various clues for the client (:class:`Hints`). """ typ = "proofOfPossession" NONCE_SIZE = 16 class Hints(jose.JSONObjectWithFields): """Hints for "proofOfPossession" challenge. :ivar JWK jwk: JSON Web Key :ivar tuple cert_fingerprints: `tuple` of `unicode` :ivar tuple certs: Sequence of :class:`acme.jose.ComparableX509` certificates. :ivar tuple subject_key_identifiers: `tuple` of `unicode` :ivar tuple issuers: `tuple` of `unicode` :ivar tuple authorized_for: `tuple` of `unicode` """ jwk = jose.Field("jwk", decoder=jose.JWK.from_json) cert_fingerprints = jose.Field( "certFingerprints", omitempty=True, default=()) certs = jose.Field("certs", omitempty=True, default=()) subject_key_identifiers = jose.Field( "subjectKeyIdentifiers", omitempty=True, default=()) serial_numbers = jose.Field("serialNumbers", omitempty=True, default=()) issuers = jose.Field("issuers", omitempty=True, default=()) authorized_for = jose.Field("authorizedFor", omitempty=True, default=()) @certs.encoder def certs(value): # pylint: disable=missing-docstring,no-self-argument return tuple(jose.encode_cert(cert) for cert in value) @certs.decoder def certs(value): # pylint: disable=missing-docstring,no-self-argument return tuple(jose.decode_cert(cert) for cert in value) alg = jose.Field("alg", decoder=jose.JWASignature.from_json) nonce = jose.Field( "nonce", encoder=jose.encode_b64jose, decoder=functools.partial( jose.decode_b64jose, size=NONCE_SIZE)) hints = jose.Field("hints", decoder=Hints.from_json) @ChallengeResponse.register class ProofOfPossessionResponse(ChallengeResponse): """ACME "proofOfPossession" challenge response. :ivar bytes nonce: Random data, **not** base64-encoded. :ivar acme.other.Signature signature: Sugnature of this message. """ typ = "proofOfPossession" NONCE_SIZE = ProofOfPossession.NONCE_SIZE nonce = jose.Field( "nonce", encoder=jose.encode_b64jose, decoder=functools.partial( jose.decode_b64jose, size=NONCE_SIZE)) signature = jose.Field("signature", decoder=other.Signature.from_json) def verify(self): """Verify the challenge.""" # self.signature is not Field | pylint: disable=no-member return self.signature.verify(self.nonce) @Challenge.register # pylint: disable=too-many-ancestors class DNS(_TokenDVChallenge): """ACME "dns" challenge.""" typ = "dns" LABEL = "_acme-challenge" """Label clients prepend to the domain name being validated.""" def gen_validation(self, account_key, alg=jose.RS256, **kwargs): """Generate validation. :param .JWK account_key: Private account key. :param .JWA alg: :returns: This challenge wrapped in `.JWS` :rtype: .JWS """ return jose.JWS.sign( payload=self.json_dumps(sort_keys=True).encode('utf-8'), key=account_key, alg=alg, **kwargs) def check_validation(self, validation, account_public_key): """Check validation. :param JWS validation: :param JWK account_public_key: :rtype: bool """ if not validation.verify(key=account_public_key): return False try: return self == self.json_loads( validation.payload.decode('utf-8')) except jose.DeserializationError as error: logger.debug("Checking validation for DNS failed: %s", error) return False def gen_response(self, account_key, **kwargs): """Generate response. :param .JWK account_key: Private account key. :param .JWA alg: :rtype: DNSResponse """ return DNSResponse(validation=self.gen_validation( self, account_key, **kwargs)) def validation_domain_name(self, name): """Domain name for TXT validation record. :param unicode name: Domain name being validated. """ return "{0}.{1}".format(self.LABEL, name) @ChallengeResponse.register class DNSResponse(ChallengeResponse): """ACME "dns" challenge response. :param JWS validation: """ typ = "dns" validation = jose.Field("validation", decoder=jose.JWS.from_json) def check_validation(self, chall, account_public_key): """Check validation. :param challenges.DNS chall: :param JWK account_public_key: :rtype: bool """ return chall.check_validation(self.validation, account_public_key)
# Copyright 2015 Jarrod N. Bakker # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ACLSwitch modules from aclswitch.acl.acl_manager import ACLManager from aclswitch.flow.flow_scheduler import FlowScheduler from aclswitch.policy.policy_manager import PolicyManager # Module imports import logging __author__ = "Jarrod N. Bakker" __status__ = "Development" class ACLSwitchAPI: """API for modifying and viewing the state of ACLSwitch. """ def __init__(self, logging_config, aclsw_version, flow_man): """Initialise the API class. :param logging_config: Logging configuration dict. :param aclsw_version: The current version of ACLSwitch. :param flow_man: FlowManager object. """ self._logging = logging.getLogger(__name__) self._logging.setLevel(logging_config["min_lvl"]) self._logging.propagate = logging_config["propagate"] self._logging.addHandler(logging_config["handler"]) self._logging.info("Initialising API...") self._aclsw_version = aclsw_version self._flow_man = flow_man self._acl_man = ACLManager(logging_config) self._pol_man = PolicyManager(logging_config) self._flow_sch = FlowScheduler(logging_config, self, flow_man) def acl_create_rule(self, rule): """Create an ACL rule. :param rule: dict of the rule to create. :return: Result of the operation. """ if not self._pol_man.policy_exists(rule["policy"]): return ReturnStatus.POLICY_NOT_EXISTS if not self._acl_man.acl_rule_syntax_check(rule): return ReturnStatus.RULE_SYNTAX_INVALID rule_id = self._acl_man.acl_add_rule(rule) if rule_id is None: return ReturnStatus.RULE_EXISTS self._pol_man.policy_add_rule(rule["policy"], rule_id) new_rule = self.acl_get_rule(rule_id) if new_rule.time_enforce == "N/A": switches = self.policy_get_connected_switches(rule["policy"]) self._flow_man.flow_deploy_single_rule(new_rule, switches) else: self._flow_sch.sched_add_rule(rule_id, new_rule.time_enforce) return ReturnStatus.RULE_CREATED def acl_remove_rule(self, rule_id): """Remove an ACL rule. :param rule_id: ID of the rule to remove. :return: Result of the operation. """ if not self._acl_man.acl_is_rule(rule_id): return ReturnStatus.RULE_NOT_EXISTS rule = self._acl_man.acl_remove_rule(rule_id) self._pol_man.policy_remove_rule(rule.policy, rule_id) switches = self.policy_get_switches(rule.policy) if rule.time_enforce == "N/A": switches = self.policy_get_connected_switches(rule.policy) self._flow_man.flow_remove_single_rule(rule, switches) else: self._flow_sch.sched_remove_rule(rule_id) self._flow_man.flow_remove_single_rule(rule, switches) return ReturnStatus.RULE_REMOVED def acl_get_rule(self, rule_id): """Return a rule given a rule ID. :param rule_id: ID of a rule. :return: Named tuple of a rule. """ if not self._acl_man.acl_is_rule(rule_id): return -1 return self._acl_man.acl_get_rule(rule_id) def policy_create(self, policy): """Create a policy domain. :param policy: Name of the policy domain. :return: Result of the operation. """ if self._pol_man.policy_create(policy): return ReturnStatus.POLICY_CREATED else: return ReturnStatus.POLICY_EXISTS def policy_remove(self, policy): """Remove a policy domain. :param policy: Name of the policy domain. :return: Result of the operation. """ if not self._pol_man.policy_exists(policy): return ReturnStatus.POLICY_NOT_EXISTS if not self._pol_man.policy_empty(policy): return ReturnStatus.POLICY_NOT_EMPTY self._pol_man.policy_remove(policy) return ReturnStatus.POLICY_REMOVED def policy_assign_switch(self, switch_id, policy, from_file=False): """Assign a policy to a switch assuming it has been registered. The switch does not have to exist if the assignment declaration is specified in a file. This does mean that the application could me DoSed by having many fake switches specified, however the benefit is that assignments can be specified in a file and loaded on application start-up. Such declarations result in switches being registered with the policy manager before they connect to controller. Care must then be taken to not send out flow table entries to the 'fake' switch. This functionality does not exist when the declaration is passed by the REST WSGI. :param switch_id: Switch identifier, typically the datapath ID. :param policy: Name of the policy to assign. :param from_file: False if the declaration came from the WSGI, True if it was specified in a file. """ if not self._pol_man.switch_exists(switch_id): return ReturnStatus.SWITCH_NOT_EXISTS if not self._pol_man.policy_exists(policy): return ReturnStatus.POLICY_NOT_EXISTS if not self._pol_man.switch_assign_policy(switch_id, policy): return ReturnStatus.POLICY_ALREADY_ASSIGNED if not from_file and self._pol_man.switch_is_connected( switch_id): # Do not send out the rules if the switch has not connected. rule_ids = self._pol_man.policy_get_rules(policy) rules = [] for r_id in rule_ids: rule = self.acl_get_rule(r_id) if rule.time_enforce == "N/A": rules.append(rule) self._flow_man.flow_deploy_multiple_rules(switch_id, rules) return ReturnStatus.POLICY_ASSIGNED def policy_revoke_switch(self, switch_id, policy): """Revoke a policy assignment from a switch. :param switch_id: Switch identifier, typically the datapath ID. :param policy: Policy to revoke. """ if not self._pol_man.switch_exists(switch_id): return ReturnStatus.SWITCH_NOT_EXISTS if not self._pol_man.policy_exists(policy): return ReturnStatus.POLICY_NOT_EXISTS if not self._pol_man.switch_revoke_policy(switch_id, policy): return ReturnStatus.POLICY_NOT_ASSIGNED if self._pol_man.switch_is_connected(switch_id): # Do not send out removal messages to switches that have # not connected. rule_ids = self._pol_man.policy_get_rules(policy) rules = [] for r_id in rule_ids: rules.append(self.acl_get_rule(r_id)) self._flow_man.flow_remove_multiple_rules(switch_id, rules) return ReturnStatus.POLICY_REVOKED def policy_get_switches(self, policy): """Return the IDs of switches assigned to a policy domain. :param policy: Policy domain name. :return: A list of switch IDs. """ return self._pol_man.policy_get_switches(policy) def policy_get_connected_switches(self, policy): """Return the IDs os connected switches assigned to a policy domain. Note the connected distinction. :param policy: Policy domain name. :return: A list of switch IDs. """ return self._pol_man.policy_get_connected_switches(policy) def switch_register(self, switch_id): """Register a switch with the policy manager. :param switch_id: Switch identifier, typically the datapath ID. :return: A return status. """ if self._pol_man.switch_register(switch_id): return ReturnStatus.SWITCH_REGISTERED else: return ReturnStatus.SWITCH_EXISTS def switch_connect(self, switch_id): """Inform the policy manager that a switch has connected. :param switch_id: Switch identifier, typically the datapath ID. :return: A return status. """ if self._pol_man.switch_connect(switch_id): rules = [] for policy in self._pol_man.switch_get_policies(switch_id): rule_ids = self._pol_man.policy_get_rules(policy) for r_id in rule_ids: rule = self.acl_get_rule(r_id) if rule.time_enforce == "N/A": rules.append(rule) self._flow_man.flow_deploy_multiple_rules(switch_id, rules) return ReturnStatus.SWITCH_CONNECTED else: return ReturnStatus.SWITCH_NOT_REGISTERED def get_aclswitch_info(self): """Fetch and return a dict containing a summary of the state of ACLSwitch. :return: A dict containing some summary information. """ return {"num_rules": self._acl_man.get_num_rules(), "num_policies": self._pol_man.get_num_policies(), "num_switches": self._pol_man.get_num_switches(), "version": self._aclsw_version} def get_all_policies(self): """Fetch and return a dict of policies and the rules that are associated with them. :return: A dict of policies to a list of rule IDs. """ return {"policies": self._pol_man.get_all_policies()} def get_all_rules(self): """Fetch and return a dict of ACL rule IDs to their respective ACL rules. :return: A dict containing all ACL rules. """ return {"acl": self._acl_man.get_all_rules()} def get_all_switches(self): """Fetch and return a dict of the IDs of connected switches and the policies assigned to them. :return: A dict of switch IDs to a list of policies. """ return {"switches": self._pol_man.get_all_switches()} def get_time_queue(self): """Fetch and return the time enforced ACL rule queue. :return: The time queue as a list of lists. """ return {"time_queue": self._flow_sch.get_time_queue()} class ReturnStatus: """Enums for function return statuses. """ POLICY_EXISTS = 10 POLICY_NOT_EXISTS = 11 POLICY_CREATED = 12 POLICY_REMOVED = 13 POLICY_NOT_EMPTY = 14 POLICY_ASSIGNED = 15 POLICY_NOT_ASSIGNED = 16 POLICY_ALREADY_ASSIGNED = 17 POLICY_REVOKED = 18 RULE_EXISTS = 20 RULE_NOT_EXISTS = 21 RULE_CREATED = 22 RULE_REMOVED = 23 RULE_SYNTAX_INVALID = 24 SWITCH_EXISTS = 30 SWITCH_NOT_EXISTS = 31 SWITCH_REGISTERED = 32 SWITCH_NOT_REGISTERED = 33 SWITCH_CONNECTED = 34
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Training helper that checkpoints models and computes summaries.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import contextlib import os import time from tensorflow.core.framework.summary_pb2 import Summary from tensorflow.core.util.event_pb2 import SessionLog from tensorflow.python.eager import context from tensorflow.python.framework import dtypes from tensorflow.python.framework import meta_graph from tensorflow.python.framework import ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import lookup_ops from tensorflow.python.ops import variables from tensorflow.python.platform import tf_logging as logging from tensorflow.python.summary import summary as _summary from tensorflow.python.training import coordinator from tensorflow.python.training import saver as saver_mod from tensorflow.python.training import session_manager as session_manager_mod from tensorflow.python.training import training_util from tensorflow.python.util import deprecation class Supervisor(object): """A training helper that checkpoints models and computes summaries. This class is deprecated. Please use ${tf.train.MonitoredTrainingSession} instead. The Supervisor is a small wrapper around a `Coordinator`, a `Saver`, and a `SessionManager` that takes care of common needs of TensorFlow training programs. #### Use for a single program ```python with tf.Graph().as_default(): ...add operations to the graph... # Create a Supervisor that will checkpoint the model in '/tmp/mydir'. sv = Supervisor(logdir='/tmp/mydir') # Get a TensorFlow session managed by the supervisor. with sv.managed_session(FLAGS.master) as sess: # Use the session to train the graph. while not sv.should_stop(): sess.run(<my_train_op>) ``` Within the `with sv.managed_session()` block all variables in the graph have been initialized. In addition, a few services have been started to checkpoint the model and add summaries to the event log. If the program crashes and is restarted, the managed session automatically reinitialize variables from the most recent checkpoint. The supervisor is notified of any exception raised by one of the services. After an exception is raised, `should_stop()` returns `True`. In that case the training loop should also stop. This is why the training loop has to check for `sv.should_stop()`. Exceptions that indicate that the training inputs have been exhausted, `tf.errors.OutOfRangeError`, also cause `sv.should_stop()` to return `True` but are not re-raised from the `with` block: they indicate a normal termination. #### Use for multiple replicas To train with replicas you deploy the same program in a `Cluster`. One of the tasks must be identified as the *chief*: the task that handles initialization, checkpoints, summaries, and recovery. The other tasks depend on the *chief* for these services. The only change you have to do to the single program code is to indicate if the program is running as the *chief*. ```python # Choose a task as the chief. This could be based on server_def.task_index, # or job_def.name, or job_def.tasks. It's entirely up to the end user. # But there can be only one *chief*. is_chief = (server_def.task_index == 0) server = tf.train.Server(server_def) with tf.Graph().as_default(): ...add operations to the graph... # Create a Supervisor that uses log directory on a shared file system. # Indicate if you are the 'chief' sv = Supervisor(logdir='/shared_directory/...', is_chief=is_chief) # Get a Session in a TensorFlow server on the cluster. with sv.managed_session(server.target) as sess: # Use the session to train the graph. while not sv.should_stop(): sess.run(<my_train_op>) ``` In the *chief* task, the `Supervisor` works exactly as in the first example above. In the other tasks `sv.managed_session()` waits for the Model to have been initialized before returning a session to the training code. The non-chief tasks depend on the chief task for initializing the model. If one of the tasks crashes and restarts, `managed_session()` checks if the Model is initialized. If yes, it just creates a session and returns it to the training code that proceeds normally. If the model needs to be initialized, the chief task takes care of reinitializing it; the other tasks just wait for the model to have been initialized. NOTE: This modified program still works fine as a single program. The single program marks itself as the chief. #### What `master` string to use Whether you are running on your machine or in the cluster you can use the following values for the --master flag: * Specifying `''` requests an in-process session that does not use RPC. * Specifying `'local'` requests a session that uses the RPC-based "Master interface" to run TensorFlow programs. See @{tf.train.Server.create_local_server} for details. * Specifying `'grpc://hostname:port'` requests a session that uses the RPC interface to a specific host, and also allows the in-process master to access remote tensorflow workers. Often, it is appropriate to pass `server.target` (for some `tf.train.Server` named `server). #### Advanced use ##### Launching additional services `managed_session()` launches the Checkpoint and Summary services (threads). If you need more services to run you can simply launch them in the block controlled by `managed_session()`. Example: Start a thread to print losses. We want this thread to run every 60 seconds, so we launch it with `sv.loop()`. ```python ... sv = Supervisor(logdir='/tmp/mydir') with sv.managed_session(FLAGS.master) as sess: sv.loop(60, print_loss, (sess, )) while not sv.should_stop(): sess.run(my_train_op) ``` ##### Launching fewer services `managed_session()` launches the "summary" and "checkpoint" threads which use either the optionally `summary_op` and `saver` passed to the constructor, or default ones created automatically by the supervisor. If you want to run your own summary and checkpointing logic, disable these services by passing `None` to the `summary_op` and `saver` parameters. Example: Create summaries manually every 100 steps in the chief. ```python # Create a Supervisor with no automatic summaries. sv = Supervisor(logdir='/tmp/mydir', is_chief=is_chief, summary_op=None) # As summary_op was None, managed_session() does not start the # summary thread. with sv.managed_session(FLAGS.master) as sess: for step in xrange(1000000): if sv.should_stop(): break if is_chief and step % 100 == 0: # Create the summary every 100 chief steps. sv.summary_computed(sess, sess.run(my_summary_op)) else: # Train normally sess.run(my_train_op) ``` ##### Custom model initialization `managed_session()` only supports initializing the model by running an `init_op` or restoring from the latest checkpoint. If you have special initialization needs, see how to specify a `local_init_op` when creating the supervisor. You can also use the `SessionManager` directly to create a session and check if it could be initialized automatically. """ # Value to pass for the 'ready_op', 'init_op', 'summary_op', 'saver', # and 'global_step' parameters of Supervisor.__init__() to indicate that # the default behavior should be used. USE_DEFAULT = 0 @deprecation.deprecated(None, "Please switch to tf.train.MonitoredTrainingSession") def __init__(self, graph=None, ready_op=USE_DEFAULT, ready_for_local_init_op=USE_DEFAULT, is_chief=True, init_op=USE_DEFAULT, init_feed_dict=None, local_init_op=USE_DEFAULT, logdir=None, summary_op=USE_DEFAULT, saver=USE_DEFAULT, global_step=USE_DEFAULT, save_summaries_secs=120, save_model_secs=600, recovery_wait_secs=30, stop_grace_secs=120, checkpoint_basename="model.ckpt", session_manager=None, summary_writer=USE_DEFAULT, init_fn=None): """Create a `Supervisor`. Args: graph: A `Graph`. The graph that the model will use. Defaults to the default `Graph`. The supervisor may add operations to the graph before creating a session, but the graph should not be modified by the caller after passing it to the supervisor. ready_op: 1-D string `Tensor`. This tensor is evaluated by supervisors in `prepare_or_wait_for_session()` to check if the model is ready to use. The model is considered ready if it returns an empty array. Defaults to the tensor returned from `tf.report_uninitialized_variables()` If `None`, the model is not checked for readiness. ready_for_local_init_op: 1-D string `Tensor`. This tensor is evaluated by supervisors in `prepare_or_wait_for_session()` to check if the model is ready to run the local_init_op. The model is considered ready if it returns an empty array. Defaults to the tensor returned from `tf.report_uninitialized_variables(tf.global_variables())`. If `None`, the model is not checked for readiness before running local_init_op. is_chief: If True, create a chief supervisor in charge of initializing and restoring the model. If False, create a supervisor that relies on a chief supervisor for inits and restore. init_op: `Operation`. Used by chief supervisors to initialize the model when it can not be recovered. Defaults to an `Operation` that initializes all global variables. If `None`, no initialization is done automatically unless you pass a value for `init_fn`, see below. init_feed_dict: A dictionary that maps `Tensor` objects to feed values. This feed dictionary will be used when `init_op` is evaluated. local_init_op: `Operation`. Used by all supervisors to run initializations that should run for every new supervisor instance. By default these are table initializers and initializers for local variables. If `None`, no further per supervisor-instance initialization is done automatically. logdir: A string. Optional path to a directory where to checkpoint the model and log events for the visualizer. Used by chief supervisors. The directory will be created if it does not exist. summary_op: An `Operation` that returns a Summary for the event logs. Used by chief supervisors if a `logdir` was specified. Defaults to the operation returned from summary.merge_all(). If `None`, summaries are not computed automatically. saver: A Saver object. Used by chief supervisors if a `logdir` was specified. Defaults to the saved returned by Saver(). If `None`, the model is not saved automatically. global_step: An integer Tensor of size 1 that counts steps. The value from 'global_step' is used in summaries and checkpoint filenames. Default to the op named 'global_step' in the graph if it exists, is of rank 1, size 1, and of type tf.int32 or tf.int64. If `None` the global step is not recorded in summaries and checkpoint files. Used by chief supervisors if a `logdir` was specified. save_summaries_secs: Number of seconds between the computation of summaries for the event log. Defaults to 120 seconds. Pass 0 to disable summaries. save_model_secs: Number of seconds between the creation of model checkpoints. Defaults to 600 seconds. Pass 0 to disable checkpoints. recovery_wait_secs: Number of seconds between checks that the model is ready. Used by supervisors when waiting for a chief supervisor to initialize or restore the model. Defaults to 30 seconds. stop_grace_secs: Grace period, in seconds, given to running threads to stop when `stop()` is called. Defaults to 120 seconds. checkpoint_basename: The basename for checkpoint saving. session_manager: `SessionManager`, which manages Session creation and recovery. If it is `None`, a default `SessionManager` will be created with the set of arguments passed in for backwards compatibility. summary_writer: `SummaryWriter` to use or `USE_DEFAULT`. Can be `None` to indicate that no summaries should be written. init_fn: Optional callable used to initialize the model. Called after the optional `init_op` is called. The callable must accept one argument, the session being initialized. Returns: A `Supervisor`. Raises: RuntimeError: If called with eager execution enabled. @compatibility(eager) `Supervisor`s are not supported when eager execution is enabled. @end_compatibility """ if context.in_eager_mode(): raise RuntimeError("Supervisors are compatible with eager execution.") # Set default values of arguments. if graph is None: graph = ops.get_default_graph() with graph.as_default(): self._init_ready_op( ready_op=ready_op, ready_for_local_init_op=ready_for_local_init_op) self._init_init_op(init_op=init_op, init_feed_dict=init_feed_dict) self._init_local_init_op(local_init_op=local_init_op) self._init_saver(saver=saver) self._init_summary_op(summary_op=summary_op) self._init_global_step(global_step=global_step) self._graph = graph self._meta_graph_def = meta_graph.create_meta_graph_def( graph_def=graph.as_graph_def(add_shapes=True), saver_def=self._saver.saver_def if self._saver else None) self._is_chief = is_chief self._coord = coordinator.Coordinator() self._recovery_wait_secs = recovery_wait_secs self._stop_grace_secs = stop_grace_secs self._init_fn = init_fn # Set all attributes related to checkpointing and writing events to None. # Afterwards, set them appropriately for chief supervisors, as these are # the only supervisors that can write checkpoints and events. self._logdir = None self._save_summaries_secs = None self._save_model_secs = None self._save_path = None self._summary_writer = None if self._is_chief: self._logdir = logdir self._save_summaries_secs = save_summaries_secs self._save_model_secs = save_model_secs if self._logdir: self._save_path = os.path.join(self._logdir, checkpoint_basename) if summary_writer is Supervisor.USE_DEFAULT: if self._logdir: self._summary_writer = _summary.FileWriter(self._logdir) else: self._summary_writer = summary_writer self._graph_added_to_summary = False self._init_session_manager(session_manager=session_manager) self._verify_setup() # The graph is not allowed to change anymore. graph.finalize() def _init_session_manager(self, session_manager=None): if session_manager is None: self._session_manager = session_manager_mod.SessionManager( local_init_op=self._local_init_op, ready_op=self._ready_op, ready_for_local_init_op=self._ready_for_local_init_op, graph=self._graph, recovery_wait_secs=self._recovery_wait_secs) else: self._session_manager = session_manager def _get_first_op_from_collection(self, key): """Returns the first `Operation` from a collection. Args: key: A string collection key. Returns: The first Op found in a collection, or `None` if the collection is empty. """ try: op_list = ops.get_collection(key) if len(op_list) > 1: logging.info("Found %d %s operations. Returning the first one.", len(op_list), key) if op_list: return op_list[0] except LookupError: pass return None def _init_ready_op(self, ready_op=USE_DEFAULT, ready_for_local_init_op=USE_DEFAULT): """Initializes ready_op. Args: ready_op: `Tensor` to check if the model is initialized. If it's set to USE_DEFAULT, creates an op that checks all the variables are initialized. ready_for_local_init_op: `Tensor` to check if the model is ready to run local_init_op. If it's set to USE_DEFAULT, creates an op that checks all the global variables are initialized. """ if ready_op is Supervisor.USE_DEFAULT: ready_op = self._get_first_op_from_collection(ops.GraphKeys.READY_OP) if ready_op is None: ready_op = variables.report_uninitialized_variables() ops.add_to_collection(ops.GraphKeys.READY_OP, ready_op) self._ready_op = ready_op # ready_for_local_init_op defaults to None for backward compatibility if ready_for_local_init_op is Supervisor.USE_DEFAULT: ready_for_local_init_op = self._get_first_op_from_collection( ops.GraphKeys.READY_FOR_LOCAL_INIT_OP) self._ready_for_local_init_op = ready_for_local_init_op def _init_init_op(self, init_op=USE_DEFAULT, init_feed_dict=None): """Initializes init_op. Args: init_op: `Operation` to initialize the variables. If set to USE_DEFAULT, create an op that initializes all variables and tables. init_feed_dict: A dictionary that maps `Tensor` objects to feed values. This feed dictionary will be used when `init_op` is evaluated. """ if init_op is Supervisor.USE_DEFAULT: init_op = self._get_first_op_from_collection(ops.GraphKeys.INIT_OP) if init_op is None: init_op = variables.global_variables_initializer() ops.add_to_collection(ops.GraphKeys.INIT_OP, init_op) self._init_op = init_op self._init_feed_dict = init_feed_dict def _init_local_init_op(self, local_init_op=USE_DEFAULT): """Initializes local_init_op. Args: local_init_op: `Operation` run for every new supervisor instance. If set to USE_DEFAULT, use the first op from the GraphKeys.LOCAL_INIT_OP collection. If the collection is empty, create an op that initializes all local variables and all tables. """ if local_init_op is Supervisor.USE_DEFAULT: local_init_op = self._get_first_op_from_collection( ops.GraphKeys.LOCAL_INIT_OP) if local_init_op is None: op_list = [ variables.local_variables_initializer(), lookup_ops.tables_initializer() ] if op_list: local_init_op = control_flow_ops.group(*op_list) ops.add_to_collection(ops.GraphKeys.LOCAL_INIT_OP, local_init_op) self._local_init_op = local_init_op def _init_saver(self, saver=USE_DEFAULT): """Initializes saver. Args: saver: A `Saver` object. If set to USE_DEFAULT, create one that saves all the variables. """ if saver is Supervisor.USE_DEFAULT: saver = self._get_first_op_from_collection(ops.GraphKeys.SAVERS) if saver is None and variables.global_variables(): saver = saver_mod.Saver() ops.add_to_collection(ops.GraphKeys.SAVERS, saver) self._saver = saver def _init_summary_op(self, summary_op=USE_DEFAULT): """Initializes summary_op. Args: summary_op: An Operation that returns a Summary for the event logs. If set to USE_DEFAULT, create an op that merges all the summaries. """ if summary_op is Supervisor.USE_DEFAULT: summary_op = self._get_first_op_from_collection(ops.GraphKeys.SUMMARY_OP) if summary_op is None: summary_op = _summary.merge_all() if summary_op is not None: ops.add_to_collection(ops.GraphKeys.SUMMARY_OP, summary_op) self._summary_op = summary_op def _init_global_step(self, global_step=USE_DEFAULT): """Initializes global_step. Args: global_step: An integer Tensor of size 1 that counts steps. If set to USE_DEFAULT, creates global_step tensor. """ if global_step is Supervisor.USE_DEFAULT: global_step = self._get_first_op_from_collection( ops.GraphKeys.GLOBAL_STEP) if global_step is None: global_step = self._default_global_step_tensor() if global_step is not None: ops.add_to_collection(ops.GraphKeys.GLOBAL_STEP, global_step) self._global_step = global_step @property def is_chief(self): """Return True if this is a chief supervisor. Returns: A bool. """ return self._is_chief @property def session_manager(self): """Return the SessionManager used by the Supervisor. Returns: A SessionManager object. """ return self._session_manager @property def coord(self): """Return the Coordinator used by the Supervisor. The Coordinator can be useful if you want to run multiple threads during your training. Returns: A Coordinator object. """ return self._coord @property def init_op(self): """Return the Init Op used by the supervisor. Returns: An Op or `None`. """ return self._init_op @property def init_feed_dict(self): """Return the feed dictionary used when evaluating the `init_op`. Returns: A feed dictionary or `None`. """ return self._init_feed_dict @property def ready_op(self): """Return the Ready Op used by the supervisor. Returns: An Op or `None`. """ return self._ready_op @property def ready_for_local_init_op(self): return self._ready_for_local_init_op @property def summary_writer(self): """Return the SummaryWriter used by the chief supervisor. Returns: A SummaryWriter. """ return self._summary_writer @property def summary_op(self): """Return the Summary Tensor used by the chief supervisor. Returns: A string Tensor for the summary or `None`. """ return self._summary_op @property def save_summaries_secs(self): """Return the delay between summary computations. Returns: A timestamp. """ return self._save_summaries_secs @property def global_step(self): """Return the global_step Tensor used by the supervisor. Returns: An integer Tensor for the global_step. """ return self._global_step @property def saver(self): """Return the Saver used by the supervisor. Returns: A Saver object. """ return self._saver @property def save_model_secs(self): """Return the delay between checkpoints. Returns: A timestamp. """ return self._save_model_secs @property def save_path(self): """Return the save path used by the supervisor. Returns: A string. """ return self._save_path def _write_graph(self): """Writes graph_def to `logdir` and adds it to summary if applicable.""" assert self._is_chief if self._logdir: training_util.write_graph(self._graph.as_graph_def(add_shapes=True), self._logdir, "graph.pbtxt") if self._summary_writer and not self._graph_added_to_summary: self._summary_writer.add_graph(self._graph) self._summary_writer.add_meta_graph(self._meta_graph_def) self._graph_added_to_summary = True def start_standard_services(self, sess): """Start the standard services for 'sess'. This starts services in the background. The services started depend on the parameters to the constructor and may include: - A Summary thread computing summaries every save_summaries_secs. - A Checkpoint thread saving the model every save_model_secs. - A StepCounter thread measure step time. Args: sess: A Session. Returns: A list of threads that are running the standard services. You can use the Supervisor's Coordinator to join these threads with: sv.coord.Join(<list of threads>) Raises: RuntimeError: If called with a non-chief Supervisor. ValueError: If not `logdir` was passed to the constructor as the services need a log directory. """ if not self._is_chief: raise RuntimeError("Only chief supervisor can start standard services. " "Because only chief supervisors can write events.") if not self._logdir: logging.warning("Standard services need a 'logdir' " "passed to the SessionManager") return if self._global_step is not None and self._summary_writer: # Only add the session log if we keep track of global step. # TensorBoard cannot use START message for purging expired events # if there is no step value. current_step = training_util.global_step(sess, self._global_step) self._summary_writer.add_session_log( SessionLog(status=SessionLog.START), current_step) threads = [] if self._save_summaries_secs and self._summary_writer: if self._summary_op is not None: threads.append(SVSummaryThread(self, sess)) if self._global_step is not None: threads.append(SVStepCounterThread(self, sess)) if self.saver and self._save_model_secs: threads.append(SVTimerCheckpointThread(self, sess)) for t in threads: t.start() return threads def prepare_or_wait_for_session(self, master="", config=None, wait_for_checkpoint=False, max_wait_secs=7200, start_standard_services=True): """Make sure the model is ready to be used. Create a session on 'master', recovering or initializing the model as needed, or wait for a session to be ready. If running as the chief and `start_standard_service` is set to True, also call the session manager to start the standard services. Args: master: name of the TensorFlow master to use. See the `tf.Session` constructor for how this is interpreted. config: Optional ConfigProto proto used to configure the session, which is passed as-is to create the session. wait_for_checkpoint: Whether we should wait for the availability of a checkpoint before creating Session. Defaults to False. max_wait_secs: Maximum time to wait for the session to become available. start_standard_services: Whether to start the standard services and the queue runners. Returns: A Session object that can be used to drive the model. """ # For users who recreate the session with prepare_or_wait_for_session(), we # need to clear the coordinator's stop_event so that threads managed by the # coordinator can run. self._coord.clear_stop() if self._summary_writer: self._summary_writer.reopen() if self._is_chief: sess = self._session_manager.prepare_session( master, init_op=self.init_op, saver=self.saver, checkpoint_dir=self._logdir, wait_for_checkpoint=wait_for_checkpoint, max_wait_secs=max_wait_secs, config=config, init_feed_dict=self._init_feed_dict, init_fn=self._init_fn) self._write_graph() if start_standard_services: logging.info("Starting standard services.") self.start_standard_services(sess) else: sess = self._session_manager.wait_for_session(master, config=config, max_wait_secs=max_wait_secs) if start_standard_services: logging.info("Starting queue runners.") self.start_queue_runners(sess) return sess def start_queue_runners(self, sess, queue_runners=None): """Start threads for `QueueRunners`. Note that the queue runners collected in the graph key `QUEUE_RUNNERS` are already started automatically when you create a session with the supervisor, so unless you have non-collected queue runners to start you do not need to call this explicitly. Args: sess: A `Session`. queue_runners: A list of `QueueRunners`. If not specified, we'll use the list of queue runners gathered in the graph under the key `GraphKeys.QUEUE_RUNNERS`. Returns: The list of threads started for the `QueueRunners`. Raises: RuntimeError: If called with eager execution enabled. @compatibility(eager) Queues are not compatible with eager execution. To ingest data when eager execution is enabled, use the `tf.data` API. @end_compatibility """ if context.in_eager_mode(): raise RuntimeError("Queues are not compatible with eager execution.") if queue_runners is None: queue_runners = self._graph.get_collection(ops.GraphKeys.QUEUE_RUNNERS) threads = [] for qr in queue_runners: threads.extend(qr.create_threads(sess, coord=self._coord, daemon=True, start=True)) return threads def loop(self, timer_interval_secs, target, args=None, kwargs=None): """Start a LooperThread that calls a function periodically. If `timer_interval_secs` is None the thread calls `target(*args, **kwargs)` repeatedly. Otherwise it calls it every `timer_interval_secs` seconds. The thread terminates when a stop is requested. The started thread is added to the list of threads managed by the supervisor so it does not need to be passed to the `stop()` method. Args: timer_interval_secs: Number. Time boundaries at which to call `target`. target: A callable object. args: Optional arguments to pass to `target` when calling it. kwargs: Optional keyword arguments to pass to `target` when calling it. Returns: The started thread. """ looper = coordinator.LooperThread(self._coord, timer_interval_secs, target=target, args=args, kwargs=kwargs) looper.start() return looper def stop(self, threads=None, close_summary_writer=True, ignore_live_threads=False): """Stop the services and the coordinator. This does not close the session. Args: threads: Optional list of threads to join with the coordinator. If `None`, defaults to the threads running the standard services, the threads started for `QueueRunners`, and the threads started by the `loop()` method. To wait on additional threads, pass the list in this parameter. close_summary_writer: Whether to close the `summary_writer`. Defaults to `True` if the summary writer was created by the supervisor, `False` otherwise. ignore_live_threads: If `True` ignores threads that remain running after a grace period when joining threads via the coordinator, instead of raising a RuntimeError. """ self._coord.request_stop() try: # coord.join() re-raises the first reported exception; the "finally" # block ensures that we clean up whether or not an exception was # reported. self._coord.join( threads, stop_grace_period_secs=self._stop_grace_secs, ignore_live_threads=ignore_live_threads) finally: # Close the writer last, in case one of the running threads was using it. if close_summary_writer and self._summary_writer: # Stop messages are not logged with event.step, # since the session may have already terminated. self._summary_writer.add_session_log(SessionLog(status=SessionLog.STOP)) self._summary_writer.close() self._graph_added_to_summary = False def request_stop(self, ex=None): """Request that the coordinator stop the threads. See `Coordinator.request_stop()`. Args: ex: Optional `Exception`, or Python `exc_info` tuple as returned by `sys.exc_info()`. If this is the first call to `request_stop()` the corresponding exception is recorded and re-raised from `join()`. """ self._coord.request_stop(ex=ex) def should_stop(self): """Check if the coordinator was told to stop. See `Coordinator.should_stop()`. Returns: True if the coordinator was told to stop, False otherwise. """ return self._coord.should_stop() def stop_on_exception(self): """Context handler to stop the supervisor when an exception is raised. See `Coordinator.stop_on_exception()`. Returns: A context handler. """ return self._coord.stop_on_exception() def wait_for_stop(self): """Block waiting for the coordinator to stop.""" self._coord.wait_for_stop() def summary_computed(self, sess, summary, global_step=None): """Indicate that a summary was computed. Args: sess: A `Session` object. summary: A Summary proto, or a string holding a serialized summary proto. global_step: Int. global step this summary is associated with. If `None`, it will try to fetch the current step. Raises: TypeError: if 'summary' is not a Summary proto or a string. RuntimeError: if the Supervisor was created without a `logdir`. """ if not self._summary_writer: raise RuntimeError("Writing a summary requires a summary writer.") if global_step is None and self.global_step is not None: global_step = training_util.global_step(sess, self.global_step) self._summary_writer.add_summary(summary, global_step) def _default_global_step_tensor(self): """Returns the global_step from the default graph. Returns: The global step `Tensor` or `None`. """ try: gs = ops.get_default_graph().get_tensor_by_name("global_step:0") if gs.dtype.base_dtype in [dtypes.int32, dtypes.int64]: return gs else: logging.warning("Found 'global_step' is not an int type: %s", gs.dtype) return None except KeyError: return None def _verify_setup(self): """Check that all is good. Raises: ValueError: If something is not good. """ # Not running as chief means that replicas are used. # In that case all Variables must have their device set. if not self._is_chief: for op in self._graph.get_operations(): if op.type in ["Variable", "VariableV2"] and not op.device: raise ValueError("When using replicas, all Variables must have " "their device set: %s" % op) # pylint: disable=g-doc-return-or-yield,broad-except @contextlib.contextmanager def managed_session(self, master="", config=None, start_standard_services=True, close_summary_writer=True): """Returns a context manager for a managed session. This context manager creates and automatically recovers a session. It optionally starts the standard services that handle checkpoints and summaries. It monitors exceptions raised from the `with` block or from the services and stops the supervisor as needed. The context manager is typically used as follows: ```python def train(): sv = tf.train.Supervisor(...) with sv.managed_session(<master>) as sess: for step in xrange(..): if sv.should_stop(): break sess.run(<my training op>) ...do other things needed at each training step... ``` An exception raised from the `with` block or one of the service threads is raised again when the block exits. This is done after stopping all threads and closing the session. For example, an `AbortedError` exception, raised in case of preemption of one of the workers in a distributed model, is raised again when the block exits. If you want to retry the training loop in case of preemption you can do it as follows: ```python def main(...): while True try: train() except tf.errors.Aborted: pass ``` As a special case, exceptions used for control flow, such as `OutOfRangeError` which reports that input queues are exhausted, are not raised again from the `with` block: they indicate a clean termination of the training loop and are considered normal termination. Args: master: name of the TensorFlow master to use. See the `tf.Session` constructor for how this is interpreted. config: Optional `ConfigProto` proto used to configure the session. Passed as-is to create the session. start_standard_services: Whether to start the standard services, such as checkpoint, summary and step counter. close_summary_writer: Whether to close the summary writer when closing the session. Defaults to True. Returns: A context manager that yields a `Session` restored from the latest checkpoint or initialized from scratch if not checkpoint exists. The session is closed when the `with` block exits. """ try: sess = self.prepare_or_wait_for_session( master=master, config=config, start_standard_services=start_standard_services) yield sess except Exception as e: self.request_stop(e) finally: try: # Request all the threads to stop and wait for them to do so. Any # exception raised by the threads is raised again from stop(). # Passing stop_grace_period_secs is for blocked enqueue/dequeue # threads which are not checking for `should_stop()`. They # will be stopped when we close the session further down. self.stop(close_summary_writer=close_summary_writer) finally: # Close the session to finish up all pending calls. We do not care # about exceptions raised when closing. This takes care of # blocked enqueue/dequeue calls. try: sess.close() except Exception: # Silently ignore exceptions raised by close(). pass # pylint: enable=g-doc-return-or-yield,broad-except class SVSummaryThread(coordinator.LooperThread): """A thread to save summaries on a timer.""" def __init__(self, sv, sess): """Create a SVSummaryThread. Args: sv: A `Supervisor`. sess: A `Session`. """ super(SVSummaryThread, self).__init__(sv.coord, sv.save_summaries_secs) self._sv = sv self._sess = sess def run_loop(self): if self._sv.global_step is not None: summary_strs, global_step = self._sess.run([self._sv.summary_op, self._sv.global_step]) else: summary_strs = self._sess.run(self._sv.summary_op) global_step = None if self._sv.summary_writer: logging.info("Recording summary at step %s.", global_step) self._sv.summary_writer.add_summary(summary_strs, global_step) class SVStepCounterThread(coordinator.LooperThread): """Threads to count steps and measure their duration.""" def __init__(self, sv, sess, step_counter=None): """Create a `SVStepCounterThread`. Args: sv: A `Supervisor`. sess: A `Session`. step_counter: A `Tensor` holding the step counter. By defaults, it uses sv.global_step. """ super(SVStepCounterThread, self).__init__(sv.coord, sv.save_summaries_secs) self._sv = sv self._sess = sess self._last_time = 0.0 self._last_step = 0 step_counter = sv.global_step if step_counter is None else step_counter self._step_counter = step_counter self._summary_tag = "%s/sec" % self._step_counter.op.name def start_loop(self): self._last_time = time.time() self._last_step = training_util.global_step( self._sess, self._step_counter) def run_loop(self): # Count the steps. current_step = training_util.global_step(self._sess, self._step_counter) added_steps = current_step - self._last_step self._last_step = current_step # Measure the elapsed time. current_time = time.time() elapsed_time = current_time - self._last_time self._last_time = current_time # Reports the number of steps done per second if elapsed_time > 0.: steps_per_sec = added_steps / elapsed_time else: steps_per_sec = float("inf") summary = Summary(value=[Summary.Value(tag=self._summary_tag, simple_value=steps_per_sec)]) if self._sv.summary_writer: self._sv.summary_writer.add_summary(summary, current_step) logging.log_first_n(logging.INFO, "%s: %g", 10, self._summary_tag, steps_per_sec) class SVTimerCheckpointThread(coordinator.LooperThread): """A thread to checkpoint on a timer.""" def __init__(self, sv, sess): """Create a `SVTimerCheckpointThread`. Args: sv: A `Supervisor`. sess: A `Session`. """ super(SVTimerCheckpointThread, self).__init__(sv.coord, sv.save_model_secs) self._sv = sv self._sess = sess def run_loop(self): logging.info("Saving checkpoint to path %s", self._sv.save_path) self._sv.saver.save(self._sess, self._sv.save_path, global_step=self._sv.global_step) if self._sv.summary_writer and self._sv.global_step is not None: current_step = training_util.global_step(self._sess, self._sv.global_step) self._sv.summary_writer.add_session_log( SessionLog(status=SessionLog.CHECKPOINT, checkpoint_path=self._sv.save_path), current_step) # TODO(sherrym): All non-PEP8 compliant names will be deprecated shortly. setattr(Supervisor, "PrepareSession", Supervisor.prepare_or_wait_for_session) setattr(Supervisor, "StartQueueRunners", Supervisor.start_queue_runners) setattr(Supervisor, "StartStandardServices", Supervisor.start_standard_services) setattr(Supervisor, "Stop", Supervisor.stop) setattr(Supervisor, "RequestStop", Supervisor.request_stop) setattr(Supervisor, "Loop", Supervisor.loop) setattr(Supervisor, "ShouldStop", Supervisor.should_stop) setattr(Supervisor, "StopOnException", Supervisor.stop_on_exception) setattr(Supervisor, "WaitForStop", Supervisor.wait_for_stop) setattr(Supervisor, "SummaryComputed", Supervisor.summary_computed)
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import abc from typing import Awaitable, Callable, Dict, Optional, Sequence, Union import pkg_resources import google.auth # type: ignore import google.api_core from google.api_core import exceptions as core_exceptions from google.api_core import gapic_v1 from google.api_core import retry as retries from google.auth import credentials as ga_credentials # type: ignore from google.oauth2 import service_account # type: ignore from google.cloud.dialogflowcx_v3beta1.types import transition_route_group from google.cloud.dialogflowcx_v3beta1.types import ( transition_route_group as gcdc_transition_route_group, ) from google.protobuf import empty_pb2 # type: ignore try: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=pkg_resources.get_distribution( "google-cloud-dialogflowcx", ).version, ) except pkg_resources.DistributionNotFound: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo() class TransitionRouteGroupsTransport(abc.ABC): """Abstract transport class for TransitionRouteGroups.""" AUTH_SCOPES = ( "https://www.googleapis.com/auth/cloud-platform", "https://www.googleapis.com/auth/dialogflow", ) DEFAULT_HOST: str = "dialogflow.googleapis.com" def __init__( self, *, host: str = DEFAULT_HOST, credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, **kwargs, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is mutually exclusive with credentials. scopes (Optional[Sequence[str]]): A list of scopes. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. always_use_jwt_access (Optional[bool]): Whether self signed JWT should be used for service account credentials. """ # Save the hostname. Default to port 443 (HTTPS) if none is specified. if ":" not in host: host += ":443" self._host = host scopes_kwargs = {"scopes": scopes, "default_scopes": self.AUTH_SCOPES} # Save the scopes. self._scopes = scopes # If no credentials are provided, then determine the appropriate # defaults. if credentials and credentials_file: raise core_exceptions.DuplicateCredentialArgs( "'credentials_file' and 'credentials' are mutually exclusive" ) if credentials_file is not None: credentials, _ = google.auth.load_credentials_from_file( credentials_file, **scopes_kwargs, quota_project_id=quota_project_id ) elif credentials is None: credentials, _ = google.auth.default( **scopes_kwargs, quota_project_id=quota_project_id ) # If the credentials are service account credentials, then always try to use self signed JWT. if ( always_use_jwt_access and isinstance(credentials, service_account.Credentials) and hasattr(service_account.Credentials, "with_always_use_jwt_access") ): credentials = credentials.with_always_use_jwt_access(True) # Save the credentials. self._credentials = credentials def _prep_wrapped_messages(self, client_info): # Precompute the wrapped methods. self._wrapped_methods = { self.list_transition_route_groups: gapic_v1.method.wrap_method( self.list_transition_route_groups, default_timeout=None, client_info=client_info, ), self.get_transition_route_group: gapic_v1.method.wrap_method( self.get_transition_route_group, default_timeout=None, client_info=client_info, ), self.create_transition_route_group: gapic_v1.method.wrap_method( self.create_transition_route_group, default_timeout=None, client_info=client_info, ), self.update_transition_route_group: gapic_v1.method.wrap_method( self.update_transition_route_group, default_timeout=None, client_info=client_info, ), self.delete_transition_route_group: gapic_v1.method.wrap_method( self.delete_transition_route_group, default_timeout=None, client_info=client_info, ), } def close(self): """Closes resources associated with the transport. .. warning:: Only call this method if the transport is NOT shared with other clients - this may cause errors in other clients! """ raise NotImplementedError() @property def list_transition_route_groups( self, ) -> Callable[ [transition_route_group.ListTransitionRouteGroupsRequest], Union[ transition_route_group.ListTransitionRouteGroupsResponse, Awaitable[transition_route_group.ListTransitionRouteGroupsResponse], ], ]: raise NotImplementedError() @property def get_transition_route_group( self, ) -> Callable[ [transition_route_group.GetTransitionRouteGroupRequest], Union[ transition_route_group.TransitionRouteGroup, Awaitable[transition_route_group.TransitionRouteGroup], ], ]: raise NotImplementedError() @property def create_transition_route_group( self, ) -> Callable[ [gcdc_transition_route_group.CreateTransitionRouteGroupRequest], Union[ gcdc_transition_route_group.TransitionRouteGroup, Awaitable[gcdc_transition_route_group.TransitionRouteGroup], ], ]: raise NotImplementedError() @property def update_transition_route_group( self, ) -> Callable[ [gcdc_transition_route_group.UpdateTransitionRouteGroupRequest], Union[ gcdc_transition_route_group.TransitionRouteGroup, Awaitable[gcdc_transition_route_group.TransitionRouteGroup], ], ]: raise NotImplementedError() @property def delete_transition_route_group( self, ) -> Callable[ [transition_route_group.DeleteTransitionRouteGroupRequest], Union[empty_pb2.Empty, Awaitable[empty_pb2.Empty]], ]: raise NotImplementedError() __all__ = ("TransitionRouteGroupsTransport",)
# Copyright 2012 NEC Corporation # All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # import json import logging import uuid import fixtures from oslo_serialization import jsonutils from requests_mock.contrib import fixture as mock_fixture import testtools from keystoneclient.auth.identity import v2 as ks_v2_auth from keystoneclient.auth.identity import v3 as ks_v3_auth from keystoneclient import exceptions as ks_exceptions from keystoneclient import fixture as ks_fixture from keystoneclient import session from neutronclient import client from neutronclient.common import exceptions USERNAME = 'testuser' USER_ID = 'testuser_id' TENANT_NAME = 'testtenant' TENANT_ID = 'testtenant_id' PASSWORD = 'password' ENDPOINT_URL = 'http://localurl' PUBLIC_ENDPOINT_URL = '%s/public' % ENDPOINT_URL ADMIN_ENDPOINT_URL = '%s/admin' % ENDPOINT_URL INTERNAL_ENDPOINT_URL = '%s/internal' % ENDPOINT_URL ENDPOINT_OVERRIDE = 'http://otherurl' TOKENID = uuid.uuid4().hex REGION = 'RegionOne' NOAUTH = 'noauth' KS_TOKEN_RESULT = ks_fixture.V2Token() KS_TOKEN_RESULT.set_scope() _s = KS_TOKEN_RESULT.add_service('network', 'Neutron Service') _s.add_endpoint(ENDPOINT_URL, region=REGION) ENDPOINTS_RESULT = { 'endpoints': [{ 'type': 'network', 'name': 'Neutron Service', 'region': REGION, 'adminURL': ENDPOINT_URL, 'internalURL': ENDPOINT_URL, 'publicURL': ENDPOINT_URL }] } BASE_URL = "http://keystone.example.com:5000/" V2_URL = "%sv2.0" % BASE_URL V3_URL = "%sv3" % BASE_URL _v2 = ks_fixture.V2Discovery(V2_URL) _v3 = ks_fixture.V3Discovery(V3_URL) V3_VERSION_LIST = jsonutils.dumps({'versions': {'values': [_v2, _v3]}}) V2_VERSION_ENTRY = {'version': _v2} V3_VERSION_ENTRY = {'version': _v3} def setup_keystone_v2(mrequests): v2_token = ks_fixture.V2Token(token_id=TOKENID) service = v2_token.add_service('network') service.add_endpoint(PUBLIC_ENDPOINT_URL, region=REGION) mrequests.register_uri('POST', '%s/tokens' % (V2_URL), json=v2_token) auth_session = session.Session() auth_plugin = ks_v2_auth.Password(V2_URL, 'xx', 'xx') return auth_session, auth_plugin def setup_keystone_v3(mrequests): mrequests.register_uri('GET', V3_URL, json=V3_VERSION_ENTRY) v3_token = ks_fixture.V3Token() service = v3_token.add_service('network') service.add_standard_endpoints(public=PUBLIC_ENDPOINT_URL, admin=ADMIN_ENDPOINT_URL, internal=INTERNAL_ENDPOINT_URL, region=REGION) mrequests.register_uri('POST', '%s/auth/tokens' % (V3_URL), text=json.dumps(v3_token), headers={'X-Subject-Token': TOKENID}) auth_session = session.Session() auth_plugin = ks_v3_auth.Password(V3_URL, username='xx', user_id='xx', user_domain_name='xx', user_domain_id='xx') return auth_session, auth_plugin AUTH_URL = V2_URL class CLITestAuthNoAuth(testtools.TestCase): def setUp(self): """Prepare the test environment.""" super(CLITestAuthNoAuth, self).setUp() self.requests = self.useFixture(mock_fixture.Fixture()) self.client = client.HTTPClient(username=USERNAME, tenant_name=TENANT_NAME, password=PASSWORD, endpoint_url=ENDPOINT_URL, auth_strategy=NOAUTH, region_name=REGION) def test_get_noauth(self): url = ENDPOINT_URL + '/resource' self.requests.get(ENDPOINT_URL + '/resource') self.client.do_request('/resource', 'GET') self.assertEqual(url, self.requests.last_request.url) self.assertEqual(self.client.endpoint_url, ENDPOINT_URL) class CLITestAuthKeystone(testtools.TestCase): def setUp(self): """Prepare the test environment.""" super(CLITestAuthKeystone, self).setUp() for var in ('http_proxy', 'HTTP_PROXY'): self.useFixture(fixtures.EnvironmentVariableFixture(var)) self.logger = self.useFixture(fixtures.FakeLogger(level=logging.DEBUG)) self.requests = self.useFixture(mock_fixture.Fixture()) self.client = client.construct_http_client( username=USERNAME, tenant_name=TENANT_NAME, password=PASSWORD, auth_url=AUTH_URL, region_name=REGION) def test_reused_token_get_auth_info(self): """Test that Client.get_auth_info() works even if client was instantiated with predefined token. """ token_id = uuid.uuid4().hex client_ = client.HTTPClient(username=USERNAME, tenant_name=TENANT_NAME, token=token_id, password=PASSWORD, auth_url=AUTH_URL, region_name=REGION) expected = {'auth_token': token_id, 'auth_tenant_id': None, 'auth_user_id': None, 'endpoint_url': self.client.endpoint_url} self.assertEqual(client_.get_auth_info(), expected) def test_get_token(self): auth_session, auth_plugin = setup_keystone_v2(self.requests) self.client = client.construct_http_client( username=USERNAME, tenant_name=TENANT_NAME, password=PASSWORD, auth_url=AUTH_URL, region_name=REGION, session=auth_session, auth=auth_plugin) m = self.requests.get(PUBLIC_ENDPOINT_URL + '/resource', request_headers={'X-Auth-Token': TOKENID}) self.client.do_request('/resource', 'GET') self.assertTrue(m.called) def test_refresh_token(self): token_id = uuid.uuid4().hex text = uuid.uuid4().hex self.client.auth_token = token_id self.client.endpoint_url = ENDPOINT_URL res_url = ENDPOINT_URL + '/resource' v2_url = AUTH_URL + '/tokens' # token_id gives 401, KS_TOKEN_RESULT gives 200 self.requests.get(res_url, request_headers={'X-Auth-Token': token_id}, status_code=401) self.requests.get( res_url, text=text, status_code=200, request_headers={'X-Auth-Token': KS_TOKEN_RESULT.token_id}) self.requests.post(v2_url, json=KS_TOKEN_RESULT) resp = self.client.do_request('/resource', 'GET') self.assertEqual(text, resp[1]) self.assertEqual(3, len(self.requests.request_history)) self.assertEqual(res_url, self.requests.request_history[0].url) self.assertEqual(v2_url, self.requests.request_history[1].url) self.assertEqual(res_url, self.requests.request_history[2].url) def test_refresh_token_no_auth_url(self): self.client.auth_url = None token_id = uuid.uuid4().hex self.client.auth_token = token_id self.client.endpoint_url = ENDPOINT_URL self.requests.get(ENDPOINT_URL + '/resource', status_code=401) self.assertRaises(exceptions.NoAuthURLProvided, self.client.do_request, '/resource', 'GET') def test_get_endpoint_url_with_invalid_auth_url(self): # Handle the case when auth_url is not provided self.client.auth_url = None self.assertRaises(exceptions.NoAuthURLProvided, self.client._get_endpoint_url) def test_get_endpoint_url(self): token_id = uuid.uuid4().hex self.client.auth_token = token_id self.requests.get(AUTH_URL + '/tokens/%s/endpoints' % token_id, json=ENDPOINTS_RESULT) self.requests.get(ENDPOINT_URL + '/resource') self.client.do_request('/resource', 'GET') self.assertEqual(token_id, self.requests.last_request.headers['X-Auth-Token']) def test_use_given_endpoint_url(self): self.client = client.HTTPClient( username=USERNAME, tenant_name=TENANT_NAME, password=PASSWORD, auth_url=AUTH_URL, region_name=REGION, endpoint_url=ENDPOINT_OVERRIDE) self.assertEqual(self.client.endpoint_url, ENDPOINT_OVERRIDE) token_id = uuid.uuid4().hex self.client.auth_token = token_id self.requests.get(ENDPOINT_OVERRIDE + '/resource') self.client.do_request('/resource', 'GET') self.assertEqual(self.client.endpoint_url, ENDPOINT_OVERRIDE) self.assertEqual(token_id, self.requests.last_request.headers['X-Auth-Token']) def test_get_endpoint_url_other(self): self.client = client.HTTPClient( username=USERNAME, tenant_name=TENANT_NAME, password=PASSWORD, auth_url=AUTH_URL, region_name=REGION, endpoint_type='otherURL') token_id = uuid.uuid4().hex self.client.auth_token = token_id self.requests.get(AUTH_URL + '/tokens/%s/endpoints' % token_id, json=ENDPOINTS_RESULT) self.assertRaises(exceptions.EndpointTypeNotFound, self.client.do_request, '/resource', 'GET') def test_get_endpoint_url_failed(self): token_id = uuid.uuid4().hex self.client.auth_token = token_id self.requests.get(AUTH_URL + '/tokens/%s/endpoints' % token_id, status_code=401) self.requests.post(AUTH_URL + '/tokens', json=KS_TOKEN_RESULT) m = self.requests.get(ENDPOINT_URL + '/resource') self.client.do_request('/resource', 'GET') self.assertEqual(KS_TOKEN_RESULT.token_id, m.last_request.headers['X-Auth-Token']) def test_endpoint_type(self): auth_session, auth_plugin = setup_keystone_v3(self.requests) # Test default behavior is to choose public. self.client = client.construct_http_client( username=USERNAME, tenant_name=TENANT_NAME, password=PASSWORD, auth_url=AUTH_URL, region_name=REGION, session=auth_session, auth=auth_plugin) self.assertEqual(self.client.endpoint_url, PUBLIC_ENDPOINT_URL) # Test admin url self.client = client.construct_http_client( username=USERNAME, tenant_name=TENANT_NAME, password=PASSWORD, auth_url=AUTH_URL, region_name=REGION, endpoint_type='adminURL', session=auth_session, auth=auth_plugin) self.assertEqual(self.client.endpoint_url, ADMIN_ENDPOINT_URL) # Test public url self.client = client.construct_http_client( username=USERNAME, tenant_name=TENANT_NAME, password=PASSWORD, auth_url=AUTH_URL, region_name=REGION, endpoint_type='publicURL', session=auth_session, auth=auth_plugin) self.assertEqual(self.client.endpoint_url, PUBLIC_ENDPOINT_URL) # Test internal url self.client = client.construct_http_client( username=USERNAME, tenant_name=TENANT_NAME, password=PASSWORD, auth_url=AUTH_URL, region_name=REGION, endpoint_type='internalURL', session=auth_session, auth=auth_plugin) self.assertEqual(self.client.endpoint_url, INTERNAL_ENDPOINT_URL) # Test url that isn't found in the service catalog self.client = client.construct_http_client( username=USERNAME, tenant_name=TENANT_NAME, password=PASSWORD, auth_url=AUTH_URL, region_name=REGION, endpoint_type='privateURL', session=auth_session, auth=auth_plugin) self.assertRaises( ks_exceptions.EndpointNotFound, getattr, self.client, 'endpoint_url') def test_strip_credentials_from_log(self): m = self.requests.post(AUTH_URL + '/tokens', json=KS_TOKEN_RESULT) self.requests.get(ENDPOINT_URL + '/resource') self.client.do_request('/resource', 'GET') self.assertIn('REDACTED', self.logger.output) self.assertNotIn(self.client.password, self.logger.output) self.assertNotIn('REDACTED', m.last_request.body) self.assertIn(self.client.password, m.last_request.body) class CLITestAuthKeystoneWithId(CLITestAuthKeystone): def setUp(self): """Prepare the test environment.""" super(CLITestAuthKeystoneWithId, self).setUp() self.client = client.HTTPClient(user_id=USER_ID, tenant_id=TENANT_ID, password=PASSWORD, auth_url=AUTH_URL, region_name=REGION) class CLITestAuthKeystoneWithIdandName(CLITestAuthKeystone): def setUp(self): """Prepare the test environment.""" super(CLITestAuthKeystoneWithIdandName, self).setUp() self.client = client.HTTPClient(username=USERNAME, user_id=USER_ID, tenant_id=TENANT_ID, tenant_name=TENANT_NAME, password=PASSWORD, auth_url=AUTH_URL, region_name=REGION) class TestKeystoneClientVersions(testtools.TestCase): def setUp(self): """Prepare the test environment.""" super(TestKeystoneClientVersions, self).setUp() self.requests = self.useFixture(mock_fixture.Fixture()) def test_v2_auth(self): auth_session, auth_plugin = setup_keystone_v2(self.requests) self.client = client.construct_http_client( username=USERNAME, tenant_name=TENANT_NAME, password=PASSWORD, auth_url=AUTH_URL, region_name=REGION, session=auth_session, auth=auth_plugin) m = self.requests.get(PUBLIC_ENDPOINT_URL + '/resource') self.client.do_request('/resource', 'GET') self.assertTrue(m.called) def test_v3_auth(self): auth_session, auth_plugin = setup_keystone_v3(self.requests) self.client = client.construct_http_client( user_id=USER_ID, tenant_id=TENANT_ID, password=PASSWORD, auth_url=V3_URL, region_name=REGION, session=auth_session, auth=auth_plugin) m = self.requests.get(PUBLIC_ENDPOINT_URL + '/resource') self.client.do_request('/resource', 'GET') self.assertTrue(m.called)
# # Copyright 2014 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd import pytz from datetime import datetime from dateutil import rrule from zipline.utils.tradingcalendar import end, canonicalize_datetime start = pd.Timestamp('1994-01-01', tz='UTC') def get_non_trading_days(start, end): non_trading_rules = [] start = canonicalize_datetime(start) end = canonicalize_datetime(end) weekends = rrule.rrule( rrule.YEARLY, byweekday=(rrule.SA, rrule.SU), cache=True, dtstart=start, until=end ) non_trading_rules.append(weekends) # Universal confraternization conf_universal = rrule.rrule( rrule.MONTHLY, byyearday=1, cache=True, dtstart=start, until=end ) non_trading_rules.append(conf_universal) # Sao Paulo city birthday aniversario_sao_paulo = rrule.rrule( rrule.MONTHLY, bymonth=1, bymonthday=25, cache=True, dtstart=start, until=end ) non_trading_rules.append(aniversario_sao_paulo) # Carnival Monday carnaval_segunda = rrule.rrule( rrule.MONTHLY, byeaster=-48, cache=True, dtstart=start, until=end ) non_trading_rules.append(carnaval_segunda) # Carnival Tuesday carnaval_terca = rrule.rrule( rrule.MONTHLY, byeaster=-47, cache=True, dtstart=start, until=end ) non_trading_rules.append(carnaval_terca) # Passion of the Christ sexta_paixao = rrule.rrule( rrule.MONTHLY, byeaster=-2, cache=True, dtstart=start, until=end ) non_trading_rules.append(sexta_paixao) # Corpus Christi corpus_christi = rrule.rrule( rrule.MONTHLY, byeaster=60, cache=True, dtstart=start, until=end ) non_trading_rules.append(corpus_christi) tiradentes = rrule.rrule( rrule.MONTHLY, bymonth=4, bymonthday=21, cache=True, dtstart=start, until=end ) non_trading_rules.append(tiradentes) # Labor day dia_trabalho = rrule.rrule( rrule.MONTHLY, bymonth=5, bymonthday=1, cache=True, dtstart=start, until=end ) non_trading_rules.append(dia_trabalho) # Constitutionalist Revolution constitucionalista = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=9, cache=True, dtstart=datetime(1997, 1, 1, tzinfo=pytz.utc), until=end ) non_trading_rules.append(constitucionalista) # Independency day independencia = rrule.rrule( rrule.MONTHLY, bymonth=9, bymonthday=7, cache=True, dtstart=start, until=end ) non_trading_rules.append(independencia) # Our Lady of Aparecida aparecida = rrule.rrule( rrule.MONTHLY, bymonth=10, bymonthday=12, cache=True, dtstart=start, until=end ) non_trading_rules.append(aparecida) # All Souls' day finados = rrule.rrule( rrule.MONTHLY, bymonth=11, bymonthday=2, cache=True, dtstart=start, until=end ) non_trading_rules.append(finados) # Proclamation of the Republic proclamacao_republica = rrule.rrule( rrule.MONTHLY, bymonth=11, bymonthday=15, cache=True, dtstart=start, until=end ) non_trading_rules.append(proclamacao_republica) # Day of Black Awareness consciencia_negra = rrule.rrule( rrule.MONTHLY, bymonth=11, bymonthday=20, cache=True, dtstart=datetime(2004, 1, 1, tzinfo=pytz.utc), until=end ) non_trading_rules.append(consciencia_negra) # Christmas Eve vespera_natal = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=24, cache=True, dtstart=start, until=end ) non_trading_rules.append(vespera_natal) # Christmas natal = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=25, cache=True, dtstart=start, until=end ) non_trading_rules.append(natal) # New Year Eve ano_novo = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=31, cache=True, dtstart=start, until=end ) non_trading_rules.append(ano_novo) # New Year Eve on saturday ano_novo_sab = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=30, byweekday=rrule.FR, cache=True, dtstart=start, until=end ) non_trading_rules.append(ano_novo_sab) non_trading_ruleset = rrule.rruleset() for rule in non_trading_rules: non_trading_ruleset.rrule(rule) non_trading_days = non_trading_ruleset.between(start, end, inc=True) non_trading_days.sort() return pd.DatetimeIndex(non_trading_days) non_trading_days = get_non_trading_days(start, end) trading_day = pd.tseries.offsets.CDay(holidays=non_trading_days) def get_trading_days(start, end, trading_day=trading_day): return pd.date_range(start=start.date(), end=end.date(), freq=trading_day).tz_localize('UTC') trading_days = get_trading_days(start, end) # Ash Wednesday quarta_cinzas = rrule.rrule( rrule.MONTHLY, byeaster=-46, cache=True, dtstart=start, until=end ) def get_early_closes(start, end): # TSX closed at 1:00 PM on december 24th. start = canonicalize_datetime(start) end = canonicalize_datetime(end) early_close_rules = [] early_close_rules.append(quarta_cinzas) early_close_ruleset = rrule.rruleset() for rule in early_close_rules: early_close_ruleset.rrule(rule) early_closes = early_close_ruleset.between(start, end, inc=True) early_closes.sort() return pd.DatetimeIndex(early_closes) early_closes = get_early_closes(start, end) def get_open_and_closes(trading_days, early_closes): open_and_closes = pd.DataFrame(index=trading_days, columns=('market_open', 'market_close')) for day in trading_days: # only "early close" event in Bovespa actually is a late start # as the market only opens at 1pm open_hour = 13 if day in quarta_cinzas else 10 market_open = pd.Timestamp( datetime( year=day.year, month=day.month, day=day.day, hour=open_hour, minute=00), tz='America/Sao_Paulo').tz_convert('UTC') market_close = pd.Timestamp( datetime( year=day.year, month=day.month, day=day.day, hour=16), tz='America/Sao_Paulo').tz_convert('UTC') open_and_closes.loc[day, 'market_open'] = market_open open_and_closes.loc[day, 'market_close'] = market_close return open_and_closes open_and_closes = get_open_and_closes(trading_days, early_closes)
#!/usr/bin/python import unittest import math import random import rarfile import os, sys import subprocess try: subprocess.Popen("rar", stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell = True) except: print >> sys.stderr, "You do not have the 'rar' binary, please install!" sys.exit(1) class PyarrCheck(unittest.TestCase): def setUp(self): self.scriptdir = os.path.realpath(os.path.dirname(sys.argv[0])) _, self.scriptname = os.path.split(sys.argv[0]) self.scriptpath = os.path.normpath(os.path.join(self.scriptdir, self.scriptname)) pathname, scriptname = os.path.split(sys.argv[0]) self.testdir = os.path.join(self.scriptdir, 'rartest') self.rarmntdir = os.path.join(self.testdir, 'rarmnt') self.testfiledir = os.path.join(self.testdir, 'testfiles') self.testarchivedir = os.path.join(self.testdir, 'testarchives') self.pyarrpath = self.scriptdir + '/../pyarrfs.py' self.mkdir(self.testdir) self.mkdir(self.rarmntdir) self.mkdir(self.testfiledir) self.mkdir(self.testarchivedir) # make sure mount dir is empty os.system('fusermount -q -z -u ' + self.rarmntdir) try: os.system(self.pyarrpath + ' ' + self.rarmntdir) except: pass filedata = [ [ 'test1', 'this is testfile1 bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla\n' ], [ 'test2', 'crap crap crap crap\n' ] ] filedata.append(['test3', self.generate_content(200000)]) self.files = [] for entry in filedata: self.files.append(entry[0]) self.create_test_files(filedata) self.uncompressed_rar_archive = 'testarchive1.rar' self.create_uncompressed_rar_archive('testarchive1.rar', self.files) def mkdir(self, path): if not os.path.exists(path): os.mkdir(path) self.assertTrue(os.path.exists(path)) def create_test_files(self, filedata): for entry in filedata: filename = entry[0] filedata = entry[1] f = open(os.path.join(self.testfiledir, filename), 'w') f.write(filedata) f.close() def create_uncompressed_rar_archive(self, rarfile, files): os.chdir(self.testarchivedir) for file in files: filepath = os.path.join(self.testfiledir, file) cmd = 'rar a -inul -ep -m0 ' + os.path.join(self.testarchivedir, rarfile) + ' ' + filepath os.system(cmd) def tearDown(self): os.chdir(self.scriptdir) os.system('fusermount -q -z -u ' + self.rarmntdir) import shutil # shutil.rmtree(self.testdir) def generate_content(self, size = 0, population = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'): result = '' for i in xrange(0, size): result += str(random.choice(population)) return result def generate_content_code(self, size = 0): # round off size to nearest number divisible by 10 ns = size - ((size + 10) % 10) result = '' for i in xrange(0, size): result += "$%09d" % (i) return result def test_read_sequential(self): """Read the entire file sequentially from start """ for file in self.files: rar_file = os.path.normpath(os.path.join(self.rarmntdir, '.' + self.testarchivedir, self.uncompressed_rar_archive, file)) raw_file = os.path.normpath(os.path.join(self.testfiledir, file)) rawf = open(raw_file, 'r') rarf = open(rar_file, 'r') self.assertEqual(rarf.read(), rawf.read(), 'mismatch in sequential read') rarf.close() rawf.close() def test_seek_whence0_1(self): """Single seek from start (whence = 0) to random location in file """ for file in self.files: rar_file = os.path.normpath(os.path.join(self.rarmntdir, '.' + self.testarchivedir, self.uncompressed_rar_archive, file)) raw_file = os.path.normpath(os.path.join(self.testfiledir, file)) file_size = os.path.getsize(raw_file) rarf = open(rar_file, 'r') rawf = open(raw_file, 'r') for i in xrange(0, 10000): byte = random.randrange(0, file_size) rawf.seek(byte) rarf.seek(byte) self.assertEqual(rarf.read(1), rawf.read(1), 'mismatch in seek (whence = 0) test 1') rarf.close() rawf.close() def test_seek_whence0_2(self): """Two reads, first from start (whence = 0) to random byte in first half of file and second seek() from start (whence = 0) to second half of file """ for file in self.files: rar_file = os.path.normpath(os.path.join(self.rarmntdir, '.' + self.testarchivedir, self.uncompressed_rar_archive, file)) raw_file = os.path.normpath(os.path.join(self.testfiledir, file)) file_size = os.path.getsize(raw_file) rarf = open(rar_file, 'r') rawf = open(raw_file, 'r') for i in xrange(0, 10000): byte = random.randrange(0, math.floor(file_size/2)) rawf.seek(byte) rarf.seek(byte) self.assertEqual(rarf.read(1), rawf.read(1), 'mismatch in seek (whence = 0) test 2') byte = random.randrange(math.floor(file_size/2), file_size) rawf.seek(byte) rarf.seek(byte) self.assertEqual(rarf.read(1), rawf.read(1), 'mismatch in seek (whence = 0) test 2') rarf.close() rawf.close() def test_seek_whence0_3(self): """Two reads, first from start (whence = 0) to random byte in second half of file and second seek() from start (whence = 0) to first half of file """ for file in self.files: rar_file = os.path.normpath(os.path.join(self.rarmntdir, '.' + self.testarchivedir, self.uncompressed_rar_archive, file)) raw_file = os.path.normpath(os.path.join(self.testfiledir, file)) file_size = os.path.getsize(raw_file) rarf = open(rar_file, 'r') rawf = open(raw_file, 'r') for i in xrange(0, 10000): byte = random.randrange(math.floor(file_size/2), file_size) rawf.seek(byte) rarf.seek(byte) self.assertEqual(rarf.read(1), rawf.read(1), 'mismatch in seek (whence = 0) test 3') byte = random.randrange(0, math.floor(file_size/2)) rawf.seek(byte) rarf.seek(byte) self.assertEqual(rarf.read(1), rawf.read(1), 'mismatch in seek (whence = 0) test 3') rarf.close() rawf.close() def test_seek_whence2_1(self): """Single seek from end (whence = 2) to random location in file """ for file in self.files: rar_file = os.path.normpath(os.path.join(self.rarmntdir, '.' + self.testarchivedir, self.uncompressed_rar_archive, file)) raw_file = os.path.normpath(os.path.join(self.testfiledir, file)) file_size = os.path.getsize(raw_file) rarf = open(rar_file, 'r') rawf = open(raw_file, 'r') for i in xrange(0, 10000): byte = random.randrange(0, file_size) rawf.seek(-byte, 2) rarf.seek(-byte, 2) self.assertEqual(rarf.read(1), rawf.read(1), 'mismatch in seek (whence = 2) test 1') rarf.close() rawf.close() if __name__ == '__main__': unittest.main()
# Copyright 2013 dotCloud inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from . import fake_stat from docker import constants CURRENT_VERSION = 'v{0}'.format(constants.DEFAULT_DOCKER_API_VERSION) FAKE_CONTAINER_ID = '3cc2351ab11b' FAKE_IMAGE_ID = 'e9aa60c60128' FAKE_EXEC_ID = 'd5d177f121dc' FAKE_IMAGE_NAME = 'test_image' FAKE_TARBALL_PATH = '/path/to/tarball' FAKE_REPO_NAME = 'repo' FAKE_TAG_NAME = 'tag' FAKE_FILE_NAME = 'file' FAKE_URL = 'myurl' FAKE_PATH = '/path' FAKE_VOLUME_NAME = 'perfectcherryblossom' # Each method is prefixed with HTTP method (get, post...) # for clarity and readability def get_fake_raw_version(): status_code = 200 response = { "ApiVersion": "1.18", "GitCommit": "fake-commit", "GoVersion": "go1.3.3", "Version": "1.5.0" } return status_code, response def get_fake_version(): status_code = 200 response = {'GoVersion': '1', 'Version': '1.1.1', 'GitCommit': 'deadbeef+CHANGES'} return status_code, response def get_fake_info(): status_code = 200 response = {'Containers': 1, 'Images': 1, 'Debug': False, 'MemoryLimit': False, 'SwapLimit': False, 'IPv4Forwarding': True} return status_code, response def get_fake_search(): status_code = 200 response = [{'Name': 'busybox', 'Description': 'Fake Description'}] return status_code, response def get_fake_images(): status_code = 200 response = [{ 'Id': FAKE_IMAGE_ID, 'Created': '2 days ago', 'Repository': 'busybox', 'RepoTags': ['busybox:latest', 'busybox:1.0'], }] return status_code, response def get_fake_image_history(): status_code = 200 response = [ { "Id": "b750fe79269d", "Created": 1364102658, "CreatedBy": "/bin/bash" }, { "Id": "27cf78414709", "Created": 1364068391, "CreatedBy": "" } ] return status_code, response def post_fake_import_image(): status_code = 200 response = 'Import messages...' return status_code, response def get_fake_containers(): status_code = 200 response = [{ 'Id': FAKE_CONTAINER_ID, 'Image': 'busybox:latest', 'Created': '2 days ago', 'Command': 'true', 'Status': 'fake status' }] return status_code, response def post_fake_start_container(): status_code = 200 response = {'Id': FAKE_CONTAINER_ID} return status_code, response def post_fake_resize_container(): status_code = 200 response = {'Id': FAKE_CONTAINER_ID} return status_code, response def post_fake_create_container(): status_code = 200 response = {'Id': FAKE_CONTAINER_ID} return status_code, response def get_fake_inspect_container(tty=False): status_code = 200 response = { 'Id': FAKE_CONTAINER_ID, 'Config': {'Privileged': True, 'Tty': tty}, 'ID': FAKE_CONTAINER_ID, 'Image': 'busybox:latest', "State": { "Running": True, "Pid": 0, "ExitCode": 0, "StartedAt": "2013-09-25T14:01:18.869545111+02:00", "Ghost": False }, "MacAddress": "02:42:ac:11:00:0a" } return status_code, response def get_fake_inspect_image(): status_code = 200 response = { 'id': FAKE_IMAGE_ID, 'parent': "27cf784147099545", 'created': "2013-03-23T22:24:18.818426-07:00", 'container': FAKE_CONTAINER_ID, 'container_config': { "Hostname": "", "User": "", "Memory": 0, "MemorySwap": 0, "AttachStdin": False, "AttachStdout": False, "AttachStderr": False, "PortSpecs": "", "Tty": True, "OpenStdin": True, "StdinOnce": False, "Env": "", "Cmd": ["/bin/bash"], "Dns": "", "Image": "base", "Volumes": "", "VolumesFrom": "", "WorkingDir": "" }, 'Size': 6823592 } return status_code, response def get_fake_port(): status_code = 200 response = { 'HostConfig': { 'Binds': None, 'ContainerIDFile': '', 'Links': None, 'LxcConf': None, 'PortBindings': { '1111': None, '1111/tcp': [{'HostIp': '127.0.0.1', 'HostPort': '4567'}], '2222': None }, 'Privileged': False, 'PublishAllPorts': False }, 'NetworkSettings': { 'Bridge': 'docker0', 'PortMapping': None, 'Ports': { '1111': None, '1111/tcp': [{'HostIp': '127.0.0.1', 'HostPort': '4567'}], '2222': None}, 'MacAddress': '02:42:ac:11:00:0a' } } return status_code, response def get_fake_insert_image(): status_code = 200 response = {'StatusCode': 0} return status_code, response def get_fake_wait(): status_code = 200 response = {'StatusCode': 0} return status_code, response def get_fake_logs(): status_code = 200 response = (b'\x01\x00\x00\x00\x00\x00\x00\x11Flowering Nights\n' b'\x01\x00\x00\x00\x00\x00\x00\x10(Sakuya Iyazoi)\n') return status_code, response def get_fake_diff(): status_code = 200 response = [{'Path': '/test', 'Kind': 1}] return status_code, response def get_fake_events(): status_code = 200 response = [{'status': 'stop', 'id': FAKE_CONTAINER_ID, 'from': FAKE_IMAGE_ID, 'time': 1423247867}] return status_code, response def get_fake_export(): status_code = 200 response = 'Byte Stream....' return status_code, response def post_fake_exec_create(): status_code = 200 response = {'Id': FAKE_EXEC_ID} return status_code, response def post_fake_exec_start(): status_code = 200 response = (b'\x01\x00\x00\x00\x00\x00\x00\x11bin\nboot\ndev\netc\n' b'\x01\x00\x00\x00\x00\x00\x00\x12lib\nmnt\nproc\nroot\n' b'\x01\x00\x00\x00\x00\x00\x00\x0csbin\nusr\nvar\n') return status_code, response def post_fake_exec_resize(): status_code = 201 return status_code, '' def get_fake_exec_inspect(): return 200, { 'OpenStderr': True, 'OpenStdout': True, 'Container': get_fake_inspect_container()[1], 'Running': False, 'ProcessConfig': { 'arguments': ['hello world'], 'tty': False, 'entrypoint': 'echo', 'privileged': False, 'user': '' }, 'ExitCode': 0, 'ID': FAKE_EXEC_ID, 'OpenStdin': False } def post_fake_stop_container(): status_code = 200 response = {'Id': FAKE_CONTAINER_ID} return status_code, response def post_fake_kill_container(): status_code = 200 response = {'Id': FAKE_CONTAINER_ID} return status_code, response def post_fake_pause_container(): status_code = 200 response = {'Id': FAKE_CONTAINER_ID} return status_code, response def post_fake_unpause_container(): status_code = 200 response = {'Id': FAKE_CONTAINER_ID} return status_code, response def post_fake_restart_container(): status_code = 200 response = {'Id': FAKE_CONTAINER_ID} return status_code, response def post_fake_rename_container(): status_code = 204 return status_code, None def delete_fake_remove_container(): status_code = 200 response = {'Id': FAKE_CONTAINER_ID} return status_code, response def post_fake_image_create(): status_code = 200 response = {'Id': FAKE_IMAGE_ID} return status_code, response def delete_fake_remove_image(): status_code = 200 response = {'Id': FAKE_IMAGE_ID} return status_code, response def get_fake_get_image(): status_code = 200 response = 'Byte Stream....' return status_code, response def post_fake_load_image(): status_code = 200 response = {'Id': FAKE_IMAGE_ID} return status_code, response def post_fake_commit(): status_code = 200 response = {'Id': FAKE_CONTAINER_ID} return status_code, response def post_fake_push(): status_code = 200 response = {'Id': FAKE_IMAGE_ID} return status_code, response def post_fake_build_container(): status_code = 200 response = {'Id': FAKE_CONTAINER_ID} return status_code, response def post_fake_tag_image(): status_code = 200 response = {'Id': FAKE_IMAGE_ID} return status_code, response def get_fake_stats(): status_code = 200 response = fake_stat.OBJ return status_code, response def get_fake_volume_list(): status_code = 200 response = { 'Volumes': [ { 'Name': 'perfectcherryblossom', 'Driver': 'local', 'Mountpoint': '/var/lib/docker/volumes/perfectcherryblossom' }, { 'Name': 'subterraneananimism', 'Driver': 'local', 'Mountpoint': '/var/lib/docker/volumes/subterraneananimism' } ] } return status_code, response def get_fake_volume(): status_code = 200 response = { 'Name': 'perfectcherryblossom', 'Driver': 'local', 'Mountpoint': '/var/lib/docker/volumes/perfectcherryblossom' } return status_code, response def fake_remove_volume(): return 204, None # Maps real api url to fake response callback prefix = 'http+docker://localunixsocket' fake_responses = { '{0}/version'.format(prefix): get_fake_raw_version, '{1}/{0}/version'.format(CURRENT_VERSION, prefix): get_fake_version, '{1}/{0}/info'.format(CURRENT_VERSION, prefix): get_fake_info, '{1}/{0}/images/search'.format(CURRENT_VERSION, prefix): get_fake_search, '{1}/{0}/images/json'.format(CURRENT_VERSION, prefix): get_fake_images, '{1}/{0}/images/test_image/history'.format(CURRENT_VERSION, prefix): get_fake_image_history, '{1}/{0}/images/create'.format(CURRENT_VERSION, prefix): post_fake_import_image, '{1}/{0}/containers/json'.format(CURRENT_VERSION, prefix): get_fake_containers, '{1}/{0}/containers/3cc2351ab11b/start'.format(CURRENT_VERSION, prefix): post_fake_start_container, '{1}/{0}/containers/3cc2351ab11b/resize'.format(CURRENT_VERSION, prefix): post_fake_resize_container, '{1}/{0}/containers/3cc2351ab11b/json'.format(CURRENT_VERSION, prefix): get_fake_inspect_container, '{1}/{0}/containers/3cc2351ab11b/rename'.format(CURRENT_VERSION, prefix): post_fake_rename_container, '{1}/{0}/images/e9aa60c60128/tag'.format(CURRENT_VERSION, prefix): post_fake_tag_image, '{1}/{0}/containers/3cc2351ab11b/wait'.format(CURRENT_VERSION, prefix): get_fake_wait, '{1}/{0}/containers/3cc2351ab11b/logs'.format(CURRENT_VERSION, prefix): get_fake_logs, '{1}/{0}/containers/3cc2351ab11b/changes'.format(CURRENT_VERSION, prefix): get_fake_diff, '{1}/{0}/containers/3cc2351ab11b/export'.format(CURRENT_VERSION, prefix): get_fake_export, '{1}/{0}/containers/3cc2351ab11b/exec'.format(CURRENT_VERSION, prefix): post_fake_exec_create, '{1}/{0}/exec/d5d177f121dc/start'.format(CURRENT_VERSION, prefix): post_fake_exec_start, '{1}/{0}/exec/d5d177f121dc/json'.format(CURRENT_VERSION, prefix): get_fake_exec_inspect, '{1}/{0}/exec/d5d177f121dc/resize'.format(CURRENT_VERSION, prefix): post_fake_exec_resize, '{1}/{0}/containers/3cc2351ab11b/stats'.format(CURRENT_VERSION, prefix): get_fake_stats, '{1}/{0}/containers/3cc2351ab11b/stop'.format(CURRENT_VERSION, prefix): post_fake_stop_container, '{1}/{0}/containers/3cc2351ab11b/kill'.format(CURRENT_VERSION, prefix): post_fake_kill_container, '{1}/{0}/containers/3cc2351ab11b/pause'.format(CURRENT_VERSION, prefix): post_fake_pause_container, '{1}/{0}/containers/3cc2351ab11b/unpause'.format(CURRENT_VERSION, prefix): post_fake_unpause_container, '{1}/{0}/containers/3cc2351ab11b/json'.format(CURRENT_VERSION, prefix): get_fake_port, '{1}/{0}/containers/3cc2351ab11b/restart'.format(CURRENT_VERSION, prefix): post_fake_restart_container, '{1}/{0}/containers/3cc2351ab11b'.format(CURRENT_VERSION, prefix): delete_fake_remove_container, '{1}/{0}/images/create'.format(CURRENT_VERSION, prefix): post_fake_image_create, '{1}/{0}/images/e9aa60c60128'.format(CURRENT_VERSION, prefix): delete_fake_remove_image, '{1}/{0}/images/e9aa60c60128/get'.format(CURRENT_VERSION, prefix): get_fake_get_image, '{1}/{0}/images/load'.format(CURRENT_VERSION, prefix): post_fake_load_image, '{1}/{0}/images/test_image/json'.format(CURRENT_VERSION, prefix): get_fake_inspect_image, '{1}/{0}/images/test_image/insert'.format(CURRENT_VERSION, prefix): get_fake_insert_image, '{1}/{0}/images/test_image/push'.format(CURRENT_VERSION, prefix): post_fake_push, '{1}/{0}/commit'.format(CURRENT_VERSION, prefix): post_fake_commit, '{1}/{0}/containers/create'.format(CURRENT_VERSION, prefix): post_fake_create_container, '{1}/{0}/build'.format(CURRENT_VERSION, prefix): post_fake_build_container, '{1}/{0}/events'.format(CURRENT_VERSION, prefix): get_fake_events, ('{1}/{0}/volumes'.format(CURRENT_VERSION, prefix), 'GET'): get_fake_volume_list, ('{1}/{0}/volumes'.format(CURRENT_VERSION, prefix), 'POST'): get_fake_volume, ('{1}/{0}/volumes/{2}'.format( CURRENT_VERSION, prefix, FAKE_VOLUME_NAME ), 'GET'): get_fake_volume, ('{1}/{0}/volumes/{2}'.format( CURRENT_VERSION, prefix, FAKE_VOLUME_NAME ), 'DELETE'): fake_remove_volume, }
''' Created on Feb 20, 2013 @author: Maribel Acosta @author: Fabian Floeck ''' from wmf import dump from difflib import Differ from time import time from structures.Revision import Revision from structures.Paragraph import Paragraph from structures.Sentence import Sentence from structures.Word import Word from structures import Text from etc.Relation import Relation from sys import argv,exit import getopt # Container of revisions. revisions = {} revision_order = [] # Hash tables. paragraphs_ht = {} sentences_ht = {} spam = [] # SPAM detection variables. CHANGE_PERCENTAGE = -0.40 PREVIOUS_LENGTH = 1000 CURR_LENGTH = 1000 FLAG = "move" UNMATCHED_PARAGRAPH = 0.0 WORD_DENSITY = 10 WORD_LEN = 100 def analyseArticle(file_name): # Container of relationships. relations = {} # Revisions to compare. revision_curr = Revision() revision_prev = Revision() text_curr = None # Access the file. dumpIterator = dump.Iterator(file_name) # Iterate over the pages. for page in dumpIterator.readPages(): i = 0 # Iterate over revisions of the article. for revision in page.readRevisions(): vandalism = False #print "processing rev", revision.getId() # Update the information about the previous revision. revision_prev = revision_curr if (revision.getSha1() == None): revision.setSha1(Text.calculateHash(revision.getText().encode("utf-8"))) if (revision.getSha1() in spam): vandalism = True #TODO: SPAM detection: DELETION if (revision.getComment()!= None and revision.getComment().find(FLAG) > 0): pass else: if (revision_prev.length > PREVIOUS_LENGTH) and (len(revision.getText()) < CURR_LENGTH) and (((len(revision.getText())-revision_prev.length)/float(revision_prev.length)) <= CHANGE_PERCENTAGE): vandalism = True revision_curr = revision_prev #if (vandalism): #print "---------------------------- FLAG 1" #print "SPAM", revision.getId() #print revision.getText() #print if (not vandalism): # Information about the current revision. revision_curr = Revision() revision_curr.id = i revision_curr.wikipedia_id = int(revision.getId()) revision_curr.length = len(revision.getText()) revision_curr.timestamp = revision.getTimestamp() # Relation of the current relation. relation = Relation() relation.revision = int(revision.getId()) relation.length = len(revision.getText()) # Some revisions don't have contributor. if (revision.getContributor() != None): revision_curr.contributor_id = revision.getContributor().getId() revision_curr.contributor_name = revision.getContributor().getUsername().encode('utf-8') relation.author = revision.getContributor().getUsername().encode('utf-8') else: revision_curr.contributor_id = 'Not Available ' + revision.getId() revision_curr.contribur_name = 'Not Available ' + revision.getId() relation.author = 'Not Available ' + revision.getId() # Content within the revision. text_curr = revision.getText().encode('utf-8') text_curr = text_curr.lower() revision_curr.content = text_curr # Perform comparison. vandalism = determineAuthorship(revision_curr, revision_prev, text_curr, relation) if (not vandalism): #print "NOT SPAM", revision.getId() # Add the current revision with all the information. revisions.update({revision_curr.wikipedia_id : revision_curr}) relations.update({revision_curr.wikipedia_id : relation}) revision_order.append((revision_curr.wikipedia_id, False)) # Update the fake revision id. i = i+1 # Calculate the number of tokens in the revision. total = 0 for p in revision_curr.ordered_paragraphs: for paragraph_curr in revision_curr.paragraphs[p]: for hash_sentence_curr in paragraph_curr.sentences.keys(): for sentence_curr in paragraph_curr.sentences[hash_sentence_curr]: total = total + len(sentence_curr.words) revision_curr.total_tokens = total relation.total_tokens = total else: #print "---------------------------- FLAG 2" #print "SPAM", revision.getId() #print revision.getText() #print revision_order.append((revision_curr.wikipedia_id, True)) revision_curr = revision_prev spam.append(revision.getSha1()) return (revisions, revision_order, relations) def determineAuthorship(revision_curr, revision_prev, text_curr, relation): # Containers for unmatched paragraphs and sentences in both revisions. unmatched_sentences_curr = [] unmatched_sentences_prev = [] matched_sentences_prev = [] matched_words_prev = [] possible_vandalism = False vandalism = False # Analysis of the paragraphs in the current revision. (unmatched_paragraphs_curr, unmatched_paragraphs_prev, matched_paragraphs_prev) = analyseParagraphsInRevision(revision_curr, revision_prev, text_curr, relation) # Analysis of the sentences in the unmatched paragraphs of the current revision. if (len(unmatched_paragraphs_curr)>0): (unmatched_sentences_curr, unmatched_sentences_prev, matched_sentences_prev, _) = analyseSentencesInParagraphs(unmatched_paragraphs_curr, unmatched_paragraphs_prev, revision_curr, revision_prev, relation) #TODO: SPAM detection if (len(unmatched_paragraphs_curr)/float(len(revision_curr.ordered_paragraphs)) > UNMATCHED_PARAGRAPH): possible_vandalism = True # Analysis of words in unmatched sentences (diff of both texts). if (len(unmatched_sentences_curr)>0): (matched_words_prev, vandalism) = analyseWordsInSentences(unmatched_sentences_curr, unmatched_sentences_prev, revision_curr, possible_vandalism, relation) if (len(unmatched_paragraphs_curr) == 0): for paragraph in unmatched_paragraphs_prev: for sentence_key in paragraph.sentences.keys(): for sentence in paragraph.sentences[sentence_key]: if not(sentence.matched): unmatched_sentences_prev.append(sentence) # Add the information of 'deletion' to words for unmatched_sentence in unmatched_sentences_prev: #print "unmatched sentence", unmatched_sentence.value, revision_curr.wikipedia_id for word_prev in unmatched_sentence.words: if not(word_prev.matched): for elem in word_prev.deleted: if (elem != revision_curr.wikipedia_id) and (elem in revisions.keys()): if (revisions[elem].contributor_id != revision_curr.contributor_id): if (elem in relation.redeleted.keys()): relation.redeleted.update({elem : relation.redeleted[elem] + 1}) else: relation.redeleted.update({elem : 1}) else: if (elem in relation.self_redeleted.keys()): relation.self_redeleted.update({elem : relation.self_redeleted[elem] + 1}) else: relation.self_redeleted.update({elem : 1}) # Revert: deleting something that somebody else reintroduced. for elem in word_prev.freq: #if (revision_curr.wikipedia_id == 11): # print "Revert in 11", word_prev.value, word_prev.deleted, relation.revert if (elem != revision_curr.wikipedia_id) and (elem in revisions.keys()): if (revisions[elem].contributor_id != revision_curr.contributor_id): if (elem in relation.revert.keys()): relation.revert.update({elem: relation.revert[elem] +1}) else: relation.revert.update({elem: 1}) else: if (elem in relation.self_revert.keys()): relation.self_revert.update({elem: relation.self_revert[elem] +1}) else: relation.self_revert.update({elem: 1}) #print "relation.revert", word_prev.value, word_prev.deleted, relation.revert, revision_curr.wikipedia_id word_prev.deleted.append(revision_curr.wikipedia_id) if (revisions[word_prev.revision].contributor_id != revision_curr.contributor_id): if (word_prev.revision in relation.deleted.keys()): relation.deleted.update({word_prev.revision : relation.deleted[word_prev.revision] + 1 }) else: relation.deleted.update({word_prev.revision : 1 }) else: if (word_prev.revision in relation.self_deleted.keys()): relation.self_deleted.update({word_prev.revision : relation.self_deleted[word_prev.revision] + 1 }) else: relation.self_deleted.update({word_prev.revision : 1 }) # Reset matched structures from old revisions. for matched_paragraph in matched_paragraphs_prev: matched_paragraph.matched = False for sentence_hash in matched_paragraph.sentences.keys(): for sentence in matched_paragraph.sentences[sentence_hash]: sentence.matched = False for word in sentence.words: word.matched = False for matched_sentence in matched_sentences_prev: matched_sentence.matched = False for word in matched_sentence.words: word.matched = False for matched_word in matched_words_prev: matched_word.matched = False if (not vandalism): # Add the new paragraphs to hash table of paragraphs. for unmatched_paragraph in unmatched_paragraphs_curr: if (unmatched_paragraph.hash_value in paragraphs_ht.keys()): paragraphs_ht[unmatched_paragraph.hash_value].append(unmatched_paragraph) else: paragraphs_ht.update({unmatched_paragraph.hash_value : [unmatched_paragraph]}) # Add the new sentences to hash table of sentences. for unmatched_sentence in unmatched_sentences_curr: if (unmatched_sentence.hash_value in sentences_ht.keys()): sentences_ht[unmatched_sentence.hash_value].append(unmatched_sentence) else: sentences_ht.update({unmatched_sentence.hash_value : [unmatched_sentence]}) return vandalism def analyseParagraphsInRevision(revision_curr, revision_prev, text_curr, relation): # Containers for unmatched and matched paragraphs. unmatched_paragraphs_curr = [] unmatched_paragraphs_prev = [] matched_paragraphs_prev = [] # Split the text of the current into paragraphs. paragraphs = Text.splitIntoParagraphs(text_curr) # Iterate over the paragraphs of the current version. for paragraph in paragraphs: # Build Paragraph structure and calculate hash value. paragraph = paragraph.strip() hash_curr = Text.calculateHash(paragraph) matched_curr = False # If the paragraph is in the previous revision, # update the authorship information and mark both paragraphs as matched (also in HT). if (hash_curr in revision_prev.ordered_paragraphs): for paragraph_prev in revision_prev.paragraphs[hash_curr]: if (not paragraph_prev.matched): matched_curr = True paragraph_prev.matched = True matched_paragraphs_prev.append(paragraph_prev) # TODO: added this (CHECK). for hash_sentence_prev in paragraph_prev.sentences.keys(): for sentence_prev in paragraph_prev.sentences[hash_sentence_prev]: sentence_prev.matched = True for word_prev in sentence_prev.words: word_prev.matched = True word_prev.used.append(revision_curr.wikipedia_id) #if (word_prev.revision in relation.reintroduced.keys()): # relation.reintroduced.update({word_prev.revision : relation.reintroduced[word_prev.revision] + 1 }) #else: # relation.reintroduced.update({word_prev.revision : 1 }) # Add paragraph to current revision. if (hash_curr in revision_curr.paragraphs.keys()): revision_curr.paragraphs[paragraph_prev.hash_value].append(paragraph_prev) revision_curr.ordered_paragraphs.append(paragraph_prev.hash_value) else: revision_curr.paragraphs.update({paragraph_prev.hash_value : [paragraph_prev]}) revision_curr.ordered_paragraphs.append(paragraph_prev.hash_value) break # If the paragraph is not in the previous revision, but it is in an older revision # update the authorship information and mark both paragraphs as matched. if ((not matched_curr) and (hash_curr in paragraphs_ht)): for paragraph_prev in paragraphs_ht[hash_curr]: if (not paragraph_prev.matched): matched_curr = True paragraph_prev.matched = True matched_paragraphs_prev.append(paragraph_prev) # TODO: added this (CHECK). for hash_sentence_prev in paragraph_prev.sentences.keys(): for sentence_prev in paragraph_prev.sentences[hash_sentence_prev]: sentence_prev.matched = True for word_prev in sentence_prev.words: word_prev.matched = True word_prev.used.append(revision_curr.wikipedia_id) if (revision_prev.wikipedia_id not in word_prev.used): word_prev.freq.append(revision_curr.wikipedia_id) # Revert: reintroducing something that somebody else deleted, # (and was not used in the previous revision) if (revision_prev.wikipedia_id not in word_prev.used): #if (revision_curr.wikipedia_id == 11): # print "Revert in 11", word_prev.value, word_prev.deleted, relation.revert for elem in word_prev.deleted: if (elem in revisions.keys()): if (revisions[elem].contributor_id != revision_curr.contributor_id): if (elem in relation.revert.keys()): relation.revert.update({elem : relation.revert[elem] + 1}) else: relation.revert.update({elem : 1}) else: if (elem in relation.self_revert.keys()): relation.self_revert.update({elem : relation.self_revert[elem] + 1}) else: relation.self_revert.update({elem : 1}) if (revision_prev.wikipedia_id not in word_prev.used): if (elem in revisions.keys()): if (revisions[word_prev.revision].contributor_id != revision_curr.contributor_id): if (word_prev.revision in relation.reintroduced.keys()): relation.reintroduced.update({word_prev.revision : relation.reintroduced[word_prev.revision] + 1 }) else: relation.reintroduced.update({word_prev.revision : 1 }) else: if (word_prev.revision in relation.self_reintroduced.keys()): relation.self_reintroduced.update({word_prev.revision : relation.self_reintroduced[word_prev.revision] + 1}) else: relation.self_reintroduced.update({word_prev.revision : 1}) # Add paragraph to current revision. if (hash_curr in revision_curr.paragraphs.keys()): revision_curr.paragraphs[paragraph_prev.hash_value].append(paragraph_prev) revision_curr.ordered_paragraphs.append(paragraph_prev.hash_value) else: revision_curr.paragraphs.update({paragraph_prev.hash_value : [paragraph_prev]}) revision_curr.ordered_paragraphs.append(paragraph_prev.hash_value) break # If the paragraph did not match with previous revisions, # add to container of unmatched paragraphs for further analysis. if (not matched_curr): paragraph_curr = Paragraph() paragraph_curr.hash_value = Text.calculateHash(paragraph) paragraph_curr.value = paragraph revision_curr.ordered_paragraphs.append(paragraph_curr.hash_value) if (paragraph_curr.hash_value in revision_curr.paragraphs.keys()): revision_curr.paragraphs[paragraph_curr.hash_value].append(paragraph_curr) else: revision_curr.paragraphs.update({paragraph_curr.hash_value : [paragraph_curr]}) unmatched_paragraphs_curr.append(paragraph_curr) # Identify unmatched paragraphs in previous revision for further analysis. for paragraph_prev_hash in revision_prev.ordered_paragraphs: for paragraph_prev in revision_prev.paragraphs[paragraph_prev_hash]: if (not paragraph_prev.matched): unmatched_paragraphs_prev.append(paragraph_prev) return (unmatched_paragraphs_curr, unmatched_paragraphs_prev, matched_paragraphs_prev) def analyseSentencesInParagraphs(unmatched_paragraphs_curr, unmatched_paragraphs_prev, revision_curr, revision_prev, relation): # Containers for unmatched and matched sentences. unmatched_sentences_curr = [] unmatched_sentences_prev = [] matched_sentences_prev = [] total_sentences = 0 # Iterate over the unmatched paragraphs of the current revision. for paragraph_curr in unmatched_paragraphs_curr: # Split the current paragraph into sentences. sentences = Text.splitIntoSentences(paragraph_curr.value) # Iterate over the sentences of the current paragraph for sentence in sentences: # Create the Sentence structure. sentence = sentence.strip() sentence = ' '.join(Text.splitIntoWords(sentence)) hash_curr = Text.calculateHash(sentence) matched_curr = False total_sentences = total_sentences + 1 # Iterate over the unmatched paragraphs from the previous revision. for paragraph_prev in unmatched_paragraphs_prev: if (hash_curr in paragraph_prev.sentences.keys()): for sentence_prev in paragraph_prev.sentences[hash_curr]: if (not sentence_prev.matched): matched_one = False matched_all = True for word_prev in sentence_prev.words: if (word_prev.matched): matched_one = True else: matched_all = False if not(matched_one): sentence_prev.matched = True matched_curr = True matched_sentences_prev.append(sentence_prev) # TODO: CHECK this for word_prev in sentence_prev.words: word_prev.matched = True word_prev.used.append(revision_curr.wikipedia_id) #if (word_prev.revision in relation.reintroduced.keys()): # relation.reintroduced.update({word_prev.revision : relation.reintroduced[word_prev.revision] + 1 }) #else: # relation.reintroduced.update({word_prev.revision : 1 }) # Add the sentence information to the paragraph. if (hash_curr in paragraph_curr.sentences.keys()): paragraph_curr.sentences[hash_curr].append(sentence_prev) paragraph_curr.ordered_sentences.append(sentence_prev.hash_value) else: paragraph_curr.sentences.update({sentence_prev.hash_value : [sentence_prev]}) paragraph_curr.ordered_sentences.append(sentence_prev.hash_value) break elif (matched_all): sentence_prev.matched = True matched_sentences_prev.append(sentence_prev) if (matched_curr): break # Iterate over the hash table of sentences from old revisions. if ((not matched_curr) and (hash_curr in sentences_ht.keys())): for sentence_prev in sentences_ht[hash_curr]: if (not sentence_prev.matched): matched_one = False matched_all = True for word_prev in sentence_prev.words: if (word_prev.matched): matched_one = True else: matched_all = False if not(matched_one): sentence_prev.matched = True matched_curr = True matched_sentences_prev.append(sentence_prev) # TODO: CHECK this for word_prev in sentence_prev.words: word_prev.matched = True word_prev.used.append(revision_curr.wikipedia_id) if (revision_prev.wikipedia_id not in word_prev.used): word_prev.freq.append(revision_curr.wikipedia_id) # Revert: reintroducing something that somebody else deleted if (revision_prev.wikipedia_id not in word_prev.used): for elem in word_prev.deleted: #if (revision_curr.wikipedia_id == 11): # print "Revert in 11", word_prev.value, word_prev.deleted, relation.revert if (elem in revisions.keys()): if (revisions[elem].contributor_id != revision_curr.contributor_id): if (elem in relation.revert.keys()): relation.revert.update({elem : relation.revert[elem] + 1}) else: relation.revert.update({elem : 1}) else: if (elem in relation.self_revert.keys()): relation.self_revert.update({elem : relation.self_revert[elem] + 1}) else: relation.self_revert.update({elem : 1}) #print "relation.revert", word_prev.value, word_prev.deleted, relation.revert, revision_curr.wikipedia_id if (revision_prev.wikipedia_id not in word_prev.used): if (word_prev.revision in revisions.keys()): if (revisions[word_prev.revision].contributor_id != revision_curr.contributor_id): if (word_prev.revision in relation.reintroduced.keys()): relation.reintroduced.update({word_prev.revision : relation.reintroduced[word_prev.revision] + 1 }) else: relation.reintroduced.update({word_prev.revision : 1 }) else: if (word_prev.revision in relation.self_reintroduced.keys()): relation.self_reintroduced.update({word_prev.revision : relation.self_reintroduced[word_prev.revision] + 1}) else: relation.self_reintroduced.update({word_prev.revision : 1}) # Add the sentence information to the paragraph. if (hash_curr in paragraph_curr.sentences.keys()): paragraph_curr.sentences[hash_curr].append(sentence_prev) paragraph_curr.ordered_sentences.append(sentence_prev.hash_value) else: paragraph_curr.sentences.update({sentence_prev.hash_value : [sentence_prev]}) paragraph_curr.ordered_sentences.append(sentence_prev.hash_value) break elif (matched_all): sentence_prev.matched = True matched_sentences_prev.append(sentence_prev) # If the sentence did not match, then include in the container of unmatched sentences for further analysis. if (not matched_curr): sentence_curr = Sentence() sentence_curr.value = sentence sentence_curr.hash_value = hash_curr paragraph_curr.ordered_sentences.append(sentence_curr.hash_value) if (sentence_curr.hash_value in paragraph_curr.sentences.keys()): paragraph_curr.sentences[sentence_curr.hash_value].append(sentence_curr) else: paragraph_curr.sentences.update({sentence_curr.hash_value : [sentence_curr]}) unmatched_sentences_curr.append(sentence_curr) # Identify the unmatched sentences in the previous paragraph revision. for paragraph_prev in unmatched_paragraphs_prev: for sentence_prev_hash in paragraph_prev.ordered_sentences: for sentence_prev in paragraph_prev.sentences[sentence_prev_hash]: if (not sentence_prev.matched): unmatched_sentences_prev.append(sentence_prev) sentence_prev.matched = True matched_sentences_prev.append(sentence_prev) return (unmatched_sentences_curr, unmatched_sentences_prev, matched_sentences_prev, total_sentences) def analyseWordsInSentences(unmatched_sentences_curr, unmatched_sentences_prev, revision_curr, possible_vandalism, relation): matched_words_prev = [] unmatched_words_prev = [] # Split sentences into words. text_prev = [] for sentence_prev in unmatched_sentences_prev: for word_prev in sentence_prev.words: if (not word_prev.matched): text_prev.append(word_prev.value) unmatched_words_prev.append(word_prev) text_curr = [] for sentence_curr in unmatched_sentences_curr: splitted = Text.splitIntoWords(sentence_curr.value) text_curr.extend(splitted) sentence_curr.splitted.extend(splitted) # Edit consists of removing sentences, not adding new content. if (len(text_curr) == 0): return (matched_words_prev, False) # SPAM detection. if (possible_vandalism): density = Text.computeAvgWordFreq(text_curr, revision_curr.wikipedia_id) if (density > WORD_DENSITY): return (matched_words_prev, possible_vandalism) else: possible_vandalism = False if (len(text_prev) == 0): for sentence_curr in unmatched_sentences_curr: for word in sentence_curr.splitted: word_curr = Word() word_curr.author_id = revision_curr.contributor_id word_curr.author_name = revision_curr.contributor_name word_curr.revision = revision_curr.wikipedia_id word_curr.value = word sentence_curr.words.append(word_curr) word_curr.used.append(revision_curr.wikipedia_id) relation.added = relation.added + 1 return (matched_words_prev, possible_vandalism) d = Differ() diff = list(d.compare(text_prev, text_curr)) for sentence_curr in unmatched_sentences_curr: for word in sentence_curr.splitted: curr_matched = False pos = 0 while (pos < len(diff)): word_diff = diff[pos] if (word == word_diff[2:]): if (word_diff[0] == ' '): for word_prev in unmatched_words_prev: if ((not word_prev.matched) and (word_prev.value == word)): word_prev.used.append(revision_curr.wikipedia_id) word_prev.matched = True curr_matched = True sentence_curr.words.append(word_prev) matched_words_prev.append(word_prev) diff[pos] = '' pos = len(diff)+1 #if (word_prev.revision in relation.reintroduced.keys()): # relation.reintroduced.update({word_prev.revision : relation.reintroduced[word_prev.revision] + 1 }) #else: # relation.reintroduced.update({word_prev.revision : 1 }) break elif (word_diff[0] == '-'): for word_prev in unmatched_words_prev: if ((not word_prev.matched) and (word_prev.value == word)): word_prev.matched = True matched_words_prev.append(word_prev) diff[pos] = '' word_prev.deleted.append(revision_curr.wikipedia_id) if (revisions[word_prev.revision].contributor_id != revision_curr.contributor_id): if (word_prev.revision in relation.deleted.keys()): relation.deleted.update({word_prev.revision : relation.deleted[word_prev.revision] + 1 }) else: relation.deleted.update({word_prev.revision : 1 }) else: if (word_prev.revision in relation.self_deleted.keys()): relation.self_deleted.update({word_prev.revision : relation.self_deleted[word_prev.revision] + 1 }) else: relation.self_deleted.update({word_prev.revision : 1 }) break elif (word_diff[0] == '+'): curr_matched = True word_curr = Word() word_curr.value = word word_curr.author_id = revision_curr.contributor_id word_curr.author_name = revision_curr.contributor_name word_curr.revision = revision_curr.wikipedia_id word_curr.used.append(revision_curr.wikipedia_id) sentence_curr.words.append(word_curr) relation.added = relation.added + 1 diff[pos] = '' pos = len(diff)+1 pos = pos + 1 if not(curr_matched): word_curr = Word() word_curr.value = word word_curr.author_id = revision_curr.contributor_id word_curr.author_name = revision_curr.contributor_name word_curr.revision = revision_curr.wikipedia_id word_curr.used.append(revision_curr.wikipedia_id) sentence_curr.words.append(word_curr) relation.added = relation.added + 1 return (matched_words_prev, possible_vandalism) def printAllRevisions(order, revisions): for (revision, vandalism) in order: if not(vandalism): printRevision(revisions[revision]) def printRevision(revision): print "Printing authorhship for revision: ", revision.wikipedia_id text = [] authors = [] for hash_paragraph in revision.ordered_paragraphs: #print hash_paragraph #text = '' para = revision.paragraphs[hash_paragraph] paragraph = para[-1] #print paragraph.value #print len(paragraph.sentences) for hash_sentence in paragraph.ordered_sentences: #print hash_sentence sentence = paragraph.sentences[hash_sentence][-1] #print sentence.words for word in sentence.words: #print word #text = text + ' ' + unicode(word.value,'utf-8') + "@@" + str(word.revision) text.append(word.value) authors.append(word.revision) print text print authors def printRevisionTrackAppearance(revision): print "Printing authorship for revision: ", revision.wikipedia_id text = [] authors = [] for hash_paragraph in revision.ordered_paragraphs: #print hash_paragraph #text = '' para = revision.paragraphs[hash_paragraph] paragraph = para[-1] #print paragraph.value #print len(paragraph.sentences) for hash_sentence in paragraph.ordered_sentences: #print hash_sentence sentence = paragraph.sentences[hash_sentence][-1] #print sentence.words for word in sentence.words: appeared = copy(word.used) disappeared = copy(word.deleted) changes = [] changes.append("+(" + str(appeared.pop(0))+")") while len(disappeared) > 0: d = disappeared.pop(0) if (d > revision.wikipedia_id): break changes.append("-(" + str(d)+")") while len(appeared) > 0: a = appeared.pop(0) if (a > d): changes.append("+(" + str(a)+")") break #print word.used #print word.deleted print unicode(word.value,'utf-8') + "@@" + str(word.revision) + "@@" + str(changes) text.append(word.value) authors.append(word.revision) #print text #print authors def printRelationships(relations, order): print "Printing relationships" header = ["revision", "author", "deleted(-)", "revert(-)", "reintroduced(+)", "redeleted(+)", "added", "total", "self-deleted", "self-revert", "self-reintroduced", "self-redeleted"] print "\t".join(header) for (revision, vandalism) in order: if (vandalism): continue relation = relations[revision] #print relation.author print str(relation.revision) + "\t" + (relation.author).decode("utf-8") + "\t" + str(relation.deleted) + "\t" + str(relation.revert) + "\t" + str(relation.reintroduced) + "\t" + str(relation.redeleted) + "\t" + str(relation.added) + "\t" + str(relation.total_tokens) + "\t" + str(relation.self_deleted) + "\t" + str(relation.self_revert) + "\t" + str(relation.self_reintroduced) + "\t" + str(relation.self_redeleted) def printJSON(relations, order): deleted_values = {} revert_values = {} reintroduced_values = {} redeleted_values = {} for (revision, vandalism) in order: if (vandalism): continue relation = relations[revision] print str(relation.revision) + "\t" + str(relation.author) + "\t" + str(relation.deleted) + "\t" + str(relation.revert) + "\t" + str(relation.reintroduced) + "\t" + str(relation.redeleted) + "\t" + str(relation.added) + "\t" + str(relation.total_tokens) def main(my_argv): inputfile = '' revision = None output = '' if (len(my_argv) <= 3): try: opts, _ = getopt.getopt(my_argv,"i:",["ifile="]) except getopt.GetoptError: print 'Usage: Wikiwho.py -i <inputfile> -o <output> [-rev <revision_id>]' exit(2) else: try: opts, _ = getopt.getopt(my_argv,"i:o:r:",["ifile=","revision=", "output="]) except getopt.GetoptError: print 'Usage: Wikiwho.py -i <inputfile> -o output [-rev <revision_id>]' exit(2) for opt, arg in opts: if opt in ('-h', "--help"): print "WikiWho: An algorithm for detecting attribution of authorship in revisioned content" print print 'Usage: Wikiwho.py -i <inputfile> [-rev <revision_id>]' print "-i --ifile File to analyze" print "-o --type of output: <a> for authorship, <r> for relations" print "-r --revision Revision to analyse. If not specified, the last revision is printed." print "-h --help This help." exit() elif opt in ("-i", "--ifile"): inputfile = arg elif opt in ("-r", "--revision"): revision = arg elif opt in ("-o", "--output"): output = arg return (inputfile,revision,output) if __name__ == '__main__': (file_name, revision, output) = main(argv[1:]) #print "Calculating authorship for:", file_name time1 = time() (revisions, order, relations) = analyseArticle(file_name) time2 = time() #pos = file_name.rfind("/") #print file_name[pos+1: len(file_name)-len(".xml")], time2-time1 if (output == 'r'): printRelationships(relations, order) if (output == 'a'): print "revision", revision if (revision == 'all'): printAllRevisions(order, revisions) else: printRevision(revisions[int(revision)]) #print "Execution time:", time2-time1
# Copyright 2011 OpenStack Foundation # Copyright 2012 Red Hat, Inc # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Tests copying images to a Glance API server which uses a filesystem- based storage backend. """ import hashlib import tempfile import time import httplib2 from oslo_serialization import jsonutils from oslo_utils import units from six.moves import http_client # NOTE(jokke): simplified transition to py3, behaves like py2 xrange from six.moves import range from glance.tests import functional from glance.tests.functional.store_utils import get_http_uri from glance.tests.functional.store_utils import setup_http from glance.tests.utils import skip_if_disabled FIVE_KB = 5 * units.Ki class TestCopyToFile(functional.FunctionalTest): """ Functional tests for copying images from the HTTP storage backend to file """ def _do_test_copy_from(self, from_store, get_uri): """ Ensure we can copy from an external image in from_store. """ self.cleanup() self.start_servers(**self.__dict__.copy()) setup_http(self) # POST /images with public image to be stored in from_store, # to stand in for the 'external' image image_data = b"*" * FIVE_KB headers = {'Content-Type': 'application/octet-stream', 'X-Image-Meta-Name': 'external', 'X-Image-Meta-Store': from_store, 'X-Image-Meta-disk_format': 'raw', 'X-Image-Meta-container_format': 'ovf', 'X-Image-Meta-Is-Public': 'True'} path = "http://%s:%d/v1/images" % ("127.0.0.1", self.api_port) http = httplib2.Http() response, content = http.request(path, 'POST', headers=headers, body=image_data) self.assertEqual(http_client.CREATED, response.status, content) data = jsonutils.loads(content) original_image_id = data['image']['id'] copy_from = get_uri(self, original_image_id) # POST /images with public image copied from_store (to file) headers = {'X-Image-Meta-Name': 'copied', 'X-Image-Meta-disk_format': 'raw', 'X-Image-Meta-container_format': 'ovf', 'X-Image-Meta-Is-Public': 'True', 'X-Glance-API-Copy-From': copy_from} path = "http://%s:%d/v1/images" % ("127.0.0.1", self.api_port) http = httplib2.Http() response, content = http.request(path, 'POST', headers=headers) self.assertEqual(http_client.CREATED, response.status, content) data = jsonutils.loads(content) copy_image_id = data['image']['id'] self.assertNotEqual(copy_image_id, original_image_id) # GET image and make sure image content is as expected path = "http://%s:%d/v1/images/%s" % ("127.0.0.1", self.api_port, copy_image_id) def _await_status(expected_status): for i in range(100): time.sleep(0.01) http = httplib2.Http() response, content = http.request(path, 'HEAD') self.assertEqual(http_client.OK, response.status) if response['x-image-meta-status'] == expected_status: return self.fail('unexpected image status %s' % response['x-image-meta-status']) _await_status('active') http = httplib2.Http() response, content = http.request(path, 'GET') self.assertEqual(http_client.OK, response.status) self.assertEqual(str(FIVE_KB), response['content-length']) self.assertEqual(image_data, content) self.assertEqual(hashlib.md5(image_data).hexdigest(), hashlib.md5(content).hexdigest()) self.assertEqual(FIVE_KB, data['image']['size']) self.assertEqual("copied", data['image']['name']) # DELETE original image path = "http://%s:%d/v1/images/%s" % ("127.0.0.1", self.api_port, original_image_id) http = httplib2.Http() response, content = http.request(path, 'DELETE') self.assertEqual(http_client.OK, response.status) # GET image again to make sure the existence of the original # image in from_store is not depended on path = "http://%s:%d/v1/images/%s" % ("127.0.0.1", self.api_port, copy_image_id) http = httplib2.Http() response, content = http.request(path, 'GET') self.assertEqual(http_client.OK, response.status) self.assertEqual(str(FIVE_KB), response['content-length']) self.assertEqual(image_data, content) self.assertEqual(hashlib.md5(image_data).hexdigest(), hashlib.md5(content).hexdigest()) self.assertEqual(FIVE_KB, data['image']['size']) self.assertEqual("copied", data['image']['name']) # DELETE copied image path = "http://%s:%d/v1/images/%s" % ("127.0.0.1", self.api_port, copy_image_id) http = httplib2.Http() response, content = http.request(path, 'DELETE') self.assertEqual(http_client.OK, response.status) self.stop_servers() @skip_if_disabled def test_copy_from_http_store(self): """ Ensure we can copy from an external image in HTTP store. """ self._do_test_copy_from('file', get_http_uri) @skip_if_disabled def test_copy_from_http_exists(self): """Ensure we can copy from an external image in HTTP.""" self.cleanup() self.start_servers(**self.__dict__.copy()) setup_http(self) copy_from = get_http_uri(self, 'foobar') # POST /images with public image copied from HTTP (to file) headers = {'X-Image-Meta-Name': 'copied', 'X-Image-Meta-disk_format': 'raw', 'X-Image-Meta-container_format': 'ovf', 'X-Image-Meta-Is-Public': 'True', 'X-Glance-API-Copy-From': copy_from} path = "http://%s:%d/v1/images" % ("127.0.0.1", self.api_port) http = httplib2.Http() response, content = http.request(path, 'POST', headers=headers) self.assertEqual(http_client.CREATED, response.status, content) data = jsonutils.loads(content) copy_image_id = data['image']['id'] self.assertEqual('queued', data['image']['status'], content) path = "http://%s:%d/v1/images/%s" % ("127.0.0.1", self.api_port, copy_image_id) def _await_status(expected_status): for i in range(100): time.sleep(0.01) http = httplib2.Http() response, content = http.request(path, 'HEAD') self.assertEqual(http_client.OK, response.status) if response['x-image-meta-status'] == expected_status: return self.fail('unexpected image status %s' % response['x-image-meta-status']) _await_status('active') # GET image and make sure image content is as expected http = httplib2.Http() response, content = http.request(path, 'GET') self.assertEqual(http_client.OK, response.status) self.assertEqual(str(FIVE_KB), response['content-length']) self.assertEqual(b"*" * FIVE_KB, content) self.assertEqual(hashlib.md5(b"*" * FIVE_KB).hexdigest(), hashlib.md5(content).hexdigest()) # DELETE copied image http = httplib2.Http() response, content = http.request(path, 'DELETE') self.assertEqual(http_client.OK, response.status) self.stop_servers() @skip_if_disabled def test_copy_from_http_nonexistent_location_url(self): # Ensure HTTP 404 response returned when try to create # image with non-existent http location URL. self.cleanup() self.start_servers(**self.__dict__.copy()) setup_http(self) uri = get_http_uri(self, 'foobar') copy_from = uri.replace('images', 'snafu') # POST /images with public image copied from HTTP (to file) headers = {'X-Image-Meta-Name': 'copied', 'X-Image-Meta-disk_format': 'raw', 'X-Image-Meta-container_format': 'ovf', 'X-Image-Meta-Is-Public': 'True', 'X-Glance-API-Copy-From': copy_from} path = "http://%s:%d/v1/images" % ("127.0.0.1", self.api_port) http = httplib2.Http() response, content = http.request(path, 'POST', headers=headers) self.assertEqual(http_client.NOT_FOUND, response.status, content) expected = 'HTTP datastore could not find image at URI.' self.assertIn(expected, content.decode()) self.stop_servers() @skip_if_disabled def test_copy_from_file(self): """ Ensure we can't copy from file """ self.cleanup() self.start_servers(**self.__dict__.copy()) with tempfile.NamedTemporaryFile() as image_file: image_file.write(b"XXX") image_file.flush() copy_from = 'file://' + image_file.name # POST /images with public image copied from file (to file) headers = {'X-Image-Meta-Name': 'copied', 'X-Image-Meta-disk_format': 'raw', 'X-Image-Meta-container_format': 'ovf', 'X-Image-Meta-Is-Public': 'True', 'X-Glance-API-Copy-From': copy_from} path = "http://%s:%d/v1/images" % ("127.0.0.1", self.api_port) http = httplib2.Http() response, content = http.request(path, 'POST', headers=headers) self.assertEqual(http_client.BAD_REQUEST, response.status, content) expected = 'External sources are not supported: \'%s\'' % copy_from msg = 'expected "%s" in "%s"' % (expected, content) self.assertIn(expected, content.decode(), msg) self.stop_servers() @skip_if_disabled def test_copy_from_swift_config(self): """ Ensure we can't copy from swift+config """ self.cleanup() self.start_servers(**self.__dict__.copy()) # POST /images with public image copied from file (to file) headers = {'X-Image-Meta-Name': 'copied', 'X-Image-Meta-disk_format': 'raw', 'X-Image-Meta-container_format': 'ovf', 'X-Image-Meta-Is-Public': 'True', 'X-Glance-API-Copy-From': 'swift+config://xxx'} path = "http://%s:%d/v1/images" % ("127.0.0.1", self.api_port) http = httplib2.Http() response, content = http.request(path, 'POST', headers=headers) self.assertEqual(http_client.BAD_REQUEST, response.status, content) expected = 'External sources are not supported: \'swift+config://xxx\'' msg = 'expected "%s" in "%s"' % (expected, content) self.assertIn(expected, content.decode(), msg) self.stop_servers()
import sh import os import json import zipfile __version__ = '0.0.2' DEFAULT_PACKER_PATH = 'packer' class Packer(): """Packer interface using the `sh` module (http://amoffat.github.io/sh/) """ def __init__(self, packerfile, exc=None, only=None, vars=None, vars_file=None, exec_path=DEFAULT_PACKER_PATH): """ :param string packerfile: Path to Packer template file :param list exc: List of builders to exclude :param list only: List of builders to include :param dict vars: Key Value pairs of template variables :param string vars_file: Path to variables file :param string exec_path: Path to Packer executable """ self.packerfile = self._validate_argtype(packerfile, str) self.vars_file = vars_file if not os.path.isfile(self.packerfile): raise OSError('packerfile not found at path: {0}'.format( self.packerfile)) self.exc = self._validate_argtype(exc if exc else [], list) self.only = self._validate_argtype(only if only else [], list) self.vars = self._validate_argtype(vars if vars else {}, dict) self.packer = sh.Command(exec_path) def build(self, parallel=True, debug=False, force=False): """Executes a Packer build (`packer build`) :param bool parallel: Run builders in parallel :param bool debug: Run in debug mode :param bool force: Force artifact output even if exists """ self.ccmd = self.packer.build self._add_opt('-parallel=true' if parallel else None) self._add_opt('-debug' if debug else None) self._add_opt('-force' if force else None) self._append_base_arguments() self._add_opt(self.packerfile) return self.ccmd() def fix(self, to_file=None): """Implements the `packer fix` function :param string to_file: File to output fixed template to """ self.ccmd = self.packer.fix self._add_opt(self.packerfile) result = self.ccmd() if to_file: with open(to_file, 'w') as f: f.write(result.stdout) result.fixed = json.loads(result.stdout) return result def inspect(self, mrf=True): """Inspects a Packer Templates file (`packer inspect -machine-readable`) To return the output in a readable form, the `-machine-readable` flag is appended automatically, afterwhich the output is parsed and returned as a dict of the following format: "variables": [ { "name": "aws_access_key", "value": "{{env `AWS_ACCESS_KEY_ID`}}" }, { "name": "aws_secret_key", "value": "{{env `AWS_ACCESS_KEY`}}" } ], "provisioners": [ { "type": "shell" } ], "builders": [ { "type": "amazon-ebs", "name": "amazon" } ] :param bool mrf: output in machine-readable form. """ self.ccmd = self.packer.inspect self._add_opt('-machine-readable' if mrf else None) self._add_opt(self.packerfile) result = self.ccmd() if mrf: result.parsed_output = self._parse_inspection_output( result.stdout) return result def push(self, create=True, token=False): """Implmenets the `packer push` function UNTESTED! Must be used alongside an Atlas account """ self.ccmd = self.packer.push self._add_opt('-create=true' if create else None) self._add_opt('-tokn={0}'.format(token) if token else None) self._add_opt(self.packerfile) return self.ccmd() def validate(self, syntax_only=False): """Validates a Packer Template file (`packer validate`) If the validation failed, an `sh` exception will be raised. :param bool syntax_only: Whether to validate the syntax only without validating the configuration itself. """ self.ccmd = self.packer.validate self._add_opt('-syntax-only' if syntax_only else None) self._append_base_arguments() self._add_opt(self.packerfile) # as sh raises an exception rather than return a value when execution # fails we create an object to return the exception and the validation # state try: validation = self.ccmd() validation.succeeded = True if validation.exit_code == 0 else False validation.error = None except Exception as ex: validation = ValidationObject() validation.succeeded = False validation.failed = True validation.error = ex.message return validation def version(self): """Returns Packer's version number (`packer version`) As of v0.7.5, the format shows when running `packer version` is: Packer vX.Y.Z. This method will only returns the number, without the `packer v` prefix so that you don't have to parse the version yourself. """ return self.packer.version().split('v')[1].rstrip('\n') def _add_opt(self, option): if option: self.ccmd = self.ccmd.bake(option) def _validate_argtype(self, arg, argtype): if not isinstance(arg, argtype): raise PackerException('{0} argument must be of type {1}'.format( arg, argtype)) return arg def _append_base_arguments(self): """Appends base arguments to packer commands. -except, -only, -var and -vars-file are appeneded to almost all subcommands in packer. As such this can be called to add these flags to the subcommand. """ if self.exc and self.only: raise PackerException('Cannot provide both "except" and "only"') elif self.exc: self._add_opt('-except={0}'.format(self._joinc(self.exc))) elif self.only: self._add_opt('-only={0}'.format(self._joinc(self.only))) for var, value in self.vars.items(): self._add_opt("-var '{0}={1}'".format(var, value)) if self.vars_file: self._add_opt('-vars-file={0}'.format(self.vars_file)) def _joinc(self, lst): """Returns a comma delimited string from a list""" return str(','.join(lst)) def _joins(self, lst): """Returns a space delimited string from a list""" return str(' '.join(lst)) def _parse_inspection_output(self, output): """Parses the machine-readable output `packer inspect` provides. See the inspect method for more info. This has been tested vs. Packer v0.7.5 """ parts = {'variables': [], 'builders': [], 'provisioners': []} for l in output.splitlines(): l = l.split(',') if l[2].startswith('template'): del l[0:2] component = l[0] if component == 'template-variable': variable = {"name": l[1], "value": l[2]} parts['variables'].append(variable) elif component == 'template-builder': builder = {"name": l[1], "type": l[2]} parts['builders'].append(builder) elif component == 'template-provisioner': provisioner = {"type": l[1]} parts['provisioners'].append(provisioner) return parts class Installer(): def __init__(self, packer_path, installer_path): self.packer_path = packer_path self.installer_path = installer_path def install(self): with open(self.installer_path, 'rb') as f: zip = zipfile.ZipFile(f) for path in zip.namelist(): zip.extract(path, self.packer_path) exec_path = os.path.join(self.packer_path, 'packer') if not self._verify(exec_path): raise PackerException('packer installation failed. ' 'Executable could not be found under: ' '{0}'.format(exec_path)) else: return exec_path def _verify(self, packer): return True if os.path.isfile(packer) else False class ValidationObject(): pass class PackerException(Exception): pass
"""Summary """ # # Wrappers for Types in NVL # # from ctypes import * class WeldType(object): """Summary """ def __str__(self): """Summary Returns: TYPE: Description """ return "type" def __hash__(self): """Summary Returns: TYPE: Description """ return hash(str(self)) def __eq__(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ return hash(other) == hash(self) def __ne__(self, other): """Summary Args: other (TYPE): Description Returns: TYPE: Description """ return hash(other) != hash(self) @property def ctype_class(self): """ Returns a class representing this type's ctype representation. Raises: NotImplementedError: Description """ raise NotImplementedError class WeldChar(WeldType): """Summary """ def __str__(self): """Summary Returns: TYPE: Description """ return "i8" @property def ctype_class(self): """Summary Returns: TYPE: Description """ return c_wchar_p class WeldBit(WeldType): """Summary """ def __str__(self): """Summary Returns: TYPE: Description """ return "bool" @property def ctype_class(self): """Summary Returns: TYPE: Description """ return c_bool class WeldInt16(WeldType): """Summary """ def __str__(self): """Summary Returns: TYPE: Description """ return 'i16' @property def ctype_class(self): """Summary Returns: TYPE: Description """ return c_int16 class WeldInt(WeldType): """Summary """ def __str__(self): """Summary Returns: TYPE: Description """ return "i32" @property def ctype_class(self): """Summary Returns: TYPE: Description """ return c_int class WeldLong(WeldType): """Summary """ def __str__(self): """Summary Returns: TYPE: Description """ return "i64" @property def ctype_class(self): """Summary Returns: TYPE: Description """ return c_long class WeldFloat(WeldType): """Summary """ def __str__(self): """Summary Returns: TYPE: Description """ return "f32" @property def ctype_class(self): return c_float class WeldDouble(WeldType): """Summary """ def __str__(self): """Summary Returns: TYPE: Description """ return "f64" @property def ctype_class(self): """Summary Returns: TYPE: Description """ return c_double class WeldVec(WeldType): """Summary Attributes: elemType (TYPE): Description """ # Kind of a hack, but ctypes requires that the class instance returned is # the same object. Every time we create a new Vec instance (templatized by # type), we cache it here. _singletons = {} def __init__(self, elemType): """Summary Args: elemType (TYPE): Description """ self.elemType = elemType def __str__(self): """Summary Returns: TYPE: Description """ return "vec[%s]" % str(self.elemType) @property def ctype_class(self): """Summary Returns: TYPE: Description """ def vec_factory(elemType): """Summary Args: elemType (TYPE): Description Returns: TYPE: Description """ class Vec(Structure): """Summary """ _fields_ = [ ("ptr", POINTER(elemType.ctype_class)), ("size", c_long), ] return Vec if self.elemType not in WeldVec._singletons: WeldVec._singletons[self.elemType] = vec_factory(self.elemType) return WeldVec._singletons[self.elemType] class WeldStruct(WeldType): """Summary Attributes: field_types (TYPE): Description """ _singletons = {} def __init__(self, field_types): """Summary Args: field_types (TYPE): Description """ assert False not in [isinstance(e, WeldType) for e in field_types] self.field_types = field_types def __str__(self): """Summary Returns: TYPE: Description """ return "{" + ",".join([str(f) for f in self.field_types]) + "}" @property def ctype_class(self): """Summary Returns: TYPE: Description """ def struct_factory(field_types): """Summary Args: field_types (TYPE): Description Returns: TYPE: Description """ class Struct(Structure): """Summary """ _fields_ = [(str(i), t.ctype_class) for i, t in enumerate(field_types)] return Struct if frozenset(self.field_types) not in WeldVec._singletons: WeldStruct._singletons[ frozenset(self.field_types)] = struct_factory(self.field_types) return WeldStruct._singletons[frozenset(self.field_types)]
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Test case for L{twisted.protocols.loopback}. """ from __future__ import division, absolute_import from zope.interface import implementer from twisted.python.compat import _PY3, intToBytes from twisted.trial import unittest from twisted.trial.util import suppress as SUPPRESS from twisted.protocols import basic, loopback from twisted.internet import defer from twisted.internet.protocol import Protocol from twisted.internet.defer import Deferred from twisted.internet.interfaces import IAddress, IPushProducer, IPullProducer from twisted.internet import reactor, interfaces class SimpleProtocol(basic.LineReceiver): def __init__(self): self.conn = defer.Deferred() self.lines = [] self.connLost = [] def connectionMade(self): self.conn.callback(None) def lineReceived(self, line): self.lines.append(line) def connectionLost(self, reason): self.connLost.append(reason) class DoomProtocol(SimpleProtocol): i = 0 def lineReceived(self, line): self.i += 1 if self.i < 4: # by this point we should have connection closed, # but just in case we didn't we won't ever send 'Hello 4' self.sendLine(b"Hello " + intToBytes(self.i)) SimpleProtocol.lineReceived(self, line) if self.lines[-1] == b"Hello 3": self.transport.loseConnection() class LoopbackTestCaseMixin: def testRegularFunction(self): s = SimpleProtocol() c = SimpleProtocol() def sendALine(result): s.sendLine(b"THIS IS LINE ONE!") s.transport.loseConnection() s.conn.addCallback(sendALine) def check(ignored): self.assertEqual(c.lines, [b"THIS IS LINE ONE!"]) self.assertEqual(len(s.connLost), 1) self.assertEqual(len(c.connLost), 1) d = defer.maybeDeferred(self.loopbackFunc, s, c) d.addCallback(check) return d def testSneakyHiddenDoom(self): s = DoomProtocol() c = DoomProtocol() def sendALine(result): s.sendLine(b"DOOM LINE") s.conn.addCallback(sendALine) def check(ignored): self.assertEqual(s.lines, [b'Hello 1', b'Hello 2', b'Hello 3']) self.assertEqual( c.lines, [b'DOOM LINE', b'Hello 1', b'Hello 2', b'Hello 3']) self.assertEqual(len(s.connLost), 1) self.assertEqual(len(c.connLost), 1) d = defer.maybeDeferred(self.loopbackFunc, s, c) d.addCallback(check) return d class LoopbackAsyncTestCase(LoopbackTestCaseMixin, unittest.TestCase): loopbackFunc = staticmethod(loopback.loopbackAsync) def test_makeConnection(self): """ Test that the client and server protocol both have makeConnection invoked on them by loopbackAsync. """ class TestProtocol(Protocol): transport = None def makeConnection(self, transport): self.transport = transport server = TestProtocol() client = TestProtocol() loopback.loopbackAsync(server, client) self.failIfEqual(client.transport, None) self.failIfEqual(server.transport, None) def _hostpeertest(self, get, testServer): """ Test one of the permutations of client/server host/peer. """ class TestProtocol(Protocol): def makeConnection(self, transport): Protocol.makeConnection(self, transport) self.onConnection.callback(transport) if testServer: server = TestProtocol() d = server.onConnection = Deferred() client = Protocol() else: server = Protocol() client = TestProtocol() d = client.onConnection = Deferred() loopback.loopbackAsync(server, client) def connected(transport): host = getattr(transport, get)() self.failUnless(IAddress.providedBy(host)) return d.addCallback(connected) def test_serverHost(self): """ Test that the server gets a transport with a properly functioning implementation of L{ITransport.getHost}. """ return self._hostpeertest("getHost", True) def test_serverPeer(self): """ Like C{test_serverHost} but for L{ITransport.getPeer} """ return self._hostpeertest("getPeer", True) def test_clientHost(self, get="getHost"): """ Test that the client gets a transport with a properly functioning implementation of L{ITransport.getHost}. """ return self._hostpeertest("getHost", False) def test_clientPeer(self): """ Like C{test_clientHost} but for L{ITransport.getPeer}. """ return self._hostpeertest("getPeer", False) def _greetingtest(self, write, testServer): """ Test one of the permutations of write/writeSequence client/server. @param write: The name of the method to test, C{"write"} or C{"writeSequence"}. """ class GreeteeProtocol(Protocol): bytes = b"" def dataReceived(self, bytes): self.bytes += bytes if self.bytes == b"bytes": self.received.callback(None) class GreeterProtocol(Protocol): def connectionMade(self): if write == "write": self.transport.write(b"bytes") else: self.transport.writeSequence([b"byt", b"es"]) if testServer: server = GreeterProtocol() client = GreeteeProtocol() d = client.received = Deferred() else: server = GreeteeProtocol() d = server.received = Deferred() client = GreeterProtocol() loopback.loopbackAsync(server, client) return d def test_clientGreeting(self): """ Test that on a connection where the client speaks first, the server receives the bytes sent by the client. """ return self._greetingtest("write", False) def test_clientGreetingSequence(self): """ Like C{test_clientGreeting}, but use C{writeSequence} instead of C{write} to issue the greeting. """ return self._greetingtest("writeSequence", False) def test_serverGreeting(self, write="write"): """ Test that on a connection where the server speaks first, the client receives the bytes sent by the server. """ return self._greetingtest("write", True) def test_serverGreetingSequence(self): """ Like C{test_serverGreeting}, but use C{writeSequence} instead of C{write} to issue the greeting. """ return self._greetingtest("writeSequence", True) def _producertest(self, producerClass): toProduce = list(map(intToBytes, range(0, 10))) class ProducingProtocol(Protocol): def connectionMade(self): self.producer = producerClass(list(toProduce)) self.producer.start(self.transport) class ReceivingProtocol(Protocol): bytes = b"" def dataReceived(self, data): self.bytes += data if self.bytes == b''.join(toProduce): self.received.callback((client, server)) server = ProducingProtocol() client = ReceivingProtocol() client.received = Deferred() loopback.loopbackAsync(server, client) return client.received def test_pushProducer(self): """ Test a push producer registered against a loopback transport. """ @implementer(IPushProducer) class PushProducer(object): resumed = False def __init__(self, toProduce): self.toProduce = toProduce def resumeProducing(self): self.resumed = True def start(self, consumer): self.consumer = consumer consumer.registerProducer(self, True) self._produceAndSchedule() def _produceAndSchedule(self): if self.toProduce: self.consumer.write(self.toProduce.pop(0)) reactor.callLater(0, self._produceAndSchedule) else: self.consumer.unregisterProducer() d = self._producertest(PushProducer) def finished(results): (client, server) = results self.assertFalse( server.producer.resumed, "Streaming producer should not have been resumed.") d.addCallback(finished) return d def test_pullProducer(self): """ Test a pull producer registered against a loopback transport. """ @implementer(IPullProducer) class PullProducer(object): def __init__(self, toProduce): self.toProduce = toProduce def start(self, consumer): self.consumer = consumer self.consumer.registerProducer(self, False) def resumeProducing(self): self.consumer.write(self.toProduce.pop(0)) if not self.toProduce: self.consumer.unregisterProducer() return self._producertest(PullProducer) def test_writeNotReentrant(self): """ L{loopback.loopbackAsync} does not call a protocol's C{dataReceived} method while that protocol's transport's C{write} method is higher up on the stack. """ class Server(Protocol): def dataReceived(self, bytes): self.transport.write(b"bytes") class Client(Protocol): ready = False def connectionMade(self): reactor.callLater(0, self.go) def go(self): self.transport.write(b"foo") self.ready = True def dataReceived(self, bytes): self.wasReady = self.ready self.transport.loseConnection() server = Server() client = Client() d = loopback.loopbackAsync(client, server) def cbFinished(ignored): self.assertTrue(client.wasReady) d.addCallback(cbFinished) return d def test_pumpPolicy(self): """ The callable passed as the value for the C{pumpPolicy} parameter to L{loopbackAsync} is called with a L{_LoopbackQueue} of pending bytes and a protocol to which they should be delivered. """ pumpCalls = [] def dummyPolicy(queue, target): bytes = [] while queue: bytes.append(queue.get()) pumpCalls.append((target, bytes)) client = Protocol() server = Protocol() finished = loopback.loopbackAsync(server, client, dummyPolicy) self.assertEqual(pumpCalls, []) client.transport.write(b"foo") client.transport.write(b"bar") server.transport.write(b"baz") server.transport.write(b"quux") server.transport.loseConnection() def cbComplete(ignored): self.assertEqual( pumpCalls, # The order here is somewhat arbitrary. The implementation # happens to always deliver data to the client first. [(client, [b"baz", b"quux", None]), (server, [b"foo", b"bar"])]) finished.addCallback(cbComplete) return finished def test_identityPumpPolicy(self): """ L{identityPumpPolicy} is a pump policy which calls the target's C{dataReceived} method one for each string in the queue passed to it. """ bytes = [] client = Protocol() client.dataReceived = bytes.append queue = loopback._LoopbackQueue() queue.put(b"foo") queue.put(b"bar") queue.put(None) loopback.identityPumpPolicy(queue, client) self.assertEqual(bytes, [b"foo", b"bar"]) def test_collapsingPumpPolicy(self): """ L{collapsingPumpPolicy} is a pump policy which calls the target's C{dataReceived} only once with all of the strings in the queue passed to it joined together. """ bytes = [] client = Protocol() client.dataReceived = bytes.append queue = loopback._LoopbackQueue() queue.put(b"foo") queue.put(b"bar") queue.put(None) loopback.collapsingPumpPolicy(queue, client) self.assertEqual(bytes, [b"foobar"]) class LoopbackTCPTestCase(LoopbackTestCaseMixin, unittest.TestCase): loopbackFunc = staticmethod(loopback.loopbackTCP) class LoopbackUNIXTestCase(LoopbackTestCaseMixin, unittest.TestCase): loopbackFunc = staticmethod(loopback.loopbackUNIX) if interfaces.IReactorUNIX(reactor, None) is None: skip = "Current reactor does not support UNIX sockets" elif _PY3: skip = "UNIX sockets not supported on Python 3. See #6136"
# -*- encoding: utf-8 -*- # # Copyright 2015-2016 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import dci.app from dci import dci_config from dci.db import models import tests.utils as utils import tests.sso_tokens as sso_tokens from passlib.apps import custom_app_context as pwd_context import contextlib import pytest import sqlalchemy_utils.functions from sqlalchemy.orm import sessionmaker import uuid @pytest.fixture(scope="session") def engine(request): utils.rm_upload_folder() db_uri = utils.conf["SQLALCHEMY_DATABASE_URI"] engine = dci_config.get_engine() if not sqlalchemy_utils.functions.database_exists(db_uri): sqlalchemy_utils.functions.create_database(db_uri) utils.restore_db(engine) return engine @pytest.fixture def session(engine): return sessionmaker(bind=engine)() @pytest.fixture def empty_db(engine): with contextlib.closing(engine.connect()) as con: meta = models.metadata trans = con.begin() for table in reversed(meta.sorted_tables): con.execute(table.delete()) trans.commit() return True @pytest.fixture def reset_job_event(engine): with contextlib.closing(engine.connect()) as con: trans = con.begin() con.execute("ALTER SEQUENCE jobs_events_id_seq RESTART WITH 1") trans.commit() return True @pytest.fixture def delete_db(request, engine, teardown_db_clean): models.metadata.drop_all(engine) engine.execute("DROP TABLE IF EXISTS alembic_version") @pytest.fixture(scope="session", autouse=True) def memoize_password_hash(): def memoize(func): cache = {} def helper(*args): if args in cache: return cache[args] else: value = func(*args) cache[args] = value return value return helper pwd_context.verify = memoize(pwd_context.verify) pwd_context.hash = memoize(pwd_context.hash) @pytest.fixture def teardown_db_clean(request, engine): request.addfinalizer(lambda: utils.restore_db(engine)) @pytest.fixture def fs_clean(request): """Clean test file upload directory""" request.addfinalizer(utils.rm_upload_folder) @pytest.fixture def db_provisioning(empty_db, session): utils.provision(session) @pytest.fixture def app(db_provisioning, engine, fs_clean): app = dci.app.create_app() app.testing = True app.engine = engine return app @pytest.fixture def admin(app): return utils.generate_client(app, ("admin", "admin")) @pytest.fixture def unauthorized(app): return utils.generate_client(app, ("bob", "bob")) @pytest.fixture def user(app): return utils.generate_client(app, ("user", "user")) @pytest.fixture def user2(app): return utils.generate_client(app, ("user2", "user2")) @pytest.fixture def rh_employee(app): return utils.generate_client(app, ("rh_employee", "rh_employee")) @pytest.fixture def user_sso(app, access_token): client = utils.generate_client(app, access_token=access_token) # first call, it create the user in the database client.get("/api/v1/users/me") return client @pytest.fixture def user_id(admin): user = admin.get("/api/v1/users?where=name:user") user = admin.get("/api/v1/users/%s" % user.data["users"][0]["id"]).data return str(user["user"]["id"]) @pytest.fixture def user_no_team(admin): r = admin.get("/api/v1/users?where=name:user_no_team") return dict(r.data["users"][0]) @pytest.fixture def epm(app): return utils.generate_client(app, ("epm", "epm")) @pytest.fixture def epm_id(epm): return epm.get("/api/v1/users/me").data["user"]["id"] @pytest.fixture def topic_id(admin, team_id, product): data = { "name": "topic_name", "product_id": product["id"], "component_types": ["type_1", "type_2", "type_3"], } topic = admin.post("/api/v1/topics", data=data).data t_id = topic["topic"]["id"] admin.post("/api/v1/topics/%s/teams" % t_id, data={"team_id": team_id}) return str(t_id) @pytest.fixture def topic(admin, team_user_id, product): topic = admin.post( "/api/v1/topics", data={ "name": "OSP12", "product_id": product["id"], "component_types": ["puddle_osp"], }, ).data["topic"] admin.post( "/api/v1/components", data={ "topic_id": topic["id"], "name": "RH7-RHOS-12.0 2017-11-09.2", "type": "puddle_osp", }, ) admin.post("/api/v1/topics/%s/teams" % topic["id"], data={"team_id": team_user_id}) return topic @pytest.fixture def test_id(admin): data = {"name": "pname"} test = admin.post("/api/v1/tests", data=data).data return str(test["test"]["id"]) @pytest.fixture def team_id(admin, team_user_id): team = admin.post("/api/v1/teams", data={"name": "pname"}) return str(team.data["team"]["id"]) @pytest.fixture def team_product_id(admin): team = admin.get("/api/v1/teams?where=name:product") team = admin.get("/api/v1/teams/%s" % team.data["teams"][0]["id"]).data return str(team["team"]["id"]) @pytest.fixture def team_user_id(admin): team = admin.get("/api/v1/teams?where=name:user").data["teams"][0] return str(team["id"]) @pytest.fixture def team_user_id2(admin): team = admin.get("/api/v1/teams?where=name:user2").data["teams"][0] return str(team["id"]) @pytest.fixture def team_admin_id(admin): team = admin.get("/api/v1/teams?where=name:admin").data["teams"][0] return str(team["id"]) @pytest.fixture def team_redhat_id(admin): team = admin.get("/api/v1/teams?where=name:Red Hat").data["teams"][0] return str(team["id"]) @pytest.fixture def team_epm_id(admin): team = admin.get("/api/v1/teams?where=name:EPM").data["teams"][0] return str(team["id"]) @pytest.fixture def topic_user(admin, user, team_user_id, team_user_id2, product): data = { "name": "topic_user_name", "product_id": product["id"], "component_types": ["type_1", "type_2", "type_3"], } topic = admin.post("/api/v1/topics", data=data).data["topic"] admin.post("/api/v1/topics/%s/teams" % topic["id"], data={"team_id": team_user_id}) admin.post("/api/v1/topics/%s/teams" % topic["id"], data={"team_id": team_user_id2}) for i in range(1, 4): admin.post( "/api/v1/components", data={"topic_id": topic["id"], "name": "comp%s" % i, "type": "type_%s" % i}, ) return topic @pytest.fixture def topic_user_id(topic_user): return topic_user["id"] @pytest.fixture def remoteci_id(admin, team_id): data = {"name": "pname", "team_id": team_id} remoteci = admin.post("/api/v1/remotecis", data=data).data return str(remoteci["remoteci"]["id"]) @pytest.fixture def remoteci_user_api_secret(user, remoteci_user_id): api_secret = user.get("/api/v1/remotecis/%s" % remoteci_user_id).data return api_secret["remoteci"]["api_secret"] @pytest.fixture def remoteci_user(user, admin, team_user_id, topic_user_id): data = {"name": "user remoteci", "team_id": team_user_id} remoteci = user.post("/api/v1/remotecis", data=data).data return remoteci["remoteci"] @pytest.fixture def remoteci_user_id(remoteci_user): return str(remoteci_user["id"]) @pytest.fixture def remoteci(admin, team_id): data = {"name": "remoteci", "team_id": team_id} return admin.post("/api/v1/remotecis", data=data).data["remoteci"] @pytest.fixture def remoteci_context(app, remoteci_user_id, remoteci_user_api_secret): remoteci = { "id": remoteci_user_id, "api_secret": remoteci_user_api_secret, "type": "remoteci", } return utils.generate_token_based_client(app, remoteci) @pytest.fixture def admin_remoteci_context(app, admin, team_admin_id): admin_remoteci = admin.post( "/api/v1/remotecis", data={"name": "admin remoteci", "team_id": team_admin_id} ).data["remoteci"] return utils.generate_token_based_client( app, { "id": admin_remoteci["id"], "api_secret": admin_remoteci["api_secret"], "type": "remoteci", }, ) @pytest.fixture def remoteci_configuration_user_id(user, remoteci_user_id, topic_user_id): rc = user.post( "/api/v1/remotecis/%s/configurations" % remoteci_user_id, data={ "name": "cname", "topic_id": topic_user_id, "component_types": ["kikoo", "lol"], "data": {"lol": "lol"}, }, ).data return str(rc["configuration"]["id"]) @pytest.fixture def feeder_id(epm, team_user_id): data = {"name": "feeder_osp", "team_id": team_user_id} feeder = epm.post("/api/v1/feeders", data=data).data return str(feeder["feeder"]["id"]) @pytest.fixture def feeder_api_secret(epm, feeder_id): api_secret = epm.get("/api/v1/feeders/%s" % feeder_id).data return api_secret["feeder"]["api_secret"] @pytest.fixture def feeder_context(app, feeder_id, feeder_api_secret): feeder = {"id": feeder_id, "api_secret": feeder_api_secret, "type": "feeder"} return utils.generate_token_based_client(app, feeder) def create_components(user, topic_id, component_types): component_ids = [] for ct in component_types: data = {"topic_id": topic_id, "name": "name-" + str(uuid.uuid4()), "type": ct} cmpt = user.post("/api/v1/components", data=data).data component_ids.append(str(cmpt["component"]["id"])) return component_ids @pytest.fixture def components_ids(admin, topic_id): component_types = ["type_1", "type_2", "type_3"] return create_components(admin, topic_id, component_types) @pytest.fixture def components_user_ids(admin, topic_user_id): component_types = ["type_1", "type_2", "type_3"] return create_components(admin, topic_user_id, component_types) @pytest.fixture def job_admin( admin, admin_remoteci_context, components_user_ids, topic_user_id, team_admin_id ): admin.post( "/api/v1/topics/%s/teams" % topic_user_id, data={"team_id": team_admin_id} ) data = {"components_ids": components_user_ids, "topic_id": topic_user_id} return admin_remoteci_context.post("/api/v1/jobs/schedule", data=data).data["job"] @pytest.fixture def job_user(remoteci_context, components_user_ids, topic_user_id): data = {"components_ids": components_user_ids, "topic_id": topic_user_id} job = remoteci_context.post("/api/v1/jobs/schedule", data=data).data return job["job"] @pytest.fixture def job_user_id(job_user): return job_user["id"] @pytest.fixture def jobstate_user_id(user, job_user_id): data = {"job_id": job_user_id, "status": "running", "comment": "kikoolol"} jobstate = user.post("/api/v1/jobstates", data=data).data return jobstate["jobstate"]["id"] @pytest.fixture def file_user_id(user, jobstate_user_id, team_user_id): headers = {"DCI-JOBSTATE-ID": jobstate_user_id, "DCI-NAME": "name"} file = user.post("/api/v1/files", headers=headers, data="kikoolol").data headers["team_id"] = team_user_id headers["id"] = file["file"]["id"] return file["file"]["id"] @pytest.fixture def file_job_user_id(user, job_user_id, team_user_id): headers = {"DCI-JOB-ID": job_user_id, "DCI-NAME": "name"} file = user.post("/api/v1/files", headers=headers, data="foobar").data headers["team_id"] = team_user_id headers["id"] = file["file"]["id"] return file["file"]["id"] @pytest.fixture def feeder(admin, team_product_id): data = { "name": "random-name-feeder", "team_id": team_product_id, } feeder = admin.post("/api/v1/feeders", data=data).data return feeder["feeder"] @pytest.fixture def product_openstack(admin): data = { "name": "OpenStack", "label": "OPENSTACK", "description": "Red Hat OpenStack Platform", } return admin.post("/api/v1/products", data=data).data["product"] @pytest.fixture def product(admin): return admin.get("/api/v1/products?where=label:AWSM").data["products"][0] @pytest.fixture def product2(admin): return admin.get("/api/v1/products?where=label:BEST").data["products"][0] @pytest.fixture def access_token(): return sso_tokens.ACCESS_TOKEN_USER @pytest.fixture def access_token_rh_employee(): return sso_tokens.ACCESS_TOKEN_READ_ONLY_USER @pytest.fixture(scope="session") def cakeys(): k = ( "-----BEGIN RSA PRIVATE KEY-----\n" "MIIJKAIBAAKCAgEAxVY2C4es4YwMtwwe6FKuybMZ8K8uWylF6AUurzFnp8mYObwT\n" "IvM5W0es7qjdT7UowZBKC+wiCFfwG9O6HZJj62PW/PfHRJWbJZ6PaLPGj1J83qYN\n" "SoSWIx340oUgzZnh0h3Yucqt634tjH+9nRq5YumLDKrcxryUSnGkFxv9jbx7yTUJ\n" "Xl3QFu5pjoam78q6bbZjQapTFqmSoKNkhpflnLsxU1r27lmfWUj0chh1TBR0nCxk\n" "dqCdafIl2MWCCJh3y459Qm6nbDBNrdDMpc+xluri/9o/MPWBk3amv7qvEzOn2DIx\n" "H1n/nLqzsCeR86EzREemIk+259QQTWQqsiq1rghDl3CJB4DWHec0C5FLbOq9wQvV\n" "S8J7UNKQrxcP3nnxa0iOGWYnoSzpfuB9uKIOtSMNJmPznFAiUbMbjRLACkWQlIHe\n" "VyqqcEXLmERdpIQ8IoZPd6RLtc8g7UYjppMsbd342gcBqn+tskS5C3Ka7g6spYKh\n" "Ct7TL3cmh5Tjghj9sTemUPsG8q9UVaUDIj5IHOg22kN+TSoa5DsoIES2x2ijgLXg\n" "LMP9WtmfVVxK9mDKm9FVMwJuqFU2OjvELw/d3eKvfVTLZcZ647BYMxfUxGtj9R58\n" "jxB0uL/nY4zhxwpgxLBq8Pv+x3MwLpGFOqAqJFO6q53l9d34pIetyuDEqqkCAwEA\n" "AQKCAgAr7CttV46ASUbPO1Bpz3V+CXI9oxBDVCVuJjEk52815mYOe7Eat15N1d9E\n" "46sWwbDHnJEOpElS6BfWacLkMCAzVW6VsaTVvCLjNa6f1FverLKEcBtHOcmdGV+3\n" "o9AQUy7zMJd7iwQ5BUWoHwqaPEeFH4xGjoVDatfq1e57AkzmTkyTFU33hhP59qji\n" "A1CG0O2727ut8vY5dhbf0F5gotCFmRi6f+W0WZhhLB7UgmMhQvBNjofx63/+A9qu\n" "rA9sUFthoF56+dwj9YBkrrPOODND7xYFcpNcF1j29JLa2/d546Z5NXq/iq2dOeUi\n" "0TvoKToa+YOd4XZJlWbnguMJ8v2q0bUdQFcJRcV155DxgqTtng7CAZyKd3AjPtE5\n" "6+/WkZiMaBS6tJxBeUNSuanErMxpTshLukDZQbrKskn/PKL7Hy7Q04tYXDa1UB6M\n" "qRMDxJB7+W4ct9dJ9lt4WxmNnnQz7TrzZxzX46i1o45+qDe1R8k5UL9vQ9vXwsE/\n" "LYHsd4CwbyS2JXpFL/5m7yC6RrkEz2WF2ln5A/fHAW9Wl/6VP2MI05mv6gfYdIr5\n" "MgkkR4NjucwBj5wK0CP+4+8Qyf+ZGwIBUMMjraIkGFvEFElapxgg8gxNfrHD7gfg\n" "orwqJ1N55Ajs5ZVjbf14It+u0HfamAbE10++yqEm9H//CaTiAQKCAQEA5ByigRd4\n" "639fYaLmMgEXTs5I+3D7eDYZt9YnT9fIsINqtvzuuhSI+nxfk/6rlxviJQ2S9yWQ\n" "dLZDuNSfZxx9G74qaO0ShWSXp4T+jyA+y+E0skuWOR/KxGqzqUab9vdhO+D1oLfV\n" "dDnnY4ILxPeLj6veAg56Qcc9X+dbHKcPiGgNC/A+Rj0qVvvaUKOcQqyAjCSyIXxF\n" "PvDshyku+Ty2gAtu0MS2LcXZJDjLs4dGu7MQz5/POe6pjgTEIOy3IWLqKVzczNmR\n" "4hKra2EgmMQ+Ls/Od4n77WL3bhGg9DTdChKdJyJOMXSCq5YsCEQnQfkodfq6/Amb\n" "hhpkuVKZwwac6QKCAQEA3XZjYuGwna4CBKF3TWG9yREuYhguUF370ly7G9TL7enw\n" "e100i/n/KWjApxAByInNy0TEHcSGfEiLMc9sDbQoaBuG7PEhIeSuSn6/D4olTUvq\n" "F3C0Z27tT95HZZ43xBDszsKJOhNx8wepmbtbK7pHUfqQm1KqY5qiABAxojaxDWn+\n" "8Q6W7HL4IPcmw9acFni2V/5WrWRfvT1TWEYxzWU65+wT0HWpGatqQVFyh0F6Yxe7\n" "WnIG7v5qxtz1Sj6hqf5vEkN50fHI7XLOoMDe3RtRj8TZ50fyAvvOjkw1yHMf0Wsk\n" "nTBCpN+CF6F74zNScITsfp+Cl9jXU6y7FR4/z84HwQKCAQEAhfePNJNtb5kRkkzS\n" "NoHPh3e9AvaaqUHUntPFqK2I7qlvjeJD7cLLo5hRpaAGdCtrB+nN6xoDmZfFdBJj\n" "P3JKw3VOgOriWrb2HesMeVAtsR0lDqU3p3rVYb9snjiatlMYpsr6VpZAZQ7wps8k\n" "TFw5eXotWzXXdTQnBmDgcJZol+rL5rwERsn7SLSGxZ8g0UNwB14xw1qxbEKgFs0I\n" "ClYutEqCnVc5yu4MFarJbzk+QFPsxpMLZ/GTYJXJ/bAn6RKnhP1Fq4UHmSbvx5N2\n" "SmHORz3B+xBthT//IoR165X0TssZwnbyRzcu2sjKOVyVVbiXm5pSIF0gGoT7rJ8n\n" "MJN8qQKCAQBnqsF/ShJ43TmInWTRTk2ez3Ic7SDQ8g2tPUdBEe2cIwQ1Wz37wDzX\n" "T3fPPEj5bLhuzHPZU2N4ziSKXoRALfM0OJ6CT6WozflgWdBqH8qyUjT0YAey21Qv\n" "LOfTA6srFpkjeCDwlKWklBOqKO/Wmk5Ea7xBWQL1uS7YRLxXKK7cjp+Oi7vOV0sb\n" "c1YsGkvaoQsKSb6dT/0ZApn/Gmy5rwdSBUqJLGrJ31nP1aZ89gOqWzOSdQoV2fZ1\n" "vHz+Ei9u+fFYZUmjI0FhFXrv+RjZ+63EVOuDvkPlbaYVKkuK14kvaK4s/qhTsWSe\n" "VzM8+Ys/rJlf9J8XIaQ6QQMaMZzBU7qBAoIBABqsTioYbOJDR0OJXLy7ykiXOdcx\n" "so7mek6YFRL+//9XlprLYDfoMVf0s0uWrJ9xY+Gcr9GIyOiKBrnWKVFrbibfZSvr\n" "L9swaN82IotuiT9Mk7JKLWdRY0JLMC1XhfahRgg5wyukjct8mYJGcuY2vVvHmd6D\n" "XuhVO0mlm0v/ScdBUvKQKjMOFLYXxHh/2a1mQD5coujJnn9iCA4Pf9xmLo6fG/Jy\n" "xqrDef+lE+ow+uPJanueVDo9KcNBEa80f9KOzOwyb90zWfVYkvt1vMkOOsoVkvR/\n" "qM1R5M9igUzsHGfIpY6jA0OR26gg2G+xcwPKCqeSUnmSbhE8LXHEyskc+Gs=\n" "-----END RSA PRIVATE KEY-----" ) c = ( "-----BEGIN CERTIFICATE-----\n" "MIIF5jCCA86gAwIBAgIJAK1pLlYEf/ebMA0GCSqGSIb3DQEBCwUAMIGHMQswCQYD\n" "VQQGEwJGUjEMMAoGA1UECAwDSURGMQ4wDAYDVQQHDAVQYXJpczEPMA0GA1UECgwG\n" "UmVkSGF0MQwwCgYDVQQLDANEQ0kxETAPBgNVBAMMCERDSS1SZXBvMSgwJgYJKoZI\n" "hvcNAQkBFhlkaXN0cmlidXRlZC1jaUByZWRoYXQuY29tMB4XDTE4MDMxNDEzMzY0\n" "MFoXDTE5MDMxNDEzMzY0MFowgYcxCzAJBgNVBAYTAkZSMQwwCgYDVQQIDANJREYx\n" "DjAMBgNVBAcMBVBhcmlzMQ8wDQYDVQQKDAZSZWRIYXQxDDAKBgNVBAsMA0RDSTER\n" "MA8GA1UEAwwIRENJLVJlcG8xKDAmBgkqhkiG9w0BCQEWGWRpc3RyaWJ1dGVkLWNp\n" "QHJlZGhhdC5jb20wggIiMA0GCSqGSIb3DQEBAQUAA4ICDwAwggIKAoICAQDFVjYL\n" "h6zhjAy3DB7oUq7Jsxnwry5bKUXoBS6vMWenyZg5vBMi8zlbR6zuqN1PtSjBkEoL\n" "7CIIV/Ab07odkmPrY9b898dElZslno9os8aPUnzepg1KhJYjHfjShSDNmeHSHdi5\n" "yq3rfi2Mf72dGrli6YsMqtzGvJRKcaQXG/2NvHvJNQleXdAW7mmOhqbvyrpttmNB\n" "qlMWqZKgo2SGl+WcuzFTWvbuWZ9ZSPRyGHVMFHScLGR2oJ1p8iXYxYIImHfLjn1C\n" "bqdsME2t0Mylz7GW6uL/2j8w9YGTdqa/uq8TM6fYMjEfWf+curOwJ5HzoTNER6Yi\n" "T7bn1BBNZCqyKrWuCEOXcIkHgNYd5zQLkUts6r3BC9VLwntQ0pCvFw/eefFrSI4Z\n" "ZiehLOl+4H24og61Iw0mY/OcUCJRsxuNEsAKRZCUgd5XKqpwRcuYRF2khDwihk93\n" "pEu1zyDtRiOmkyxt3fjaBwGqf62yRLkLcpruDqylgqEK3tMvdyaHlOOCGP2xN6ZQ\n" "+wbyr1RVpQMiPkgc6DbaQ35NKhrkOyggRLbHaKOAteAsw/1a2Z9VXEr2YMqb0VUz\n" "Am6oVTY6O8QvD93d4q99VMtlxnrjsFgzF9TEa2P1HnyPEHS4v+djjOHHCmDEsGrw\n" "+/7HczAukYU6oCokU7qrneX13fikh63K4MSqqQIDAQABo1MwUTAdBgNVHQ4EFgQU\n" "MAt4tfiBDZ7koyZq8Ss0P+swDpQwHwYDVR0jBBgwFoAUMAt4tfiBDZ7koyZq8Ss0\n" "P+swDpQwDwYDVR0TAQH/BAUwAwEB/zANBgkqhkiG9w0BAQsFAAOCAgEAlqC46nbw\n" "Y8UhIktSTInTrtX70Y9QF/Gl0weDoOgUNG/j9ReQPU1h/W3Ion4sZ4WO6Q3Y3jQ/\n" "0+Ky0bJFpQZ0C3ssS65XdJC9fpLsiZY/HZUlgRuj7tnR7AjqHA6PBFNz83yGHZgq\n" "GMA3LMq+FyY3K/FTj/NX5iaE2sJlDLu36yv6zcVnQwskkQ/rHoNmE3Prr3A7ZkLv\n" "Ox73PpkiD7FySmTFiiz6i/CPUyx6Y9fZNhNSXvjg6F2tXYQWPJAEL0fWTKvywMML\n" "tpIQnwz6hNaH5Z+O92X67LfJJtmoggNexmO/pbeGVNYPjyRllMcNNJq3GsABwzuA\n" "7zIitCjqpw0RV40pSLv9oulqrS+tdMW55R/RxVCEx3L0H/L36K7IjXan5UkWQxlW\n" "zi65LvYGgCU9d0CH7gUtyyRgJ1G7hAYbBqYOlMEjHdYYOGhGW4LVKSJ4QwPn+yHn\n" "+GXELJTacwV0LVGcDPkqdWbt0KcyMukDFQXs5UikE3i+54783cmfZr3U5Gr/OCWZ\n" "VikifhmBSl3sRfVm7YPW5pffAdACRDZVjZ6ro37x0JQ6jERuhaKe7sv3s0/gCWT5\n" "XMFg+rftswcrSvxBpVNTUu5vPnXK3dWsM4noalVxh449ewlcruYh17Yt2KEwkB/+\n" "4AMjw7GIwuUN1rZsqBbZ5tBHrRoR02IDcMA=\n" "-----END CERTIFICATE-----" ) cert = open("/tmp/ca.crt", "w") cert.write(c) cert.close() key = open("/tmp/ca.key", "w") key.write(k) key.close() @pytest.fixture def RHELProduct(admin): data = {"name": "RHEL", "label": "RHEL", "description": "Red Hat Entreprise Linux"} return admin.post("/api/v1/products", data=data).data["product"] @pytest.fixture def RHEL80Topic(admin, RHELProduct): data = { "name": "RHEL-8.0", "product_id": RHELProduct["id"], "component_types": ["Compose"], "export_control": True, } return admin.post("/api/v1/topics", data=data).data["topic"] @pytest.fixture def RHEL80Component(admin, RHEL80Topic): data = { "topic_id": RHEL80Topic["id"], "name": "RHEL-8.0.0-20190926.n.0", "type": "Compose", } return admin.post("/api/v1/components", data=data).data["component"] @pytest.fixture def RHEL81Topic(admin, RHELProduct): data = { "name": "RHEL-8.1", "product_id": RHELProduct["id"], "component_types": ["Compose"], "export_control": False, } return admin.post("/api/v1/topics", data=data).data["topic"] @pytest.fixture def RHEL81Component(admin, RHEL81Topic): data = { "topic_id": RHEL81Topic["id"], "name": "RHEL-8.1.0-20190926.n.0", "type": "Compose", } return admin.post("/api/v1/components", data=data).data["component"] @pytest.fixture def cki_test_file(user, job_user): headers = { "DCI-JOB-ID": job_user["id"], "DCI-NAME": "cki-result", "DCI-MIME": "application/junit", "Content-Disposition": "attachment; filename=cki-results.xml", "Content-Type": "application/junit", } data = open("tests/data/cki-results.xml").read() r = user.post("/api/v1/files", headers=headers, data=data) return r.data["file"]
# Copyright 2011 OpenStack Foundation. # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """OpenStack logging handler. This module adds to logging functionality by adding the option to specify a context object when calling the various log methods. If the context object is not specified, default formatting is used. Additionally, an instance uuid may be passed as part of the log message, which is intended to make it easier for admins to find messages related to a specific instance. It also allows setting of formatting information through conf. """ import inspect import itertools import logging import logging.config import logging.handlers import os import socket import sys import traceback from oslo.config import cfg from oslo.serialization import jsonutils from oslo.utils import importutils import six from six import moves _PY26 = sys.version_info[0:2] == (2, 6) from neutron.openstack.common._i18n import _ from neutron.openstack.common import local _DEFAULT_LOG_DATE_FORMAT = "%Y-%m-%d %H:%M:%S" common_cli_opts = [ cfg.BoolOpt('debug', short='d', default=False, help='Print debugging output (set logging level to ' 'DEBUG instead of default WARNING level).'), cfg.BoolOpt('verbose', short='v', default=False, help='Print more verbose output (set logging level to ' 'INFO instead of default WARNING level).'), ] logging_cli_opts = [ cfg.StrOpt('log-config-append', metavar='PATH', deprecated_name='log-config', help='The name of a logging configuration file. This file ' 'is appended to any existing logging configuration ' 'files. For details about logging configuration files, ' 'see the Python logging module documentation.'), cfg.StrOpt('log-format', metavar='FORMAT', help='DEPRECATED. ' 'A logging.Formatter log message format string which may ' 'use any of the available logging.LogRecord attributes. ' 'This option is deprecated. Please use ' 'logging_context_format_string and ' 'logging_default_format_string instead.'), cfg.StrOpt('log-date-format', default=_DEFAULT_LOG_DATE_FORMAT, metavar='DATE_FORMAT', help='Format string for %%(asctime)s in log records. ' 'Default: %(default)s .'), cfg.StrOpt('log-file', metavar='PATH', deprecated_name='logfile', help='(Optional) Name of log file to output to. ' 'If no default is set, logging will go to stdout.'), cfg.StrOpt('log-dir', deprecated_name='logdir', help='(Optional) The base directory used for relative ' '--log-file paths.'), cfg.BoolOpt('use-syslog', default=False, help='Use syslog for logging. ' 'Existing syslog format is DEPRECATED during I, ' 'and will change in J to honor RFC5424.'), cfg.BoolOpt('use-syslog-rfc-format', # TODO(bogdando) remove or use True after existing # syslog format deprecation in J default=False, help='(Optional) Enables or disables syslog rfc5424 format ' 'for logging. If enabled, prefixes the MSG part of the ' 'syslog message with APP-NAME (RFC5424). The ' 'format without the APP-NAME is deprecated in I, ' 'and will be removed in J.'), cfg.StrOpt('syslog-log-facility', default='LOG_USER', help='Syslog facility to receive log lines.') ] generic_log_opts = [ cfg.BoolOpt('use_stderr', default=True, help='Log output to standard error.') ] DEFAULT_LOG_LEVELS = ['amqp=WARN', 'amqplib=WARN', 'boto=WARN', 'qpid=WARN', 'sqlalchemy=WARN', 'suds=INFO', 'oslo.messaging=INFO', 'iso8601=WARN', 'requests.packages.urllib3.connectionpool=WARN', 'urllib3.connectionpool=WARN', 'websocket=WARN', "keystonemiddleware=WARN", "routes.middleware=WARN", "stevedore=WARN"] log_opts = [ cfg.StrOpt('logging_context_format_string', default='%(asctime)s.%(msecs)03d %(process)d %(levelname)s ' '%(name)s [%(request_id)s %(user_identity)s] ' '%(instance)s%(message)s', help='Format string to use for log messages with context.'), cfg.StrOpt('logging_default_format_string', default='%(asctime)s.%(msecs)03d %(process)d %(levelname)s ' '%(name)s [-] %(instance)s%(message)s', help='Format string to use for log messages without context.'), cfg.StrOpt('logging_debug_format_suffix', default='%(funcName)s %(pathname)s:%(lineno)d', help='Data to append to log format when level is DEBUG.'), cfg.StrOpt('logging_exception_prefix', default='%(asctime)s.%(msecs)03d %(process)d TRACE %(name)s ' '%(instance)s', help='Prefix each line of exception output with this format.'), cfg.ListOpt('default_log_levels', default=DEFAULT_LOG_LEVELS, help='List of logger=LEVEL pairs.'), cfg.BoolOpt('publish_errors', default=False, help='Enables or disables publication of error events.'), cfg.BoolOpt('fatal_deprecations', default=False, help='Enables or disables fatal status of deprecations.'), # NOTE(mikal): there are two options here because sometimes we are handed # a full instance (and could include more information), and other times we # are just handed a UUID for the instance. cfg.StrOpt('instance_format', default='[instance: %(uuid)s] ', help='The format for an instance that is passed with the log ' 'message.'), cfg.StrOpt('instance_uuid_format', default='[instance: %(uuid)s] ', help='The format for an instance UUID that is passed with the ' 'log message.'), ] CONF = cfg.CONF CONF.register_cli_opts(common_cli_opts) CONF.register_cli_opts(logging_cli_opts) CONF.register_opts(generic_log_opts) CONF.register_opts(log_opts) # our new audit level # NOTE(jkoelker) Since we synthesized an audit level, make the logging # module aware of it so it acts like other levels. logging.AUDIT = logging.INFO + 1 logging.addLevelName(logging.AUDIT, 'AUDIT') try: NullHandler = logging.NullHandler except AttributeError: # NOTE(jkoelker) NullHandler added in Python 2.7 class NullHandler(logging.Handler): def handle(self, record): pass def emit(self, record): pass def createLock(self): self.lock = None def _dictify_context(context): if context is None: return None if not isinstance(context, dict) and getattr(context, 'to_dict', None): context = context.to_dict() return context def _get_binary_name(): return os.path.basename(inspect.stack()[-1][1]) def _get_log_file_path(binary=None): logfile = CONF.log_file logdir = CONF.log_dir if logfile and not logdir: return logfile if logfile and logdir: return os.path.join(logdir, logfile) if logdir: binary = binary or _get_binary_name() return '%s.log' % (os.path.join(logdir, binary),) return None class BaseLoggerAdapter(logging.LoggerAdapter): def audit(self, msg, *args, **kwargs): self.log(logging.AUDIT, msg, *args, **kwargs) def isEnabledFor(self, level): if _PY26: # This method was added in python 2.7 (and it does the exact # same logic, so we need to do the exact same logic so that # python 2.6 has this capability as well). return self.logger.isEnabledFor(level) else: return super(BaseLoggerAdapter, self).isEnabledFor(level) class LazyAdapter(BaseLoggerAdapter): def __init__(self, name='unknown', version='unknown'): self._logger = None self.extra = {} self.name = name self.version = version @property def logger(self): if not self._logger: self._logger = getLogger(self.name, self.version) if six.PY3: # In Python 3, the code fails because the 'manager' attribute # cannot be found when using a LoggerAdapter as the # underlying logger. Work around this issue. self._logger.manager = self._logger.logger.manager return self._logger class ContextAdapter(BaseLoggerAdapter): warn = logging.LoggerAdapter.warning def __init__(self, logger, project_name, version_string): self.logger = logger self.project = project_name self.version = version_string self._deprecated_messages_sent = dict() @property def handlers(self): return self.logger.handlers def deprecated(self, msg, *args, **kwargs): """Call this method when a deprecated feature is used. If the system is configured for fatal deprecations then the message is logged at the 'critical' level and :class:`DeprecatedConfig` will be raised. Otherwise, the message will be logged (once) at the 'warn' level. :raises: :class:`DeprecatedConfig` if the system is configured for fatal deprecations. """ stdmsg = _("Deprecated: %s") % msg if CONF.fatal_deprecations: self.critical(stdmsg, *args, **kwargs) raise DeprecatedConfig(msg=stdmsg) # Using a list because a tuple with dict can't be stored in a set. sent_args = self._deprecated_messages_sent.setdefault(msg, list()) if args in sent_args: # Already logged this message, so don't log it again. return sent_args.append(args) self.warn(stdmsg, *args, **kwargs) def process(self, msg, kwargs): # NOTE(jecarey): If msg is not unicode, coerce it into unicode # before it can get to the python logging and # possibly cause string encoding trouble if not isinstance(msg, six.text_type): msg = six.text_type(msg) if 'extra' not in kwargs: kwargs['extra'] = {} extra = kwargs['extra'] context = kwargs.pop('context', None) if not context: context = getattr(local.store, 'context', None) if context: extra.update(_dictify_context(context)) instance = kwargs.pop('instance', None) instance_uuid = (extra.get('instance_uuid') or kwargs.pop('instance_uuid', None)) instance_extra = '' if instance: instance_extra = CONF.instance_format % instance elif instance_uuid: instance_extra = (CONF.instance_uuid_format % {'uuid': instance_uuid}) extra['instance'] = instance_extra extra.setdefault('user_identity', kwargs.pop('user_identity', None)) extra['project'] = self.project extra['version'] = self.version extra['extra'] = extra.copy() return msg, kwargs class JSONFormatter(logging.Formatter): def __init__(self, fmt=None, datefmt=None): # NOTE(jkoelker) we ignore the fmt argument, but its still there # since logging.config.fileConfig passes it. self.datefmt = datefmt def formatException(self, ei, strip_newlines=True): lines = traceback.format_exception(*ei) if strip_newlines: lines = [moves.filter( lambda x: x, line.rstrip().splitlines()) for line in lines] lines = list(itertools.chain(*lines)) return lines def format(self, record): message = {'message': record.getMessage(), 'asctime': self.formatTime(record, self.datefmt), 'name': record.name, 'msg': record.msg, 'args': record.args, 'levelname': record.levelname, 'levelno': record.levelno, 'pathname': record.pathname, 'filename': record.filename, 'module': record.module, 'lineno': record.lineno, 'funcname': record.funcName, 'created': record.created, 'msecs': record.msecs, 'relative_created': record.relativeCreated, 'thread': record.thread, 'thread_name': record.threadName, 'process_name': record.processName, 'process': record.process, 'traceback': None} if hasattr(record, 'extra'): message['extra'] = record.extra if record.exc_info: message['traceback'] = self.formatException(record.exc_info) return jsonutils.dumps(message) def _create_logging_excepthook(product_name): def logging_excepthook(exc_type, value, tb): extra = {'exc_info': (exc_type, value, tb)} getLogger(product_name).critical( "".join(traceback.format_exception_only(exc_type, value)), **extra) return logging_excepthook class LogConfigError(Exception): message = _('Error loading logging config %(log_config)s: %(err_msg)s') def __init__(self, log_config, err_msg): self.log_config = log_config self.err_msg = err_msg def __str__(self): return self.message % dict(log_config=self.log_config, err_msg=self.err_msg) def _load_log_config(log_config_append): try: logging.config.fileConfig(log_config_append, disable_existing_loggers=False) except (moves.configparser.Error, KeyError) as exc: raise LogConfigError(log_config_append, six.text_type(exc)) def setup(product_name, version='unknown'): """Setup logging.""" if CONF.log_config_append: _load_log_config(CONF.log_config_append) else: _setup_logging_from_conf(product_name, version) sys.excepthook = _create_logging_excepthook(product_name) def set_defaults(logging_context_format_string=None, default_log_levels=None): # Just in case the caller is not setting the # default_log_level. This is insurance because # we introduced the default_log_level parameter # later in a backwards in-compatible change if default_log_levels is not None: cfg.set_defaults( log_opts, default_log_levels=default_log_levels) if logging_context_format_string is not None: cfg.set_defaults( log_opts, logging_context_format_string=logging_context_format_string) def _find_facility_from_conf(): facility_names = logging.handlers.SysLogHandler.facility_names facility = getattr(logging.handlers.SysLogHandler, CONF.syslog_log_facility, None) if facility is None and CONF.syslog_log_facility in facility_names: facility = facility_names.get(CONF.syslog_log_facility) if facility is None: valid_facilities = facility_names.keys() consts = ['LOG_AUTH', 'LOG_AUTHPRIV', 'LOG_CRON', 'LOG_DAEMON', 'LOG_FTP', 'LOG_KERN', 'LOG_LPR', 'LOG_MAIL', 'LOG_NEWS', 'LOG_AUTH', 'LOG_SYSLOG', 'LOG_USER', 'LOG_UUCP', 'LOG_LOCAL0', 'LOG_LOCAL1', 'LOG_LOCAL2', 'LOG_LOCAL3', 'LOG_LOCAL4', 'LOG_LOCAL5', 'LOG_LOCAL6', 'LOG_LOCAL7'] valid_facilities.extend(consts) raise TypeError(_('syslog facility must be one of: %s') % ', '.join("'%s'" % fac for fac in valid_facilities)) return facility class RFCSysLogHandler(logging.handlers.SysLogHandler): def __init__(self, *args, **kwargs): self.binary_name = _get_binary_name() # Do not use super() unless type(logging.handlers.SysLogHandler) # is 'type' (Python 2.7). # Use old style calls, if the type is 'classobj' (Python 2.6) logging.handlers.SysLogHandler.__init__(self, *args, **kwargs) def format(self, record): # Do not use super() unless type(logging.handlers.SysLogHandler) # is 'type' (Python 2.7). # Use old style calls, if the type is 'classobj' (Python 2.6) msg = logging.handlers.SysLogHandler.format(self, record) msg = self.binary_name + ' ' + msg return msg def _setup_logging_from_conf(project, version): log_root = getLogger(None).logger for handler in log_root.handlers: log_root.removeHandler(handler) logpath = _get_log_file_path() if logpath: filelog = logging.handlers.WatchedFileHandler(logpath) log_root.addHandler(filelog) if CONF.use_stderr: streamlog = ColorHandler() log_root.addHandler(streamlog) elif not logpath: # pass sys.stdout as a positional argument # python2.6 calls the argument strm, in 2.7 it's stream streamlog = logging.StreamHandler(sys.stdout) log_root.addHandler(streamlog) if CONF.publish_errors: try: handler = importutils.import_object( "neutron.openstack.common.log_handler.PublishErrorsHandler", logging.ERROR) except ImportError: handler = importutils.import_object( "oslo.messaging.notify.log_handler.PublishErrorsHandler", logging.ERROR) log_root.addHandler(handler) datefmt = CONF.log_date_format for handler in log_root.handlers: # NOTE(alaski): CONF.log_format overrides everything currently. This # should be deprecated in favor of context aware formatting. if CONF.log_format: handler.setFormatter(logging.Formatter(fmt=CONF.log_format, datefmt=datefmt)) log_root.info('Deprecated: log_format is now deprecated and will ' 'be removed in the next release') else: handler.setFormatter(ContextFormatter(project=project, version=version, datefmt=datefmt)) if CONF.debug: log_root.setLevel(logging.DEBUG) elif CONF.verbose: log_root.setLevel(logging.INFO) else: log_root.setLevel(logging.WARNING) for pair in CONF.default_log_levels: mod, _sep, level_name = pair.partition('=') logger = logging.getLogger(mod) # NOTE(AAzza) in python2.6 Logger.setLevel doesn't convert string name # to integer code. if sys.version_info < (2, 7): level = logging.getLevelName(level_name) logger.setLevel(level) else: logger.setLevel(level_name) if CONF.use_syslog: try: facility = _find_facility_from_conf() # TODO(bogdando) use the format provided by RFCSysLogHandler # after existing syslog format deprecation in J if CONF.use_syslog_rfc_format: syslog = RFCSysLogHandler(facility=facility) else: syslog = logging.handlers.SysLogHandler(facility=facility) log_root.addHandler(syslog) except socket.error: log_root.error('Unable to add syslog handler. Verify that syslog ' 'is running.') _loggers = {} def getLogger(name='unknown', version='unknown'): if name not in _loggers: _loggers[name] = ContextAdapter(logging.getLogger(name), name, version) return _loggers[name] def getLazyLogger(name='unknown', version='unknown'): """Returns lazy logger. Creates a pass-through logger that does not create the real logger until it is really needed and delegates all calls to the real logger once it is created. """ return LazyAdapter(name, version) class WritableLogger(object): """A thin wrapper that responds to `write` and logs.""" def __init__(self, logger, level=logging.INFO): self.logger = logger self.level = level def write(self, msg): self.logger.log(self.level, msg.rstrip()) class ContextFormatter(logging.Formatter): """A context.RequestContext aware formatter configured through flags. The flags used to set format strings are: logging_context_format_string and logging_default_format_string. You can also specify logging_debug_format_suffix to append extra formatting if the log level is debug. For information about what variables are available for the formatter see: http://docs.python.org/library/logging.html#formatter If available, uses the context value stored in TLS - local.store.context """ def __init__(self, *args, **kwargs): """Initialize ContextFormatter instance Takes additional keyword arguments which can be used in the message format string. :keyword project: project name :type project: string :keyword version: project version :type version: string """ self.project = kwargs.pop('project', 'unknown') self.version = kwargs.pop('version', 'unknown') logging.Formatter.__init__(self, *args, **kwargs) def format(self, record): """Uses contextstring if request_id is set, otherwise default.""" # NOTE(jecarey): If msg is not unicode, coerce it into unicode # before it can get to the python logging and # possibly cause string encoding trouble if not isinstance(record.msg, six.text_type): record.msg = six.text_type(record.msg) # store project info record.project = self.project record.version = self.version # store request info context = getattr(local.store, 'context', None) if context: d = _dictify_context(context) for k, v in d.items(): setattr(record, k, v) # NOTE(sdague): default the fancier formatting params # to an empty string so we don't throw an exception if # they get used for key in ('instance', 'color', 'user_identity'): if key not in record.__dict__: record.__dict__[key] = '' if record.__dict__.get('request_id'): fmt = CONF.logging_context_format_string else: fmt = CONF.logging_default_format_string if (record.levelno == logging.DEBUG and CONF.logging_debug_format_suffix): fmt += " " + CONF.logging_debug_format_suffix if sys.version_info < (3, 2): self._fmt = fmt else: self._style = logging.PercentStyle(fmt) self._fmt = self._style._fmt # Cache this on the record, Logger will respect our formatted copy if record.exc_info: record.exc_text = self.formatException(record.exc_info, record) return logging.Formatter.format(self, record) def formatException(self, exc_info, record=None): """Format exception output with CONF.logging_exception_prefix.""" if not record: return logging.Formatter.formatException(self, exc_info) stringbuffer = moves.StringIO() traceback.print_exception(exc_info[0], exc_info[1], exc_info[2], None, stringbuffer) lines = stringbuffer.getvalue().split('\n') stringbuffer.close() if CONF.logging_exception_prefix.find('%(asctime)') != -1: record.asctime = self.formatTime(record, self.datefmt) formatted_lines = [] for line in lines: pl = CONF.logging_exception_prefix % record.__dict__ fl = '%s%s' % (pl, line) formatted_lines.append(fl) return '\n'.join(formatted_lines) class ColorHandler(logging.StreamHandler): LEVEL_COLORS = { logging.DEBUG: '\033[00;32m', # GREEN logging.INFO: '\033[00;36m', # CYAN logging.AUDIT: '\033[01;36m', # BOLD CYAN logging.WARN: '\033[01;33m', # BOLD YELLOW logging.ERROR: '\033[01;31m', # BOLD RED logging.CRITICAL: '\033[01;31m', # BOLD RED } def format(self, record): record.color = self.LEVEL_COLORS[record.levelno] return logging.StreamHandler.format(self, record) class DeprecatedConfig(Exception): message = _("Fatal call to deprecated config: %(msg)s") def __init__(self, msg): super(Exception, self).__init__(self.message % dict(msg=msg))
# Copyright (c) 2006,2007 Mitch Garnaat http://garnaat.org/ # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, dis- # tribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the fol- # lowing conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL- # ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT # SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. import urllib import xml.sax import threading import boto from boto import handler from boto.connection import AWSQueryConnection from boto.sdb.domain import Domain, DomainMetaData from boto.sdb.item import Item from boto.exception import SDBResponseError from boto.resultset import ResultSet class ItemThread(threading.Thread): def __init__(self, name, domain_name, item_names): threading.Thread.__init__(self, name=name) print 'starting %s with %d items' % (name, len(item_names)) self.domain_name = domain_name self.conn = SDBConnection() self.item_names = item_names self.items = [] def run(self): for item_name in self.item_names: item = self.conn.get_attributes(self.domain_name, item_name) self.items.append(item) class SDBConnection(AWSQueryConnection): APIVersion = '2007-11-07' SignatureVersion = '2' ResponseError = SDBResponseError def __init__(self, aws_access_key_id=None, aws_secret_access_key=None, is_secure=True, port=None, proxy=None, proxy_port=None, proxy_user=None, proxy_pass=None, host='sdb.amazonaws.com', debug=0, https_connection_factory=None): AWSQueryConnection.__init__(self, aws_access_key_id, aws_secret_access_key, is_secure, port, proxy, proxy_port, proxy_user, proxy_pass, host, debug, https_connection_factory) self.box_usage = 0.0 def build_name_value_list(self, params, attributes, replace=False): keys = attributes.keys() keys.sort() i = 1 for key in keys: value = attributes[key] if isinstance(value, list): for v in value: params['Attribute.%d.Name'%i] = key params['Attribute.%d.Value'%i] = v if replace: params['Attribute.%d.Replace'%i] = 'true' i += 1 else: params['Attribute.%d.Name'%i] = key params['Attribute.%d.Value'%i] = value if replace: params['Attribute.%d.Replace'%i] = 'true' i += 1 def build_name_list(self, params, attribute_names): i = 1 attribute_names.sort() for name in attribute_names: params['Attribute.%d.Name'%i] = name i += 1 def get_usage(self): """ Returns the BoxUsage accumulated on this SDBConnection object. @rtype: float @return: The accumulated BoxUsage of all requests made on the connection. """ return self.box_usage def print_usage(self): """ Print the BoxUsage and approximate costs of all requests made on this connection. """ print 'Total Usage: %f compute seconds' % self.box_usage cost = self.box_usage * 0.14 print 'Approximate Cost: $%f' % cost def get_domain(self, domain_name, validate=True): domain = Domain(self, domain_name) if validate: self.query(domain, '', max_items=1) return domain def lookup(self, domain_name, validate=True): """ Lookup an existing SimpleDB domain @type domain_name: string @param domain_name: The name of the new domain @rtype: L{Domain<boto.sdb.domain.Domain>} object or None @return: The Domain object or None if the domain does not exist. """ try: domain = self.get_domain(domain_name, validate) except: domain = None return domain def get_all_domains(self, max_domains=None, next_token=None): params = {} if max_domains: params['MaxNumberOfDomains'] = max_domains if next_token: params['NextToken'] = next_token return self.get_list('ListDomains', params, [('DomainName', Domain)]) def create_domain(self, domain_name): """ Create a SimpleDB domain. @type domain_name: string @param domain_name: The name of the new domain @rtype: L{Domain<boto.sdb.domain.Domain>} object @return: The newly created domain """ params = {'DomainName':domain_name} d = self.get_object('CreateDomain', params, Domain) d.name = domain_name return d def get_domain_and_name(self, domain_or_name): if (isinstance(domain_or_name, Domain)): return (domain_or_name, domain_or_name.name) else: return (self.get_domain(domain_or_name), domain_or_name) def delete_domain(self, domain_or_name): """ Delete a SimpleDB domain. @type domain_or_name: string or L{Domain<boto.sdb.domain.Domain>} object. @param domain_or_name: Either the name of a domain or a Domain object @rtype: bool @return: True if successful B{Note:} This will delete the domain and all items within the domain. """ domain, domain_name = self.get_domain_and_name(domain_or_name) params = {'DomainName':domain_name} return self.get_status('DeleteDomain', params) def domain_metadata(self, domain_or_name): """ Get the Metadata for a SimpleDB domain. @type domain_or_name: string or L{Domain<boto.sdb.domain.Domain>} object. @param domain_or_name: Either the name of a domain or a Domain object @rtype: L{DomainMetaData<boto.sdb.domain.DomainMetaData>} object @return: The newly created domain metadata object """ domain, domain_name = self.get_domain_and_name(domain_or_name) params = {'DomainName':domain_name} d = self.get_object('DomainMetadata', params, DomainMetaData) d.domain = domain return d def put_attributes(self, domain_or_name, item_name, attributes, replace=True): """ Store attributes for a given item in a domain. @type domain_or_name: string or L{Domain<boto.sdb.domain.Domain>} object. @param domain_or_name: Either the name of a domain or a Domain object @type item_name: string @param item_name: The name of the item whose attributes are being stored. @type attribute_names: dict or dict-like object @param attribute_names: The name/value pairs to store as attributes @type replace: bool @param replace: Whether the attribute values passed in will replace existing values or will be added as addition values. Defaults to True. @rtype: bool @return: True if successful """ domain, domain_name = self.get_domain_and_name(domain_or_name) params = {'DomainName' : domain_name, 'ItemName' : item_name} self.build_name_value_list(params, attributes, replace) return self.get_status('PutAttributes', params) def get_attributes(self, domain_or_name, item_name, attribute_names=None, item=None): """ Retrieve attributes for a given item in a domain. @type domain_or_name: string or L{Domain<boto.sdb.domain.Domain>} object. @param domain_or_name: Either the name of a domain or a Domain object @type item_name: string @param item_name: The name of the item whose attributes are being retrieved. @type attribute_names: string or list of strings @param attribute_names: An attribute name or list of attribute names. This parameter is optional. If not supplied, all attributes will be retrieved for the item. @rtype: L{Item<boto.sdb.item.Item>} @return: An Item mapping type containing the requested attribute name/values """ domain, domain_name = self.get_domain_and_name(domain_or_name) params = {'DomainName' : domain_name, 'ItemName' : item_name} if attribute_names: if not isinstance(attribute_names, list): attribute_names = [attribute_names] self.build_list_params(params, attribute_names, 'AttributeName') response = self.make_request('GetAttributes', params) body = response.read() if response.status == 200: if item == None: item = Item(domain, item_name) h = handler.XmlHandler(item, self) xml.sax.parseString(body, h) return item else: raise SDBResponseError(response.status, response.reason, body) def delete_attributes(self, domain_or_name, item_name, attr_names=None): """ Delete attributes from a given item in a domain. @type domain_or_name: string or L{Domain<boto.sdb.domain.Domain>} object. @param domain_or_name: Either the name of a domain or a Domain object @type item_name: string @param item_name: The name of the item whose attributes are being deleted. @type attributes: dict, list or L{Item<boto.sdb.item.Item>} @param attributes: Either a list containing attribute names which will cause all values associated with that attribute name to be deleted or a dict or Item containing the attribute names and keys and list of values to delete as the value. If no value is supplied, all attribute name/values for the item will be deleted. @rtype: bool @return: True if successful """ domain, domain_name = self.get_domain_and_name(domain_or_name) params = {'DomainName':domain_name, 'ItemName' : item_name} if attr_names: if isinstance(attr_names, list): self.build_name_list(params, attr_names) elif isinstance(attr_names, dict) or isinstance(attr_names, Item): self.build_name_value_list(params, attr_names) return self.get_status('DeleteAttributes', params) def query(self, domain_or_name, query='', max_items=None, next_token=None): """ Returns a list of item names within domain_name that match the query. @type domain_or_name: string or L{Domain<boto.sdb.domain.Domain>} object. @param domain_or_name: Either the name of a domain or a Domain object @type query: string @param query: The SimpleDB query to be performed. @type max_items: int @param max_items: The maximum number of items to return. If not supplied, the default is None which returns all items matching the query. @rtype: ResultSet @return: An iterator containing the results. """ domain, domain_name = self.get_domain_and_name(domain_or_name) params = {'DomainName':domain_name, 'QueryExpression' : query} if max_items: params['MaxNumberOfItems'] = max_items if next_token: params['NextToken'] = next_token return self.get_object('Query', params, ResultSet) def query_with_attributes(self, domain_or_name, query='', attr_names=None, max_items=None, next_token=None): """ Returns a set of Attributes for item names within domain_name that match the query. @type domain_or_name: string or L{Domain<boto.sdb.domain.Domain>} object. @param domain_or_name: Either the name of a domain or a Domain object @type query: string @param query: The SimpleDB query to be performed. @type attr_names: list @param attr_names: The name of the attributes to be returned. If no attributes are specified, all attributes will be returned. @type max_items: int @param max_items: The maximum number of items to return. If not supplied, the default is None which returns all items matching the query. @rtype: ResultSet @return: An iterator containing the results. """ domain, domain_name = self.get_domain_and_name(domain_or_name) params = {'DomainName':domain_name, 'QueryExpression' : query} if max_items: params['MaxNumberOfItems'] = max_items if next_token: params['NextToken'] = next_token if attr_names: self.build_list_params(params, attr_names, 'AttributeName') return self.get_list('QueryWithAttributes', params, [('Item', Item)], parent=domain) def threaded_query(self, domain_or_name, query='', max_items=None, next_token=None, num_threads=6): """ Returns a list of fully populated items that match the query provided. The name/value pairs for all of the matching item names are retrieved in a number of separate threads (specified by num_threads) to achieve maximum throughput. The ResultSet that is returned has an attribute called next_token that can be used to retrieve additional results for the same query. """ domain, domain_name = self.get_domain_and_name(domain_or_name) if max_items and num_threads > max_items: num_threads = max_items rs = self.query(domain_or_name, query, max_items, next_token) threads = [] n = len(rs) / num_threads for i in range(0, num_threads): if i+1 == num_threads: thread = ItemThread('Thread-%d' % i, domain_name, rs[n*i:]) else: thread = ItemThread('Thread-%d' % i, domain_name, rs[n*i:n*(i+1)]) threads.append(thread) thread.start() del rs[0:] for thread in threads: thread.join() for item in thread.items: rs.append(item) return rs
""" Virtuoso kernel for Jupyter. Inspired by https://github.com/takluyver/bash_kernel """ from ipykernel.kernelbase import Kernel from IPython.display import HTML, Image from ipykernel import ( get_connection_file, get_connection_info, connect_qtconsole ) import signal from .shell import VirtuosoShell, VirtuosoExceptions from pexpect import EOF import colorama import re import time import os import zmq __version__ = '0.2' class VirtuosoKernel(Kernel): """ Kernel to connect virtuoso to Jupyter front-end """ implementation = 'virtuoso_kernel' implementation_version = __version__ language = 'SKILL' @property def language_version(self): """ Language version """ return self._shell.language_version @property def language_info(self): """ Language info """ return {'name': 'SKILL', 'version': self.language_version, 'mimetype': 'text/x-skill', 'file_extension': '.il', 'pygments_lexer': 'skill', 'codemirror_mode': 'skill'} @property def banner(self): """ Shell's banner """ return self._shell.banner _err_header = HTML('<span style="color:red; font-family:monospace">' 'Traceback:</span>') def __init__(self, **kwargs): super(VirtuosoKernel, self).__init__(**kwargs) self._start_virtuoso() colorama.init() self._plot_re = re.compile(r'[^\w]?\w*?[pP]lot\w*\(') self._exit_re = re.compile(r'^exit\W*') self._cell_magic_re = re.compile(r'^%+(\S+)') self._plt_width = 8.0 self._plt_height = 5.0 self._plt_resolution = 96 self._plt_file_name = None # Start a new window to handle plots #self._shell.run_raw("__win_id__ = awvCreatePlotWindow()") def _handle_interrupt(self, signum, frame): """ Interrupt handler for the kernel """ self._shell.interrupt() #self._shell._shell.sendline("]") self._shell.wait_ready() def _start_virtuoso(self): """ Start the virtuoso shell """ # Signal handlers are inherited by forked processes, and we can't # easily reset it from the subprocess. Since kernelapp ignores SIGINT # except in message handlers, we need to temporarily reset the SIGINT # handler here so that virtuoso and its children are interruptible. sig = signal.signal(signal.SIGINT, signal.SIG_DFL) try: self._shell = VirtuosoShell() finally: signal.signal(signal.SIGINT, sig) pass def do_execute(self, code, silent, store_history=True, user_expressions=None, allow_stdin=False): """ Execute the *code* block sent by the front-end. """ if code.strip() == '': return {'status': 'ok', 'execution_count': self.execution_count, 'payload': [], 'user_expressions': {}} shell = self._shell output = None interrupted = False exec_error = None # Check for cell magic and handle magic _magic_match = self._cell_magic_re.search(code) if(_magic_match is not None): _exec_status, _exec_message = self._handle_magics( _magic_match.group(1), code) if _exec_status is True: return {'status': 'ok', 'execution_count': self.execution_count, 'payload': [], 'user_expressions': {}} else: return {'status': 'error', 'execution_count': self.execution_count, 'ename': str('CellMagicError'), 'evalue': str(1), 'traceback': _exec_message['traceback']} # Handle plots separately to display inline. # If there is a 'plot(...)' command in the code, # ask the shell to save a .png hardcopy at the end # and display the image inline. _plot_match = self._plot_re.search(code) # If there is a plot request, clear the plot window first. #if(_plot_match is not None): # self._shell.run_raw("clearAll()") if self._exit_re.search(code) is not None: execute_content = {'execution_count': self.execution_count, 'data': {'text/plain': "Do '<ctrl>D' to exit"}, 'metadata': {}} self.send_response(self.iopub_socket, 'execute_result', execute_content) return {'status': 'abort', 'execution_count': self.execution_count} try: output = shell.run_cell(code.rstrip()) except (zmq.ZMQError, KeyboardInterrupt): self._handle_interrupt(signal.SIGINT, None) interrupted = True output = shell.output except EOF: output = shell.output + '\r\nRestarting Virtuoso' self._start_virtuoso() except VirtuosoExceptions as vexcp: exec_error = vexcp.value output = shell.output #if(_plot_match is not None): # # Ask the shell to save a hardcopy # self._plt_file_name = '/tmp/jupyter_virtuoso_%s.png' % \ # str(time.time()) # _plt_cmd = ('saveGraphImage(?window __win_id__ ?fileName "%s" ' # '?width %f ?height %f ?units "inch" ' # '?resolution %d ?resolutionUnits "pixels/in" ' # '?saveEachSubwindowSeparately nil)') %\ # (self._plt_file_name, self._plt_width, self._plt_height, # self._plt_resolution) # self._shell.run_raw(_plt_cmd) # if(os.path.isfile(self._plt_file_name)): # # Display this image inline # _image = Image(filename=self._plt_file_name) # display_content = {'source': "kernel", # 'data': {'image/png': # _image.data.encode('base64')}, # 'metadata': {}} # self.send_response(self.iopub_socket, 'display_data', # display_content) # # Delete the hardcopy # os.remove(self._plt_file_name) if interrupted: return {'status': 'abort', 'execution_count': self.execution_count} if (not silent) and (output != ''): execute_content = {'execution_count': self.execution_count, 'data': {'text/plain': output}, 'metadata': {}} self.send_response(self.iopub_socket, 'execute_result', execute_content) if exec_error is not None: html_content = {'source': 'kernel', 'data': {'text/html': self._err_header.data, 'text/plain': (colorama.Fore.RED + 'Traceback:' + colorama.Fore.RESET) }, 'metadata': {}} self.send_response(self.iopub_socket, 'display_data', html_content) # TODO: Need to get a proper traceback like in ultraTB # tb_content = ["", 0, "", exec_error[2]] tb_content = [exec_error[2]] err_content = {'execution_count': self.execution_count, 'ename': str(exec_error[0]), 'evalue': str(exec_error[1]), 'traceback': tb_content} self.send_response(self.iopub_socket, 'error', err_content) return {'status': 'error', 'execution_count': self.execution_count, 'ename': str(exec_error[0]), 'evalue': str(exec_error[1]), 'traceback': tb_content} else: return {'status': 'ok', 'execution_count': self.execution_count, 'payload': [], 'user_expressions': {}} def do_complete(self, code, cursor_pos): code = code[:cursor_pos] default = {'matches': [], 'cursor_start': 0, 'cursor_end': cursor_pos, 'metadata': dict(), 'status': 'ok'} if not code or code[-1] == ' ': return default _lines = code.splitlines(True) if not _lines: return default _matches, _token = self._shell.get_matches(_lines[-1]) # when completing methods/attributes, _token is '' _cstart = cursor_pos - len(_token) if len(_matches) == 0: return default start = cursor_pos - len(_token) return {'matches': _matches, 'cursor_start': _cstart, 'cursor_end': cursor_pos, 'metadata': dict(), 'status': 'ok'} def _html_introspection(self, info, keyword): import re info = re.sub(r'(\?\w+)', r'<i>\1</i>', info, count=0) info = re.sub(r'(%s)' % keyword, r'<b>\1</b>', info, count=0) return HTML(info) def do_inspect(self, code, cursor_pos, detail_level=0): """ Object introspection """ code = code[:cursor_pos] default = {'status': 'ok', 'data': {}, 'metadata': dict(), 'found': False} if not code or code[-1] == ' ': return default _tokens = code.split() if not _tokens: return default _token = _tokens[-1] _info = self._shell.get_info(_token) if len(_info) == 0: return default # 'text/html': HTML().data # _html_info = self._html_introspection(_info, _token) # _tt_info = self._pretty_introspection(_info, _token) # return {'status': 'ok', # 'data': {'text/html': _html_info.data, # 'text/plain': _tt_info}, # 'metadata': dict(), # 'found': True} return {'status': 'ok', 'data': {'text/plain': _info}, 'metadata': dict(), 'found': True} def do_shutdown(self, restart): """ Shutdown the shell """ self._shell.shutdown(restart) return {'restart': restart} def _handle_magics(self, magic_code, code): """ Handle cell magics """ _exec_status = False _content = None err_content = None if(magic_code == 'connect_info'): try: connection_file = get_connection_file() _content = get_connection_info(unpack=False) except Exception as e: error("Could not get connection info: %r" % e) return if(magic_code == 'history'): _args = re.search(r'^%(\S+)(?:\s*)(\d*)', code) self._shell.run_raw('history(' + _args.group(2) + ')') _content = self._shell.output[:-1] if(magic_code == 'help'): _args = re.search(r'^%(\S+)(?:\s*)(\S*)', code) _content = self._shell.get_info(_args.group(2)) if(magic_code == 'image'): _args = re.search(r'^%(\S+)(?:\s*)(\S+)', code) if _args is not None: return self._show_image_inline(_args.group(2)) if(magic_code == 'flush'): _content = '' if(_content is not None): execute_content = {'execution_count': self.execution_count, 'data': {'text/plain': _content}, 'metadata': {}} self.send_response(self.iopub_socket, 'execute_result', execute_content) _exec_status = True else: err_content = {'execution_count': self.execution_count, 'ename': str('CellMagicError'), 'evalue': str(1), 'traceback': ['Invalid cell magic']} self.send_response(self.iopub_socket, 'error', err_content) return _exec_status, err_content def _show_image_inline(self, filename): _exec_status = False err_content = None if(os.path.isfile(filename)): # Display this image inline _image = Image(filename=filename) display_content = {'source': "kernel", 'data': {'image/png': _image.data.encode('base64')}, 'metadata': {}} self.send_response(self.iopub_socket, 'display_data', display_content) _exec_status = True else: err_content = {'execution_count': self.execution_count, 'ename': str('CellMagicError'), 'evalue': str(2), 'traceback': ['Image not found']} self.send_response(self.iopub_socket, 'error', err_content) return _exec_status, err_content
# -*- coding: utf-8 -*- # Copyright (c) 2013-2014 Simon Jagoe # All rights reserved. # # This software may be modified and distributed under the terms # of the 3-clause BSD license. See the LICENSE.txt file for details. from __future__ import absolute_import, unicode_literals from argparse import Namespace from contextlib import contextmanager from functools import wraps import logging import os import shutil import tempfile import types from testfixtures import LogCapture from stevedore.extension import ExtensionManager, Extension import haas from ..haas_application import HaasApplication from ..loader import Loader from ..plugin_manager import PluginManager from ..plugins.discoverer import Discoverer from ..suite import TestSuite from ..testing import unittest from ..utils import cd from .compat import mock from . import builder class MockLambda(object): def __eq__(self, other): if isinstance(other, types.FunctionType): result_class = other(None, None, 1) if isinstance(result_class, unittest.TestResult): return True return False def __ne__(self, other): return not (other == self) def with_patched_test_runner(fn): @wraps(fn) def wrapper(*args): with mock.patch('haas.haas_application.ResultCollector') as result_cls: with mock.patch( 'haas.plugins.runner.BaseTestRunner') as runner_class: environment_manager = ExtensionManager.make_test_instance( [], namespace=PluginManager.ENVIRONMENT_HOOK, ) result_handler = Extension( 'default', None, result_cls, None) env_managers = [ (PluginManager.ENVIRONMENT_HOOK, environment_manager), ( PluginManager.RESULT_HANDLERS, ExtensionManager.make_test_instance( [result_handler], namespace=PluginManager.RESULT_HANDLERS), ), ] runner = Extension('default', None, runner_class, None) discoverer = Extension('default', None, Discoverer, None) driver_managers = [ ( PluginManager.TEST_DISCOVERY, ExtensionManager.make_test_instance( [discoverer], namespace=PluginManager.TEST_DISCOVERY), ), ( PluginManager.TEST_RUNNER, ExtensionManager.make_test_instance( [runner], namespace=PluginManager.TEST_RUNNER), ), ] plugin_manager = PluginManager.testing_plugin_manager( hook_managers=env_managers, driver_managers=driver_managers) args_ = args + (runner_class, result_cls, plugin_manager,) return fn(*args_) return wrapper class TestHaasApplication(unittest.TestCase): def _run_with_arguments(self, runner_class, result_class, *args, **kwargs): plugin_manager = kwargs.get('plugin_manager') runner = mock.Mock() runner_class.from_args.return_value = runner result = mock.Mock() result.wasSuccessful = mock.Mock() result_class.return_value = result run_method = mock.Mock(return_value=result) runner.run = run_method app = HaasApplication(['argv0'] + list(args)) app.run(plugin_manager=plugin_manager) return run_method, result @contextmanager def _basic_test_fixture(self): package_name = 'first' module = builder.Module( 'test_something.py', ( builder.Class( 'TestSomething', ( builder.Method('test_method'), ), ), ), ) fixture = builder.Directory( 'top', ( builder.Package(package_name, (module,)), ), ) tempdir = tempfile.mkdtemp(prefix='haas-tests-') try: fixture.create(tempdir) top_level = os.path.join(tempdir, fixture.name) with cd(top_level): yield package_name finally: shutil.rmtree(tempdir) @with_patched_test_runner def test_main_default_arguments(self, runner_class, result_class, plugin_manager): # When with self._basic_test_fixture() as package_name: run, result = self._run_with_arguments( runner_class, result_class, plugin_manager=plugin_manager) suite = Discoverer(Loader()).discover(package_name) # Then self.assertEqual(runner_class.from_args.call_count, 1) args = runner_class.from_args.call_args args, kwargs = args ns, dest = args self.assertIsInstance(ns, Namespace) self.assertEqual(dest, 'runner_') self.assertEqual(ns.verbosity, 1) self.assertFalse(ns.failfast) self.assertFalse(ns.buffer) run.assert_called_once_with(result, suite) result.wasSuccessful.assert_called_once_with() @with_patched_test_runner def test_main_quiet(self, runner_class, result_class, plugin_manager): # When with self._basic_test_fixture() as package_name: run, result = self._run_with_arguments( runner_class, result_class, '-q', plugin_manager=plugin_manager) suite = Discoverer(Loader()).discover(package_name) # Then args = runner_class.from_args.call_args args, kwargs = args ns, dest = args self.assertIsInstance(ns, Namespace) self.assertEqual(ns.verbosity, 0) self.assertFalse(ns.failfast) self.assertFalse(ns.buffer) run.assert_called_once_with(result, suite) result.wasSuccessful.assert_called_once_with() @mock.patch('sys.stdout') @mock.patch('sys.stderr') @mock.patch('haas.plugins.runner.BaseTestRunner') def test_main_quiet_and_verbose_not_allowed(self, runner_class, stdout, stderr): with self.assertRaises(SystemExit): self._run_with_arguments(runner_class, mock.Mock(), '-q', '-v') @with_patched_test_runner def test_main_verbose(self, runner_class, result_class, plugin_manager): # When with self._basic_test_fixture() as package_name: run, result = self._run_with_arguments( runner_class, result_class, '-v', plugin_manager=plugin_manager) suite = Discoverer(Loader()).discover(package_name) # Then args = runner_class.from_args.call_args args, kwargs = args ns, dest = args self.assertIsInstance(ns, Namespace) self.assertEqual(ns.verbosity, 2) self.assertFalse(ns.failfast) self.assertFalse(ns.buffer) run.assert_called_once_with(result, suite) result.wasSuccessful.assert_called_once_with() @with_patched_test_runner def test_main_failfast(self, runner_class, result_class, plugin_manager): # When with self._basic_test_fixture() as package_name: run, result = self._run_with_arguments( runner_class, result_class, '-f', plugin_manager=plugin_manager) suite = Discoverer(Loader()).discover(package_name) # Then args = runner_class.from_args.call_args args, kwargs = args ns, dest = args self.assertIsInstance(ns, Namespace) self.assertEqual(ns.verbosity, 1) self.assertTrue(ns.failfast) self.assertFalse(ns.buffer) run.assert_called_once_with(result, suite) result.wasSuccessful.assert_called_once_with() @with_patched_test_runner def test_main_buffer(self, runner_class, result_class, plugin_manager): # When with self._basic_test_fixture() as package_name: run, result = self._run_with_arguments( runner_class, result_class, '-b', plugin_manager=plugin_manager) suite = Discoverer(Loader()).discover(package_name) # Then args = runner_class.from_args.call_args args, kwargs = args ns, dest = args self.assertIsInstance(ns, Namespace) self.assertEqual(ns.verbosity, 1) self.assertFalse(ns.failfast) self.assertTrue(ns.buffer) run.assert_called_once_with(result, suite) result.wasSuccessful.assert_called_once_with() @mock.patch('logging.getLogger') @with_patched_test_runner def test_with_logging(self, get_logger, runner_class, result_class, plugin_manager): # Given logger = mock.Mock() get_logger.side_effect = lambda name: logger with self._basic_test_fixture() as package_name: run, result = self._run_with_arguments( runner_class, result_class, '--log-level', 'debug', plugin_manager=plugin_manager) suite = Discoverer(Loader()).discover(package_name) # Then get_logger.assert_called_once_with(haas.__name__) logger.setLevel.assert_called_once_with(logging.DEBUG) args = runner_class.from_args.call_args args, kwargs = args ns, dest = args self.assertIsInstance(ns, Namespace) self.assertEqual(ns.verbosity, 1) self.assertFalse(ns.failfast) self.assertFalse(ns.buffer) run.assert_called_once_with(result, suite) result.wasSuccessful.assert_called_once_with() @mock.patch('logging.getLogger') @with_patched_test_runner def test_with_logging_uppercase_loglevel(self, get_logger, runner_class, result_class, plugin_manager): # Given logger = mock.Mock() get_logger.side_effect = lambda name: logger with self._basic_test_fixture() as package_name: run, result = self._run_with_arguments( runner_class, result_class, '--log-level', 'WARNING', plugin_manager=plugin_manager) suite = Discoverer(Loader()).discover(package_name) # Then get_logger.assert_called_once_with(haas.__name__) logger.setLevel.assert_called_once_with(logging.WARNING) args = runner_class.from_args.call_args args, kwargs = args ns, dest = args self.assertIsInstance(ns, Namespace) self.assertEqual(ns.verbosity, 1) self.assertFalse(ns.failfast) self.assertFalse(ns.buffer) run.assert_called_once_with(result, suite) result.wasSuccessful.assert_called_once_with() @mock.patch('sys.stdout') @mock.patch('sys.stderr') @mock.patch('coverage.coverage') @mock.patch('haas.plugins.runner.BaseTestRunner') def test_with_coverage_plugin(self, runner_class, coverage, stdout, stderr): # When run, result = self._run_with_arguments( runner_class, mock.Mock(), '--with-coverage') # Then coverage.assert_called_once_with() def test_failfast(self): def test_should_cause_early_stop(self1): self1.fail() def test_cause_failure(self1): print('Did I fail?') self.fail('Failfast test did not abort test run') cls_dict = { 'test_should_cause_early_stop': test_should_cause_early_stop, 'test_cause_failure': test_cause_failure, } test_cls = type(str('TestFailfast'), (unittest.TestCase,), cls_dict) suite = TestSuite( [ TestSuite( [ test_cls('test_should_cause_early_stop'), test_cls('test_cause_failure'), ], ), TestSuite( [ test_cls('test_cause_failure'), ], ), ], ) self.assertEqual(suite.countTestCases(), 3) result = unittest.TestResult() result.failfast = True suite.run(result) self.assertEqual(result.testsRun, 1) @with_patched_test_runner def test_multiple_start_directories(self, runner_class, result_class, plugin_manager): # Given module = builder.Module( 'test_something.py', ( builder.Class( 'TestSomething', ( builder.Method('test_method'), ), ), ), ) fixture = builder.Directory( 'top', ( builder.Package('first', (module,)), builder.Package('second', (module,)), ), ) tempdir = tempfile.mkdtemp(prefix='haas-tests-') try: fixture.create(tempdir) top_level = os.path.join(tempdir, fixture.name) # When with cd(top_level): run, result = self._run_with_arguments( runner_class, result_class, '-t', top_level, 'first', 'second', plugin_manager=plugin_manager, ) loader = Loader() suite1 = Discoverer(loader).discover('first', top_level) suite2 = Discoverer(loader).discover('second', top_level) suite = loader.create_suite((suite1, suite2)) # Then run.assert_called_once_with(result, suite) finally: shutil.rmtree(tempdir) @with_patched_test_runner def test_multiple_start_directories_non_package(self, runner_class, result_class, plugin_manager): # Given module = builder.Module( 'test_something.py', ( builder.Class( 'TestSomething', ( builder.Method('test_method'), ), ), ), ) fixture = builder.Directory( 'top', ( builder.Package('first', (module,)), builder.Directory('second', (module,)), ), ) tempdir = tempfile.mkdtemp(prefix='haas-tests-') try: fixture.create(tempdir) top_level = os.path.join(tempdir, fixture.name) # When/Then with cd(top_level): with self.assertRaises(ImportError): run, result = self._run_with_arguments( runner_class, result_class, '-t', top_level, 'first', 'second', plugin_manager=plugin_manager) finally: shutil.rmtree(tempdir) @with_patched_test_runner def test_logging_propagate(self, runner_class, result_class, plugin_manager): # Given logger = haas.logger message = 'test log message' # When with LogCapture() as root_logging: with LogCapture(haas.__name__) as haas_logging: logger.info(message) # Then root_logging.check() haas_logging.check( (haas.__name__, logging.getLevelName(logging.INFO), message))
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Python wrapper for prefetching_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import warnings from tensorflow.contrib.data.python.ops import contrib_op_loader # pylint: disable=unused-import from tensorflow.contrib.data.python.ops import gen_dataset_ops from tensorflow.python.data.ops import dataset_ops from tensorflow.python.data.ops import iterator_ops from tensorflow.python.data.util import nest from tensorflow.python.data.util import sparse from tensorflow.python.eager import context from tensorflow.python.framework import dtypes from tensorflow.python.framework import function from tensorflow.python.framework import ops from tensorflow.python.ops import gen_dataset_ops as core_gen_dataset_ops # TODO(rohanj): Add a python class that constructs resource in the __init__ # method and provides a get_next() that calls the prefetch op. def function_buffering_resource(string_arg, target_device, f, buffer_size, container="", shared_name=None, name=None): if shared_name is None: shared_name = "" return gen_dataset_ops.function_buffering_resource( string_arg=string_arg, target_device=target_device, shared_name=shared_name, f=f, buffer_size=buffer_size, container=container, name=name) def function_buffering_resource_get_next(function_buffer_resource, output_types, name=None): return gen_dataset_ops.function_buffering_resource_get_next( function_buffer_resource=function_buffer_resource, output_types=output_types, name=name) def function_buffering_resource_reset(function_buffer_resource, name=None): return gen_dataset_ops.function_buffering_resource_reset( function_buffer_resource=function_buffer_resource, name=name) # pylint: disable=protected-access class _PrefetchToDeviceIterator(object): """A replacement for @{tf.data.Iterator} that prefetches to another device. Args: input_dataset: The input dataset one_shot: If true, we make a one shot iterator that's already initialized. device: A fully specified device string where we want to prefetch to buffer_size: Size of the prefetching buffer. shared_name: (Optional.) If non-empty, the returned iterator will be shared under the given name across multiple sessions that share the same devices (e.g. when using a remote server). Returns: An Iterator type object. """ def __init__(self, input_dataset, one_shot, device, buffer_size, shared_name=None): self._input_dataset = input_dataset self._get_next_call_count = 0 self._one_shot = one_shot if shared_name is None: shared_name = "" if self._one_shot: self._input_iterator = input_dataset.make_one_shot_iterator() else: self._input_iterator = iterator_ops.Iterator.from_structure( self._input_dataset.output_types, self._input_dataset.output_shapes, shared_name, self._input_dataset.output_classes) input_iterator_handle = self._input_iterator.string_handle() @function.Defun(dtypes.string) def _prefetch_fn(handle): """Prefetches one element from `input_iterator`.""" remote_iterator = iterator_ops.Iterator.from_string_handle( handle, self._input_iterator.output_types, self._input_iterator.output_shapes, self._input_iterator.output_classes) ret = remote_iterator.get_next() return nest.flatten(sparse.serialize_sparse_tensors(ret)) iterator_device = gen_dataset_ops.iterator_get_device( self._input_iterator._iterator_resource) with ops.device(device): self._buffering_resource = function_buffering_resource( f=_prefetch_fn, target_device=iterator_device, string_arg=input_iterator_handle, buffer_size=buffer_size, shared_name=shared_name) if not self._one_shot: reset_op = function_buffering_resource_reset(self._buffering_resource) with ops.control_dependencies([reset_op]): self._initializer = self._input_iterator.make_initializer( self._input_dataset) def get_next(self, name=None): """See @{tf.data.Iterator.get_next}.""" self._get_next_call_count += 1 if self._get_next_call_count > iterator_ops.GET_NEXT_CALL_WARNING_THRESHOLD: warnings.warn(iterator_ops.GET_NEXT_CALL_WARNING_MESSAGE) flat_ret = gen_dataset_ops.function_buffering_resource_get_next( self._buffering_resource, output_types=nest.flatten(sparse.as_dense_types( self.output_types, self.output_classes)), name=name) ret = sparse.deserialize_sparse_tensors( nest.pack_sequence_as(self.output_types, flat_ret), self.output_types, self.output_shapes, self.output_classes) for tensor, shape in zip( nest.flatten(ret), nest.flatten(self.output_shapes)): if isinstance(tensor, ops.Tensor): tensor.set_shape(shape) return ret @property def initializer(self): if self._one_shot: raise NotImplementedError("Can't initialize a one_shot_iterator") return self._initializer @property def output_classes(self): return self._input_dataset.output_classes @property def output_shapes(self): return self._input_dataset.output_shapes @property def output_types(self): return self._input_dataset.output_types class _PrefetchToDeviceEagerIterator(iterator_ops.EagerIterator): """A replacement for @{tf.data.Iterator} that prefetches to another device. Args: input_dataset: The input dataset one_shot: If true, we make a one shot iterator that's already initialized. device: A fully specified device string where we want to prefetch to buffer_size: Size of the prefetching buffer. shared_name: (Optional.) If non-empty, the returned iterator will be shared under the given name across multiple sessions that share the same devices (e.g. when using a remote server). Returns: An Iterator type object. """ def __init__(self, input_dataset, device, buffer_size): with ops.device("/device:CPU:0"): super(_PrefetchToDeviceEagerIterator, self).__init__(input_dataset) input_iterator_handle = core_gen_dataset_ops.iterator_to_string_handle( self._resource) self._device = device @function.Defun(dtypes.string) def _prefetch_fn(handle): """Prefetches one element from `input_iterator`.""" remote_iterator = iterator_ops.Iterator.from_string_handle( handle, self.output_types, self.output_shapes, self.output_classes) ret = remote_iterator.get_next() return nest.flatten(sparse.serialize_sparse_tensors(ret)) _prefetch_fn.add_to_graph(None) with ops.device(device): self._buffering_resource = function_buffering_resource( f=_prefetch_fn, target_device=gen_dataset_ops.iterator_get_device(self._resource), string_arg=input_iterator_handle, buffer_size=buffer_size, shared_name=iterator_ops._generate_shared_name( "function_buffer_resource")) def _next_internal(self): """Returns a nested structure of `tf.Tensor`s containing the next element. """ # This runs in sync mode as iterators use an error status to communicate # that there is no more data to iterate over. # TODO(b/77291417): Fix with context.execution_mode(context.SYNC): with ops.device(self._device): ret = gen_dataset_ops.function_buffering_resource_get_next( function_buffer_resource=self._buffering_resource, output_types=self._flat_output_types) return sparse.deserialize_sparse_tensors( nest.pack_sequence_as(self._output_types, ret), self._output_types, self._output_shapes, self._output_classes) # pylint: enable=protected-access class _PrefetchToDeviceDataset(dataset_ops.Dataset): """A `Dataset` whose iterator prefetches elements to another device.""" def __init__(self, input_dataset, device, buffer_size): self._input_dataset = input_dataset self._device = device self._buffer_size = buffer_size if buffer_size is not None else 1 # The static analysis cannot tell that the eager iterator's superclass has # a `next()` method. # pylint: disable=non-iterator-returned def __iter__(self): """Creates an `Iterator` for enumerating the elements of this dataset. The returned iterator implements the Python iterator protocol and therefore can only be used in eager mode. Returns: An `Iterator` over the elements of this dataset. Raises: RuntimeError: If eager execution is enabled. """ if context.executing_eagerly(): return _PrefetchToDeviceEagerIterator(self._input_dataset, self._device, self._buffer_size) else: raise RuntimeError("dataset.__iter__() is only supported when eager " "execution is enabled.") # pylint: enable=non-iterator-returned def make_one_shot_iterator(self): if context.executing_eagerly(): return _PrefetchToDeviceEagerIterator(self._input_dataset, self._device, self._buffer_size) else: return _PrefetchToDeviceIterator(self._input_dataset, one_shot=True, device=self._device, buffer_size=self._buffer_size) def make_initializable_iterator(self, shared_name=None): return _PrefetchToDeviceIterator( self._input_dataset, one_shot=False, device=self._device, buffer_size=self._buffer_size, shared_name=shared_name) def _as_variant_tensor(self): # TODO(mrry): Raise this error earlier (e.g. when one of the Dataset # transformation methods is called. # TODO(mrry): Investigate support for chaining further transformations after # the prefetch, including GPU support. raise NotImplementedError("`prefetch_to_device()` must be the last " "transformation in a dataset pipeline.") @property def output_types(self): return self._input_dataset.output_types @property def output_shapes(self): return self._input_dataset.output_shapes @property def output_classes(self): return self._input_dataset.output_classes def prefetch_to_device(device, buffer_size=None): """A transformation that prefetches dataset values to the given `device`. NOTE: Although the transformation creates a @{tf.data.Dataset}, the transformation must be the final `Dataset` in the input pipeline. Args: device: A string. The name of a device to which elements will be prefetched. buffer_size: (Optional.) The number of elements to buffer on `device`. Defaults to an automatically chosen value. Returns: A `Dataset` transformation function, which can be passed to @{tf.data.Dataset.apply}. """ def _apply_fn(dataset): return _PrefetchToDeviceDataset(dataset, device, buffer_size) return _apply_fn
""" Simulation with Analytic FDEM Solutions ======================================= Here, the module *SimPEG.electromagnetics.analytics.FDEM* is used to simulate harmonic electric and magnetic field for both electric and magnetic dipole sources in a wholespace. """ ######################################################################### # Import modules # -------------- # import numpy as np from SimPEG import utils from SimPEG.electromagnetics.analytics.FDEM import ( ElectricDipoleWholeSpace, MagneticDipoleWholeSpace, ) import matplotlib.pyplot as plt from matplotlib.colors import LogNorm ##################################################################### # Magnetic Fields for a Magnetic Dipole Source # -------------------------------------------- # # Here, we compute the magnetic fields for a harmonic magnetic dipole # source in the z direction. Based on the geometry of the problem, we # expect magnetic fields in the x and z directions, but none in the y # direction. # # Defining electric dipole location and frequency source_location = np.r_[0, 0, 0] frequency = 1e3 # Defining observation locations (avoid placing observation at source) x = np.arange(-100.5, 100.5, step=1.0) y = np.r_[0] z = x observation_locations = utils.ndgrid(x, y, z) # Define wholespace conductivity sig = 1e-2 # Compute the fields Hx, Hy, Hz = MagneticDipoleWholeSpace( observation_locations, source_location, sig, frequency, moment="Z", fieldType="h", mu_r=1, eps_r=1, ) # Plot fig = plt.figure(figsize=(14, 5)) hxplt = Hx.reshape(x.size, z.size) hzplt = Hz.reshape(x.size, z.size) ax1 = fig.add_subplot(121) absH = np.sqrt(Hx.real ** 2 + Hy.real ** 2 + Hz.real ** 2) pc1 = ax1.pcolor(x, z, absH.reshape(x.size, z.size), norm=LogNorm()) ax1.streamplot(x, z, hxplt.real, hzplt.real, color="k", density=1) ax1.set_xlim([x.min(), x.max()]) ax1.set_ylim([z.min(), z.max()]) ax1.set_title("Real Component") ax1.set_xlabel("x") ax1.set_ylabel("z") cb1 = plt.colorbar(pc1, ax=ax1) cb1.set_label("Re[H] (A/m)") ax2 = fig.add_subplot(122) absH = np.sqrt(Hx.imag ** 2 + Hy.imag ** 2 + Hz.imag ** 2) pc2 = ax2.pcolor(x, z, absH.reshape(x.size, z.size), norm=LogNorm()) ax2.streamplot(x, z, hxplt.imag, hzplt.imag, color="k", density=1) ax2.set_xlim([x.min(), x.max()]) ax2.set_ylim([z.min(), z.max()]) ax2.set_title("Imaginary Component") ax2.set_xlabel("x") ax2.set_ylabel("z") cb2 = plt.colorbar(pc2, ax=ax2) cb2.set_label("Im[H] (A/m)") ##################################################################### # Electric Fields for a Magnetic Dipole Source # -------------------------------------------- # # Here, we compute the electric fields for a harmonic magnetic dipole # source in the y direction. Based on the geometry of the problem, we # expect rotational electric fields in the x and z directions, but none in the y # direction. # # Defining electric dipole location and frequency source_location = np.r_[0, 0, 0] frequency = 1e3 # Defining observation locations (avoid placing observation at source) x = np.arange(-100.5, 100.5, step=1.0) y = np.r_[0] z = x observation_locations = utils.ndgrid(x, y, z) # Define wholespace conductivity sig = 1e-2 # Predict the fields Ex, Ey, Ez = MagneticDipoleWholeSpace( observation_locations, source_location, sig, frequency, moment="Y", fieldType="e", mu_r=1, eps_r=1, ) # Plot fig = plt.figure(figsize=(14, 5)) explt = Ex.reshape(x.size, z.size) ezplt = Ez.reshape(x.size, z.size) ax1 = fig.add_subplot(121) absE = np.sqrt(Ex.real ** 2 + Ey.real ** 2 + Ez.real ** 2) pc1 = ax1.pcolor(x, z, absE.reshape(x.size, z.size), norm=LogNorm()) ax1.streamplot(x, z, explt.real, ezplt.real, color="k", density=1) ax1.set_xlim([x.min(), x.max()]) ax1.set_ylim([z.min(), z.max()]) ax1.set_title("Real Component") ax1.set_xlabel("x") ax1.set_ylabel("z") cb1 = plt.colorbar(pc1, ax=ax1) cb1.set_label("Re[E] (V/m)") ax2 = fig.add_subplot(122) absE = np.sqrt(Ex.imag ** 2 + Ey.imag ** 2 + Ez.imag ** 2) pc2 = ax2.pcolor(x, z, absE.reshape(x.size, z.size), norm=LogNorm()) ax2.streamplot(x, z, explt.imag, ezplt.imag, color="k", density=1) ax2.set_xlim([x.min(), x.max()]) ax2.set_ylim([z.min(), z.max()]) ax2.set_title("Imaginary Component") ax2.set_xlabel("x") ax2.set_ylabel("z") cb2 = plt.colorbar(pc2, ax=ax2) cb2.set_label("Im[E] (V/m)") ##################################################################### # Electric Field from a Harmonic Electric Current Dipole Source # ------------------------------------------------------------- # # Here, we compute the electric fields for a harmonic electric current dipole # source in the z direction. Based on the geometry of the problem, we # expect electric fields in the x and z directions, but none in the y # direction. # # Defining electric dipole location and frequency source_location = np.r_[0, 0, 0] frequency = 1e3 # Defining observation locations (avoid placing observation at source) x = np.arange(-100.5, 100.5, step=1.0) y = np.r_[0] z = x observation_locations = utils.ndgrid(x, y, z) # Define wholespace conductivity sig = 1e-2 # Predict the fields Ex, Ey, Ez = ElectricDipoleWholeSpace( observation_locations, source_location, sig, frequency, moment=[0, 0, 1], fieldType="e", mu_r=1, eps_r=1, ) # Plot fig = plt.figure(figsize=(14, 5)) explt = Ex.reshape(x.size, z.size) ezplt = Ez.reshape(x.size, z.size) ax1 = fig.add_subplot(121) absE = np.sqrt(Ex.real ** 2 + Ey.real ** 2 + Ez.real ** 2) pc1 = ax1.pcolor(x, z, absE.reshape(x.size, z.size), norm=LogNorm()) ax1.streamplot(x, z, explt.real, ezplt.real, color="k", density=1) ax1.set_xlim([x.min(), x.max()]) ax1.set_ylim([z.min(), z.max()]) ax1.set_title("Real Component") ax1.set_xlabel("x") ax1.set_ylabel("z") cb1 = plt.colorbar(pc1, ax=ax1) cb1.set_label("Re[E] (V/m)") ax2 = fig.add_subplot(122) absE = np.sqrt(Ex.imag ** 2 + Ey.imag ** 2 + Ez.imag ** 2) pc2 = ax2.pcolor(x, z, absE.reshape(x.size, z.size), norm=LogNorm()) ax2.streamplot(x, z, explt.imag, ezplt.imag, color="k", density=1) ax2.set_xlim([x.min(), x.max()]) ax2.set_ylim([z.min(), z.max()]) ax2.set_title("Imaginary Component") ax2.set_xlabel("x") ax2.set_ylabel("z") cb2 = plt.colorbar(pc2, ax=ax2) cb2.set_label("Im[E] (V/m)") ##################################################################### # Magnetic Field from a Harmonic Electric Dipole Source # ----------------------------------------------------- # # Here, we compute the magnetic fields for a harmonic electric current dipole # source in the y direction. Based on the geometry of the problem, we # expect rotational magnetic fields in the x and z directions, but no fields # in the y direction. # # Defining electric dipole location and frequency source_location = np.r_[0, 0, 0] frequency = 1e3 # Defining observation locations (avoid placing observation at source) x = np.arange(-100.5, 100.5, step=1.0) y = np.r_[0] z = x observation_locations = utils.ndgrid(x, y, z) # Define wholespace conductivity sig = 1e-2 # Predict the fields Hx, Hy, Hz = ElectricDipoleWholeSpace( observation_locations, source_location, sig, frequency, moment=[0, 1, 0], fieldType="h", mu_r=1, eps_r=1, ) # Plot fig = plt.figure(figsize=(14, 5)) hxplt = Hx.reshape(x.size, z.size) hzplt = Hz.reshape(x.size, z.size) ax1 = fig.add_subplot(121) absH = np.sqrt(Hx.real ** 2 + Hy.real ** 2 + Hz.real ** 2) pc1 = ax1.pcolor(x, z, absH.reshape(x.size, z.size), norm=LogNorm()) ax1.streamplot(x, z, hxplt.real, hzplt.real, color="k", density=1) ax1.set_xlim([x.min(), x.max()]) ax1.set_ylim([z.min(), z.max()]) ax1.set_title("Real Component") ax1.set_xlabel("x") ax1.set_ylabel("z") cb1 = plt.colorbar(pc1, ax=ax1) cb1.set_label("Re[H] (A/m)") ax2 = fig.add_subplot(122) absH = np.sqrt(Hx.imag ** 2 + Hy.imag ** 2 + Hz.imag ** 2) pc2 = ax2.pcolor(x, z, absH.reshape(x.size, z.size), norm=LogNorm()) ax2.streamplot(x, z, hxplt.imag, hzplt.imag, color="k", density=1) ax2.set_xlim([x.min(), x.max()]) ax2.set_ylim([z.min(), z.max()]) ax2.set_title("Imaginary Component") ax2.set_xlabel("x") ax2.set_ylabel("z") cb2 = plt.colorbar(pc2, ax=ax2) cb2.set_label("Im[H] (A/m)")
# encoding: utf-8 """ Tests of the AnalogSignal class """ from __future__ import division try: import unittest2 as unittest except ImportError: import unittest from neo.core.analogsignal import AnalogSignal import numpy import quantities as pq import pickle from neo.test.tools import assert_arrays_almost_equal, assert_arrays_equal import os V = pq.V mV = pq.mV uV = pq.uV Hz = pq.Hz kHz = pq.kHz ms = pq.ms nA = pq.nA pA = pq.pA class TestConstructor(unittest.TestCase): def test__create_from_list(self): data = range(10) rate = 1000*Hz a = AnalogSignal(data, sampling_rate=rate, units="mV") self.assertEqual(a.t_start, 0*ms) self.assertEqual(a.t_stop, len(data)/rate) self.assertEqual(a[9], 9000*uV) def test__create_from_numpy_array(self): data = numpy.arange(10.0) rate = 1*kHz a = AnalogSignal(data, sampling_rate=rate, units="uV") self.assertEqual(a.t_start, 0*ms) self.assertEqual(a.t_stop, data.size/rate) self.assertEqual(a[9], 0.009*mV) def test__create_from_quantities_array(self): data = numpy.arange(10.0) * mV rate = 5000*Hz a = AnalogSignal(data, sampling_rate=rate) self.assertEqual(a.t_start, 0*ms) self.assertEqual(a.t_stop, data.size/rate) self.assertEqual(a[9], 0.009*V) def test__create_from_quantities_array_with_inconsistent_units_should_raise_ValueError(self): data = numpy.arange(10.0) * mV self.assertRaises(ValueError, AnalogSignal, data, sampling_rate=1*kHz, units="nA") def test__create_with_copy_true_should_return_copy(self): data = numpy.arange(10.0) * mV rate = 5000*Hz a = AnalogSignal(data, copy=True, sampling_rate=rate) data[3] = 99*mV self.assertNotEqual(a[3], 99*mV) def test__create_with_copy_false_should_return_view(self): data = numpy.arange(10.0) * mV rate = 5000*Hz a = AnalogSignal(data, copy=False, sampling_rate=rate) data[3] = 99*mV self.assertEqual(a[3], 99*mV) def test__create_with_additional_argument(self): a = AnalogSignal([1,2,3], units="mV", sampling_rate=1*kHz, file_origin='crack.txt', ratname='Nicolas') self.assertEqual(a.annotations, {'ratname':'Nicolas'}) # This one is universally recommended and handled by BaseNeo self.assertEqual(a.file_origin, 'crack.txt') # signal must be 1D - should raise Exception if not 1D class TestProperties(unittest.TestCase): def setUp(self): self.t_start = [0.0*ms, 100*ms, -200*ms] self.rates = [1*kHz, 420*Hz, 999*Hz] self.data = [numpy.arange(10.0)*nA, numpy.arange(-100.0, 100.0, 10.0)*mV, numpy.random.uniform(size=100)*uV] self.signals = [AnalogSignal(D, sampling_rate=r, t_start=t) for r,D,t in zip(self.rates, self.data, self.t_start)] def test__t_stop(self): for i in range(3): self.assertEqual(self.signals[i].t_stop, self.t_start[i] + self.data[i].size/self.rates[i]) def test__duration(self): for signal in self.signals: self.assertAlmostEqual(signal.duration, signal.t_stop - signal.t_start, delta=1e-15) def test__sampling_period(self): for signal, rate in zip(self.signals, self.rates): self.assertEqual(signal.sampling_period, 1/rate) def test__times(self): for i in range(3): assert_arrays_almost_equal(self.signals[i].times, numpy.arange(self.data[i].size)/self.rates[i] + self.t_start[i], 1e-12*ms) class TestArrayMethods(unittest.TestCase): def setUp(self): self.signal = AnalogSignal(numpy.arange(10.0), units="nA", sampling_rate=1*kHz) def test__slice_should_return_AnalogSignal(self): sub = self.signal[3:8] self.assertIsInstance(sub, AnalogSignal) self.assertEqual(sub.size, 5) self.assertEqual(sub.sampling_period, self.signal.sampling_period) self.assertEqual(sub.sampling_rate, self.signal.sampling_rate) self.assertEqual(sub.t_start, self.signal.t_start+3*sub.sampling_period) self.assertEqual(sub.t_stop, sub.t_start + 5*sub.sampling_period) # Test other attributes were copied over (in this case, defaults) self.assertEqual(sub.file_origin, self.signal.file_origin) self.assertEqual(sub.name, self.signal.name) self.assertEqual(sub.description, self.signal.description) self.assertEqual(sub.annotations, self.signal.annotations) sub = self.signal[3:8] self.assertEqual(sub.file_origin, self.signal.file_origin) self.assertEqual(sub.name, self.signal.name) self.assertEqual(sub.description, self.signal.description) self.assertEqual(sub.annotations, self.signal.annotations) def test__slice_with_attributes(self): # Set attributes, slice, test that they are copied self.signal.file_origin = 'crack.txt' self.signal.name = 'sig' self.signal.description = 'a signal' self.signal.annotate(ratname='Georges') # slice sub = self.signal[3:8] # tests from other slice test self.assertIsInstance(sub, AnalogSignal) self.assertEqual(sub.size, 5) self.assertEqual(sub.sampling_period, self.signal.sampling_period) self.assertEqual(sub.sampling_rate, self.signal.sampling_rate) self.assertEqual(sub.t_start, self.signal.t_start+3*sub.sampling_period) self.assertEqual(sub.t_stop, sub.t_start + 5*sub.sampling_period) # Test other attributes were copied over (in this case, set by user) self.assertEqual(sub.file_origin, self.signal.file_origin) self.assertEqual(sub.name, self.signal.name) self.assertEqual(sub.description, self.signal.description) self.assertEqual(sub.annotations, self.signal.annotations) self.assertEqual(sub.annotations, {'ratname': 'Georges'}) def test__getitem_should_return_single_quantity(self): self.assertEqual(self.signal[0], 0*nA) self.assertEqual(self.signal[9], 9*nA) self.assertRaises(IndexError, self.signal.__getitem__, 10) def test_comparison_operators(self): assert_arrays_equal(self.signal >= 5*nA, numpy.array([False, False, False, False, False, True, True, True, True, True])) assert_arrays_equal(self.signal >= 5*pA, numpy.array([False, True, True, True, True, True, True, True, True, True])) def test__comparison_with_inconsistent_units_should_raise_Exception(self): self.assertRaises(ValueError, self.signal.__gt__, 5*mV) def test_simple_statistics(self): self.assertEqual(self.signal.max(), 9*nA) self.assertEqual(self.signal.min(), 0*nA) self.assertEqual(self.signal.mean(), 4.5*nA) class TestEquality(unittest.TestCase): def test__signals_with_different_data_complement_should_be_non_equal(self): signal1 = AnalogSignal(numpy.arange(10.0), units="mV", sampling_rate=1*kHz) signal2 = AnalogSignal(numpy.arange(10.0), units="mV", sampling_rate=2*kHz) self.assertNotEqual(signal1, signal2) class TestCombination(unittest.TestCase): def test__adding_a_constant_to_a_signal_should_preserve_data_complement(self): signal = AnalogSignal(numpy.arange(10.0), units="mV", sampling_rate=1*kHz, name="foo") signal_with_offset = signal + 65*mV self.assertEqual(signal[9], 9*mV) self.assertEqual(signal_with_offset[9], 74*mV) for attr in "t_start", "sampling_rate": self.assertEqual(getattr(signal, attr), getattr(signal_with_offset, attr)) def test__adding_two_consistent_signals_should_preserve_data_complement(self): signal1 = AnalogSignal(numpy.arange(10.0), units="mV", sampling_rate=1*kHz) signal2 = AnalogSignal(numpy.arange(10.0, 20.0), units="mV", sampling_rate=1*kHz) sum = signal1 + signal2 assert_arrays_equal(sum, AnalogSignal(numpy.arange(10.0, 30.0, 2.0), units="mV", sampling_rate=1*kHz)) def test__adding_signals_with_inconsistent_data_complement_should_raise_Exception(self): signal1 = AnalogSignal(numpy.arange(10.0), units="mV", t_start=0.0*ms, sampling_rate=1*kHz) signal2 = AnalogSignal(numpy.arange(10.0), units="mV", t_start=100.0*ms, sampling_rate=0.5*kHz) self.assertRaises(Exception, signal1.__add__, signal2) def test__subtracting_a_constant_from_a_signal_should_preserve_data_complement(self): signal = AnalogSignal(numpy.arange(10.0), units="mV", sampling_rate=1*kHz, name="foo") signal_with_offset = signal - 65*mV self.assertEqual(signal[9], 9*mV) self.assertEqual(signal_with_offset[9], -56*mV) for attr in "t_start", "sampling_rate": self.assertEqual(getattr(signal, attr), getattr(signal_with_offset, attr)) def test__subtracting_a_signal_from_a_constant_should_return_a_signal(self): signal = AnalogSignal(numpy.arange(10.0), units="mV", sampling_rate=1*kHz, name="foo") signal_with_offset = 10*mV - signal self.assertEqual(signal[9], 9*mV) self.assertEqual(signal_with_offset[9], 1*mV) for attr in "t_start", "sampling_rate": self.assertEqual(getattr(signal, attr), getattr(signal_with_offset, attr)) def test__multiplying_a_signal_by_a_constant_should_preserve_data_complement(self): signal = AnalogSignal(numpy.arange(10.0), units="mV", sampling_rate=1*kHz, name="foo") amplified_signal = signal * 2 self.assertEqual(signal[9], 9*mV) self.assertEqual(amplified_signal[9], 18*mV) for attr in "t_start", "sampling_rate": self.assertEqual(getattr(signal, attr), getattr(amplified_signal, attr)) def test__dividing_a_signal_by_a_constant_should_preserve_data_complement(self): signal = AnalogSignal(numpy.arange(10.0), units="mV", sampling_rate=1*kHz, name="foo") amplified_signal = signal/0.5 self.assertEqual(signal[9], 9*mV) self.assertEqual(amplified_signal[9], 18*mV) for attr in "t_start", "sampling_rate": self.assertEqual(getattr(signal, attr), getattr(amplified_signal, attr)) class TestFunctions(unittest.TestCase): def test__pickle(self): a = AnalogSignal([1,2,3,4],sampling_period=1*pq.ms,units=pq.S) a.annotations['index'] = 2 f = open('./pickle','wb') pickle.dump(a,f) f.close() f = open('./pickle','rb') try: b = pickle.load(f) except ValueError: b = None assert_arrays_equal(a, b) f.close() os.remove('./pickle') if __name__ == "__main__": unittest.main()
# stdlib from typing import List # third party import pytest # syft absolute import syft as sy from syft.experimental_flags import flags np = pytest.importorskip("numpy") @pytest.mark.vendor(lib="numpy") @pytest.mark.parametrize("arrow_backend", [False, True]) def test_remote_numpy_array( arrow_backend: str, root_client: sy.VirtualMachineClient ) -> None: flags.APACHE_ARROW_TENSOR_SERDE = arrow_backend # syft absolute from syft.lib.numpy.array import SUPPORTED_BOOL_TYPES from syft.lib.numpy.array import SUPPORTED_DTYPES from syft.lib.numpy.array import SUPPORTED_FLOAT_TYPES from syft.lib.numpy.array import SUPPORTED_INT_TYPES test_arrays: List[np.ndarray] = [] # type: ignore for dtype in SUPPORTED_DTYPES: # test their bounds if dtype in SUPPORTED_BOOL_TYPES: if arrow_backend: continue lower = False upper = True mid = False elif dtype in SUPPORTED_INT_TYPES: bounds = np.iinfo(dtype) lower = bounds.min upper = bounds.max mid = upper + lower # type: ignore if lower == 0: mid = round(mid / 2) # type: ignore elif dtype in SUPPORTED_FLOAT_TYPES: bounds = np.finfo(dtype) lower = bounds.min upper = bounds.max mid = upper + lower # type: ignore test_arrays.append(np.array([lower, mid, upper], dtype=dtype)) for test_array in test_arrays: remote_array = test_array.send(root_client) received_array = remote_array.get() assert all(test_array == received_array) assert test_array.dtype == received_array.dtype # Attributes test @pytest.mark.vendor(lib="numpy") @pytest.mark.parametrize("arrow_backend", [False, True]) def test_shape(arrow_backend: bool, root_client: sy.VirtualMachineClient) -> None: flags.APACHE_ARROW_TENSOR_SERDE = arrow_backend x = np.array([1, 2, 3, 4]) x_ptr = x.send(root_client) shape_ptr = x_ptr.shape local_shape_val = x.shape shape_val = shape_ptr.get() assert shape_val == (4,) assert local_shape_val == shape_val @pytest.mark.vendor(lib="numpy") @pytest.mark.parametrize("arrow_backend", [False, True]) def test_strides(arrow_backend: bool, root_client: sy.VirtualMachineClient) -> None: flags.APACHE_ARROW_TENSOR_SERDE = arrow_backend x = np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]], dtype=np.int32) x_ptr = x.send(root_client) strides_ptr = x_ptr.strides local_strides_val = x.strides strides_val = strides_ptr.get() assert strides_val == (20, 4) assert local_strides_val == strides_val @pytest.mark.vendor(lib="numpy") @pytest.mark.parametrize("arrow_backend", [False, True]) def test_ndim(arrow_backend: bool, root_client: sy.VirtualMachineClient) -> None: flags.APACHE_ARROW_TENSOR_SERDE = arrow_backend x = np.zeros((2, 3, 4)) x_ptr = x.send(root_client) ndim_ptr = x_ptr.ndim local_ndim_val = x.ndim ndim_val = ndim_ptr.get() assert ndim_val == 3 assert local_ndim_val == ndim_val @pytest.mark.vendor(lib="numpy") @pytest.mark.parametrize("arrow_backend", [False, True]) def test_size(arrow_backend: bool, root_client: sy.VirtualMachineClient) -> None: flags.APACHE_ARROW_TENSOR_SERDE = arrow_backend x = np.zeros((3, 5, 2)) x_ptr = x.send(root_client) size_ptr = x_ptr.size local_size_val = x.size size_val = size_ptr.get() assert size_val == 30 assert local_size_val == size_val @pytest.mark.vendor(lib="numpy") @pytest.mark.parametrize("arrow_backend", [False, True]) def test_itemsize(arrow_backend: bool, root_client: sy.VirtualMachineClient) -> None: flags.APACHE_ARROW_TENSOR_SERDE = arrow_backend x = np.array([1, 2, 3], dtype=np.float64) x_ptr = x.send(root_client) itemsize_ptr = x_ptr.itemsize local_itemsize_val = x.itemsize itemsize_val = itemsize_ptr.get() assert itemsize_val == 8 assert local_itemsize_val == itemsize_val @pytest.mark.vendor(lib="numpy") @pytest.mark.parametrize("arrow_backend", [False, True]) def test_nbytes(arrow_backend: bool, root_client: sy.VirtualMachineClient) -> None: flags.APACHE_ARROW_TENSOR_SERDE = arrow_backend x = np.zeros((3, 5, 2)) x_ptr = x.send(root_client) nbytes_ptr = x_ptr.nbytes local_nbytes_val = x.nbytes nbytes_val = nbytes_ptr.get() assert nbytes_val == 240 assert local_nbytes_val == nbytes_val @pytest.mark.vendor(lib="numpy") @pytest.mark.parametrize("arrow_backend", [False, True]) def test_transpose(arrow_backend: bool, root_client: sy.VirtualMachineClient) -> None: flags.APACHE_ARROW_TENSOR_SERDE = arrow_backend x = np.array([1, 2, 3]) x_ptr = x.send(root_client) T_ptr = x_ptr.T local_T_val = x.T T_val = T_ptr.get() assert (T_val == np.array([1, 2, 3])).all() assert (local_T_val == T_val).all() @pytest.mark.vendor(lib="numpy") @pytest.mark.parametrize("arrow_backend", [False, True]) def test_item(arrow_backend: bool, root_client: sy.VirtualMachineClient) -> None: flags.APACHE_ARROW_TENSOR_SERDE = arrow_backend x = np.array([6, 8, 4, 7]) x_ptr = x.send(root_client) item_ptr = x_ptr.item(3) local_item_val = x.item(3) item_val = item_ptr.get() assert item_val == 7 assert local_item_val == item_val @pytest.mark.vendor(lib="numpy") @pytest.mark.parametrize("arrow_backend", [False, True]) def test_byteswap(arrow_backend: bool, root_client: sy.VirtualMachineClient) -> None: flags.APACHE_ARROW_TENSOR_SERDE = arrow_backend x = np.array([1, 256, 8755], dtype=np.int16) x_ptr = x.send(root_client) byteswap_ptr = x_ptr.byteswap(inplace=True) local_byteswap_val = x.byteswap(inplace=True) byteswap_val = byteswap_ptr.get() y = np.array([256, 1, 13090], dtype=np.int16) assert (byteswap_val == y).all() assert (local_byteswap_val == byteswap_val).all() @pytest.mark.vendor(lib="numpy") @pytest.mark.parametrize("arrow_backend", [False, True]) def test_copy(arrow_backend: bool, root_client: sy.VirtualMachineClient) -> None: flags.APACHE_ARROW_TENSOR_SERDE = arrow_backend x = np.array([1, 2, 3]) x_ptr = x.send(root_client) copy_ptr = x_ptr.copy() local_copy = x.copy() copy_val = copy_ptr.get() y = np.array([1, 2, 3]) assert (copy_val == y).all() assert (local_copy == copy_val).all() @pytest.mark.vendor(lib="numpy") @pytest.mark.parametrize("arrow_backend", [False, True]) def test_view(arrow_backend: bool, root_client: sy.VirtualMachineClient) -> None: flags.APACHE_ARROW_TENSOR_SERDE = arrow_backend x = np.array([(1, 2, 3)]) x_ptr = x.send(root_client) view_ptr = x_ptr.view() local_view = x.view() view_val = view_ptr.get() y = np.array( [[1, 2, 3]], ) assert (view_val == y).all() assert (local_view == view_val).all() @pytest.mark.vendor(lib="numpy") @pytest.mark.parametrize( "dtype", [np.bool_, np.int8, np.uint8, np.int32, np.uint32, np.int64, np.uint64] ) @pytest.mark.parametrize("arrow_backend", [False, True]) def test_serde( arrow_backend: bool, dtype: np.dtype, root_client: sy.VirtualMachineClient ) -> None: flags.APACHE_ARROW_TENSOR_SERDE = arrow_backend x = np.array([1, 0, 3], dtype=dtype) x_ptr = x.send(root_client) y = x_ptr.get() assert x.dtype == y.dtype assert (x == y).all()
"""Module for reading, writing, compressing and converting files. Please note, some of the functions in this module were created and tested using VTK 5. VTK 6 introduced a number of backwards-incompatible changes, including replacing 'SetInput()' with 'SetInputData()' and 'SetInputConnection'. """ import glob import os import csv import vtk import gzip import StringIO def compress(path='test.vtp'): """Compress file with gzip.""" with open(path, 'rb') as ifile: with gzip.open(path + '.gz', 'wb') as ofile: ofile.writelines(ifile) def decompress(path='test.vtp.gz'): """Decompress file with gzip.""" with gzip.open(path, 'rb') as ifile: with open(path[:-3], 'wb') as ofile: ofile.write(ifile.read()) def csv_to_list(path): """Convert CSV-file to a nested list of strings.""" with open(path, 'rb') as f: reader = csv.reader(f) return list(reader) def csv_to_dict(path): """Create nested dictionary from csv file. Workaround for when pandas is unavailable and you want to select 2D array elements with row and column names rather than integers. * First row is used for column names * First column is used for row names. * Access data from dictionary x using x['rowname']['columnname'] * Extract all row names with x.keys() * Extract all column names with x.values()[0].keys() Note: Expects '\n' as newline character. """ x = {} with open(path, 'rb') as f: header = f.next().strip().split(',')[1:] for line in f: row = line.strip().split(',') x[row[0]] = dict( (header[i], v) for i, v in enumerate(row[1:])) return x def listdir(path, match='*', dirname=False, extension=False): """List all files and folders in specified directory. Args: path: Path to directory. match: Specify file name pattern according to rules used by Unix shell. For instance, 'match=*.pdf' gives you a list of names of all the pdf-files in 'path'. dirname (bool): Include whole path name. extension (bool): Include file extension. """ items = glob.glob(os.path.join(path, match)) if not dirname: items = [os.path.basename(item) for item in items] if not extension: items = [os.path.splitext(item)[0] for item in items] return items def readvti(path): """Read VTI-file, i.e. image in VTK XML format.""" reader = vtk.vtkXMLImageDataReader() reader.SetFileName(path) reader.Update() return reader.GetOutput() def readvtk(path, datatype='polydata'): """Read VTK-file. Args: path: Path to file. type: 'imagedata', 'polydata', 'unstructeredgrid' """ if datatype=='imagedata': reader = vtk.vtkStructuredPointsReader() elif datatype=='polydata': reader = vtk.vtkPolyDataReader() elif datatype=='unstructeredgrid': reader = vtk.vtkUnstructuredGridReader() else: print 'Invalid datatype' reader.SetFileName(path) reader.Update() return reader.GetOutput() def readvtp(path, dataarrays=True): """Read VTP-file, i.e. polydata in VTK XML format. Args: dataarrays (bool): Include point and cell data. """ reader = vtk.vtkXMLPolyDataReader() reader.SetFileName(path) reader.Update() if dataarrays == False: for i in range(reader.GetNumberOfPointArrays()): arrayname = reader.GetPointArrayName(i) reader.SetPointArrayStatus(arrayname, 0) for i in range(reader.GetNumberOfCellArrays()): arrayname = reader.GetCellArrayName(i) reader.SetPointArrayStatus(arrayname, 0) reader.Update() return reader.GetOutput() def readvtu(path): """Read VTU-file, i.e. unstructured grid in VTK XML format.""" reader = vtk.vtkXMLUnstructuredGridReader() reader.SetFileName(path) reader.Update() return reader.GetOutput() def replacestring(lines, tag, value): """Replace string in list of strings. Args: lines: List of strings. tag: String to replace. value: String with which to replace 'tag'. """ output = [] for line in lines: line = line.replace(tag, value) output.append(line) return output def writepoints(points, filename): """Write points as VTP-file.""" polydata = vtk.vtkPolyData() cellarray = vtk.vtkCellArray() for i in range(points.GetNumberOfPoints()): cellarray.InsertNextCell(1) cellarray.InsertCellPoint(i) polydata.SetPoints(points) polydata.SetVerts(cellarray) writer = vtk.vtkXMLPolyDataWriter() writer.SetFileName(filename) writer.SetInput(polydata) writer.Write() def writevti(image, path): """Write VTI-files, i.e. images in VTK XML format.""" writer = vtk.vtkXMLImageDataWriter() writer.SetInput(image) writer.SetFileName(path) writer.Write() def writevtp(polydata, path): """Write VTP-files, i.e. polydata in VTK XML format.""" writer = vtk.vtkXMLPolyDataWriter() writer.SetInput(polydata) writer.SetFileName(path) writer.Write() def writevtu(grid, path): """Write VTU-files, i.e. unstructured grids in VTK XML format.""" writer = vtk.vtkXMLUnstructuredGridWriter() writer.SetInput(grid) writer.SetFileName(path) writer.Write() #------------------------------------------------------------------------------- # CFX #------------------------------------------------------------------------------- def cfx2vtp(inputfile, outputfile, surface=True, ascii=False): """Convert polydata exported from CFX-Post to VTP. Args: surface (bool): Convert surface or line polydata. ascii (bool): Return VTP file in ASCII format. Export surface in CFX-Post with following options: * file extension: csv * export geometry information: line and face connectivity * (optional) select variable(s) * vector display: scalar * separator: comma space * include header """ f = open(inputfile, 'rb') # derive data size from csv file if surface: for i, line in enumerate(f): if line.strip() == '[Data]': datalinenumber = i if line.strip() == '[Faces]': faceslinenumber = i lastlinenumber = i numberofnodes = faceslinenumber - datalinenumber - 3 numberofelements = lastlinenumber - faceslinenumber - 1 else: for i, line in enumerate(f): if line.strip() == '[Data]': datalinenumber = i if line.strip() == '[Lines]': lineslinenumber = i numberofnodes = lineslinenumber - datalinenumber - 3 # obtain list of variables names f.seek(0) for i in range(datalinenumber + 2): arrayline = f.readline() arraynames = arrayline.strip().split(', ') arraynames[0:3] = [] # define polydata points = vtk.vtkPoints() cells = vtk.vtkCellArray() points.SetNumberOfPoints(numberofnodes) polydata = vtk.vtkPolyData() polydata.SetPoints(points) polydata.SetPolys(cells) if surface else polydata.SetLines(cells) for arrayname in arraynames: array = vtk.vtkDoubleArray() array.SetName(arrayname) array.SetNumberOfTuples(numberofnodes) polydata.GetPointData().AddArray(array) # parse through the rest of the file using the csv module reader = csv.reader(f) # assign x,y,z coordinates and variable values to points for i in range(numberofnodes): dataline = reader.next() point = [float(dataline[0]), float(dataline[1]), float(dataline[2])] points.SetPoint(i, point) for j in range(len(arraynames)): dataarray = polydata.GetPointData().GetArray(arraynames[j]) dataarray.SetComponent(i, 0, float(dataline[j + 3])) # skip element '[Faces]' (or '[Lines]') in csv-file reader.next() reader.next() if surface: # obtain and set connectivity cellids = vtk.vtkIdList() for i in range(numberofelements): facesline = reader.next() cellids.Initialize() for j in range(len(facesline)): cellids.InsertNextId(int(facesline[j])) cells.InsertNextCell(cellids) else: # obtain connectivity connectivitylist = [] for row in reader: row = [int(item) for item in row] connectivitylist.append(row) connectivitylist = filter(None, connectivitylist) # rearrange connectivity linecounter = 0 for i in range(len(connectivitylist)): if i == 0: connectivity = [connectivitylist[i]] elif connectivitylist[i][0] == connectivitylist[i - 1][1]: connectivity[linecounter].append(connectivitylist[i][1]) else: connectivity.append([]) linecounter += 1 connectivity[linecounter].append(connectivitylist[i][0]) connectivity[linecounter].append(connectivitylist[i][1]) # set connectivity cellids = vtk.vtkIdList() for i in range(len(connectivity)): cellids.Initialize() for j in range(len(connectivity[i])): cellids.InsertNextId(int(connectivity[i][j])) cells.InsertNextCell(cellids) f.close() # write vtk polydata writer = vtk.vtkXMLPolyDataWriter() writer.SetInput(polydata) if ascii: writer.SetDataModeToAscii() writer.SetFileName(outputfile) writer.Write() def vtp2cfx(inputfile, outputfile, surface=True): """Convert VTP polydata to format that can be imported into CFX-Post. Args: surface (bool): Convert surface or line polydata. """ # read vtp file reader = vtk.vtkXMLPolyDataReader() reader.SetFileName(inputfile) reader.Update() polydata = reader.GetOutput() # read names of data arrays arraynames = [] dataarrays = polydata.GetPointData() numberofdataarrays = dataarrays.GetNumberOfArrays() for i in range(numberofdataarrays): array = dataarrays.GetArray(i) arrayname = array.GetName() arraynames.append(arrayname) # append names of data arrays to header and write header f = open(outputfile, 'wb') header = "\n[Name]\nSEGMENT\n\n[Data]\nX [ m ], Y [ m ], Z [ m ]" for i in range(numberofdataarrays): header += ", " + arraynames[i] header += "\n" f.write(header) # write values of x,y,z and data arrays row by row for i in range(polydata.GetNumberOfPoints()): point = polydata.GetPoint(i) line = str(point[0]) + ', ' + str(point[1]) + ', ' + str(point[2]) for arrayname in arraynames: array = dataarrays.GetArray(arrayname) line += ', ' + str(array.GetComponent(i, 0)) line += '\n' f.write(line) # write list of connectivity if surface: line = '\n[Faces]\n' f.write(line) for i in range(polydata.GetNumberOfCells()): cellpointids = polydata.GetCell(i).GetPointIds() line = '' for j in range(cellpointids.GetNumberOfIds()): if (j > 0): line += ', ' line += str(cellpointids.GetId(j)) line += '\n' f.write(line) else: line = '\n[Lines]\n' f.write(line) for i in range(polydata.GetNumberOfCells()): cellpointids = polydata.GetCell(i).GetPointIds() line = '' for j in range(cellpointids.GetNumberOfIds() - 1): line += (str(cellpointids.GetId(j)) + ', ' + str(cellpointids.GetId(j + 1)) + '\n') f.write(line) # add blank line to mimic exact same file structure as CFX-generated # csv-file line = '\n' f.write(line) f.close()
import pytz from django.apps import apps from django.db import models from django.core.exceptions import ObjectDoesNotExist from framework.analytics import increment_user_activity_counters from osf.models.node_relation import NodeRelation from osf.models.nodelog import NodeLog from osf.models.tag import Tag from website.exceptions import NodeStateError from website import settings class Versioned(models.Model): """A Model mixin class that saves delta versions.""" @classmethod def _sig_pre_delete(cls, instance, *args, **kwargs): """dispatch the pre_delete method to a regular instance method. """ return instance.sig_pre_delete(*args, **kwargs) @classmethod def _sig_post_delete(cls, instance, *args, **kwargs): """dispatch the post_delete method to a regular instance method. """ return instance.sig_post_delete(*args, **kwargs) @classmethod def _sig_pre_save(cls, instance, *args, **kwargs): """dispatch the pre_save method to a regular instance method. """ return instance.sig_pre_save(*args, **kwargs) @classmethod def _sig_post_save(cls, instance, *args, **kwargs): """dispatch the post_save method to a regular instance method. """ return instance.sig_post_save(*args, **kwargs) @classmethod def connect(cls, signal): """Connect a django signal with this model.""" # List all signals you want to connect with here: from django.db.models.signals import (pre_save, post_save, pre_delete, post_delete) sig_handler = { pre_save: cls._sig_pre_save, post_save: cls._sig_post_save, pre_delete: cls._sig_pre_delete, post_delete: cls._sig_post_delete, }[signal] signal.connect(sig_handler, sender=cls) class Meta: abstract = True class Loggable(models.Model): # TODO: This should be in the NodeLog model def add_log(self, action, params, auth, foreign_user=None, log_date=None, save=True, request=None): AbstractNode = apps.get_model('osf.AbstractNode') user = None if auth: user = auth.user elif request: user = request.user params['node'] = params.get('node') or params.get('project') or self._id original_node = AbstractNode.load(params.get('node')) log = NodeLog( action=action, user=user, foreign_user=foreign_user, params=params, node=self, original_node=original_node ) if log_date: log.date = log_date log.save() if self.logs.count() == 1: self.date_modified = log.date.replace(tzinfo=pytz.utc) else: self.date_modified = self.logs.first().date if save: self.save() if user and not self.is_collection: increment_user_activity_counters(user._primary_key, action, log.date.isoformat()) return log class Meta: abstract = True class Taggable(models.Model): tags = models.ManyToManyField('Tag', related_name='%(class)s_tagged') def add_tag(self, tag, auth=None, save=True, log=True, system=False): if not system and not auth: raise ValueError('Must provide auth if adding a non-system tag') if not isinstance(tag, Tag): tag_instance, created = Tag.all_tags.get_or_create(name=tag, system=system) else: tag_instance = tag if not self.tags.filter(id=tag_instance.id).exists(): self.tags.add(tag_instance) # TODO: Logging belongs in on_tag_added hook if log: self.add_tag_log(tag_instance, auth) if save: self.save() self.on_tag_added(tag_instance) return tag_instance def add_system_tag(self, tag, save=True): if isinstance(tag, Tag) and not tag.system: raise ValueError('Non-system tag passed to add_system_tag') return self.add_tag(tag=tag, auth=None, save=save, log=False, system=True) def add_tag_log(self, *args, **kwargs): raise NotImplementedError('Logging requires that add_tag_log method is implemented') def on_tag_added(self, tag): pass class Meta: abstract = True class AddonModelMixin(models.Model): # from addons.base.apps import BaseAddonConfig settings_type = None ADDONS_AVAILABLE = sorted([config for config in apps.get_app_configs() if config.name.startswith('addons.') and config.label != 'base']) class Meta: abstract = True @classmethod def get_addon_key(cls, config): return 2 << cls.ADDONS_AVAILABLE.index(config) @property def addons(self): return self.get_addons() def get_addons(self): return filter(None, [ self.get_addon(config.short_name) for config in self.ADDONS_AVAILABLE ]) def get_oauth_addons(self): # TODO: Using hasattr is a dirty hack - we should be using issubclass(). # We can't, because importing the parent classes here causes a # circular import error. return [ addon for addon in self.get_addons() if hasattr(addon, 'oauth_provider') ] def has_addon(self, addon_name, deleted=False): return bool(self.get_addon(addon_name, deleted=deleted)) def get_addon_names(self): return [each.short_name for each in self.get_addons()] def get_or_add_addon(self, name, *args, **kwargs): addon = self.get_addon(name) if addon: return addon return self.add_addon(name, *args, **kwargs) def get_addon(self, name, deleted=False): try: settings_model = self._settings_model(name) except LookupError: return None if not settings_model: return None try: settings_obj = settings_model.objects.get(owner=self) if not settings_obj.deleted or deleted: return settings_obj except ObjectDoesNotExist: pass return None def add_addon(self, addon_name, auth=None, override=False, _force=False): """Add an add-on to the node. :param str addon_name: Name of add-on :param Auth auth: Consolidated authorization object :param bool override: For shell use only, Allows adding of system addons :param bool _force: For migration testing ONLY. Do not set to True in the application, or else projects will be allowed to have duplicate addons! :return bool: Add-on was added """ if not override and addon_name in settings.SYSTEM_ADDED_ADDONS[self.settings_type]: return False # Reactivate deleted add-on if present addon = self.get_addon(addon_name, deleted=True) if addon: if addon.deleted: addon.undelete(save=True) return addon if not _force: return False config = apps.get_app_config('addons_{}'.format(addon_name)) model = self._settings_model(addon_name, config=config) ret = model(owner=self) ret.on_add() ret.save() # TODO This doesn't feel right return ret def config_addons(self, config, auth=None, save=True): """Enable or disable a set of add-ons. :param dict config: Mapping between add-on names and enabled / disabled statuses """ for addon_name, enabled in config.iteritems(): if enabled: self.add_addon(addon_name, auth) else: self.delete_addon(addon_name, auth) if save: self.save() def delete_addon(self, addon_name, auth=None, _force=False): """Delete an add-on from the node. :param str addon_name: Name of add-on :param Auth auth: Consolidated authorization object :param bool _force: For migration testing ONLY. Do not set to True in the application, or else projects will be allowed to delete mandatory add-ons! :return bool: Add-on was deleted """ addon = self.get_addon(addon_name) if not addon: return False if self.settings_type in addon.config.added_mandatory and not _force: raise ValueError('Cannot delete mandatory add-on.') if getattr(addon, 'external_account', None): addon.deauthorize(auth=auth) addon.delete(save=True) return True def _settings_model(self, addon_model, config=None): if not config: config = apps.get_app_config('addons_{}'.format(addon_model)) return getattr(config, '{}_settings'.format(self.settings_type)) class NodeLinkMixin(models.Model): class Meta: abstract = True def add_node_link(self, node, auth, save=True): """Add a node link to a node. :param Node node: Node to add :param Auth auth: Consolidated authorization :param bool save: Save changes :return: Created pointer """ # Fail if node already in nodes / pointers. Note: cast node and node # to primary keys to test for conflicts with both nodes and pointers # contained in `self.nodes`. if NodeRelation.objects.filter(parent=self, child=node, is_node_link=True).exists(): raise ValueError( 'Link to node {0} already exists'.format(node._id) ) if self.is_registration: raise NodeStateError('Cannot add a node link to a registration') # If a folder, prevent more than one pointer to that folder. # This will prevent infinite loops on the project organizer. if node.is_collection and node.linked_from.exists(): raise ValueError( 'Node link to folder {0} already exists. ' 'Only one node link to any given folder allowed'.format(node._id) ) if node.is_collection and node.is_bookmark_collection: raise ValueError( 'Node link to bookmark collection ({0}) not allowed.'.format(node._id) ) # Append node link node_relation, created = NodeRelation.objects.get_or_create( parent=self, child=node, is_node_link=True ) # Add log if hasattr(self, 'add_log'): self.add_log( action=NodeLog.NODE_LINK_CREATED, params={ 'parent_node': self.parent_id, 'node': self._id, 'pointer': { 'id': node._id, 'url': node.url, 'title': node.title, 'category': node.category, }, }, auth=auth, save=False, ) # Optionally save changes if save: self.save() return node_relation add_pointer = add_node_link # For v1 compat def rm_node_link(self, node_relation, auth): """Remove a pointer. :param Pointer pointer: Pointer to remove :param Auth auth: Consolidated authorization """ AbstractNode = apps.get_model('osf.AbstractNode') node_rel = None if isinstance(node_relation, NodeRelation): try: node_rel = self.node_relations.get(is_node_link=True, id=node_relation.id) except NodeRelation.DoesNotExist: raise ValueError('Node link does not belong to the requested node.') elif isinstance(node_relation, AbstractNode): try: node_rel = self.node_relations.get(is_node_link=True, child__id=node_relation.id) except NodeRelation.DoesNotExist: raise ValueError('Node link does not belong to the requested node.') if node_rel is not None: node_rel.delete() node = node_rel.child # Add log if hasattr(self, 'add_log'): self.add_log( action=NodeLog.POINTER_REMOVED, params={ 'parent_node': self.parent_id, 'node': self._primary_key, 'pointer': { 'id': node._id, 'url': node.url, 'title': node.title, 'category': node.category, }, }, auth=auth, save=False, ) rm_pointer = rm_node_link # For v1 compat @property def nodes_pointer(self): """For v1 compat""" return self.linked_nodes def get_points(self, folders=False, deleted=False): query = self.linked_from if not folders: query = query.exclude(type='osf.collection') if not deleted: query = query.exclude(is_deleted=True) return list(query.all()) def fork_node_link(self, node_relation, auth, save=True): """Replace a linked node with a fork. :param NodeRelation node_relation: :param Auth auth: :param bool save: :return: Forked node """ # Fail if pointer not contained in `nodes` try: node = self.node_relations.get(is_node_link=True, id=node_relation.id).child except NodeRelation.DoesNotExist: raise ValueError('Node link {0} not in list'.format(node_relation._id)) # Fork node to which current nodelink points forked = node.fork_node(auth) if forked is None: raise ValueError('Could not fork node') if hasattr(self, 'add_log'): # Add log self.add_log( NodeLog.NODE_LINK_FORKED, params={ 'parent_node': self.parent_id, 'node': self._id, 'pointer': { 'id': node._id, 'url': node.url, 'title': node.title, 'category': node.category, }, }, auth=auth, save=False, ) # Optionally save changes if save: self.save() # Return forked content return forked fork_pointer = fork_node_link # For v1 compat class CommentableMixin(object): """Abstract class that defines the interface for models that have comments attached to them.""" @property def target_type(self): """ The object "type" used in the OSF v2 API. E.g. Comment objects have the type 'comments'.""" raise NotImplementedError @property def root_target_page(self): """The page type associated with the object/Comment.root_target. E.g. For a NodeWikiPage, the page name is 'wiki'.""" raise NotImplementedError is_deleted = False def belongs_to_node(self, node_id): """Check whether an object (e.g. file, wiki, comment) is attached to the specified node.""" raise NotImplementedError def get_extra_log_params(self, comment): """Return extra data to pass as `params` to `Node.add_log` when a new comment is created, edited, deleted or restored.""" return {}
from tastypie.resources import ModelResource, ALL, ALL_WITH_RELATIONS from tastypie import fields from tastypie.authentication import ApiKeyAuthentication, SessionAuthentication, MultiAuthentication from tastypie.authorization import DjangoAuthorization from tastypie.validation import Validation from tastypie.exceptions import BadRequest from tastypie.utils import trailing_slash from tastypie.cache import NoCache from django.core.urlresolvers import resolve from django.conf.urls import url from django.core.validators import validate_ipv4_address, validate_ipv6_address from django.db.models import Q from django.contrib.auth.models import User from main.models import Zone, Record, View, record_type_choices, zone_type_choices, ServerGroup, Server, ServerConfig from dns.dns_system_actions import GenerateZone, SaveConfig, CloneZone import re class RecordValidation(Validation): def is_valid(self, bundle, request=None): if not bundle.data: return {'__all__': 'No parameters passed'} errors = {} record_type = int(bundle.data['record_type']) host = bundle.data['host'] answer = bundle.data['answer'] zone = bundle.data['zone'] if 'record_id' in bundle.data: record_id = int(bundle.data['record_id']) else: record_id = False view, args, kwargs = resolve(zone) zone_pk = kwargs['pk'] record_type_text = dict(record_type_choices).get(record_type) if self.if_duplicate(host, answer, zone_pk, record_id): errors['duplicate'] = ['Duplicated host and answer'] if self.if_same_host(host, record_type_text, zone_pk, record_id): errors['duplicate'] = ['Same host detected. RFC violation.'] if record_type_text == 'A': try: validate_ipv4_address(answer) except: errors['answer'] = ['Should be IPv4 address'] if not self.if_hostname(host): errors['host'] = ['Should be valid hostname'] elif record_type_text == 'AAAA': try: validate_ipv6_address(answer) except: errors['answer'] = ['Should be IPv6 address'] if not self.if_hostname(host) or host == '@': errors['host'] = ['Should be valid hostname'] elif record_type_text == 'CNAME': if not self.if_fqdn(answer): errors['answer'] = ['Should be valid FQDN'] if not self.if_hostname(host): errors['host'] = ['Should be valid hostname'] elif record_type_text == 'NS': if not self.if_fqdn(answer): errors['answer'] = ['Should be valid FQDN'] if not self.if_hostname(host): errors['host'] = ['Should be valid hostname'] elif record_type_text == 'MX': if not self.if_fqdn(answer): errors['answer'] = ['Should be valid FQDN'] if not self.if_hostname(host): errors['host'] = ['Should be valid hostname'] elif record_type_text == 'PTR': if not self.if_fqdn(answer): errors['answer'] = ['Should be valid FQDN'] return errors def if_fqdn(self, hostname): if len(hostname) > 255: return False if hostname[-1] == ".": hostname = hostname[:-1] else: return False allowed = re.compile("(?!-)[A-Z\d-]{1,63}(?<!-)$", re.IGNORECASE) return all(allowed.match(x) for x in hostname.split(".")) def if_hostname(self, hostname): if len(hostname) > 255: return False if hostname[-1] == ".": return False if hostname == '@' or hostname == '*': return True if re.match('^\*\..+$', hostname): hostname = hostname.lstrip('*.') allowed = re.compile("(?!-)[A-Z\d-]{1,63}(?<!-)$", re.IGNORECASE) return all(allowed.match(x) for x in hostname.split(".")) def if_duplicate(self, host, answer, zone_pk, record_id): if record_id: rf = Record.objects.filter(~Q(pk=record_id),zone=zone_pk, host=host, answer=answer) else: rf = Record.objects.filter(zone=zone_pk, host=host, answer=answer) if rf: return True return False def if_same_host(self, host, record_type_text, zone_pk, record_id): record_type_list = [] if record_type_text == 'CNAME': record_type_list.append(self.get_record_type_id_by_text('A')) record_type_list.append(self.get_record_type_id_by_text('CNAME')) elif record_type_text == 'A': record_type_list.append(self.get_record_type_id_by_text('CNAME')) elif record_type_text == 'PTR': record_type_list.append(self.get_record_type_id_by_text('PTR')) else: return False if record_id: rf = Record.objects.filter(~Q(pk=record_id),zone=zone_pk, host=host, record_type__in=record_type_list) else: rf = Record.objects.filter(zone=zone_pk, host=host, record_type__in=record_type_list) if rf: return True return False def get_record_type_id_by_text(self, record_type_text): return list(dict(record_type_choices).keys())[list(dict(record_type_choices).values()).index(record_type_text)] class ServerResource(ModelResource): class Meta: queryset = Server.objects.all() resource_name = 'server' authentication = MultiAuthentication(ApiKeyAuthentication(), SessionAuthentication()) authorization = DjangoAuthorization() class ServerGroupResource(ModelResource): servers = fields.ManyToManyField(ServerResource, "servers", null=False, related_name="servergroup", full=True) class Meta: queryset = ServerGroup.objects.all() resource_name = 'servergroup' authentication = MultiAuthentication(ApiKeyAuthentication(), SessionAuthentication()) authorization = DjangoAuthorization() class ServerConfigResource(ModelResource): group = fields.ForeignKey(ServerGroupResource, "group", full=True) class Meta: queryset = ServerConfig.objects.all() resource_name = 'serverconfig' authentication = MultiAuthentication(ApiKeyAuthentication(), SessionAuthentication()) authorization = DjangoAuthorization() def prepend_urls(self): return [ url(r"^(?P<resource_name>%s)/apply/(?P<config_id>[0-9]+)%s$" % (self._meta.resource_name, trailing_slash()), self.wrap_view('apply_config'), name="api_record_apply_config"), ] def apply_config(self, request, **kwargs): apply_config = {} # self.method_check(request, allowed=['get']) config_id = kwargs['config_id'] message = [] try: sc = SaveConfig(config_id) message = sc.applyConfig() except Exception as e: raise BadRequest(str(e)) apply_config['apply'] = message return self.create_response(request, apply_config) class ViewResource(ModelResource): class Meta: queryset = View.objects.all() resource_name = 'view' authentication = MultiAuthentication(ApiKeyAuthentication(), SessionAuthentication()) authorization = DjangoAuthorization() class ZoneResource(ModelResource): view = fields.ForeignKey(ViewResource, 'view', full=True) class Meta: queryset = Zone.objects.all() resource_name = 'zone' authentication = MultiAuthentication(ApiKeyAuthentication(), SessionAuthentication()) authorization = DjangoAuthorization() always_return_data = True filtering = { "zone": ALL, } max_limit = None def dehydrate_type(self, bundle): bundle.data['type'] = dict(zone_type_choices).get(bundle.data['type']) return bundle.data['type'] def prepend_urls(self): return [ url(r"^(?P<resource_name>%s)/clone%s$" % (self._meta.resource_name, trailing_slash()), self.wrap_view('clone'), name="api_zone_clone"), ] def clone(self, request, **kwargs): clone = {} message = [] data = self.deserialize(request, request.body, format=request.META.get('CONTENT_TYPE', 'application/json')) try: cz = CloneZone(data['zone_id'], data['view_id']) message = cz.cloneZone() except Exception as e: raise BadRequest(str(e)) clone['clone'] = message return self.create_response(request, clone) class RecordResource(ModelResource): zone = fields.ForeignKey(ZoneResource, 'zone', full=True) class Meta: queryset = Record.objects.all() resource_name = 'record' authentication = MultiAuthentication(ApiKeyAuthentication(), SessionAuthentication()) authorization = DjangoAuthorization() validation = RecordValidation() always_return_data = True filtering = { "zone": ALL_WITH_RELATIONS, "host": ALL, "answer": ALL, "record_type": ALL } max_limit = None def prepend_urls(self): return [ url(r"^(?P<resource_name>%s)/generate/(?P<zone_id>[0-9]+)%s$" % (self._meta.resource_name, trailing_slash()), self.wrap_view('generate'), name="api_record_generate"), ] def generate(self, request, **kwargs): generate = {} self.method_check(request, allowed=['get']) zone_id = kwargs['zone_id'] message = [] try: gz = GenerateZone(zone_id) gz.updateSerial() message = gz.printZone() except Exception as e: raise BadRequest(str(e)) generate['generate'] = message return self.create_response(request, generate) def hydrate_host(self, bundle): bundle.data['success'] = 1 if not 'host' in bundle.data or not bundle.data['host']: bundle.data['host'] = '@' return bundle def hydrate_ttl(self, bundle): if not 'ttl' in bundle.data or bundle.data['ttl']: bundle.data['ttl'] = 600 return bundle def hydrate_record_type(self, bundle): if 'record_type_text' in bundle.data: try: bundle.data['record_type'] = list(dict(record_type_choices).keys())[list(dict(record_type_choices).values()).index(bundle.data['record_type_text'])] except: return bundle return bundle def dehydrate_record_type(self, bundle): bundle.data['record_type_text'] = dict(record_type_choices).get(bundle.data['record_type']) return bundle.data['record_type'] class DjangoUserResource(ModelResource): class Meta: queryset = User.objects.all() resource_name = "users" authentication = MultiAuthentication(ApiKeyAuthentication(), SessionAuthentication()) authorization = DjangoAuthorization() always_return_data = True list_allowed_methods = ['get'] excludes = ['email', 'is_active', 'password', 'last_login', '_password', 'is_staff', 'id', 'date_joined'] class RecordHistoryResource(ModelResource): zone = fields.ForeignKey(ZoneResource, 'zone', full=True) history_user = fields.ForeignKey(DjangoUserResource, 'history_user', full=True) class Meta: queryset = Record.history.all() resource_name = 'rhistory' authentication = MultiAuthentication(ApiKeyAuthentication(), SessionAuthentication()) authorization = DjangoAuthorization() always_return_data = True list_allowed_methods = ['get'] filtering = { "zone": ALL_WITH_RELATIONS, "host": ALL, "answer": ALL, "record_type": ALL } max_limit = 100 def dehydrate_record_type(self, bundle): bundle.data['record_type_text'] = dict(record_type_choices).get(bundle.data['record_type']) return bundle.data['record_type'] def dehydrate_history_date(self, bundle): bundle.data['history_date'] = bundle.data['history_date'].strftime('%Y-%m-%d %H:%M:%S') return bundle.data['history_date']
#!/usr/bin/python # Copyright (C) 2014 Harun Emektar # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # http://fuse.sourceforge.net/wiki/index.php/FusePython import fuse import HTMLParser import stat import errno import urllib2 import os from time import time, strptime fuse.fuse_python_api = (0, 2) class WebDirParser(HTMLParser.HTMLParser): class Stat(): def __init__(self, isDir): if isDir: self.st_mode = stat.S_IFDIR | 0555 self.st_size = 4096 else: self.st_mode = stat.S_IFREG | 0444 self.st_size = 0 self.st_time = int(time()) def isDir(self): return self.st_mode & stat.S_IFDIR def __init__(self): HTMLParser.HTMLParser.__init__(self); self.path="" self.entries={} self._curTag="" self._entriesStarted = False self._lastFile = None def handle_starttag(self, tag, attr): self._curTag = tag def handle_endtag(self, tag): self._curTag = "" if tag == "pre": self._lastFile = None def handle_data(self, data): print "handle_data", data if self._curTag == "h1": self.path=data[len("Index of "):] elif self._curTag == "a" and data == "Parent Directory": self._entriesStarted = True elif self._curTag == "a" and self._entriesStarted: isDir = len(data.split("/")) > 1 self.entries[ data.split("/")[0] ] = WebDirParser.Stat(isDir) self._lastFile = data.split("/")[0] elif self._entriesStarted and self._lastFile: attr = data.strip().split() print attr if len(attr) == 3: if not self.entries[self._lastFile].isDir(): size = attr[-1] isize = 0 if size[-1] in "KMG": isize = float(size[0:-1]) if size[-1] == "K": isize *= 1024 elif size[-1] == "M": isize *= 1024 * 1024 elif size[-1] == "G": isize *= 1024 * 1024 * 1024 isize = int(isize) else: isize = int(size) self.entries[self._lastFile].st_size = isize strtime = attr[0] + " " + attr[1] time = strptime(strtime, '%d-%b-%Y %H:%M') self.entries[self._lastFile].st_time = time; class WebFSStat(fuse.Stat): def __init__(self, isDir=True): if isDir: self.st_mode = stat.S_IFDIR | 0555 else: self.st_mode = stat.S_IFREG | 0444 self.st_ino = 0 self.st_dev = 0 self.st_nlink = 2 self.st_uid = 0 self.st_gid = 0 self.st_size = 4096 self.st_atime = int(time()) self.st_mtime = self.st_atime self.st_ctime = self.st_atime def isDir(self): return self.st_mode & stat.S_IFDIR class ResourceNotFound(Exception): pass class WebFSProxy(): def __init__(self, rootURL): self._rootURL = rootURL class WebFS(fuse.Fuse): def __init__(self, *args, **kw): fuse.Fuse.__init__(self, *args, **kw) self._rootURL = "http://old-releases.ubuntu.com/" self._rootDirs = ("releases", "ubuntu") self._latestDirEntries = {} def readdir(self, path, offset): print path, offset dirents = [ ".", ".."] if path == "/": dirents += self._rootDirs else: url = self._rootURL + path webDir = urllib2.urlopen(url) if webDir.getcode() != 200 and webDir.getcode() != 301: return -errno.ENOENT parser = WebDirParser() for line in webDir: parser.feed(line) dirents += parser.entries.keys() self._latestDirEntries[path] = parser.entries retEnt = [] for r in dirents: retEnt += [ fuse.Direntry(r) ] return retEnt def read(self, path, size, offset): print "reading ", path request = urllib2.Request(self._rootURL + path, headers={"Range": "bytes=" + str(offset) + "-" + str(offset + size)}) res = urllib2.urlopen(request) content = res.read(size) return content def _isDir(self, path): request = urllib2.Request(self._rootURL + path, headers={"Range": "bytes=0-0"}) info = urllib2.urlopen(request) returnCode = info.getcode() print "return code for", path, returnCode if returnCode != 200 and returnCode != 301 and returnCode != 206: raise ResourceNotFound() contentType = info.info().getheaders("Content-Type")[0] print "content type of ", path, contentType retval = contentType.find("html") != -1 try: self._latestDirEntries[os.path.dirname(path)][os.path.basename(path)] = WebFSStat(retval) except KeyError: self._latestDirEntries[os.path.dirname(path)] = {os.path.basename(path) : WebFSStat(retval)} return retval def getattr(self, path): st = WebFSStat() if path == "/": return st if len(path.split("/")) == 2 and path.split("/")[1] not in self._rootDirs: print path, "doesnt exist" return -errno.ENOENT isDir = True; try: dirlist = self._latestDirEntries[os.path.dirname(path)] print "entry found", isDir = dirlist[os.path.basename(path)].isDir() st = dirlist[os.path.basename(path)] print "isDir ", str(isDir) except KeyError: # figure out type try: isDir = self._isDir(path) except ResourceNotFound: return -errno.ENOENT if not isDir: st.st_mode = stat.S_IFREG | 0555 return st def chmod ( self, path, mode ): print '*** chmod', path, oct(mode) return -errno.EPERM def chown ( self, path, uid, gid ): print '*** chown', path, uid, gid return -errno.EPERM def fsync ( self, path, isFsyncFile ): print '*** fsync', path, isFsyncFile return 0 def link ( self, targetPath, linkPath ): print '*** link', targetPath, linkPath return -errno.EPERM def mkdir ( self, path, mode ): print '*** mkdir', path, oct(mode) return -errno.EPERM def mknod ( self, path, mode, dev ): print '*** mknod', path, oct(mode), dev return -errno.EPERM def open ( self, path, flags ): if path == "/": return 0 if len(path.split("/")) == 2 and path.split("/")[1] not in self._rootDirs: print path, "doesnt exist" return -errno.ENOENT isDir = True; try: dirlist = self._latestDirEntries[os.path.dirname(path)] print "entry found", isDir = dirlist[os.path.basename(path)].isDir() st = dirlist[os.path.basename(path)] print "isDir ", str(isDir) except KeyError: # figure out type try: isDir = self._isDir(path) except ResourceNotFound: return -errno.ENOENT if not isDir: st.st_mode = stat.S_IFREG | 0555 request = urllib2.Request(self._rootURL + path, headers={"Range": "bytes=0-0"}) info = urllib2.urlopen(request) rng = info.info().getheaders("Content-Range")[0] print "range::", rng rng = rng.split("/")[1] self._latestDirEntries[os.path.dirname(path)][os.path.basename(path)].st_size=int(rng) return 0 def readlink ( self, path ): print '*** readlink', path return 0 def release ( self, path, flags ): print '*** release', path, flags return 0 def rename ( self, oldPath, newPath ): print '*** rename', oldPath, newPath return -errno.EPERM def rmdir ( self, path ): print '*** rmdir', path return -errno.EPERM def statfs ( self ): print '*** statfs' return 0 def symlink ( self, targetPath, linkPath ): print '*** symlink', targetPath, linkPath return -errno.EPERM def truncate ( self, path, size ): print '*** truncate', path, size return -errno.EPERM def unlink ( self, path ): print '*** unlink', path return -errno.EPERM def utime ( self, path, times ): print '*** utime', path, times return -errno.EPERM def write ( self, path, buf, offset ): print '*** write', path, buf, offset return -errno.EPERM def main(): webFS = WebFS() webFS.parse(errex=1) webFS.main() if __name__ == "__main__": main()
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # Copyright 2011 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import copy import sys import traceback from oslo.config import cfg import six from muranorepository.openstack.common.gettextutils import _ # noqa from muranorepository.openstack.common import importutils from muranorepository.openstack.common import jsonutils from muranorepository.openstack.common import local from muranorepository.openstack.common import log as logging CONF = cfg.CONF LOG = logging.getLogger(__name__) '''RPC Envelope Version. This version number applies to the top level structure of messages sent out. It does *not* apply to the message payload, which must be versioned independently. For example, when using rpc APIs, a version number is applied for changes to the API being exposed over rpc. This version number is handled in the rpc proxy and dispatcher modules. This version number applies to the message envelope that is used in the serialization done inside the rpc layer. See serialize_msg() and deserialize_msg(). The current message format (version 2.0) is very simple. It is: { 'oslo.version': <RPC Envelope Version as a String>, 'oslo.message': <Application Message Payload, JSON encoded> } Message format version '1.0' is just considered to be the messages we sent without a message envelope. So, the current message envelope just includes the envelope version. It may eventually contain additional information, such as a signature for the message payload. We will JSON encode the application message payload. The message envelope, which includes the JSON encoded application message body, will be passed down to the messaging libraries as a dict. ''' _RPC_ENVELOPE_VERSION = '2.0' _VERSION_KEY = 'oslo.version' _MESSAGE_KEY = 'oslo.message' _REMOTE_POSTFIX = '_Remote' class RPCException(Exception): msg_fmt = _("An unknown RPC related exception occurred.") def __init__(self, message=None, **kwargs): self.kwargs = kwargs if not message: try: message = self.msg_fmt % kwargs except Exception: # kwargs doesn't match a variable in the message # log the issue and the kwargs LOG.exception(_('Exception in string format operation')) for name, value in kwargs.iteritems(): LOG.error("%s: %s" % (name, value)) # at least get the core message out if something happened message = self.msg_fmt super(RPCException, self).__init__(message) class RemoteError(RPCException): """Signifies that a remote class has raised an exception. Contains a string representation of the type of the original exception, the value of the original exception, and the traceback. These are sent to the parent as a joined string so printing the exception contains all of the relevant info. """ msg_fmt = _("Remote error: %(exc_type)s %(value)s\n%(traceback)s.") def __init__(self, exc_type=None, value=None, traceback=None): self.exc_type = exc_type self.value = value self.traceback = traceback super(RemoteError, self).__init__(exc_type=exc_type, value=value, traceback=traceback) class Timeout(RPCException): """Signifies that a timeout has occurred. This exception is raised if the rpc_response_timeout is reached while waiting for a response from the remote side. """ msg_fmt = _('Timeout while waiting on RPC response - ' 'topic: "%(topic)s", RPC method: "%(method)s" ' 'info: "%(info)s"') def __init__(self, info=None, topic=None, method=None): """Initiates Timeout object. :param info: Extra info to convey to the user :param topic: The topic that the rpc call was sent to :param rpc_method_name: The name of the rpc method being called """ self.info = info self.topic = topic self.method = method super(Timeout, self).__init__( None, info=info or _('<unknown>'), topic=topic or _('<unknown>'), method=method or _('<unknown>')) class DuplicateMessageError(RPCException): msg_fmt = _("Found duplicate message(%(msg_id)s). Skipping it.") class InvalidRPCConnectionReuse(RPCException): msg_fmt = _("Invalid reuse of an RPC connection.") class UnsupportedRpcVersion(RPCException): msg_fmt = _("Specified RPC version, %(version)s, not supported by " "this endpoint.") class UnsupportedRpcEnvelopeVersion(RPCException): msg_fmt = _("Specified RPC envelope version, %(version)s, " "not supported by this endpoint.") class RpcVersionCapError(RPCException): msg_fmt = _("Specified RPC version cap, %(version_cap)s, is too low") class Connection(object): """A connection, returned by rpc.create_connection(). This class represents a connection to the message bus used for rpc. An instance of this class should never be created by users of the rpc API. Use rpc.create_connection() instead. """ def close(self): """Close the connection. This method must be called when the connection will no longer be used. It will ensure that any resources associated with the connection, such as a network connection, and cleaned up. """ raise NotImplementedError() def create_consumer(self, topic, proxy, fanout=False): """Create a consumer on this connection. A consumer is associated with a message queue on the backend message bus. The consumer will read messages from the queue, unpack them, and dispatch them to the proxy object. The contents of the message pulled off of the queue will determine which method gets called on the proxy object. :param topic: This is a name associated with what to consume from. Multiple instances of a service may consume from the same topic. For example, all instances of nova-compute consume from a queue called "compute". In that case, the messages will get distributed amongst the consumers in a round-robin fashion if fanout=False. If fanout=True, every consumer associated with this topic will get a copy of every message. :param proxy: The object that will handle all incoming messages. :param fanout: Whether or not this is a fanout topic. See the documentation for the topic parameter for some additional comments on this. """ raise NotImplementedError() def create_worker(self, topic, proxy, pool_name): """Create a worker on this connection. A worker is like a regular consumer of messages directed to a topic, except that it is part of a set of such consumers (the "pool") which may run in parallel. Every pool of workers will receive a given message, but only one worker in the pool will be asked to process it. Load is distributed across the members of the pool in round-robin fashion. :param topic: This is a name associated with what to consume from. Multiple instances of a service may consume from the same topic. :param proxy: The object that will handle all incoming messages. :param pool_name: String containing the name of the pool of workers """ raise NotImplementedError() def join_consumer_pool(self, callback, pool_name, topic, exchange_name): """Register as a member of a group of consumers. Uses given topic from the specified exchange. Exactly one member of a given pool will receive each message. A message will be delivered to multiple pools, if more than one is created. :param callback: Callable to be invoked for each message. :type callback: callable accepting one argument :param pool_name: The name of the consumer pool. :type pool_name: str :param topic: The routing topic for desired messages. :type topic: str :param exchange_name: The name of the message exchange where the client should attach. Defaults to the configured exchange. :type exchange_name: str """ raise NotImplementedError() def consume_in_thread(self): """Spawn a thread to handle incoming messages. Spawn a thread that will be responsible for handling all incoming messages for consumers that were set up on this connection. Message dispatching inside of this is expected to be implemented in a non-blocking manner. An example implementation would be having this thread pull messages in for all of the consumers, but utilize a thread pool for dispatching the messages to the proxy objects. """ raise NotImplementedError() def _safe_log(log_func, msg, msg_data): """Sanitizes the msg_data field before logging.""" SANITIZE = ['_context_auth_token', 'auth_token', 'new_pass'] def _fix_passwords(d): """Sanitizes the password fields in the dictionary.""" for k in d.iterkeys(): if k.lower().find('password') != -1: d[k] = '<SANITIZED>' elif k.lower() in SANITIZE: d[k] = '<SANITIZED>' elif isinstance(d[k], dict): _fix_passwords(d[k]) return d return log_func(msg, _fix_passwords(copy.deepcopy(msg_data))) def serialize_remote_exception(failure_info, log_failure=True): """Prepares exception data to be sent over rpc. Failure_info should be a sys.exc_info() tuple. """ tb = traceback.format_exception(*failure_info) failure = failure_info[1] if log_failure: LOG.error(_("Returning exception %s to caller"), six.text_type(failure)) LOG.error(tb) kwargs = {} if hasattr(failure, 'kwargs'): kwargs = failure.kwargs # NOTE(matiu): With cells, it's possible to re-raise remote, remote # exceptions. Lets turn it back into the original exception type. cls_name = str(failure.__class__.__name__) mod_name = str(failure.__class__.__module__) if (cls_name.endswith(_REMOTE_POSTFIX) and mod_name.endswith(_REMOTE_POSTFIX)): cls_name = cls_name[:-len(_REMOTE_POSTFIX)] mod_name = mod_name[:-len(_REMOTE_POSTFIX)] data = { 'class': cls_name, 'module': mod_name, 'message': six.text_type(failure), 'tb': tb, 'args': failure.args, 'kwargs': kwargs } json_data = jsonutils.dumps(data) return json_data def deserialize_remote_exception(conf, data): failure = jsonutils.loads(str(data)) trace = failure.get('tb', []) message = failure.get('message', "") + "\n" + "\n".join(trace) name = failure.get('class') module = failure.get('module') # NOTE(ameade): We DO NOT want to allow just any module to be imported, in # order to prevent arbitrary code execution. if module not in conf.allowed_rpc_exception_modules: return RemoteError(name, failure.get('message'), trace) try: mod = importutils.import_module(module) klass = getattr(mod, name) if not issubclass(klass, Exception): raise TypeError("Can only deserialize Exceptions") failure = klass(*failure.get('args', []), **failure.get('kwargs', {})) except (AttributeError, TypeError, ImportError): return RemoteError(name, failure.get('message'), trace) ex_type = type(failure) str_override = lambda self: message new_ex_type = type(ex_type.__name__ + _REMOTE_POSTFIX, (ex_type,), {'__str__': str_override, '__unicode__': str_override}) new_ex_type.__module__ = '%s%s' % (module, _REMOTE_POSTFIX) try: # NOTE(ameade): Dynamically create a new exception type and swap it in # as the new type for the exception. This only works on user defined # Exceptions and not core python exceptions. This is important because # we cannot necessarily change an exception message so we must override # the __str__ method. failure.__class__ = new_ex_type except TypeError: # NOTE(ameade): If a core exception then just add the traceback to the # first exception argument. failure.args = (message,) + failure.args[1:] return failure class CommonRpcContext(object): def __init__(self, **kwargs): self.values = kwargs def __getattr__(self, key): try: return self.values[key] except KeyError: raise AttributeError(key) def to_dict(self): return copy.deepcopy(self.values) @classmethod def from_dict(cls, values): return cls(**values) def deepcopy(self): return self.from_dict(self.to_dict()) def update_store(self): local.store.context = self def elevated(self, read_deleted=None, overwrite=False): """Return a version of this context with admin flag set.""" # TODO(russellb) This method is a bit of a nova-ism. It makes # some assumptions about the data in the request context sent # across rpc, while the rest of this class does not. We could get # rid of this if we changed the nova code that uses this to # convert the RpcContext back to its native RequestContext doing # something like nova.context.RequestContext.from_dict(ctxt.to_dict()) context = self.deepcopy() context.values['is_admin'] = True context.values.setdefault('roles', []) if 'admin' not in context.values['roles']: context.values['roles'].append('admin') if read_deleted is not None: context.values['read_deleted'] = read_deleted return context class ClientException(Exception): """Encapsulates actual exception expected to be hit by a RPC proxy object. Merely instantiating it records the current exception information, which will be passed back to the RPC client without exceptional logging. """ def __init__(self): self._exc_info = sys.exc_info() def catch_client_exception(exceptions, func, *args, **kwargs): try: return func(*args, **kwargs) except Exception as e: if type(e) in exceptions: raise ClientException() else: raise def client_exceptions(*exceptions): """Decorator for manager methods that raise expected exceptions. Marking a Manager method with this decorator allows the declaration of expected exceptions that the RPC layer should not consider fatal, and not log as if they were generated in a real error scenario. Note that this will cause listed exceptions to be wrapped in a ClientException, which is used internally by the RPC layer. """ def outer(func): def inner(*args, **kwargs): return catch_client_exception(exceptions, func, *args, **kwargs) return inner return outer def version_is_compatible(imp_version, version): """Determine whether versions are compatible. :param imp_version: The version implemented :param version: The version requested by an incoming message. """ version_parts = version.split('.') imp_version_parts = imp_version.split('.') if int(version_parts[0]) != int(imp_version_parts[0]): # Major return False if int(version_parts[1]) > int(imp_version_parts[1]): # Minor return False return True def serialize_msg(raw_msg): # NOTE(russellb) See the docstring for _RPC_ENVELOPE_VERSION for more # information about this format. msg = {_VERSION_KEY: _RPC_ENVELOPE_VERSION, _MESSAGE_KEY: jsonutils.dumps(raw_msg)} return msg def deserialize_msg(msg): # NOTE(russellb): Hang on to your hats, this road is about to # get a little bumpy. # # Robustness Principle: # "Be strict in what you send, liberal in what you accept." # # At this point we have to do a bit of guessing about what it # is we just received. Here is the set of possibilities: # # 1) We received a dict. This could be 2 things: # # a) Inspect it to see if it looks like a standard message envelope. # If so, great! # # b) If it doesn't look like a standard message envelope, it could either # be a notification, or a message from before we added a message # envelope (referred to as version 1.0). # Just return the message as-is. # # 2) It's any other non-dict type. Just return it and hope for the best. # This case covers return values from rpc.call() from before message # envelopes were used. (messages to call a method were always a dict) if not isinstance(msg, dict): # See #2 above. return msg base_envelope_keys = (_VERSION_KEY, _MESSAGE_KEY) if not all(map(lambda key: key in msg, base_envelope_keys)): # See #1.b above. return msg # At this point we think we have the message envelope # format we were expecting. (#1.a above) if not version_is_compatible(_RPC_ENVELOPE_VERSION, msg[_VERSION_KEY]): raise UnsupportedRpcEnvelopeVersion(version=msg[_VERSION_KEY]) raw_msg = jsonutils.loads(msg[_MESSAGE_KEY]) return raw_msg
import re import os import time import urllib import urllib2 import urlparse import cStringIO import collections import pkg_resources from setuptools.package_index import PackageIndex from pkgtools.pypi import PyPIXmlRpc, PyPIJson, real_name from pyg.core import Version, args_manager from pyg.utils import name, ext, right_egg, version_egg, is_windows from pyg.log import logger __all__ = ['PREFERENCES', 'ReqManager', 'get_versions', 'get_links', \ 'highest_version', 'request'] ## This constant holds files priority PREFERENCES = ('.tar.gz', '.tar.bz2', '.zip', '.egg') if is_windows(): PREFERENCES = ('.exe', '.msi') + PREFERENCES def get_versions(req): ''' Return all versions the given requirement can match. For example, if requirement is `pyg>=0.6` it will return: [0.6, 0.7]. When a package has no files on PyPI (but at least a release) we have to look for version manually, with regular expressions. `req` should be a Requirement object (from pyg.core). ''' if req.is_dev: return iter((Version('dev'),)) _version_re = r'{0}-([\d\w.-]*).*' name = req.name pypi = PyPIXmlRpc() versions = map(Version, pypi.package_releases(name, True)) ## Slow way: we need to search versions by ourselves if not versions: _vre = re.compile(_version_re.format(name), re.I) data = request((args_manager['install']['packages_url']+'/{0}').format(name)) versions = map(Version, set(v.strip('.') for v in _vre.findall(data))) return (v for v in versions if req.match(v)) def highest_version(req): '''Return the highest version the given requirement can match.''' return max(get_versions(req)) def request(url): '''Perform a GET request to `url`.''' return urllib2.urlopen(url).read() def convert_bytes(bytes): bytes = float(bytes) if bytes >= 1099511627776: terabytes = bytes / 1099511627776 size = '{0:.1f} Tb'.format(terabytes) elif bytes >= 1073741824: gigabytes = bytes / 1073741824 size = '{0:.1f} Gb'.format(gigabytes) elif bytes >= 1048576: megabytes = bytes / 1048576 size = '{0:.1f} Mb'.format(megabytes) elif bytes >= 1024: kilobytes = bytes / 1024 size = '{0:.1f} Kb'.format(kilobytes) else: size = '{0:.1f} b'.format(bytes) return size def format_time(seconds): if seconds == '': return '' hours, minutes = seconds // 3600, seconds // 60 seconds -= int(3600 * hours + 60 * minutes) if minutes: if hours: return '{0:02d}h {1:02d}m {2:02d}s remaining'.format(*map(int, [hours, minutes, seconds])) return '{0:02d}m {1:02d}s remaining'.format(*map(int, [minutes, seconds])) return '{0:02d}s remaining'.format(int(seconds)) def download(url, msg, add_remaining=True): def hook(blocks, block_size, total_size): ''' Callback function for `urllib.urlretrieve` that is called when connection is created and then once for each block. Display the amount of data transferred so far and it percentage. Use sys.stdout.write() instead of "print,", because it allows one more symbol at the line end without linefeed on Windows :param blocks: Number of blocks transferred so far. :param block_size: Size of each block in bytes. :param total_size: Total size of the HTTP object in bytes. Can be -1 if server doesn't return it. ''' if block_size > total_size: logger.info('\r{0} [100% - {1}]', msg, convert_bytes(total_size), addn=False) return downloaded = block_size * blocks ratio = downloaded / float(total_size) ## When the last block makes the downloaded size greater than the total size if ratio > 1: ratio = 1 downloaded = total_size ## Calculate elapsed and remaining time elapsed = func() - starttime speed = downloaded / float(elapsed) try: remaining = (total_size - downloaded) / float(speed) except ZeroDivisionError: remaining = '' if ratio == 1: ## When we finish the download we want this string to hide remaining = '' if add_remaining: logger.info('\r{0} [{1:.0%} - {2} / {3}] {4}', msg, ratio, convert_bytes(downloaded), convert_bytes(total_size), format_time(remaining), addn=False) else: logger.info('\r{0} [{1:.0%} - {2} / {3}]', msg, ratio, convert_bytes(downloaded), convert_bytes(total_size), addn=False) if is_windows(): ## On Windows time.clock should be more precise. func = time.clock else: func = time.time starttime = func() path = urllib.urlretrieve(url, reporthook=hook)[0] logger.newline() with open(path) as f: return cStringIO.StringIO(f.read()) class ReqManager(object): _pkg_re = re.compile('(?P<package_name>[\w][\w\d]+)-' # alphanumeric / underscore + alphanumeric / digit / underscore '(?P<version>\d[\d\w.]+)' # digit + digit / dot / alphanumeric '.*?' # anything '(?P<ext>\.(?:tar\.gz|tar\.bz2|zip|egg|tgz))' # the extension ) def __init__(self, req, pref=None): self.req = req self.req.name = self.name = real_name(self.req.name) if self.req.op == '==': ## LOL self.package_manager = PyPIJson(self.name, self.req.version) else: hi = highest_version(self.req) self.req.version = hi self.package_manager = PyPIJson(self.name, hi) url = args_manager['install']['index_url'] + '/' + self.package_manager.URL.split('/pypi/', 1)[1] self.package_manager.URL = url self._set_prefs(pref) self.downloaded_name = None self.downloaded_version = None def _set_prefs(self, pref): if pref is None: pref = PREFERENCES pref = list(pref) if len(pref) < len(PREFERENCES): for p in PREFERENCES: if p not in pref: pref.append(p) self.pref = pref def _setuptools_find(self): def _get_all(url): match = self._pkg_re.search(url) if match is None: return None, None, None return map(match.group, ('package_name', 'version', 'ext')) def _remove_query(url): return urlparse.urlunsplit(urlparse.urlsplit(url)[:3] + ('',) * 2) def _get_version(filename): ## A bit hacky but there is no solution because some packages ## are in the form {package_name}-{version}-{something_else}-{?pyx.y}.{ext} ## and we cannot predict where is the version in that mess. _version_re = re.compile(r'[\d\w.]*') parts = name(filename).split('-') for part in parts: match = _version_re.search(part) if match is not None: return match.group() logger.warn('Warning: did not find any files on PyPI') found = [] for link in get_links(str(self.req), args_manager['install']['packages_url']): package_name = _remove_query(link).split('/')[-1] version = _get_version(package_name) e = ext(package_name) if package_name is None or version is None: package_name, version, e = _get_all(link) found.append((version, package_name, None, link, e)) return found def find(self): if self.req.is_dev: links = get_links(str(self.req)) return [('dev', self.req.name, None, link, ext(link)) for link in links] return list(self.package_manager.find()) or self._setuptools_find() def files(self): files = collections.defaultdict(list) for release in self.find(): e = release[-1] if e not in self.pref: logger.debug('debug: Skipping {0}, unknown extension', release[-2]) files[e].append(release[:-1]) return files def download(self, dest): """ you can set dest to None, it will executed a try run """ if dest: dest = os.path.abspath(dest) files = self.files() downloaded = [] ## We need a placeholder because of the nested for loops success = False for p in self.pref: if success: break if not files[p]: logger.warn('{0} files not found. Continue searching...', p) continue for v, name, hash, url in files[p]: if success: break if p == '.egg' and not right_egg(name): logger.info('Found egg file for another Python version: {0}. Continue searching...', version_egg(name)) continue if dest: try: data = download(url, 'Retrieving data for {0}'.format(self.name)).getvalue() except (urllib2.URLError, urllib2.HTTPError) as e: logger.debug('urllib2 error: {0}', e.args) continue if not data: logger.debug('debug: Request failed') continue if not os.path.exists(dest): os.makedirs(dest) try: # Fix for packages with no version in the name if '-' not in name: name = '{0}-{1}{2}'.format(name, v, p) logger.info('Writing data into {0}', name) with open(os.path.join(dest, name), 'w') as f: f.write(data) except (IOError, OSError): logger.debug('debug: Error while writing data') continue downloaded.append({'url': url, 'hash': hash}) logger.success('{0} downloaded successfully', self.name) success = True self.downloaded_name = name self.downloaded_version = v return downloaded class PygPackageIndex(PackageIndex): ''' Pyg's own PackageIndex derived from setuptools' one. This PackageIndex does not download any files but crawl the index looking for links available for the download. ''' def __init__(self, *a, **k): PackageIndex.__init__(self, *a, **k) self.urls = set() def _download_to(self, url, filename): self.urls.add(url) return def download(self, spec, tmpdir=None): self.urls.add(spec) return def get_links(package, index_url=None): ## Correction for standard installations when index_url looks standard ## http://pypi.python.org/pypi. if index_url is None: index_url = args_manager['install']['packages_url'] logger.info('Looking for packages at {0}', index_url) urls = set() package_index = PygPackageIndex(index_url) req = pkg_resources.Requirement.parse(str(package)) for source in (True, False): package_index.fetch_distribution(req, None, force_scan=True, \ source=source, develop_ok=False) for url in package_index.urls: ## PackageIndex looks for local distributions too, and we ## don't want that. if url.startswith(('http', 'https')): urls.add(urlparse.urldefrag(url)[0]) return urls ## OLD! We are using Json to interoperate with pypi. ## We use it only if we don't find any files with the Json API ## UPDATE: Now we use PyPIJson (from pktools) in combination with get_links ## (from setuptools). ## ## Old link finder we used to retrieve packages' links. ## Now we use setuptools' PackageIndex and PyPI Json API. ## (above) ## ## ####################################################################### # #class LinkFinder(object): # # INDEX = None # FILE = r'href\s?=\s?("|\')(?P<file>.*{0}-{1}\.(?:tar\.gz|tar\.bz2|zip|egg))(?:\1)' # LINK = r'<a\s?href="(?P<href>[^"]+)"\srel="(?P<rel>[^"]+)">(?P<version>[\d\.]+[\w^.]+)(?P<name>[^\<]+)</a><br/>' # SIMPLE_LINK = r'<a\shref="(?P<href>[^"]+)">(?P<name>[^<]+)</a>' # # def __init__(self, package_name, index=None): # self.package_name = package_name # if index is None: # index = 'http://pypi.python.org/simple/' # if not index.endswith('/'): # index += '/' # self.INDEX = index # # def _check_link(self, link, version): # ''' # Check whether the link is good or not. The link must satisfy the following conditions: # # * It have to end with a right extension (.tar.gz, .tar.bz2, .zip, or .egg). # * It have to be the newest (i.e. the version must be the one specified). # ''' # # base = link.split('/')[-1] # e = ext(base) # if e not in ('.tar.gz', '.tar.bz2', '.zip', '.egg'): # return False # return '{0}-{1}{2}'.format(self.package_name, version, e) == base # # def find_best_link(self): # data = request('{0}{1}'.format(self.INDEX, self.package_name)) # d = {} # for href, name in re.compile(self.SIMPLE_LINK).findall(data): # e = ext(name) # if e in ('.tar', '.tar.gz', '.tar.bz2', '.zip'): # version = name.split('-')[-1][:-len(e)] # elif e in ('.exe', '.msi'): # version = '.'.join(name.split('-')[-2].split('.')[:-1]) # else: # try: # version = pkg_resources.Distribution.from_filename(name).version # except ValueError: # logger.debug('debug: Failed to find version for {0}, continuing...', name) # continue # if not href.startswith('http'): # href = '/'.join([self.INDEX, self.package_name, href]) # d[Version(version)] = href # for href, rel, version, name in re.compile(self.LINK).findall(data): # if rel == 'download': # d[Version(version)] = href # # ## Find highest version and returns its link # try: # v = max(d) # return v, d[v] # except ValueError: # return None, None # # def find_files(self, url, version): # url = url + '/'[:not url.endswith('/')] # base = '{0}://{1}/'.format(*urlparse.urlparse(url)[:2]) # logger.info('Reading {0}', url) # # ## This is horrible, but there is no alternative... # ## We cannot use standard regex because on external sites HTML can be # ## different and we would run up against problems. # data = request(url).split('</a>') # links = set() # for item in data: # if 'href' in item: # i = item.index('href="') # item = item[i + 6:] # link = item[:item.index('">')] # if not link.startswith('http'): # link = base + link # links.add(link) # return [l for l in links if self._check_link(l, version)] # # def find(self): # version, link = self.find_best_link() # if version is None: # raise PygError('Error: did not find any files') # link = urlparse.urldefrag(link)[0] # if ext(link) in PREFERENCES: # return [link] # return self.find_files(link, version)
# -*- coding: utf-8 -*- import logging import httplib as http import math from itertools import islice from flask import request from modularodm import Q from modularodm.exceptions import ModularOdmException, ValidationValueError from framework import status from framework.utils import iso8601format from framework.mongo import StoredObject from framework.auth.decorators import must_be_logged_in, collect_auth from framework.exceptions import HTTPError, PermissionsError from framework.mongo.utils import from_mongo, get_or_http_error from website import language from website.util import paths from website.util import rubeus from website.exceptions import NodeStateError from website.project import clean_template_name, new_node, new_private_link from website.project.decorators import ( must_be_contributor_or_public, must_be_contributor, must_be_valid_project, must_have_permission, must_not_be_registration, ) from website.util.permissions import ADMIN, READ, WRITE from website.util.rubeus import collect_addon_js from website.project.model import has_anonymous_link, get_pointer_parent, NodeUpdateError from website.project.forms import NewNodeForm from website.models import Node, Pointer, WatchConfig, PrivateLink from website import settings from website.views import _render_nodes, find_dashboard from website.profile import utils from website.project import new_folder from website.util.sanitize import strip_html logger = logging.getLogger(__name__) @must_be_valid_project @must_have_permission(WRITE) @must_not_be_registration def edit_node(auth, node, **kwargs): post_data = request.json edited_field = post_data.get('name') value = strip_html(post_data.get('value', '')) if edited_field == 'title': try: node.set_title(value, auth=auth) except ValidationValueError as e: raise HTTPError( http.BAD_REQUEST, data=dict(message_long=e.message) ) elif edited_field == 'description': node.set_description(value, auth=auth) node.save() return {'status': 'success'} ############################################################################## # New Project ############################################################################## @must_be_logged_in def project_new(**kwargs): return {} @must_be_logged_in def project_new_post(auth, **kwargs): user = auth.user data = request.get_json() title = strip_html(data.get('title')) title = title.strip() category = data.get('category', 'project') template = data.get('template') description = strip_html(data.get('description')) new_project = {} if template: original_node = Node.load(template) changes = { 'title': title, 'category': category, 'template_node': original_node, } if description: changes['description'] = description project = original_node.use_as_template( auth=auth, changes={ template: changes, } ) else: try: project = new_node(category, title, user, description) except ValidationValueError as e: raise HTTPError( http.BAD_REQUEST, data=dict(message_long=e.message) ) new_project = _view_project(project, auth) return { 'projectUrl': project.url, 'newNode': new_project['node'] if new_project else None }, http.CREATED @must_be_logged_in @must_be_valid_project def project_new_from_template(auth, node, **kwargs): new_node = node.use_as_template( auth=auth, changes=dict(), ) return {'url': new_node.url}, http.CREATED, None ############################################################################## # New Folder ############################################################################## @must_be_valid_project @must_be_logged_in def folder_new_post(auth, node, **kwargs): user = auth.user title = request.json.get('title') if not node.is_folder: raise HTTPError(http.BAD_REQUEST) folder = new_folder(strip_html(title), user) folders = [folder] try: _add_pointers(node, folders, auth) except ValueError: raise HTTPError(http.BAD_REQUEST) return { 'projectUrl': '/dashboard/', }, http.CREATED @collect_auth def add_folder(auth, **kwargs): data = request.get_json() node_id = data.get('node_id') node = get_or_http_error(Node, node_id) user = auth.user title = strip_html(data.get('title')) if not node.is_folder: raise HTTPError(http.BAD_REQUEST) folder = new_folder( title, user ) folders = [folder] try: _add_pointers(node, folders, auth) except ValueError: raise HTTPError(http.BAD_REQUEST) return {}, 201, None ############################################################################## # New Node ############################################################################## @must_be_valid_project @must_have_permission(WRITE) @must_not_be_registration def project_new_node(auth, node, **kwargs): form = NewNodeForm(request.form) user = auth.user if form.validate(): try: node = new_node( title=strip_html(form.title.data), user=user, category=form.category.data, parent=node, ) except ValidationValueError as e: raise HTTPError( http.BAD_REQUEST, data=dict(message_long=e.message) ) message = ( 'Your component was created successfully. You can keep working on the component page below, ' 'or return to the <u><a href="{url}">Project Page</a></u>.' ).format(url=node.url) status.push_status_message(message, 'info') return { 'status': 'success', }, 201, None, node.url else: status.push_errors_to_status(form.errors) raise HTTPError(http.BAD_REQUEST, redirect_url=node.url) @must_be_logged_in @must_be_valid_project def project_before_fork(auth, node, **kwargs): user = auth.user prompts = node.callback('before_fork', user=user) if node.has_pointers_recursive: prompts.append( language.BEFORE_FORK_HAS_POINTERS.format( category=node.project_or_component ) ) return {'prompts': prompts} @must_be_logged_in @must_be_valid_project def project_before_template(auth, node, **kwargs): prompts = [] for addon in node.get_addons(): if 'node' in addon.config.configs: if addon.to_json(auth.user)['addon_full_name']: prompts.append(addon.to_json(auth.user)['addon_full_name']) return {'prompts': prompts} @must_be_logged_in @must_be_valid_project def node_fork_page(auth, node, **kwargs): if settings.DISK_SAVING_MODE: raise HTTPError( http.METHOD_NOT_ALLOWED, redirect_url=node.url ) try: fork = node.fork_node(auth) except PermissionsError: raise HTTPError( http.FORBIDDEN, redirect_url=node.url ) return fork.url @must_be_valid_project @must_be_contributor_or_public def node_registrations(auth, node, **kwargs): return _view_project(node, auth, primary=True) @must_be_valid_project @must_be_contributor_or_public def node_forks(auth, node, **kwargs): return _view_project(node, auth, primary=True) @must_be_valid_project @must_be_logged_in @must_be_contributor def node_setting(auth, node, **kwargs): ret = _view_project(node, auth, primary=True) addons_enabled = [] addon_enabled_settings = [] for addon in node.get_addons(): addons_enabled.append(addon.config.short_name) if 'node' in addon.config.configs: config = addon.to_json(auth.user) # inject the MakoTemplateLookup into the template context # TODO inject only short_name and render fully client side config['template_lookup'] = addon.config.template_lookup addon_enabled_settings.append(config) addon_enabled_settings = sorted(addon_enabled_settings, key=lambda addon: addon['addon_full_name'].lower()) ret['addon_categories'] = settings.ADDON_CATEGORIES ret['addons_available'] = sorted([ addon for addon in settings.ADDONS_AVAILABLE if 'node' in addon.owners and addon.short_name not in settings.SYSTEM_ADDED_ADDONS['node'] ], key=lambda addon: addon.full_name.lower()) ret['addons_enabled'] = addons_enabled ret['addon_enabled_settings'] = addon_enabled_settings ret['addon_capabilities'] = settings.ADDON_CAPABILITIES ret['addon_js'] = collect_node_config_js(node.get_addons()) ret['comments'] = { 'level': node.comment_level, } ret['categories'] = Node.CATEGORY_MAP ret['categories'].update({ 'project': 'Project' }) return ret def collect_node_config_js(addons): """Collect webpack bundles for each of the addons' node-cfg.js modules. Return the URLs for each of the JS modules to be included on the node addons config page. :param list addons: List of node's addon config records. """ js_modules = [] for addon in addons: js_path = paths.resolve_addon_path(addon.config, 'node-cfg.js') if js_path: js_modules.append(js_path) return js_modules @must_have_permission(WRITE) @must_not_be_registration def node_choose_addons(auth, node, **kwargs): node.config_addons(request.json, auth) @must_be_valid_project @must_have_permission(READ) def node_contributors(auth, node, **kwargs): ret = _view_project(node, auth, primary=True) ret['contributors'] = utils.serialize_contributors(node.contributors, node) ret['adminContributors'] = utils.serialize_contributors(node.admin_contributors, node, admin=True) return ret @must_have_permission(ADMIN) def configure_comments(node, **kwargs): comment_level = request.json.get('commentLevel') if not comment_level: node.comment_level = None elif comment_level in ['public', 'private']: node.comment_level = comment_level else: raise HTTPError(http.BAD_REQUEST) node.save() ############################################################################## # View Project ############################################################################## @must_be_valid_project(retractions_valid=True) @must_be_contributor_or_public def view_project(auth, node, **kwargs): primary = '/api/v1' not in request.path ret = _view_project(node, auth, primary=primary) ret['addon_capabilities'] = settings.ADDON_CAPABILITIES # Collect the URIs to the static assets for addons that have widgets ret['addon_widget_js'] = list(collect_addon_js( node, filename='widget-cfg.js', config_entry='widget' )) ret.update(rubeus.collect_addon_assets(node)) return ret # Expand/Collapse @must_be_valid_project @must_be_contributor_or_public def expand(auth, node, **kwargs): node.expand(user=auth.user) return {}, 200, None @must_be_valid_project @must_be_contributor_or_public def collapse(auth, node, **kwargs): node.collapse(user=auth.user) return {}, 200, None # Reorder components @must_be_valid_project @must_not_be_registration @must_have_permission(WRITE) def project_reorder_components(node, **kwargs): """Reorders the components in a project's component list. :param-json list new_list: List of strings that include node IDs and node type delimited by ':'. """ # TODO(sloria): Change new_list parameter to be an array of objects # { # 'newList': { # {'key': 'abc123', 'type': 'node'} # } # } new_list = [ tuple(n.split(':')) for n in request.json.get('new_list', []) ] nodes_new = [ StoredObject.get_collection(schema).load(key) for key, schema in new_list ] valid_nodes = [ n for n in node.nodes if not n.is_deleted ] deleted_nodes = [ n for n in node.nodes if n.is_deleted ] if len(valid_nodes) == len(nodes_new) and set(valid_nodes) == set(nodes_new): node.nodes = nodes_new + deleted_nodes node.save() return {} logger.error('Got invalid node list in reorder components') raise HTTPError(http.BAD_REQUEST) ############################################################################## @must_be_valid_project @must_be_contributor_or_public def project_statistics(auth, node, **kwargs): if not (node.can_edit(auth) or node.is_public): raise HTTPError(http.FORBIDDEN) return _view_project(node, auth, primary=True) ############################################################################### # Make Private/Public ############################################################################### @must_be_valid_project @must_have_permission(ADMIN) def project_before_set_public(node, **kwargs): prompt = node.callback('before_make_public') anonymous_link_warning = any(private_link.anonymous for private_link in node.private_links_active) if anonymous_link_warning: prompt.append('Anonymized view-only links <b>DO NOT</b> anonymize ' 'contributors after a project or component is made public.') return { 'prompts': prompt } @must_be_valid_project @must_have_permission(ADMIN) def project_set_privacy(auth, node, **kwargs): permissions = kwargs.get('permissions') if permissions is None: raise HTTPError(http.BAD_REQUEST) try: node.set_privacy(permissions, auth) except NodeStateError as e: raise HTTPError(http.BAD_REQUEST, data=dict( message_short="Can't change privacy", message_long=e.message )) return { 'status': 'success', 'permissions': permissions, } @must_be_valid_project @must_be_contributor_or_public @must_not_be_registration def watch_post(auth, node, **kwargs): user = auth.user watch_config = WatchConfig(node=node, digest=request.json.get('digest', False), immediate=request.json.get('immediate', False)) try: user.watch(watch_config) except ValueError: # Node is already being watched raise HTTPError(http.BAD_REQUEST) user.save() return { 'status': 'success', 'watchCount': len(node.watchconfig__watched) } @must_be_valid_project @must_be_contributor_or_public @must_not_be_registration def unwatch_post(auth, node, **kwargs): user = auth.user watch_config = WatchConfig(node=node, digest=request.json.get('digest', False), immediate=request.json.get('immediate', False)) try: user.unwatch(watch_config) except ValueError: # Node isn't being watched raise HTTPError(http.BAD_REQUEST) return { 'status': 'success', 'watchCount': len(node.watchconfig__watched) } @must_be_valid_project @must_be_contributor_or_public @must_not_be_registration def togglewatch_post(auth, node, **kwargs): '''View for toggling watch mode for a node.''' # TODO: refactor this, watch_post, unwatch_post (@mambocab) user = auth.user watch_config = WatchConfig( node=node, digest=request.json.get('digest', False), immediate=request.json.get('immediate', False) ) try: if user.is_watching(node): user.unwatch(watch_config) else: user.watch(watch_config) except ValueError: raise HTTPError(http.BAD_REQUEST) user.save() return { 'status': 'success', 'watchCount': len(node.watchconfig__watched), 'watched': user.is_watching(node) } @must_be_valid_project @must_not_be_registration @must_have_permission(WRITE) def update_node(auth, node, **kwargs): # in node.update() method there is a key list node.WRITABLE_WHITELIST only allow user to modify # category, title, and discription which can be edited by write permission contributor try: return { 'updated_fields': { key: getattr(node, key) for key in node.update(request.get_json(), auth=auth) } } except NodeUpdateError as e: raise HTTPError(400, data=dict( message_short="Failed to update attribute '{0}'".format(e.key), message_long=e.reason )) @must_be_valid_project @must_have_permission(ADMIN) @must_not_be_registration def component_remove(auth, node, **kwargs): """Remove component, and recursively remove its children. If node has a parent, add log and redirect to parent; else redirect to user dashboard. """ try: node.remove_node(auth) except NodeStateError as e: raise HTTPError( http.BAD_REQUEST, data={ 'message_short': 'Error', 'message_long': 'Could not delete component: ' + e.message }, ) node.save() message = '{} deleted'.format( node.project_or_component.capitalize() ) status.push_status_message(message) parent = node.parent_node if parent and parent.can_view(auth): redirect_url = node.node__parent[0].url else: redirect_url = '/dashboard/' return { 'url': redirect_url, } @must_have_permission(ADMIN) @must_not_be_registration def delete_folder(auth, node, **kwargs): """Remove folder node """ if node is None: raise HTTPError(http.BAD_REQUEST) if not node.is_folder or node.is_dashboard: raise HTTPError(http.BAD_REQUEST) try: node.remove_node(auth) except NodeStateError as e: raise HTTPError( http.BAD_REQUEST, data={ 'message_short': 'Error', 'message_long': 'Could not delete component: ' + e.message }, ) return {} @must_be_valid_project @must_have_permission(ADMIN) def remove_private_link(*args, **kwargs): link_id = request.json['private_link_id'] try: link = PrivateLink.load(link_id) link.is_deleted = True link.save() except ModularOdmException: raise HTTPError(http.NOT_FOUND) # TODO: Split into separate functions def _render_addon(node): widgets = {} configs = {} js = [] css = [] for addon in node.get_addons(): configs[addon.config.short_name] = addon.config.to_json() js.extend(addon.config.include_js.get('widget', [])) css.extend(addon.config.include_css.get('widget', [])) js.extend(addon.config.include_js.get('files', [])) css.extend(addon.config.include_css.get('files', [])) return widgets, configs, js, css def _should_show_wiki_widget(node, user): has_wiki = bool(node.get_addon('wiki')) wiki_page = node.get_wiki_page('home', None) if not node.has_permission(user, 'write'): return has_wiki and wiki_page and wiki_page.html(node) else: return has_wiki def _view_project(node, auth, primary=False): """Build a JSON object containing everything needed to render project.view.mako. """ user = auth.user parent = node.parent_node if user: dashboard = find_dashboard(user) dashboard_id = dashboard._id in_dashboard = dashboard.pointing_at(node._primary_key) is not None else: in_dashboard = False dashboard_id = '' view_only_link = auth.private_key or request.args.get('view_only', '').strip('/') anonymous = has_anonymous_link(node, auth) widgets, configs, js, css = _render_addon(node) redirect_url = node.url + '?view_only=None' # Before page load callback; skip if not primary call if primary: for addon in node.get_addons(): messages = addon.before_page_load(node, user) or [] for message in messages: status.push_status_message(message, dismissible=False) data = { 'node': { 'id': node._primary_key, 'title': node.title, 'category': node.category_display, 'category_short': node.category, 'node_type': node.project_or_component, 'description': node.description or '', 'url': node.url, 'api_url': node.api_url, 'absolute_url': node.absolute_url, 'redirect_url': redirect_url, 'display_absolute_url': node.display_absolute_url, 'update_url': node.api_url_for('update_node'), 'in_dashboard': in_dashboard, 'is_public': node.is_public, 'is_archiving': node.archiving, 'date_created': iso8601format(node.date_created), 'date_modified': iso8601format(node.logs[-1].date) if node.logs else '', 'tags': [tag._primary_key for tag in node.tags], 'children': bool(node.nodes), 'is_registration': node.is_registration, 'is_retracted': node.is_retracted, 'pending_retraction': node.pending_retraction, 'retracted_justification': getattr(node.retraction, 'justification', None), 'embargo_end_date': node.embargo_end_date.strftime("%A, %b. %d, %Y") if node.embargo_end_date else False, 'pending_embargo': node.pending_embargo, 'registered_from_url': node.registered_from.url if node.is_registration else '', 'registered_date': iso8601format(node.registered_date) if node.is_registration else '', 'root_id': node.root._id, 'registered_meta': [ { 'name_no_ext': from_mongo(meta), 'name_clean': clean_template_name(meta), } for meta in node.registered_meta or [] ], 'registration_count': len(node.node__registrations), 'is_fork': node.is_fork, 'forked_from_id': node.forked_from._primary_key if node.is_fork else '', 'forked_from_display_absolute_url': node.forked_from.display_absolute_url if node.is_fork else '', 'forked_date': iso8601format(node.forked_date) if node.is_fork else '', 'fork_count': len(node.forks), 'templated_count': len(node.templated_list), 'watched_count': len(node.watchconfig__watched), 'private_links': [x.to_json() for x in node.private_links_active], 'link': view_only_link, 'anonymous': anonymous, 'points': len(node.get_points(deleted=False, folders=False)), 'piwik_site_id': node.piwik_site_id, 'comment_level': node.comment_level, 'has_comments': bool(getattr(node, 'commented', [])), 'has_children': bool(getattr(node, 'commented', False)), 'identifiers': { 'doi': node.get_identifier_value('doi'), 'ark': node.get_identifier_value('ark'), }, }, 'parent_node': { 'exists': parent is not None, 'id': parent._primary_key if parent else '', 'title': parent.title if parent else '', 'category': parent.category_display if parent else '', 'url': parent.url if parent else '', 'api_url': parent.api_url if parent else '', 'absolute_url': parent.absolute_url if parent else '', 'registrations_url': parent.web_url_for('node_registrations') if parent else '', 'is_public': parent.is_public if parent else '', 'is_contributor': parent.is_contributor(user) if parent else '', 'can_view': parent.can_view(auth) if parent else False }, 'user': { 'is_contributor': node.is_contributor(user), 'is_admin_parent': parent.is_admin_parent(user) if parent else False, 'can_edit': (node.can_edit(auth) and not node.is_registration), 'has_read_permissions': node.has_permission(user, 'read'), 'permissions': node.get_permissions(user) if user else [], 'is_watching': user.is_watching(node) if user else False, 'piwik_token': user.piwik_token if user else '', 'id': user._id if user else None, 'username': user.username if user else None, 'fullname': user.fullname if user else '', 'can_comment': node.can_comment(auth), 'show_wiki_widget': _should_show_wiki_widget(node, user), 'dashboard_id': dashboard_id, }, 'badges': _get_badge(user), # TODO: Namespace with nested dicts 'addons_enabled': node.get_addon_names(), 'addons': configs, 'addon_widgets': widgets, 'addon_widget_js': js, 'addon_widget_css': css, 'node_categories': Node.CATEGORY_MAP, } return data def _get_badge(user): if user: badger = user.get_addon('badges') if badger: return { 'can_award': badger.can_award, 'badges': badger.get_badges_json() } return {} def _get_children(node, auth, indent=0): children = [] for child in node.nodes_primary: if not child.is_deleted and child.can_edit(auth): children.append({ 'id': child._primary_key, 'title': child.title, 'indent': indent, 'is_public': child.is_public, 'parent_id': child.parent_id, }) children.extend(_get_children(child, auth, indent + 1)) return children @must_be_valid_project @must_have_permission(ADMIN) def private_link_table(node, **kwargs): data = { 'node': { 'absolute_url': node.absolute_url, 'private_links': [x.to_json() for x in node.private_links_active], } } return data @collect_auth @must_be_valid_project def get_editable_children(auth, node, **kwargs): if not node.can_edit(auth): return children = _get_children(node, auth) return { 'node': {'id': node._id, 'title': node.title, 'is_public': node.is_public}, 'children': children, } def _get_user_activity(node, auth, rescale_ratio): # Counters total_count = len(node.logs) # Note: It's typically much faster to find logs of a given node # attached to a given user using node.logs.find(...) than by # loading the logs into Python and checking each one. However, # using deep caching might be even faster down the road. if auth.user: ua_count = node.logs.find(Q('user', 'eq', auth.user)).count() else: ua_count = 0 non_ua_count = total_count - ua_count # base length of blue bar # Normalize over all nodes try: ua = ua_count / rescale_ratio * 100 except ZeroDivisionError: ua = 0 try: non_ua = non_ua_count / rescale_ratio * 100 except ZeroDivisionError: non_ua = 0 return ua_count, ua, non_ua @must_be_valid_project def get_recent_logs(node, **kwargs): logs = list(reversed(node.logs._to_primary_keys()))[:3] return {'logs': logs} def _get_summary(node, auth, rescale_ratio, primary=True, link_id=None, show_path=False): # TODO(sloria): Refactor this or remove (lots of duplication with _view_project) summary = { 'id': link_id if link_id else node._id, 'primary': primary, 'is_registration': node.is_registration, 'is_fork': node.is_fork, 'is_retracted': node.is_retracted, 'pending_retraction': node.pending_retraction, 'embargo_end_date': node.embargo_end_date.strftime("%A, %b. %d, %Y") if node.embargo_end_date else False, 'pending_embargo': node.pending_embargo, 'archiving': node.archiving, } if node.can_view(auth): summary.update({ 'can_view': True, 'can_edit': node.can_edit(auth), 'primary_id': node._id, 'url': node.url, 'primary': primary, 'api_url': node.api_url, 'title': node.title, 'category': node.category, 'node_type': node.project_or_component, 'is_registration': node.is_registration, 'anonymous': has_anonymous_link(node, auth), 'registered_date': node.registered_date.strftime('%Y-%m-%d %H:%M UTC') if node.is_registration else None, 'nlogs': None, 'ua_count': None, 'ua': None, 'non_ua': None, 'addons_enabled': node.get_addon_names(), 'is_public': node.is_public, 'parent_title': node.parent_node.title if node.parent_node else None, 'parent_is_public': node.parent_node.is_public if node.parent_node else False, 'show_path': show_path }) if rescale_ratio: ua_count, ua, non_ua = _get_user_activity(node, auth, rescale_ratio) summary.update({ 'nlogs': len(node.logs), 'ua_count': ua_count, 'ua': ua, 'non_ua': non_ua, }) else: summary['can_view'] = False # TODO: Make output format consistent with _view_project return { 'summary': summary, } @collect_auth @must_be_valid_project(retractions_valid=True) def get_summary(auth, node, **kwargs): rescale_ratio = kwargs.get('rescale_ratio') if rescale_ratio is None and request.args.get('rescale_ratio'): try: rescale_ratio = float(request.args.get('rescale_ratio')) except (TypeError, ValueError): raise HTTPError(http.BAD_REQUEST) primary = kwargs.get('primary') link_id = kwargs.get('link_id') show_path = kwargs.get('show_path', False) return _get_summary( node, auth, rescale_ratio, primary=primary, link_id=link_id, show_path=show_path ) @must_be_contributor_or_public def get_children(auth, node, **kwargs): user = auth.user if request.args.get('permissions'): perm = request.args['permissions'].lower().strip() nodes = [ each for each in node.nodes if perm in each.get_permissions(user) and not each.is_deleted ] else: nodes = [ each for each in node.nodes if not each.is_deleted ] return _render_nodes(nodes, auth) @must_be_contributor_or_public def get_folder_pointers(auth, node, **kwargs): if not node.is_folder: return [] nodes = [ each.resolve()._id for each in node.nodes if each is not None and not each.is_deleted and not each.primary ] return nodes @must_be_contributor_or_public def get_forks(auth, node, **kwargs): return _render_nodes(nodes=node.forks, auth=auth) @must_be_contributor_or_public def get_registrations(auth, node, **kwargs): registrations = [n for n in node.node__registrations if not n.is_deleted] # get all registrations, including archiving return _render_nodes(registrations, auth) @must_be_valid_project @must_have_permission(ADMIN) def project_generate_private_link_post(auth, node, **kwargs): """ creata a new private link object and add it to the node and its selected children""" node_ids = request.json.get('node_ids', []) name = request.json.get('name', '') anonymous = request.json.get('anonymous', False) if node._id not in node_ids: node_ids.insert(0, node._id) nodes = [Node.load(node_id) for node_id in node_ids] has_public_node = any(node.is_public for node in nodes) new_link = new_private_link( name=name, user=auth.user, nodes=nodes, anonymous=anonymous ) if anonymous and has_public_node: status.push_status_message( 'Anonymized view-only links <b>DO NOT</b> ' 'anonymize contributors of public project or component.' ) return new_link @must_be_valid_project @must_have_permission(ADMIN) def project_private_link_edit(auth, **kwargs): new_name = request.json.get('value', '') private_link_id = request.json.get('pk', '') private_link = PrivateLink.load(private_link_id) if private_link: private_link.name = new_name private_link.save() def _serialize_node_search(node): """Serialize a node for use in pointer search. :param Node node: Node to serialize :return: Dictionary of node data """ title = node.title if node.is_registration: title += ' (registration)' first_author = node.visible_contributors[0] return { 'id': node._id, 'title': title, 'firstAuthor': first_author.family_name or first_author.given_name or first_author.full_name, 'etal': len(node.visible_contributors) > 1, } @must_be_logged_in def search_node(auth, **kwargs): """ """ # Get arguments node = Node.load(request.json.get('nodeId')) include_public = request.json.get('includePublic') size = float(request.json.get('size', '5').strip()) page = request.json.get('page', 0) query = request.json.get('query', '').strip() start = (page * size) if not query: return {'nodes': []} # Build ODM query title_query = Q('title', 'icontains', query) not_deleted_query = Q('is_deleted', 'eq', False) visibility_query = Q('contributors', 'eq', auth.user) no_folders_query = Q('is_folder', 'eq', False) if include_public: visibility_query = visibility_query | Q('is_public', 'eq', True) odm_query = title_query & not_deleted_query & visibility_query & no_folders_query # Exclude current node from query if provided if node: nin = [node._id] + node.node_ids odm_query = ( odm_query & Q('_id', 'nin', nin) ) nodes = Node.find(odm_query) count = nodes.count() pages = math.ceil(count / size) return { 'nodes': [ _serialize_node_search(each) for each in islice(nodes, start, start + size) if each.contributors ], 'total': count, 'pages': pages, 'page': page } def _add_pointers(node, pointers, auth): """ :param Node node: Node to which pointers will be added :param list pointers: Nodes to add as pointers """ added = False for pointer in pointers: node.add_pointer(pointer, auth, save=False) added = True if added: node.save() @collect_auth def move_pointers(auth): """Move pointer from one node to another node. """ from_node_id = request.json.get('fromNodeId') to_node_id = request.json.get('toNodeId') pointers_to_move = request.json.get('pointerIds') if from_node_id is None or to_node_id is None or pointers_to_move is None: raise HTTPError(http.BAD_REQUEST) from_node = Node.load(from_node_id) to_node = Node.load(to_node_id) if to_node is None or from_node is None: raise HTTPError(http.BAD_REQUEST) for pointer_to_move in pointers_to_move: pointer_id = from_node.pointing_at(pointer_to_move) pointer_node = Node.load(pointer_to_move) pointer = Pointer.load(pointer_id) if pointer is None: raise HTTPError(http.BAD_REQUEST) try: from_node.rm_pointer(pointer, auth=auth) except ValueError: raise HTTPError(http.BAD_REQUEST) from_node.save() try: _add_pointers(to_node, [pointer_node], auth) except ValueError: raise HTTPError(http.BAD_REQUEST) return {}, 200, None @collect_auth def add_pointer(auth): """Add a single pointer to a node using only JSON parameters """ to_node_id = request.json.get('toNodeID') pointer_to_move = request.json.get('pointerID') if not (to_node_id and pointer_to_move): raise HTTPError(http.BAD_REQUEST) pointer = Node.load(pointer_to_move) to_node = Node.load(to_node_id) try: _add_pointers(to_node, [pointer], auth) except ValueError: raise HTTPError(http.BAD_REQUEST) @must_have_permission(WRITE) @must_not_be_registration def add_pointers(auth, node, **kwargs): """Add pointers to a node. """ node_ids = request.json.get('nodeIds') if not node_ids: raise HTTPError(http.BAD_REQUEST) nodes = [ Node.load(node_id) for node_id in node_ids ] try: _add_pointers(node, nodes, auth) except ValueError: raise HTTPError(http.BAD_REQUEST) return {} @must_have_permission(WRITE) @must_not_be_registration def remove_pointer(auth, node, **kwargs): """Remove a pointer from a node, raising a 400 if the pointer is not in `node.nodes`. """ # TODO: since these a delete request, shouldn't use request body. put pointer # id in the URL instead pointer_id = request.json.get('pointerId') if pointer_id is None: raise HTTPError(http.BAD_REQUEST) pointer = Pointer.load(pointer_id) if pointer is None: raise HTTPError(http.BAD_REQUEST) try: node.rm_pointer(pointer, auth=auth) except ValueError: raise HTTPError(http.BAD_REQUEST) node.save() @must_be_valid_project # injects project @must_have_permission(WRITE) @must_not_be_registration def remove_pointer_from_folder(auth, node, pointer_id, **kwargs): """Remove a pointer from a node, raising a 400 if the pointer is not in `node.nodes`. """ if pointer_id is None: raise HTTPError(http.BAD_REQUEST) pointer_id = node.pointing_at(pointer_id) pointer = Pointer.load(pointer_id) if pointer is None: raise HTTPError(http.BAD_REQUEST) try: node.rm_pointer(pointer, auth=auth) except ValueError: raise HTTPError(http.BAD_REQUEST) node.save() @must_be_valid_project # injects project @must_have_permission(WRITE) @must_not_be_registration def remove_pointers_from_folder(auth, node, **kwargs): """Remove multiple pointers from a node, raising a 400 if the pointer is not in `node.nodes`. """ pointer_ids = request.json.get('pointerIds') if pointer_ids is None: raise HTTPError(http.BAD_REQUEST) for pointer_id in pointer_ids: pointer_id = node.pointing_at(pointer_id) pointer = Pointer.load(pointer_id) if pointer is None: raise HTTPError(http.BAD_REQUEST) try: node.rm_pointer(pointer, auth=auth) except ValueError: raise HTTPError(http.BAD_REQUEST) node.save() @must_have_permission(WRITE) @must_not_be_registration def fork_pointer(auth, node, **kwargs): """Fork a pointer. Raises BAD_REQUEST if pointer not provided, not found, or not present in `nodes`. """ pointer_id = request.json.get('pointerId') pointer = Pointer.load(pointer_id) if pointer is None: # TODO: Change this to 404? raise HTTPError(http.BAD_REQUEST) try: node.fork_pointer(pointer, auth=auth, save=True) except ValueError: raise HTTPError(http.BAD_REQUEST) def abbrev_authors(node): lead_author = node.visible_contributors[0] ret = lead_author.family_name or lead_author.given_name or lead_author.fullname if len(node.visible_contributor_ids) > 1: ret += ' et al.' return ret def serialize_pointer(pointer, auth): node = get_pointer_parent(pointer) if node.can_view(auth): return { 'id': node._id, 'url': node.url, 'title': node.title, 'authorShort': abbrev_authors(node), } return { 'url': None, 'title': 'Private Component', 'authorShort': 'Private Author(s)', } @must_be_contributor_or_public def get_pointed(auth, node, **kwargs): """View that returns the pointers for a project.""" # exclude folders return {'pointed': [ serialize_pointer(each, auth) for each in node.pointed if not get_pointer_parent(each).is_folder ]}
""" NetLogger interactions with the Python logging module. """ __rcsid__ = "$Id: logutil.py 772 2008-05-23 22:59:22Z dang $" import logging import logging.handlers import optparse import os import sys import time import traceback import types from Pegasus.netlogger import nlapi from Pegasus.netlogger.nlapi import Level from Pegasus.netlogger.version import * # extra logging levels TRACE = logging.DEBUG - 1 # Top-level qualified name for netlogger PROJECT_NAMESPACE = "netlogger" # Global holder of the "correct" NetLogger class # to use when instantiating new loggers _logger_class = None def setLoggerClass(clazz): """Set the class used by NetLogger logging""" global _logger_class _logger_class = clazz # consistent with new naming style set_logger_class = setLoggerClass def get_logger(filename): """ Return a NetLogger logger with qualified name based on the provied filename. This method is indended to be called by scripts and modules by passing in their own __file__ as filename after already having initialized the logging module via the NL OptionParser or some equivalent action. If the logger name starts with a '.', it will be taken as-is, with the leading '.' stripped. Otherwise, the logger will be rooted at PROJECT_NAMESPACE. Parameters: filename - The full filename of the NL script or module requesting a logger, i.e. __file__ """ if filename == "": qname = "" elif filename[0] == ".": qname = filename else: qname = ".".join(_modlist(filename)) return _logger(qname) def get_root_logger(): """Return root for all NetLogger loggers.""" return _logger("") # logging.getLogger(PROJECT_NAMESPACE) def _logger(qualname): """ Return a logger based on the provided qualified name Prepend PROJECT_NAMESPACE if not already there, unless qualified name starts with a '.'. """ # Mess with qualified name if not qualname: qualname = PROJECT_NAMESPACE elif qualname[0] == ".": qualname = qualname[1:] elif not qualname.startswith(PROJECT_NAMESPACE): qualname = PROJECT_NAMESPACE + "." + qualname # Swap in "my" logger class, create logger, swap back out orig_class = logging.getLoggerClass() logging.setLoggerClass(_logger_class) logger = logging.getLogger(qualname) logging.setLoggerClass(orig_class) # Return "my" new logger instance return logger def _modlist(path): """ Return a list of module names based on the path provided. The expected path list will be rooted at either "netlogger" or "scripts" so won't contain either as one of the module names. Any tailing python extension is also trimmed. """ if path == "/": return [] head, tail = os.path.split(path) # ignore python extensions if tail.endswith(".py") or tail.endswith(".pyc"): tail = os.path.splitext(tail)[0] # stop if at top of source tree if tail in ("netlogger", "scripts"): return [] # stop if at root of path if head == "" or head == ".": return [tail] # otherwise continue return _modlist(head) + [tail] class DoesLogging: """Mix-in class that creates the attribute 'log', setting its qualified name to the name of the module and class. """ def __init__(self, name=None): if name is None: if self.__module__ != "__main__": name = "{}.{}".format(self.__module__, self.__class__.__name__) else: name = self.__class__.__name__ self.log = _logger(name) # cache whether log is debug or higher in a flag to # lower overhead of debugging statements self._dbg = self.log.isEnabledFor(logging.DEBUG) self._trace = self.log.isEnabledFor(TRACE) class BPLogger(logging.Logger): """Logger class that writes Best-Practices formatted logs. Usage: The arguments are not exactly the same as for the Logger in the logging module. Instead they consist of an event name and keywords that are name=value pairs for the event contents. An exception to this is the exc() or exception() method, which takes an Exception instance as its second argument in addition to the event name. Example: log.info("my.event", value=88.7, units="seconds") # output # ts=2009-07-24T20:18:04.775650Z event=netlogger.my.event level=INFO units=seconds value=88.700000 """ def __init__(self, qualname): self._qualname = qualname self._format = nlapi.Log(newline=False, level=nlapi.Level.ALL) logging.Logger.__init__(self, qualname) def set_meta(self, **kw): """Set metadata to be logged with every event, e.g. an identifier or host name. """ self._format.setMeta(None, **kw) def log(self, level, nl_level, event, exc_info=None, **kwargs): ts = time.time() if self._qualname: event = self._qualname + "." + event # replace '__' with '.' kwargs = {key.replace("__", "."): value for key, value in kwargs.iteritems()} # format as BP msg = self._format(event, ts, nl_level, **kwargs) logging.Logger.log(self, level, msg, exc_info=exc_info) def trace(self, event, **kwargs): if self.isEnabledFor(TRACE): self.log(TRACE, Level.TRACE, event, **kwargs) def debug(self, event, **kwargs): if self.isEnabledFor(logging.DEBUG): self.log(logging.DEBUG, Level.DEBUG, event, **kwargs) def info(self, event, **kwargs): self.log(logging.INFO, Level.INFO, event, **kwargs) def warning(self, event, **kwargs): self.log(logging.WARN, Level.WARN, event, **kwargs) warn = warning def error(self, event, **kwargs): self.log(logging.ERROR, Level.ERROR, event, **kwargs) def critical(self, event, **kwargs): self.log(logging.CRITICAL, Level.FATAL, event, **kwargs) def exception(self, event, err, **kwargs): estr = traceback.format_exc() estr = " | ".join(e.strip() for e in estr.split("\n")) self.log( logging.ERROR, Level.ERROR, event, msg=str(err), status=-1, traceback=estr, **kwargs, ) exc = exception class BPSysLogger(BPLogger): """This is a hack that prepends a header to the output of BPLogger in order to work-around some bug with the Python SysLogHandler and Ubuntu rsylog that otherwise splits out the first section of the timestamp as part of the header. """ header = "netlogger" # header prefix def __init__(self, qualname): BPLogger.__init__(self, qualname) self._orig_format = self._format self._format = self.syslog_format self._hdr = self.header + ": " def set_meta(self, **kw): """See set_meta() in superclass. Repeated here because superclass method accesses a protected attribute that was modified in the constructor. """ self._orig_format.setMeta(None, **kw) def flush(self): self._orig_format.flush() def syslog_format(self, *arg, **kw): return self._hdr + self._orig_format(*arg, **kw) ############################################### ## Set BPLogger as default logging class ############################################### setLoggerClass(BPLogger) class PrettyBPLogger(BPLogger): """Logger class that writes 'pretty' Best-Practices formatted logs. This is a variation on BP format. Stack traces logged with the method exc() or exception() will be in their original form. Usage: See Usage notes for BPLogger. Example: log.info("my.event", value=88.7, units="seconds") # output # 2009-07-24T20:18:04.716913Z INFO netlogger.my.event - units=seconds,value=88.7 """ def __init__(self, qualname): BPLogger.__init__(self, qualname) self._format = nlapi.Log(newline=False, level=nlapi.Level.ALL, pretty=True) def exception(self, event, err, **kwargs): tbstr = traceback.format_exc() self.log(logging.ERROR, Level.ERROR, event, traceback=tbstr, **kwargs) exc = exception class RawBPLogger(logging.Logger): """Logger class that does not modify the message, just leaves it as a 'raw' dictionary. This is useful for network communication that is just going to pickle the event anyways. """ def log(self, level, nl_level, event, exc_info=None, **kwargs): ts = time.time() if self._qualname: event = self._qualname + "." + event # replace '__' with '.' kwargs = {key.replace("__", "."): value for key, value in kwargs.iteritems()} # build msg dictionary msg = {"event": event, "ts": ts, "level": nl_level} msg.update(kwargs) # 'write' out logging.Logger.log(self, level, msg, exc_info=exc_info) class FakeBPLogger(logging.Logger): def __init__(self, qualname): logging.Logger.__init__(self, qualname) def set_meta(self, **kw): pass def log(self, level, nl_level, event, **kwargs): pass def trace(self, event, **kwargs): pass def debug(self, event, **kwargs): pass def info(self, event, **kwargs): pass def warning(self, event, **kwargs): pass warn = warning def error(self, event, **kwargs): pass def critical(self, event, **kwargs): pass def exception(self, event, err, **kwargs): pass exc = exception def profile(func): """decorator for start,end event function profiling with netlogger.""" if os.getenv("NETLOGGER_ON", False) in ("off", "0", "no", "false", "", False): return func if not isinstance(func, types.FunctionType): return func if func.__module__ == "__main__": f = func.__globals__["__file__"] or "unknown" event = "%s" % os.path.splitext(os.path.basename(f))[0] log = _logger("script") log.set_meta(file=f, pid=os.getpid(), ppid=os.getppid(), gpid=os.getgid()) else: event = "%s" % func.__name__ log = _logger("%s" % func.__module__) log.set_meta(pid=os.getpid(), ppid=os.getppid(), gpid=os.getgid()) def nl_profile_func(*args, **kw): log.debug("%s.start" % event) try: v = func(*args, **kw) except Exception: log.error("%s.end" % event) raise log.debug("%s.end" % event) return v return nl_profile_func def profile_result(func): """decorator for start,end event function profiling with netlogger. return value is logged as result. """ if os.getenv("NETLOGGER_ON", False) in ("off", "0", "no", "false", "", False): return func if not isinstance(func, types.FunctionType): return func if func.__module__ == "__main__": f = func.__globals__["__file__"] or "unknown" event = "%s" % os.path.splitext(os.path.basename(f))[0] log = _logger("script") log.set_meta(file=f, pid=os.getpid(), ppid=os.getppid(), gpid=os.getgid()) else: event = "%s" % func.__name__ log = _logger("%s" % func.__module__) log.set_meta(pid=os.getpid(), ppid=os.getppid(), gpid=os.getgid()) def nl_profile_func(*args, **kw): log.debug("%s.start" % event) try: v = func(*args, **kw) except Exception: log.error("%s.end" % event) raise log.debug("%s.end" % event, result=v) return v return nl_profile_func class Profiler(type): """metaclass that will wrap all user defined methods with start and end event logs. Currently wrapping only instancemethod type. Variables: profiler_skip_methods: list of methods profiler will skip profile_skip_all: profiler will not wrap any methods _log: Logging object to use with class Usage: class MyClass: __metaclass__ = Profiler profiler_skip_methods = ['__init__', 'getsecret'] profiler_skip_all = False """ profiler_skip_methods = ["__init__"] profiler_skip_all = False @staticmethod def __profile_method(func): """decorator for start,end event method profiling with netlogger skips any classmethod or staticmethod types. """ if not isinstance(func, types.FunctionType): return func event = "%s" % func.__name__ def nl_profile_method(self, *args, **kw): self._log.debug("%s.start" % event) try: v = func(self, *args, **kw) except Exception: self._log.error("%s.end" % event) raise self._log.debug("%s.end" % event) return v return nl_profile_method def __new__(cls, classname, bases, classdict): if os.getenv("NETLOGGER_ON", False) in ("off", "0", "no", "false", "", False): setLoggerClass(FakeBPLogger) classdict["_log"] = _logger( "{}.{}".format(classdict["__module__"], classname) ) return type.__new__(cls, classname, bases, classdict) classdict["_log"] = log = _logger( "{}.{}".format(classdict["__module__"], classname) ) log.set_meta(pid=os.getpid(), ppid=os.getppid(), gpid=os.getgid()) keys = [] if not classdict.get("profiler_skip_all", cls.profiler_skip_all): keys = [ k for k in classdict.keys() if isinstance(classdict[k], types.FunctionType) and k not in classdict.get("profiler_skip_methods", cls.profiler_skip_methods) ] for k in keys: classdict[k] = cls.__profile_method(classdict[k]) return type.__new__(cls, classname, bases, classdict) class MethodProfiler(Profiler): """metaclass that will wrap all user defined methods with start and end event logs. Currently wrapping only instancemethod type. """ profiler_skip_all = False class BasicProfiler(Profiler): """metaclass does not wrap methods with 'start' and 'end' tags, to do that use 'Profiler'. Useful for classes where one only wants to do 'precision' logging. """ profiler_skip_all = True class OptionParser(optparse.OptionParser): """Set logging 'tude for scripts. Usage: parser = NLOptionParser(..., can_be_daemon=True/False) # add rest of options to 'parser'... # This next line sets up logging as a side-effect parser.parse_args() # rest of program .. ******************************************************* | Pseudo-code description of logic to determine which | | types of logs to produce, and where to send them | ******************************************************* Variables: D - daemon mode [True | False] L - log file [Missing | Empty | filename] Logic: if (D) then case (L = Missing) error! case (L = Empty) error! case (L = filename) stderr -> filename BP logs -> filename else case (L = Missing) stderr -> stderr Pretty logs -> stderr case (L = Empty) stderr -> stderr BP logs -> stderr case (L = filename) stderr -> stderr BP logs -> filename ******************************************************* | Pseudo-code description of logic for verbosity | ******************************************************* Variables: V - verbosity [0 .. N] Q - quiet [True | False] Logic: if (Q) then case (V > 0) error! else set verbosity -> OFF else case V = 0 set verbosity -> WARN case V = 1 set verbosity -> INFO case V = 2 set verbosity -> DEBUG case V >= 3 set verbosity -> TRACE """ # Attribute (option parser 'dest') names DEST_LOG = "log_file" DEST_VERBOSE = "verbose" DEST_QUIET = "quiet" DEST_DAEMON = "daemon" DEST_ROT = "log_rotate" # Option names, by attribute OPTIONS = { DEST_LOG: ("-L", "--log"), DEST_VERBOSE: ("-v", "--verbose"), DEST_QUIET: ("-q", "--quiet"), DEST_DAEMON: (None, "--daemon"), DEST_ROT: ("-R", "--logrotate"), } # Verbosity (number of -v's) to logging level VBMAP = (logging.WARN, logging.INFO, logging.DEBUG, TRACE) def __init__(self, can_be_daemon=False, **kwargs): """Add logging-related command-line options to an option parser. Parameters: can_be_daemon - if True, add an option for daemonizing kwargs - additional keywords for OptionParser. The 'version' argument will override the default version """ if "version" not in kwargs: version_str = "%prog, NetLogger Toolkit version: {}\n {}".format( NL_VERSION, NL_CREATE_DATE, ) version_str += "\n\n" + NL_COPYRIGHT kwargs["version"] = version_str optparse.OptionParser.__init__(self, **kwargs) self._dmn = can_be_daemon def _add_options(self): group = optparse.OptionGroup(self, "Logging options") if self._dmn: self.add_option( self.OPTIONS[self.DEST_DAEMON][1], action="store_true", dest=self.DEST_DAEMON, default=False, help="run in daemon mode", ) logfile_default = "required" else: logfile_default = "default=stderr" group.add_option( self.OPTIONS[self.DEST_LOG][0], self.OPTIONS[self.DEST_LOG][1], default=None, action="store", dest=self.DEST_LOG, metavar="FILE", help="write logs to FILE (%s)" % logfile_default, ) group.add_option( self.OPTIONS[self.DEST_ROT][0], self.OPTIONS[self.DEST_ROT][1], default=None, action="store", dest=self.DEST_ROT, metavar="TIME", help="rotate logs at an interval (<N>d or <N>h or <N>m)", ) group.add_option( self.OPTIONS[self.DEST_VERBOSE][0], self.OPTIONS[self.DEST_VERBOSE][1], action="count", default=0, dest=self.DEST_VERBOSE, help="more verbose logging", ) group.add_option( self.OPTIONS[self.DEST_QUIET][0], self.OPTIONS[self.DEST_QUIET][1], action="store_true", default=False, dest=self.DEST_QUIET, help="quiet mode, no logging", ) self.add_option_group(group) def check_required(self, opt): """Simplify checks for required values. The default value for a required option must be None. The easiest way to achieve this is not to provide a default. Call error() if the required option is not present. """ option = self.get_option(opt) # Assumes the option's 'default' is set to None! if getattr(self.values, option.dest) is None: self.error("%s option not supplied" % option) def parse_args(self, args=None): """Process command-line options. Parameters: args - same as OptionParser.parse_args Return: True if all went well, False if not Post-conditions: If the return was True, logging levels and handlers are properly set for qualified name 'netlogger'. Otherwise, an error will be reported via the 'error' method of the parser passed to the constructor. """ if args is None: args = sys.argv[1:] self._add_options() options, pargs = optparse.OptionParser.parse_args(self, args) # Where and in what format to write logs if self._dmn: is_daemon = getattr(options, self.DEST_DAEMON) else: is_daemon = False logfile = getattr(options, self.DEST_LOG, None) logrot = getattr(options, self.DEST_ROT, None) if ((not logfile) or logfile == "-") and logrot: self.error("Log rotation requires a logfile") if logrot: if len(logrot) < 1: self.error("Bad log rotation interval, too short") tm_unit = logrot[-1].lower() if tm_unit not in ("h", "m", "d"): self.error("Bad log rotation unit '%s' " "not in m,h,d" % tm_unit) try: tm_interval = int(logrot[:-1]) except ValueError: self.error("Log rotation value '%s' must be an integer" % logrot[:-1]) do_logrot = True _tfrh = logging.handlers.TimedRotatingFileHandler else: do_logrot = False log = logging.getLogger(PROJECT_NAMESPACE) # Set handler and logger class handler = None if is_daemon: if logfile is None or logfile == "" or logfile == "-": # missing/empty self.error("log file is required in daemon mode") return # defensive else: # stderr and BP logs -> logfile setLoggerClass(BPLogger) logfile = logfile.strip() try: if do_logrot: handler = _tfrh(logfile, when=tm_unit, interval=tm_interval) else: handler = logging.FileHandler(logfile) except OSError as err: self.error("Cannot open log file '{}': {}".format(logfile, err)) sys.stderr = handler.stream handler.setFormatter(logging.Formatter("%(message)s")) else: if logfile is None or logfile == "": # missing # Pretty-BP logs -> stderr setLoggerClass(PrettyBPLogger) handler = logging.StreamHandler() elif logfile.strip() == "-": # empty # BP logs -> stderr setLoggerClass(BPLogger) handler = logging.StreamHandler() else: # BP logs -> logfile logfile = logfile.strip() setLoggerClass(BPLogger) try: if do_logrot: handler = _tfrh(logfile, when=tm_unit, interval=tm_interval) else: handler = logging.FileHandler(logfile) except OSError as err: self.error("Cannot open log file '{}': {}".format(logfile, err)) handler.setFormatter(logging.Formatter("%(message)s")) if handler: log.addHandler(handler) # Verbosity level quiet = getattr(options, self.DEST_QUIET, False) # delattr(options, self.DEST_QUIET) vb = getattr(options, self.DEST_VERBOSE, 0) # delattr(options, self.DEST_VERBOSE) if quiet and (vb > 0): self.error("quiet and verbosity options conflict") return # defensive if quiet: log.setLevel(logging.CRITICAL + 1) else: log.setLevel(self.VBMAP[min(vb, len(self.VBMAP) - 1)]) # Return remaining options and args to caller return options, pargs
import itertools import math import numpy as np from scipy import ndimage as ndi from scipy.ndimage import filters as ndif from collections import OrderedDict from ..exposure import histogram from .._shared.utils import assert_nD, warn from ..transform import integral_image from .. import util from skimage import dtype_limits, img_as_ubyte __all__ = ['try_all_threshold', 'threshold_adaptive', 'threshold_otsu', 'threshold_yen', 'threshold_isodata', 'threshold_li', 'threshold_minimum', 'threshold_mean', 'threshold_niblack', 'threshold_sauvola', 'threshold_triangle'] def _try_all(image, methods=None, figsize=None, num_cols=2, verbose=True): """Returns a figure comparing the outputs of different methods. Parameters ---------- image : (N, M) ndarray Input image. methods : dict, optional Names and associated functions. Functions must take and return an image. figsize : tuple, optional Figure size (in inches). num_cols : int, optional Number of columns. verbose : bool, optional Print function name for each method. Returns ------- fig, ax : tuple Matplotlib figure and axes. """ from matplotlib import pyplot as plt num_rows = math.ceil((len(methods) + 1.) / num_cols) num_rows = int(num_rows) # Python 2.7 support fig, ax = plt.subplots(num_rows, num_cols, figsize=figsize, sharex=True, sharey=True, subplot_kw={'adjustable': 'box-forced'}) ax = ax.ravel() ax[0].imshow(image, cmap=plt.cm.gray) ax[0].set_title('Original') i = 1 for name, func in methods.items(): ax[i].imshow(func(image), cmap=plt.cm.gray) ax[i].set_title(name) i += 1 if verbose: print(func.__orifunc__) for a in ax: a.axis('off') fig.tight_layout() return fig, ax def try_all_threshold(image, figsize=(8, 5), verbose=True): """Returns a figure comparing the outputs of different thresholding methods. Parameters ---------- image : (N, M) ndarray Input image. figsize : tuple, optional Figure size (in inches). verbose : bool, optional Print function name for each method. Returns ------- fig, ax : tuple Matplotlib figure and axes. Notes ----- The following algorithms are used: * isodata * li * mean * minimum * otsu * triangle * yen Examples -------- >>> from skimage.data import text >>> fig, ax = try_all_threshold(text(), figsize=(10, 6), verbose=False) """ def thresh(func): """ A wrapper function to return a thresholded image. """ def wrapper(im): return im > func(im) try: wrapper.__orifunc__ = func.__orifunc__ except AttributeError: wrapper.__orifunc__ = func.__module__ + '.' + func.__name__ return wrapper # Global algorithms. methods = OrderedDict({'Isodata': thresh(threshold_isodata), 'Li': thresh(threshold_li), 'Mean': thresh(threshold_mean), 'Minimum': thresh(threshold_minimum), 'Otsu': thresh(threshold_otsu), 'Triangle': thresh(threshold_triangle), 'Yen': thresh(threshold_yen)}) return _try_all(image, figsize=figsize, methods=methods, verbose=verbose) def threshold_adaptive(image, block_size, method='gaussian', offset=0, mode='reflect', param=None): """Applies an adaptive threshold to an array. Also known as local or dynamic thresholding where the threshold value is the weighted mean for the local neighborhood of a pixel subtracted by a constant. Alternatively the threshold can be determined dynamically by a a given function using the 'generic' method. Parameters ---------- image : (N, M) ndarray Input image. block_size : int Odd size of pixel neighborhood which is used to calculate the threshold value (e.g. 3, 5, 7, ..., 21, ...). method : {'generic', 'gaussian', 'mean', 'median'}, optional Method used to determine adaptive threshold for local neighbourhood in weighted mean image. * 'generic': use custom function (see `param` parameter) * 'gaussian': apply gaussian filter (see `param` parameter for custom\ sigma value) * 'mean': apply arithmetic mean filter * 'median': apply median rank filter By default the 'gaussian' method is used. offset : float, optional Constant subtracted from weighted mean of neighborhood to calculate the local threshold value. Default offset is 0. mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. Default is 'reflect'. param : {int, function}, optional Either specify sigma for 'gaussian' method or function object for 'generic' method. This functions takes the flat array of local neighbourhood as a single argument and returns the calculated threshold for the centre pixel. Returns ------- threshold : (N, M) ndarray Thresholded binary image References ---------- .. [1] http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html?highlight=threshold#adaptivethreshold Examples -------- >>> from skimage.data import camera >>> image = camera()[:50, :50] >>> binary_image1 = threshold_adaptive(image, 15, 'mean') >>> func = lambda arr: arr.mean() >>> binary_image2 = threshold_adaptive(image, 15, 'generic', param=func) """ if block_size % 2 == 0: raise ValueError("The kwarg ``block_size`` must be odd! Given " "``block_size`` {0} is even.".format(block_size)) assert_nD(image, 2) thresh_image = np.zeros(image.shape, 'double') if method == 'generic': ndi.generic_filter(image, param, block_size, output=thresh_image, mode=mode) elif method == 'gaussian': if param is None: # automatically determine sigma which covers > 99% of distribution sigma = (block_size - 1) / 6.0 else: sigma = param ndi.gaussian_filter(image, sigma, output=thresh_image, mode=mode) elif method == 'mean': mask = 1. / block_size * np.ones((block_size,)) # separation of filters to speedup convolution ndi.convolve1d(image, mask, axis=0, output=thresh_image, mode=mode) ndi.convolve1d(thresh_image, mask, axis=1, output=thresh_image, mode=mode) elif method == 'median': ndi.median_filter(image, block_size, output=thresh_image, mode=mode) return image > (thresh_image - offset) def threshold_otsu(image, nbins=256): """Return threshold value based on Otsu's method. Parameters ---------- image : (N, M) ndarray Grayscale input image. nbins : int, optional Number of bins used to calculate histogram. This value is ignored for integer arrays. Returns ------- threshold : float Upper threshold value. All pixels with an intensity higher than this value are assumed to be foreground. Raises ------ ValueError If `image` only contains a single grayscale value. References ---------- .. [1] Wikipedia, http://en.wikipedia.org/wiki/Otsu's_Method Examples -------- >>> from skimage.data import camera >>> image = camera() >>> thresh = threshold_otsu(image) >>> binary = image <= thresh Notes ----- The input image must be grayscale. """ if len(image.shape) > 2 and image.shape[-1] in (3, 4): msg = "threshold_otsu is expected to work correctly only for " \ "grayscale images; image shape {0} looks like an RGB image" warn(msg.format(image.shape)) # Check if the image is multi-colored or not if image.min() == image.max(): raise ValueError("threshold_otsu is expected to work with images " "having more than one color. The input image seems " "to have just one color {0}.".format(image.min())) hist, bin_centers = histogram(image.ravel(), nbins) hist = hist.astype(float) # class probabilities for all possible thresholds weight1 = np.cumsum(hist) weight2 = np.cumsum(hist[::-1])[::-1] # class means for all possible thresholds mean1 = np.cumsum(hist * bin_centers) / weight1 mean2 = (np.cumsum((hist * bin_centers)[::-1]) / weight2[::-1])[::-1] # Clip ends to align class 1 and class 2 variables: # The last value of `weight1`/`mean1` should pair with zero values in # `weight2`/`mean2`, which do not exist. variance12 = weight1[:-1] * weight2[1:] * (mean1[:-1] - mean2[1:]) ** 2 idx = np.argmax(variance12) threshold = bin_centers[:-1][idx] return threshold def threshold_yen(image, nbins=256): """Return threshold value based on Yen's method. Parameters ---------- image : (N, M) ndarray Input image. nbins : int, optional Number of bins used to calculate histogram. This value is ignored for integer arrays. Returns ------- threshold : float Upper threshold value. All pixels with an intensity higher than this value are assumed to be foreground. References ---------- .. [1] Yen J.C., Chang F.J., and Chang S. (1995) "A New Criterion for Automatic Multilevel Thresholding" IEEE Trans. on Image Processing, 4(3): 370-378. DOI:10.1109/83.366472 .. [2] Sezgin M. and Sankur B. (2004) "Survey over Image Thresholding Techniques and Quantitative Performance Evaluation" Journal of Electronic Imaging, 13(1): 146-165, DOI:10.1117/1.1631315 http://www.busim.ee.boun.edu.tr/~sankur/SankurFolder/Threshold_survey.pdf .. [3] ImageJ AutoThresholder code, http://fiji.sc/wiki/index.php/Auto_Threshold Examples -------- >>> from skimage.data import camera >>> image = camera() >>> thresh = threshold_yen(image) >>> binary = image <= thresh """ hist, bin_centers = histogram(image.ravel(), nbins) # On blank images (e.g. filled with 0) with int dtype, `histogram()` # returns `bin_centers` containing only one value. Speed up with it. if bin_centers.size == 1: return bin_centers[0] # Calculate probability mass function pmf = hist.astype(np.float32) / hist.sum() P1 = np.cumsum(pmf) # Cumulative normalized histogram P1_sq = np.cumsum(pmf ** 2) # Get cumsum calculated from end of squared array: P2_sq = np.cumsum(pmf[::-1] ** 2)[::-1] # P2_sq indexes is shifted +1. I assume, with P1[:-1] it's help avoid '-inf' # in crit. ImageJ Yen implementation replaces those values by zero. crit = np.log(((P1_sq[:-1] * P2_sq[1:]) ** -1) * (P1[:-1] * (1.0 - P1[:-1])) ** 2) return bin_centers[crit.argmax()] def threshold_isodata(image, nbins=256, return_all=False): """Return threshold value(s) based on ISODATA method. Histogram-based threshold, known as Ridler-Calvard method or inter-means. Threshold values returned satisfy the following equality: `threshold = (image[image <= threshold].mean() +` `image[image > threshold].mean()) / 2.0` That is, returned thresholds are intensities that separate the image into two groups of pixels, where the threshold intensity is midway between the mean intensities of these groups. For integer images, the above equality holds to within one; for floating- point images, the equality holds to within the histogram bin-width. Parameters ---------- image : (N, M) ndarray Input image. nbins : int, optional Number of bins used to calculate histogram. This value is ignored for integer arrays. return_all: bool, optional If False (default), return only the lowest threshold that satisfies the above equality. If True, return all valid thresholds. Returns ------- threshold : float or int or array Threshold value(s). References ---------- .. [1] Ridler, TW & Calvard, S (1978), "Picture thresholding using an iterative selection method" IEEE Transactions on Systems, Man and Cybernetics 8: 630-632, DOI:10.1109/TSMC.1978.4310039 .. [2] Sezgin M. and Sankur B. (2004) "Survey over Image Thresholding Techniques and Quantitative Performance Evaluation" Journal of Electronic Imaging, 13(1): 146-165, http://www.busim.ee.boun.edu.tr/~sankur/SankurFolder/Threshold_survey.pdf DOI:10.1117/1.1631315 .. [3] ImageJ AutoThresholder code, http://fiji.sc/wiki/index.php/Auto_Threshold Examples -------- >>> from skimage.data import coins >>> image = coins() >>> thresh = threshold_isodata(image) >>> binary = image > thresh """ hist, bin_centers = histogram(image.ravel(), nbins) # image only contains one unique value if len(bin_centers) == 1: if return_all: return bin_centers else: return bin_centers[0] hist = hist.astype(np.float32) # csuml and csumh contain the count of pixels in that bin or lower, and # in all bins strictly higher than that bin, respectively csuml = np.cumsum(hist) csumh = np.cumsum(hist[::-1])[::-1] - hist # intensity_sum contains the total pixel intensity from each bin intensity_sum = hist * bin_centers # l and h contain average value of all pixels in that bin or lower, and # in all bins strictly higher than that bin, respectively. # Note that since exp.histogram does not include empty bins at the low or # high end of the range, csuml and csumh are strictly > 0, except in the # last bin of csumh, which is zero by construction. # So no worries about division by zero in the following lines, except # for the last bin, but we can ignore that because no valid threshold # can be in the top bin. So we just patch up csumh[-1] to not cause 0/0 # errors. csumh[-1] = 1 l = np.cumsum(intensity_sum) / csuml h = (np.cumsum(intensity_sum[::-1])[::-1] - intensity_sum) / csumh # isodata finds threshold values that meet the criterion t = (l + m)/2 # where l is the mean of all pixels <= t and h is the mean of all pixels # > t, as calculated above. So we are looking for places where # (l + m) / 2 equals the intensity value for which those l and m figures # were calculated -- which is, of course, the histogram bin centers. # We only require this equality to be within the precision of the bin # width, of course. all_mean = (l + h) / 2.0 bin_width = bin_centers[1] - bin_centers[0] # Look only at thresholds that are below the actual all_mean value, # for consistency with the threshold being included in the lower pixel # group. Otherwise can get thresholds that are not actually fixed-points # of the isodata algorithm. For float images, this matters less, since # there really can't be any guarantees anymore anyway. distances = all_mean - bin_centers thresholds = bin_centers[(distances >= 0) & (distances < bin_width)] if return_all: return thresholds else: return thresholds[0] def threshold_li(image): """Return threshold value based on adaptation of Li's Minimum Cross Entropy method. Parameters ---------- image : (N, M) ndarray Input image. Returns ------- threshold : float Upper threshold value. All pixels with an intensity higher than this value are assumed to be foreground. References ---------- .. [1] Li C.H. and Lee C.K. (1993) "Minimum Cross Entropy Thresholding" Pattern Recognition, 26(4): 617-625 DOI:10.1016/0031-3203(93)90115-D .. [2] Li C.H. and Tam P.K.S. (1998) "An Iterative Algorithm for Minimum Cross Entropy Thresholding" Pattern Recognition Letters, 18(8): 771-776 DOI:10.1016/S0167-8655(98)00057-9 .. [3] Sezgin M. and Sankur B. (2004) "Survey over Image Thresholding Techniques and Quantitative Performance Evaluation" Journal of Electronic Imaging, 13(1): 146-165 DOI:10.1117/1.1631315 .. [4] ImageJ AutoThresholder code, http://fiji.sc/wiki/index.php/Auto_Threshold Examples -------- >>> from skimage.data import camera >>> image = camera() >>> thresh = threshold_li(image) >>> binary = image > thresh """ # Make sure image has more than one value if np.all(image == image.flat[0]): raise ValueError("threshold_li is expected to work with images " "having more than one value. The input image seems " "to have just one value {0}.".format(image.flat[0])) # Copy to ensure input image is not modified image = image.copy() # Requires positive image (because of log(mean)) immin = np.min(image) image -= immin imrange = np.max(image) tolerance = 0.5 * imrange / 256 # Calculate the mean gray-level mean = np.mean(image) # Initial estimate new_thresh = mean old_thresh = new_thresh + 2 * tolerance # Stop the iterations when the difference between the # new and old threshold values is less than the tolerance while abs(new_thresh - old_thresh) > tolerance: old_thresh = new_thresh threshold = old_thresh + tolerance # range # Calculate the means of background and object pixels mean_back = image[image <= threshold].mean() mean_obj = image[image > threshold].mean() temp = (mean_back - mean_obj) / (np.log(mean_back) - np.log(mean_obj)) if temp < 0: new_thresh = temp - tolerance else: new_thresh = temp + tolerance return threshold + immin def threshold_minimum(image, nbins=256, bias='min', max_iter=10000): """Return threshold value based on minimum method. The histogram of the input `image` is computed and smoothed until there are only two maxima. Then the minimum in between is the threshold value. Parameters ---------- image : (M, N) ndarray Input image. nbins : int, optional Number of bins used to calculate histogram. This value is ignored for integer arrays. bias : {'min', 'mid', 'max'}, optional 'min', 'mid', 'max' return lowest, middle, or highest pixel value with minimum histogram value. max_iter: int, optional Maximum number of iterations to smooth the histogram. Returns ------- threshold : float Upper threshold value. All pixels with an intensity higher than this value are assumed to be foreground. Raises ------ RuntimeError If unable to find two local maxima in the histogram or if the smoothing takes more than 1e4 iterations. References ---------- .. [1] Prewitt, JMS & Mendelsohn, ML (1966), "The analysis of cell images", Annals of the New York Academy of Sciences 128: 1035-1053 DOI:10.1111/j.1749-6632.1965.tb11715.x Examples -------- >>> from skimage.data import camera >>> image = camera() >>> thresh = threshold_minimum(image) >>> binary = image > thresh """ def find_local_maxima(hist): # We can't use scipy.signal.argrelmax # as it fails on plateaus maximums = list() direction = 1 for i in range(hist.shape[0] - 1): if direction > 0: if hist[i + 1] < hist[i]: direction = -1 maximums.append(i) else: if hist[i + 1] > hist[i]: direction = 1 return maximums if bias not in ('min', 'mid', 'max'): raise ValueError("Unknown bias: {0}".format(bias)) hist, bin_centers = histogram(image.ravel(), nbins) smooth_hist = np.copy(hist) for counter in range(max_iter): smooth_hist = ndif.uniform_filter1d(smooth_hist, 3) maximums = find_local_maxima(smooth_hist) if len(maximums) < 3: break if len(maximums) != 2: raise RuntimeError('Unable to find two maxima in histogram') elif counter == max_iter - 1: raise RuntimeError('Maximum iteration reached for histogram' 'smoothing') # Find lowest point between the maxima, biased to the low end (min) minimum = smooth_hist[maximums[0]] threshold = maximums[0] for i in range(maximums[0], maximums[1]+1): if smooth_hist[i] < minimum: minimum = smooth_hist[i] threshold = i if bias == 'min': return bin_centers[threshold] else: upper_bound = threshold while smooth_hist[upper_bound] == smooth_hist[threshold]: upper_bound += 1 upper_bound -= 1 if bias == 'max': return bin_centers[upper_bound] elif bias == 'mid': return bin_centers[(threshold + upper_bound) // 2] def threshold_mean(image): """Return threshold value based on the mean of grayscale values. Parameters ---------- image : (N, M[, ..., P]) ndarray Grayscale input image. Returns ------- threshold : float Upper threshold value. All pixels with an intensity higher than this value are assumed to be foreground. References ---------- .. [1] C. A. Glasbey, "An analysis of histogram-based thresholding algorithms," CVGIP: Graphical Models and Image Processing, vol. 55, pp. 532-537, 1993. DOI:10.1006/cgip.1993.1040 Examples -------- >>> from skimage.data import camera >>> image = camera() >>> thresh = threshold_mean(image) >>> binary = image > thresh """ return np.mean(image) def threshold_triangle(image, nbins=256): """Return threshold value based on the triangle algorithm. Parameters ---------- image : (N, M[, ..., P]) ndarray Grayscale input image. nbins : int, optional Number of bins used to calculate histogram. This value is ignored for integer arrays. Returns ------- threshold : float Upper threshold value. All pixels with an intensity higher than this value are assumed to be foreground. References ---------- .. [1] Zack, G. W., Rogers, W. E. and Latt, S. A., 1977, Automatic Measurement of Sister Chromatid Exchange Frequency, Journal of Histochemistry and Cytochemistry 25 (7), pp. 741-753 DOI:10.1177/25.7.70454 .. [2] ImageJ AutoThresholder code, http://fiji.sc/wiki/index.php/Auto_Threshold Examples -------- >>> from skimage.data import camera >>> image = camera() >>> thresh = threshold_triangle(image) >>> binary = image > thresh """ # nbins is ignored for integer arrays # so, we recalculate the effective nbins. hist, bin_centers = histogram(image.ravel(), nbins) nbins = len(hist) # Find peak, lowest and highest gray levels. arg_peak_height = np.argmax(hist) peak_height = hist[arg_peak_height] arg_low_level, arg_high_level = np.where(hist>0)[0][[0, -1]] # Flip is True if left tail is shorter. flip = arg_peak_height - arg_low_level < arg_high_level - arg_peak_height if flip: hist = hist[::-1] arg_low_level = nbins - arg_high_level - 1 arg_peak_height = nbins - arg_peak_height - 1 # If flip == True, arg_high_level becomes incorrect # but we don't need it anymore. del(arg_high_level) # Set up the coordinate system. width = arg_peak_height - arg_low_level x1 = np.arange(width) y1 = hist[x1 + arg_low_level] # Normalize. norm = np.sqrt(peak_height**2 + width**2) peak_height /= norm width /= norm # Maximize the length. # The ImageJ implementation includes an additional constant when calculating # the length, but here we omit it as it does not affect the location of the # minimum. length = peak_height * x1 - width * y1 arg_level = np.argmax(length) + arg_low_level if flip: arg_level = nbins - arg_level - 1 return bin_centers[arg_level] def _mean_std(image, w): """Return local mean and standard deviation of each pixel using a neighborhood defined by a rectangular window with size w times w. The algorithm uses integral images to speedup computation. This is used by threshold_niblack and threshold_sauvola. Parameters ---------- image : ndarray Input image. w : int Odd window size (e.g. 3, 5, 7, ..., 21, ...). Returns ------- m : 2-D array of same size of image with local mean values. s : 2-D array of same size of image with local standard deviation values. References ---------- .. [1] F. Shafait, D. Keysers, and T. M. Breuel, "Efficient implementation of local adaptive thresholding techniques using integral images." in Document Recognition and Retrieval XV, (San Jose, USA), Jan. 2008. DOI:10.1117/12.767755 """ if w == 1 or w % 2 == 0: raise ValueError( "Window size w = %s must be odd and greater than 1." % w) padded = np.pad(image.astype('float'), (2, 1), mode='reflect') padded_sq = padded * padded integral = integral_image(padded) integral_sq = integral_image(padded_sq) kern = np.zeros((w + 1,) * image.ndim) for indices in itertools.product(*([[0, -1]] * image.ndim)): kern[indices] = (-1) ** (image.ndim % 2 != np.sum(indices) % 2) sum_full = ndi.correlate(integral, kern, mode='constant') m = util.crop(sum_full, (2, 1)) / (w * w) sum_sq_full = ndi.correlate(integral_sq, kern, mode='constant') g2 = util.crop(sum_sq_full, (2, 1)) / (w * w) s = np.sqrt(g2 - m * m) return m, s def threshold_niblack(image, window_size=15, k=0.2): """Applies Niblack local threshold to an array. A threshold T is calculated for every pixel in the image using the following formula: T = m(x,y) - k * s(x,y) where m(x,y) and s(x,y) are the mean and standard deviation of pixel (x,y) neighborhood defined by a rectangular window with size w times w centered around the pixel. k is a configurable parameter that weights the effect of standard deviation. Parameters ---------- image: (N, M) ndarray Grayscale input image. window_size : int, optional Odd size of pixel neighborhood window (e.g. 3, 5, 7...). k : float, optional Value of parameter k in threshold formula. Returns ------- threshold : (N, M) ndarray Threshold mask. All pixels with an intensity higher than this value are assumed to be foreground. Notes ----- This algorithm is originally designed for text recognition. References ---------- .. [1] Niblack, W (1986), An introduction to Digital Image Processing, Prentice-Hall. Examples -------- >>> from skimage import data >>> image = data.page() >>> binary_image = threshold_niblack(image, window_size=7, k=0.1) """ m, s = _mean_std(image, window_size) return m - k * s def threshold_sauvola(image, window_size=15, k=0.2, r=None): """Applies Sauvola local threshold to an array. Sauvola is a modification of Niblack technique. In the original method a threshold T is calculated for every pixel in the image using the following formula: T = m(x,y) * (1 + k * ((s(x,y) / R) - 1)) where m(x,y) and s(x,y) are the mean and standard deviation of pixel (x,y) neighborhood defined by a rectangular window with size w times w centered around the pixel. k is a configurable parameter that weights the effect of standard deviation. R is the maximum standard deviation of a greyscale image. Parameters ---------- image: (N, M) ndarray Grayscale input image. window_size : int, optional Odd size of pixel neighborhood window (e.g. 3, 5, 7...). k : float, optional Value of the positive parameter k. r : float, optional Value of R, the dynamic range of standard deviation. If None, set to the half of the image dtype range. offset : float, optional Constant subtracted from obtained local thresholds. Returns ------- threshold : (N, M) ndarray Threshold mask. All pixels with an intensity higher than this value are assumed to be foreground. Notes ----- This algorithm is originally designed for text recognition. References ---------- .. [1] J. Sauvola and M. Pietikainen, "Adaptive document image binarization," Pattern Recognition 33(2), pp. 225-236, 2000. DOI:10.1016/S0031-3203(99)00055-2 Examples -------- >>> from skimage import data >>> image = data.page() >>> binary_sauvola = threshold_sauvola(image, ... window_size=15, k=0.2) """ if r is None: imin, imax = dtype_limits(image, clip_negative=False) r = 0.5 * (imax - imin) m, s = _mean_std(image, window_size) return m * (1 + k * ((s / r) - 1))
#!/usr/bin/env/python # Copyright 2020 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Functions for interacting with llvm-profdata This script is taken from the chromium build tools and is synced manually on an as-needed basis: https://source.chromium.org/chromium/chromium/src/+/master:testing/merge_scripts/code_coverage/merge_lib.py """ import logging import multiprocessing import os import re import shutil import subprocess _DIR_SOURCE_ROOT = os.path.normpath( os.path.join(os.path.dirname(__file__), '..', '..', '..')) _JAVA_PATH = os.path.join(_DIR_SOURCE_ROOT, 'third_party', 'jdk', 'current', 'bin', 'java') logging.basicConfig( format='[%(asctime)s %(levelname)s] %(message)s', level=logging.DEBUG) def _call_profdata_tool(profile_input_file_paths, profile_output_file_path, profdata_tool_path, retries=3): """Calls the llvm-profdata tool. Args: profile_input_file_paths: A list of relative paths to the files that are to be merged. profile_output_file_path: The path to the merged file to write. profdata_tool_path: The path to the llvm-profdata executable. Returns: A list of paths to profiles that had to be excluded to get the merge to succeed, suspected of being corrupted or malformed. Raises: CalledProcessError: An error occurred merging profiles. """ try: subprocess_cmd = [ profdata_tool_path, 'merge', '-o', profile_output_file_path, '-sparse=true' ] subprocess_cmd.extend(profile_input_file_paths) # Redirecting stderr is required because when error happens, llvm-profdata # writes the error output to stderr and our error handling logic relies on # that output. output = subprocess.check_output(subprocess_cmd, stderr=subprocess.STDOUT) logging.info('Merge succeeded with output: %r', output) except subprocess.CalledProcessError as error: if len(profile_input_file_paths) > 1 and retries >= 0: logging.warning('Merge failed with error output: %r', error.output) # The output of the llvm-profdata command will include the path of # malformed files, such as # `error: /.../default.profraw: Malformed instrumentation profile data` invalid_profiles = [ f for f in profile_input_file_paths if f in error.output ] if not invalid_profiles: logging.info( 'Merge failed, but wasn\'t able to figure out the culprit invalid ' 'profiles from the output, so skip retry and bail out.') raise error valid_profiles = list( set(profile_input_file_paths) - set(invalid_profiles)) if valid_profiles: logging.warning( 'Following invalid profiles are removed as they were mentioned in ' 'the merge error output: %r', invalid_profiles) logging.info('Retry merging with the remaining profiles: %r', valid_profiles) return invalid_profiles + _call_profdata_tool( valid_profiles, profile_output_file_path, profdata_tool_path, retries - 1) logging.error('Failed to merge profiles, return code (%d), output: %r' % (error.returncode, error.output)) raise error logging.info('Profile data is created as: "%r".', profile_output_file_path) return [] def _get_profile_paths(input_dir, input_extension, input_filename_pattern='.*'): """Finds all the profiles in the given directory (recursively).""" paths = [] for dir_path, _sub_dirs, file_names in os.walk(input_dir): paths.extend([ os.path.join(dir_path, fn) for fn in file_names if fn.endswith(input_extension) and re.search(input_filename_pattern,fn) ]) return paths def _validate_and_convert_profraws(profraw_files, profdata_tool_path): """Validates and converts profraws to profdatas. For each given .profraw file in the input, this method first validates it by trying to convert it to an indexed .profdata file, and if the validation and conversion succeeds, the generated .profdata file will be included in the output, otherwise, won't. This method is mainly used to filter out invalid profraw files. Args: profraw_files: A list of .profraw paths. profdata_tool_path: The path to the llvm-profdata executable. Returns: A tulple: A list of converted .profdata files of *valid* profraw files. A list of *invalid* profraw files. A list of profraw files that have counter overflows. """ for profraw_file in profraw_files: if not profraw_file.endswith('.profraw'): raise RuntimeError('%r is expected to be a .profraw file.' % profraw_file) cpu_count = multiprocessing.cpu_count() counts = max(10, cpu_count - 5) # Use 10+ processes, but leave 5 cpu cores. pool = multiprocessing.Pool(counts) output_profdata_files = multiprocessing.Manager().list() invalid_profraw_files = multiprocessing.Manager().list() counter_overflows = multiprocessing.Manager().list() for profraw_file in profraw_files: logging.info('Converting profraw file: %r', profraw_file) pool.apply_async( _validate_and_convert_profraw, (profraw_file, output_profdata_files, invalid_profraw_files, counter_overflows, profdata_tool_path)) pool.close() pool.join() # Remove inputs, as they won't be needed and they can be pretty large. for input_file in profraw_files: os.remove(input_file) return list(output_profdata_files), list(invalid_profraw_files), list( counter_overflows) def _validate_and_convert_profraw(profraw_file, output_profdata_files, invalid_profraw_files, counter_overflows, profdata_tool_path): output_profdata_file = profraw_file.replace('.profraw', '.profdata') subprocess_cmd = [ profdata_tool_path, 'merge', '-o', output_profdata_file, '-sparse=true', profraw_file ] profile_valid = False counter_overflow = False validation_output = None # 1. Determine if the profile is valid. try: # Redirecting stderr is required because when error happens, llvm-profdata # writes the error output to stderr and our error handling logic relies on # that output. logging.info('Converting %r to %r', profraw_file, output_profdata_file) validation_output = subprocess.check_output( subprocess_cmd, stderr=subprocess.STDOUT) logging.info('Validating and converting %r to %r succeeded with output: %r', profraw_file, output_profdata_file, validation_output) if 'Counter overflow' in validation_output: counter_overflow = True else: profile_valid = True except subprocess.CalledProcessError as error: logging.warning('Validating and converting %r to %r failed with output: %r', profraw_file, output_profdata_file, error.output) validation_output = error.output # 2. Add the profile to the appropriate list(s). if profile_valid: output_profdata_files.append(output_profdata_file) else: invalid_profraw_files.append(profraw_file) if counter_overflow: counter_overflows.append(profraw_file) # 3. Log appropriate message if not profile_valid: template = 'Bad profile: %r, output: %r' if counter_overflow: template = 'Counter overflow: %r, output: %r' logging.warning(template, profraw_file, validation_output) # 4. Delete profdata for invalid profiles if present. if os.path.exists(output_profdata_file): # The output file may be created before llvm-profdata determines the # input is invalid. Delete it so that it does not leak and affect other # merge scripts. os.remove(output_profdata_file) def merge_java_exec_files(input_dir, output_path, jacococli_path): """Merges generated .exec files to output_path. Args: input_dir (str): The path to traverse to find input files. output_path (str): Where to write the merged .exec file. jacococli_path: The path to jacococli.jar. Raises: CalledProcessError: merge command failed. """ exec_input_file_paths = _get_profile_paths(input_dir, '.exec') if not exec_input_file_paths: logging.info('No exec file found under %s', input_dir) return cmd = [_JAVA_PATH, '-jar', jacococli_path, 'merge'] cmd.extend(exec_input_file_paths) cmd.extend(['--destfile', output_path]) output = subprocess.check_output(cmd, stderr=subprocess.STDOUT) logging.info('Merge succeeded with output: %r', output) def merge_profiles(input_dir, output_file, input_extension, profdata_tool_path, input_filename_pattern='.*'): """Merges the profiles produced by the shards using llvm-profdata. Args: input_dir (str): The path to traverse to find input profiles. output_file (str): Where to write the merged profile. input_extension (str): File extension to look for in the input_dir. e.g. '.profdata' or '.profraw' profdata_tool_path: The path to the llvm-profdata executable. input_filename_pattern (str): The regex pattern of input filename. Should be a valid regex pattern if present. Returns: The list of profiles that had to be excluded to get the merge to succeed and a list of profiles that had a counter overflow. """ profile_input_file_paths = _get_profile_paths(input_dir, input_extension, input_filename_pattern) invalid_profraw_files = [] counter_overflows = [] if input_extension == '.profraw': profile_input_file_paths, invalid_profraw_files, counter_overflows = ( _validate_and_convert_profraws(profile_input_file_paths, profdata_tool_path)) logging.info('List of converted .profdata files: %r', profile_input_file_paths) logging.info(( 'List of invalid .profraw files that failed to validate and convert: %r' ), invalid_profraw_files) if counter_overflows: logging.warning('There were %d profiles with counter overflows', len(counter_overflows)) # The list of input files could be empty in the following scenarios: # 1. The test target is pure Python scripts test which doesn't execute any # C/C++ binaries, such as devtools_type_check. # 2. The test target executes binary and does dumps coverage profile data # files, however, all of them turned out to be invalid. if not profile_input_file_paths: logging.info('There is no valid profraw/profdata files to merge, skip ' 'invoking profdata tools.') return invalid_profraw_files, counter_overflows invalid_profdata_files = _call_profdata_tool( profile_input_file_paths=profile_input_file_paths, profile_output_file_path=output_file, profdata_tool_path=profdata_tool_path) # Remove inputs when merging profraws as they won't be needed and they can be # pretty large. If the inputs are profdata files, do not remove them as they # might be used again for multiple test types coverage. if input_extension == '.profraw': for input_file in profile_input_file_paths: os.remove(input_file) return invalid_profraw_files + invalid_profdata_files, counter_overflows # We want to retry shards that contain one or more profiles that cannot be # merged (typically due to corruption described in crbug.com/937521). def get_shards_to_retry(bad_profiles): bad_shard_ids = set() def is_task_id(s): # Swarming task ids are 16 hex chars. The pythonic way to validate this is # to cast to int and catch a value error. try: assert len(s) == 16, 'Swarming task IDs are expected be of length 16' _int_id = int(s, 16) return True except (AssertionError, ValueError): return False for profile in bad_profiles: # E.g. /b/s/w/ir/tmp/t/tmpSvBRii/44b643576cf39f10/profraw/default-1.profraw _base_path, task_id, _profraw, _filename = os.path.normpath(profile).rsplit( os.path.sep, 3) # Since we are getting a task_id from a file path, which is less than ideal, # do some checking to at least verify that the snippet looks like a valid # task id. assert is_task_id(task_id) bad_shard_ids.add(task_id) return bad_shard_ids
""" FormWizard class -- implements a multi-page form, validating between each step and storing the form's state as HTML hidden fields so that no state is stored on the server side. """ import cPickle as pickle from django import forms from django.conf import settings from django.contrib.formtools.utils import security_hash, form_hmac from django.http import Http404 from django.shortcuts import render_to_response from django.template.context import RequestContext from django.utils.crypto import constant_time_compare from django.utils.hashcompat import md5_constructor from django.utils.translation import ugettext_lazy as _ from django.utils.decorators import method_decorator from django.views.decorators.csrf import csrf_protect class FormWizard(object): # The HTML (and POST data) field name for the "step" variable. step_field_name="wizard_step" # METHODS SUBCLASSES SHOULDN'T OVERRIDE ################################### def __init__(self, form_list, initial=None): """ Start a new wizard with a list of forms. form_list should be a list of Form classes (not instances). """ self.form_list = form_list[:] self.initial = initial or {} # Dictionary of extra template context variables. self.extra_context = {} # A zero-based counter keeping track of which step we're in. self.step = 0 def __repr__(self): return "step: %d\nform_list: %s\ninitial_data: %s" % (self.step, self.form_list, self.initial) def get_form(self, step, data=None): "Helper method that returns the Form instance for the given step." return self.form_list[step](data, prefix=self.prefix_for_step(step), initial=self.initial.get(step, None)) def num_steps(self): "Helper method that returns the number of steps." # You might think we should just set "self.num_steps = len(form_list)" # in __init__(), but this calculation needs to be dynamic, because some # hook methods might alter self.form_list. return len(self.form_list) def _check_security_hash(self, token, request, form): expected = self.security_hash(request, form) if constant_time_compare(token, expected): return True else: # Fall back to Django 1.2 method, for compatibility with forms that # are in the middle of being used when the upgrade occurs. However, # we don't want to do this fallback if a subclass has provided their # own security_hash method - because they might have implemented a # more secure method, and this would punch a hole in that. # PendingDeprecationWarning <- left here to remind us that this # compatibility fallback should be removed in Django 1.5 FormWizard_expected = FormWizard.security_hash(self, request, form) if expected == FormWizard_expected: # They didn't override security_hash, do the fallback: old_expected = security_hash(request, form) return constant_time_compare(token, old_expected) else: return False @method_decorator(csrf_protect) def __call__(self, request, *args, **kwargs): """ Main method that does all the hard work, conforming to the Django view interface. """ if 'extra_context' in kwargs: self.extra_context.update(kwargs['extra_context']) current_step = self.determine_step(request, *args, **kwargs) self.parse_params(request, *args, **kwargs) # Sanity check. if current_step >= self.num_steps(): raise Http404('Step %s does not exist' % current_step) # Process the current step. If it's valid, go to the next step or call # done(), depending on whether any steps remain. if request.method == 'POST': form = self.get_form(current_step, request.POST) else: form = self.get_form(current_step) if form.is_valid(): # Validate all the forms. If any of them fail validation, that # must mean the validator relied on some other input, such as # an external Web site. # It is also possible that validation might fail under certain # attack situations: an attacker might be able to bypass previous # stages, and generate correct security hashes for all the # skipped stages by virtue of: # 1) having filled out an identical form which doesn't have the # validation (and does something different at the end), # 2) or having filled out a previous version of the same form # which had some validation missing, # 3) or previously having filled out the form when they had # more privileges than they do now. # # Since the hashes only take into account values, and not other # other validation the form might do, we must re-do validation # now for security reasons. current_form_list = [self.get_form(i, request.POST) for i in range(current_step)] for i, f in enumerate(current_form_list): if not self._check_security_hash(request.POST.get("hash_%d" % i, ''), request, f): return self.render_hash_failure(request, i) if not f.is_valid(): return self.render_revalidation_failure(request, i, f) else: self.process_step(request, f, i) # Now progress to processing this step: self.process_step(request, form, current_step) next_step = current_step + 1 if next_step == self.num_steps(): return self.done(request, current_form_list) else: form = self.get_form(next_step) self.step = current_step = next_step return self.render(form, request, current_step) def render(self, form, request, step, context=None): "Renders the given Form object, returning an HttpResponse." old_data = request.POST prev_fields = [] if old_data: hidden = forms.HiddenInput() # Collect all data from previous steps and render it as HTML hidden fields. for i in range(step): old_form = self.get_form(i, old_data) hash_name = 'hash_%s' % i prev_fields.extend([bf.as_hidden() for bf in old_form]) prev_fields.append(hidden.render(hash_name, old_data.get(hash_name, self.security_hash(request, old_form)))) return self.render_template(request, form, ''.join(prev_fields), step, context) # METHODS SUBCLASSES MIGHT OVERRIDE IF APPROPRIATE ######################## def prefix_for_step(self, step): "Given the step, returns a Form prefix to use." return str(step) def render_hash_failure(self, request, step): """ Hook for rendering a template if a hash check failed. step is the step that failed. Any previous step is guaranteed to be valid. This default implementation simply renders the form for the given step, but subclasses may want to display an error message, etc. """ return self.render(self.get_form(step), request, step, context={'wizard_error': _('We apologize, but your form has expired. Please continue filling out the form from this page.')}) def render_revalidation_failure(self, request, step, form): """ Hook for rendering a template if final revalidation failed. It is highly unlikely that this point would ever be reached, but See the comment in __call__() for an explanation. """ return self.render(form, request, step) def security_hash(self, request, form): """ Calculates the security hash for the given HttpRequest and Form instances. Subclasses may want to take into account request-specific information, such as the IP address. """ return form_hmac(form) def determine_step(self, request, *args, **kwargs): """ Given the request object and whatever *args and **kwargs were passed to __call__(), returns the current step (which is zero-based). Note that the result should not be trusted. It may even be a completely invalid number. It's not the job of this method to validate it. """ if not request.POST: return 0 try: step = int(request.POST.get(self.step_field_name, 0)) except ValueError: return 0 return step def parse_params(self, request, *args, **kwargs): """ Hook for setting some state, given the request object and whatever *args and **kwargs were passed to __call__(), sets some state. This is called at the beginning of __call__(). """ pass def get_template(self, step): """ Hook for specifying the name of the template to use for a given step. Note that this can return a tuple of template names if you'd like to use the template system's select_template() hook. """ return 'forms/wizard.html' def render_template(self, request, form, previous_fields, step, context=None): """ Renders the template for the given step, returning an HttpResponse object. Override this method if you want to add a custom context, return a different MIME type, etc. If you only need to override the template name, use get_template() instead. The template will be rendered with the following context: step_field -- The name of the hidden field containing the step. step0 -- The current step (zero-based). step -- The current step (one-based). step_count -- The total number of steps. form -- The Form instance for the current step (either empty or with errors). previous_fields -- A string representing every previous data field, plus hashes for completed forms, all in the form of hidden fields. Note that you'll need to run this through the "safe" template filter, to prevent auto-escaping, because it's raw HTML. """ context = context or {} context.update(self.extra_context) return render_to_response(self.get_template(step), dict(context, step_field=self.step_field_name, step0=step, step=step + 1, step_count=self.num_steps(), form=form, previous_fields=previous_fields ), context_instance=RequestContext(request)) def process_step(self, request, form, step): """ Hook for modifying the FormWizard's internal state, given a fully validated Form object. The Form is guaranteed to have clean, valid data. This method should *not* modify any of that data. Rather, it might want to set self.extra_context or dynamically alter self.form_list, based on previously submitted forms. Note that this method is called every time a page is rendered for *all* submitted steps. """ pass # METHODS SUBCLASSES MUST OVERRIDE ######################################## def done(self, request, form_list): """ Hook for doing something with the validated data. This is responsible for the final processing. form_list is a list of Form instances, each containing clean, valid data. """ raise NotImplementedError("Your %s class has not defined a done() method, which is required." % self.__class__.__name__)
import ast import copy import os import sys import unittest from vistrails.core.configuration import ConfigurationObject, ConfigField, ConfigPath, ConfigURL, get_vistrails_persistent_configuration, get_vistrails_temp_configuration from vistrails.core.modules.vistrails_module import Module, NotCacheable, ModuleError from vistrails.core.modules.config import IPort, OPort, ModuleSettings import vistrails.core.system class OutputMode(object): mode_type = None priority = -1 @classmethod def can_compute(cls): return False def compute_output(self, output_module, configuration=None): raise NotImplementedError("Subclass of OutputMode should implement " "this") # Ideally, these are globally and locally configurable so that we use # global settings if nothing is set locally (e.g. output directory) class OutputModeConfig(dict): mode_type = None _fields = [] def __init__(self, *args, **kwargs): dict.__init__(self, *args, **kwargs) for k, v in self.iteritems(): if not self.has_field(k): raise ValueError('Field "%s" is not declared for class "%s"' % (k, self.__class__.__name__)) @classmethod def ensure_field_dict(cls): if '_field_dict' not in cls.__dict__: if '_fields' in cls.__dict__: cls._field_dict = dict((f.name, f) for f in cls._fields) else: cls._field_dict = {} @classmethod def has_field(cls, k): cls_list = [cls] while len(cls_list) > 0: c = cls_list.pop(0) if issubclass(c, OutputModeConfig): c.ensure_field_dict() if k in c._field_dict: return True cls_list.extend(c.__bases__) return False @classmethod def get_field(cls, k): cls_list = [cls] while len(cls_list) > 0: c = cls_list.pop(0) if issubclass(c, OutputModeConfig): c.ensure_field_dict() if k in c._field_dict: return c._field_dict[k] cls_list.extend(c.__bases__) return None @classmethod def get_all_fields(cls): field_dicts = [] cls_list = [cls] while len(cls_list) > 0: c = cls_list.pop(0) if issubclass(c, OutputModeConfig): c.ensure_field_dict() field_dicts.append(c._field_dict) cls_list.extend(c.__bases__) field_dict = {} for fd in reversed(field_dicts): field_dict.update(fd) fields = field_dict.values() fields.sort() return fields @classmethod def get_default(cls, k): f = cls.get_field(k) if f is not None: return f.default_val return None @classmethod def has_from_config(cls, config, k): if hasattr(cls, 'mode_type'): mode_type = cls.mode_type if config.has(mode_type): subconfig = getattr(config, mode_type) if subconfig.has(k): return True return False @classmethod def get_from_config(cls, config, k): if hasattr(cls, 'mode_type'): mode_type = cls.mode_type if config.has(mode_type): subconfig = getattr(config, mode_type) if subconfig.has(k): return getattr(subconfig, k) return None @classmethod def has_override(cls, k): config = get_vistrails_temp_configuration().outputSettings return cls.has_from_config(config, k) @classmethod def get_override(cls, k): config = get_vistrails_temp_configuration().outputSettings str_val = cls.get_from_config(config, k) return cls.get_field(k).from_string(str_val) @classmethod def has_global_setting(cls, k): config = get_vistrails_persistent_configuration().outputDefaultSettings return cls.has_from_config(config, k) @classmethod def get_global_setting(cls, k): config = get_vistrails_persistent_configuration().outputDefaultSettings return cls.get_from_config(config, k) @classmethod def has_config_setting(cls, k): return cls.has_override(k) or cls.has_global_setting(k) def __setitem__(self, k, v): if not self.has_field(k): raise ValueError('Setting "%s" is not declared for class "%s"' % (k, self.__class__.__name__)) dict.__setitem__(self, k, v) def __getitem__(self, k): if self.has_override(k): return self.get_override(k) try: return dict.__getitem__(self, k) except KeyError, e: if self.has_global_setting(k): return self.get_global_setting(k) else: if self.has_field(k): return self.get_default(k) raise e def __hasitem__(self, k): return (self.has_field(k) or dict.__hasitem__(self, k) or self.has_override(k) or self.has_global_setting(k)) class OutputModule(NotCacheable, Module): _input_ports = [IPort('value', "Variant"), IPort('mode_type', "String"), IPort('configuration', "Dictionary")] _settings = ModuleSettings(abstract=True) # configuration is a dictionary of dictionaries where root-level # keys are mode_types and the inner dictionaries are # workflow-specific settings # want to have mode inheritance here... @classmethod def ensure_mode_dict(cls): if '_output_modes_dict' not in cls.__dict__: if '_output_modes' in cls.__dict__: cls._output_modes_dict = \ dict((mcls.mode_type, (mcls, mcls.priority)) for mcls in cls._output_modes) else: cls._output_modes_dict = {} @classmethod def register_output_mode(cls, mode_cls, priority=None): if mode_cls.mode_type is None: raise ValueError("mode_cls.mode_type must not be None") if priority is None: priority = mode_cls.priority cls.ensure_mode_dict() if '_output_modes' not in cls.__dict__: cls._output_modes = [] cls._output_modes.append(mode_cls) cls._output_modes_dict[mode_cls.mode_type] = (mode_cls, priority) @classmethod def set_mode_priority(cls, mode_type, priority): cls.ensure_mode_dict() if mode_type not in cls._output_modes_dict: raise ValueError('mode_type "%s" is not set for this module' % mode_type) cls._output_modes_dict[mode_type][1] = priority @classmethod def get_mode_class(cls, mode_type): cls_list = [cls] while len(cls_list) > 0: c = cls_list.pop(0) if issubclass(c, OutputModule): c.ensure_mode_dict() if mode_type in c._output_modes_dict: return c._output_modes_dict[mode_type][0] cls_list.extend(c.__bases__) return None @classmethod def get_sorted_mode_list(cls): cls_list = [cls] idx = 0 while idx < len(cls_list): for c in cls_list[idx].__bases__: if issubclass(c, OutputModule): c.ensure_mode_dict() cls_list.append(c) idx += 1 mode_dict = {} for c in reversed(cls_list): mode_dict.update(c._output_modes_dict) mode_list = [c for c, _ in reversed(sorted(mode_dict.itervalues(), key=lambda x: x[1]))] return mode_list @classmethod def get_mode_tree(cls): cls_list = [cls] idx = 0 while idx < len(cls_list): for c in cls_list[idx].__bases__: if issubclass(c, OutputModule): c.ensure_mode_dict() cls_list.append(c) idx += 1 mode_tree = {} for c in reversed(cls_list): c.ensure_mode_dict() def get_mode_config(self, mode_cls): mode_config_cls = mode_cls.config_cls mode_config_dict = {} configuration = self.force_get_input('configuration') if configuration is not None: # want to search through all mode classes in case we have # base class settings that should trump cls_list = [mode_config_cls] mode_config_cls_list = [] while len(cls_list) > 0: c = cls_list.pop(0) if issubclass(c, OutputModeConfig): mode_config_cls_list.append(c) cls_list.extend(c.__bases__) mode_config_cls_list.reverse() for mode_config_cls in mode_config_cls_list: for k, v in configuration.iteritems(): if k == mode_config_cls.mode_type: mode_config_dict.update(v) mode_config = mode_config_cls(mode_config_dict) return mode_config def compute(self): mode_cls = None self.ensure_mode_dict() if self.has_input("mode_type"): # use user-specified mode_type mode_type = self.get_input("mode_type") mode_cls = self.get_mode_class(mode_type) if mode_cls is None: raise ModuleError(self, 'Cannot output in mode "%s" because ' 'that mode has not been defined' % mode_type) else: # FIXME should have user-setable priorities! # determine mode_type based on registered modes by priority, # checking if each is possible for mcls in self.get_sorted_mode_list(): if mcls.can_compute(): mode_cls = mcls break if mode_cls is None: raise ModuleError(self, "No output mode is valid, output cannot " "be generated") mode_config = self.get_mode_config(mode_cls) mode = mode_cls() self.annotate({"output_mode": mode.mode_type}) mode.compute_output(self, mode_config) class StdoutModeConfig(OutputModeConfig): mode_type = "stdout" _fields = [] class StdoutMode(OutputMode): mode_type = "stdout" priority = 2 config_cls = StdoutModeConfig @classmethod def can_compute(cls): return True class FileModeConfig(OutputModeConfig): mode_type = "file" _fields = [ConfigField('file', None, ConfigPath), ConfigField('basename', None, str), ConfigField('prefix', None, str), ConfigField('suffix', None, str), ConfigField('dir', None, ConfigPath), ConfigField('series', False, bool), ConfigField('overwrite', True, bool), ConfigField('seriesPadding', 3, int), ConfigField('seriesStart', 0, int), ConfigField('format', None, str)] class FileMode(OutputMode): mode_type = "file" priority = 1 config_cls = FileModeConfig formats = [] # need to reset this after each execution! series_next = 0 @classmethod def can_compute(cls): return True @classmethod def get_formats(cls): formats = [] cls_list = [cls] while len(cls_list) > 0: c = cls_list.pop(0) if issubclass(c, FileMode): if 'formats' in c.__dict__: return c.formats cls_list.extend(c.__bases__) return [] def get_format(self, configuration=None): format_map = {'png': 'png', 'jpeg': 'jpg', 'jpg': 'jpg', 'tif': 'tif', 'tiff': 'tif'} if configuration is not None and 'format' in configuration: conf_format = configuration['format'] if conf_format.lower() in format_map: return format_map[conf_format.lower()] return conf_format # default is the first listed if it exists format_list = self.get_formats() if len(format_list) > 0: return format_list[0] return None def get_series_num(self): retval = FileMode.series_next FileMode.series_next += 1 return retval # FIXME should add format into this computation def get_filename(self, configuration, full_path=None, filename=None, dirname=None, basename=None, prefix=None, suffix=None, overwrite=True, series=False, series_padding=3): # if prefix/suffix/series are overridden, want to use them # instead of name... if full_path is None: # use file if overridden or none of the file params are # overridden and the file is not None overwrite = configuration['overwrite'] if (configuration.has_override('file') or (not (configuration.has_override('basename') or configuration.has_override('prefix') or configuration.has_override('suffix') or configuration.has_override('dir') or configuration.has_override('series') or configuration.has_override('seriesPadding') or configuration.has_override('seriesStart')) and 'file' in configuration and configuration['file'] is not None)): full_path = configuration['file'] else: if configuration['basename'] is not None: basename = configuration['basename'] if configuration['prefix'] is not None: prefix = configuration['prefix'] if configuration['suffix'] is not None: suffix = configuration['suffix'] if configuration['dir'] is not None: dirname = configuration['dir'] if configuration['series'] is not None: series = configuration['series'] if configuration['seriesPadding'] is not None: series_padding = configuration['seriesPadding'] if full_path is None: # should any of these necessitate series=True? if basename is None: basename = 'vt_out' if prefix is None: prefix = '' if suffix is None: suffix = '' if dirname is None: # FIXME should unify with VisTrails output # directory global! should check for abspath (if # not, use relative to global output directory) dirname = '' # seriesPadding and series have defaults so no # need to default them if not overwrite and series: # need to find first open slot full_path = None while full_path is None or os.path.exists(full_path): series_str = (("%%0%dd" % series_padding) % self.get_series_num()) full_path = os.path.join(dirname, "%s%s%s%s" % (prefix, basename, series_str, suffix)) else: if series: series_str = (("%%0%dd" % series_padding) % self.get_series_num()) else: series_str = "" full_path = os.path.join(dirname, "%s%s%s%s" % (prefix, basename, series_str, suffix)) if not overwrite and os.path.exists(full_path): raise IOError('File "%s" exists and overwrite is False' % full_path) return full_path class FileToFileMode(FileMode): def compute_output(self, output_module, configuration=None): old_fname = output_module.get_input('value').name full_path = self.get_filename(configuration) # we know we are in overwrite mode because it would have been # flagged otherwise if os.path.exists(full_path): try: os.remove(full_path) except OSError, e: raise ModuleError(output_module, ('Could not delete existing ' 'path "%s"' % full_path)) try: vistrails.core.system.link_or_copy(old_fname, full_path) except OSError, e: msg = "Could not create file '%s': %s" % (full_path, e) raise ModuleError(output_module, msg) class FileToStdoutMode(StdoutMode): def compute_output(self, output_module, configuration=None): fname = output_module.get_input('value').name with open(fname, 'r') as f: for line in f: sys.stdout.write(line) class GenericToStdoutMode(StdoutMode): def compute_output(self, output_module, configuration=None): value = output_module.get_input('value') print >>sys.stdout, value class GenericToFileMode(FileMode): def compute_output(self, output_module, configuration=None): value = output_module.get_input('value') filename = self.get_filename(configuration) with open(filename, 'w') as f: print >>f, value class GenericOutput(OutputModule): _settings = ModuleSettings(configure_widget="vistrails.gui.modules.output_configuration:OutputModuleConfigurationWidget") _output_modes = [GenericToStdoutMode, GenericToFileMode] class FileOutput(OutputModule): _settings = ModuleSettings(configure_widget="vistrails.gui.modules.output_configuration:OutputModuleConfigurationWidget") # should set file as a higher priority here... _input_ports = [('value', 'File')] _output_modes = [FileToStdoutMode, FileToFileMode] class ImageFileModeConfig(FileModeConfig): mode_type = "imageFile" _fields = [ConfigField('width', 800, int), ConfigField('height', 600, int)] class ImageFileMode(FileMode): config_cls = ImageFileModeConfig mode_type = "imageFile" class RichTextOutput(OutputModule): _settings = ModuleSettings(configure_widget="vistrails.gui.modules.output_configuration:OutputModuleConfigurationWidget") # need specific spreadsheet richtext mode here pass _modules = [OutputModule, GenericOutput, FileOutput] # need to put WebOutput, ImageOutput, RichTextOutput, SVGOutput, etc. elsewhere class TestOutputModeConfig(unittest.TestCase): def test_fields(self): class AlteredFileModeConfig(FileModeConfig): _fields = [ConfigField("newattr", 3, int)] self.assertTrue(AlteredFileModeConfig.has_field("overwrite")) self.assertTrue(AlteredFileModeConfig.has_field("newattr")) def test_config(self): config_obj = ConfigurationObject(file=ConfigurationObject(seriesStart=5)) self.assertTrue(FileModeConfig.has_from_config(config_obj, "seriesStart")) self.assertEqual(FileModeConfig.get_from_config(config_obj, "seriesStart"), 5) def test_subclass_config(self): class AlteredFileModeConfig(FileModeConfig): mode_type = "file" _fields = [ConfigField("newattr", 3, int)] config_obj = ConfigurationObject(file=ConfigurationObject(seriesStart=5)) self.assertEqual(AlteredFileModeConfig.get_from_config(config_obj, "seriesStart"), 5) def test_get_item(self): config = FileModeConfig() self.assertEqual(config["seriesStart"], 0) def test_get_default(self): self.assertEqual(FileModeConfig.get_default("seriesStart"), 0) if __name__ == '__main__': import vistrails.core.application app = vistrails.core.application.init() unittest.main()
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django import forms from django.conf import settings from django.contrib.auth import password_validation from django.utils.translation import ugettext as _, ugettext_lazy from modoboa.core.password_hashers import get_dovecot_schemes from modoboa.core.password_hashers.base import PasswordHasher from modoboa.lib import fields as lib_fields from modoboa.lib.form_utils import ( HorizontalRadioSelect, SeparatorField, YesNoField ) from modoboa.parameters import forms as param_forms, tools as param_tools from . import constants def enabled_applications(): """Return the list of installed extensions.""" from modoboa.core.extensions import exts_pool result = [("user", _("User profile"))] for extension in exts_pool.list_all(): if "topredirection_url" not in extension: continue result.append((extension["name"], extension["label"])) return sorted(result, key=lambda e: e[0]) class GeneralParametersForm(param_forms.AdminParametersForm): """General parameters.""" app = "core" sep1 = SeparatorField(label=ugettext_lazy("Authentication")) authentication_type = forms.ChoiceField( label=ugettext_lazy("Authentication type"), choices=[("local", ugettext_lazy("Local")), ("ldap", "LDAP")], initial="local", help_text=ugettext_lazy("The backend used for authentication"), widget=HorizontalRadioSelect() ) password_scheme = forms.ChoiceField( label=ugettext_lazy("Default password scheme"), choices=[(hasher.name, ugettext_lazy(hasher.label)) for hasher in PasswordHasher.get_password_hashers() if hasher().scheme in get_dovecot_schemes()], initial="sha512crypt", help_text=ugettext_lazy("Scheme used to crypt mailbox passwords"), widget=forms.Select(attrs={"class": "form-control"}) ) rounds_number = forms.IntegerField( label=ugettext_lazy("Rounds"), initial=70000, help_text=ugettext_lazy( "Number of rounds to use (only used by sha256crypt and " "sha512crypt). Must be between 1000 and 999999999, inclusive." ), widget=forms.TextInput(attrs={"class": "form-control"}) ) update_scheme = YesNoField( label=ugettext_lazy("Update password scheme at login"), initial=True, help_text=ugettext_lazy( "Update user password at login to use the default password scheme" ) ) default_password = forms.CharField( label=ugettext_lazy("Default password"), initial="password", help_text=ugettext_lazy( "Default password for automatically created accounts.") ) random_password_length = forms.IntegerField( label=ugettext_lazy("Random password length"), min_value=8, initial=8, help_text=ugettext_lazy( "Length of randomly generated passwords.") ) # LDAP specific settings ldap_sep = SeparatorField(label=ugettext_lazy("LDAP settings")) ldap_server_address = forms.CharField( label=ugettext_lazy("Server address"), initial="localhost", help_text=ugettext_lazy( "The IP address or the DNS name of the LDAP server"), widget=forms.TextInput(attrs={"class": "form-control"}) ) ldap_server_port = forms.IntegerField( label=ugettext_lazy("Server port"), initial=389, help_text=ugettext_lazy("The TCP port number used by the LDAP server"), widget=forms.TextInput(attrs={"class": "form-control"}) ) ldap_secured = forms.ChoiceField( label=ugettext_lazy("Use a secured connection"), choices=constants.LDAP_SECURE_MODES, initial="none", help_text=ugettext_lazy( "Use an SSL/STARTTLS connection to access the LDAP server") ) ldap_auth_method = forms.ChoiceField( label=ugettext_lazy("Authentication method"), choices=[("searchbind", ugettext_lazy("Search and bind")), ("directbind", ugettext_lazy("Direct bind"))], initial="searchbind", help_text=ugettext_lazy("Choose the authentication method to use"), widget=forms.Select(attrs={"class": "form-control"}) ) ldap_bind_dn = forms.CharField( label=ugettext_lazy("Bind DN"), initial="", help_text=ugettext_lazy( "The distinguished name to use when binding to the LDAP server. " "Leave empty for an anonymous bind" ), required=False, widget=forms.TextInput(attrs={"class": "form-control"}) ) ldap_bind_password = forms.CharField( label=ugettext_lazy("Bind password"), initial="", help_text=ugettext_lazy( "The password to use when binding to the LDAP server " "(with 'Bind DN')" ), widget=forms.PasswordInput( attrs={"class": "form-control"}, render_value=True), required=False ) ldap_search_base = forms.CharField( label=ugettext_lazy("Users search base"), initial="", help_text=ugettext_lazy( "The distinguished name of the search base used to find users" ), required=False, widget=forms.TextInput(attrs={"class": "form-control"}) ) ldap_search_filter = forms.CharField( label=ugettext_lazy("Search filter"), initial="(mail=%(user)s)", help_text=ugettext_lazy( "An optional filter string (e.g. '(objectClass=person)'). " "In order to be valid, it must be enclosed in parentheses." ), required=False, widget=forms.TextInput(attrs={"class": "form-control"}) ) ldap_user_dn_template = forms.CharField( label=ugettext_lazy("User DN template"), initial="", help_text=ugettext_lazy( "The template used to construct a user's DN. It should contain " "one placeholder (ie. %(user)s)" ), required=False, widget=forms.TextInput(attrs={"class": "form-control"}) ) ldap_password_attribute = forms.CharField( label=ugettext_lazy("Password attribute"), initial="userPassword", help_text=ugettext_lazy("The attribute used to store user passwords"), widget=forms.TextInput(attrs={"class": "form-control"}) ) ldap_is_active_directory = YesNoField( label=ugettext_lazy("Active Directory"), initial=False, help_text=ugettext_lazy( "Tell if the LDAP server is an Active Directory one") ) ldap_admin_groups = forms.CharField( label=ugettext_lazy("Administrator groups"), initial="", help_text=ugettext_lazy( "Members of those LDAP Posix groups will be created as domain " "administrators. Use ';' characters to separate groups." ), required=False ) ldap_group_type = forms.ChoiceField( label=ugettext_lazy("Group type"), initial="posixgroup", choices=constants.LDAP_GROUP_TYPES, help_text=ugettext_lazy( "The LDAP group type to use with your directory." ) ) ldap_groups_search_base = forms.CharField( label=ugettext_lazy("Groups search base"), initial="", help_text=ugettext_lazy( "The distinguished name of the search base used to find groups" ), required=False ) dash_sep = SeparatorField(label=ugettext_lazy("Dashboard")) rss_feed_url = forms.URLField( label=ugettext_lazy("Custom RSS feed"), required=False, help_text=ugettext_lazy( "Display custom RSS feed to resellers and domain administrators" ) ) hide_features_widget = YesNoField( label=ugettext_lazy("Hide features widget"), initial=False, help_text=ugettext_lazy( "Hide features widget for resellers and domain administrators" ) ) notif_sep = SeparatorField(label=ugettext_lazy("Notifications")) sender_address = lib_fields.UTF8EmailField( label=_("Sender address"), initial="[email protected]", help_text=_( "Email address used to send notifications." ) ) api_sep = SeparatorField(label=ugettext_lazy("Public API")) enable_api_communication = YesNoField( label=ugettext_lazy("Enable communication"), initial=True, help_text=ugettext_lazy( "Enable communication with Modoboa public API") ) check_new_versions = YesNoField( label=ugettext_lazy("Check new versions"), initial=True, help_text=ugettext_lazy( "Automatically checks if a newer version is available") ) send_statistics = YesNoField( label=ugettext_lazy("Send statistics"), initial=True, help_text=ugettext_lazy( "Send statistics to Modoboa public API " "(counters and used extensions)") ) sep3 = SeparatorField(label=ugettext_lazy("Miscellaneous")) inactive_account_threshold = forms.IntegerField( label=_("Inactive account threshold"), initial=30, help_text=_( "An account with a last login date greater than this threshold " "(in days) will be considered as inactive" ), widget=forms.TextInput(attrs={"class": "form-control"}) ) top_notifications_check_interval = forms.IntegerField( label=_("Top notifications check interval"), initial=30, help_text=_( "Interval between two top notification checks (in seconds)" ), widget=forms.TextInput(attrs={"class": "form-control"}) ) log_maximum_age = forms.IntegerField( label=ugettext_lazy("Maximum log record age"), initial=365, help_text=ugettext_lazy("The maximum age in days of a log record"), widget=forms.TextInput(attrs={"class": "form-control"}) ) items_per_page = forms.IntegerField( label=ugettext_lazy("Items per page"), initial=30, help_text=ugettext_lazy("Number of displayed items per page"), widget=forms.TextInput(attrs={"class": "form-control"}) ) default_top_redirection = forms.ChoiceField( label=ugettext_lazy("Default top redirection"), choices=[], initial="user", help_text=ugettext_lazy( "The default redirection used when no application is specified" ), widget=forms.Select(attrs={"class": "form-control"}) ) # Visibility rules visibility_rules = { "ldap_sep": "authentication_type=ldap", "ldap_server_address": "authentication_type=ldap", "ldap_server_port": "authentication_type=ldap", "ldap_secured": "authentication_type=ldap", "ldap_auth_method": "authentication_type=ldap", "ldap_bind_dn": "ldap_auth_method=searchbind", "ldap_bind_password": "ldap_auth_method=searchbind", "ldap_search_base": "ldap_auth_method=searchbind", "ldap_search_filter": "ldap_auth_method=searchbind", "ldap_user_dn_template": "ldap_auth_method=directbind", "ldap_password_attribute": "authentication_type=ldap", "ldap_is_active_directory": "authentication_type=ldap", "ldap_admin_groups": "authentication_type=ldap", "ldap_group_type": "authentication_type=ldap", "ldap_groups_search_base": "authentication_type=ldap", "check_new_versions": "enable_api_communication=True", "send_statistics": "enable_api_communication=True", } def __init__(self, *args, **kwargs): super(GeneralParametersForm, self).__init__(*args, **kwargs) self.fields["default_top_redirection"].choices = enabled_applications() def clean_ldap_user_dn_template(self): tpl = self.cleaned_data["ldap_user_dn_template"] try: tpl % {"user": "toto"} except (KeyError, ValueError): raise forms.ValidationError(_("Invalid syntax")) return tpl def clean_rounds_number(self): value = self.cleaned_data["rounds_number"] if value < 1000 or value > 999999999: raise forms.ValidationError(_("Invalid rounds number")) return value def clean_default_password(self): """Check password complexity.""" value = self.cleaned_data["default_password"] password_validation.validate_password(value) return value def clean(self): """Custom validation method Depending on 'ldap_auth_method' value, we check for different required parameters. """ super(GeneralParametersForm, self).clean() cleaned_data = self.cleaned_data if cleaned_data["authentication_type"] != "ldap": return cleaned_data if cleaned_data["ldap_auth_method"] == "searchbind": required_fields = ["ldap_search_base", "ldap_search_filter"] else: required_fields = ["ldap_user_dn_template"] for f in required_fields: if f not in cleaned_data or cleaned_data[f] == u'': self.add_error(f, _("This field is required")) return cleaned_data def to_django_settings(self): """Apply LDAP related parameters to Django settings. Doing so, we can use the django_auth_ldap module. """ try: import ldap from django_auth_ldap.config import ( LDAPSearch, PosixGroupType, GroupOfNamesType) ldap_available = True except ImportError: ldap_available = False values = dict(param_tools.get_global_parameters("core")) if not ldap_available or values["authentication_type"] != "ldap": return if not hasattr(settings, "AUTH_LDAP_USER_ATTR_MAP"): setattr(settings, "AUTH_LDAP_USER_ATTR_MAP", { "first_name": "givenName", "email": "mail", "last_name": "sn" }) ldap_uri = "ldaps://" if values["ldap_secured"] == "ssl" else "ldap://" ldap_uri += "%s:%s" % ( values["ldap_server_address"], values["ldap_server_port"]) setattr(settings, "AUTH_LDAP_SERVER_URI", ldap_uri) if values["ldap_secured"] == "starttls": setattr(settings, "AUTH_LDAP_START_TLS", True) if values["ldap_group_type"] == "groupofnames": setattr(settings, "AUTH_LDAP_GROUP_TYPE", GroupOfNamesType()) searchfilter = "(objectClass=groupOfNames)" else: setattr(settings, "AUTH_LDAP_GROUP_TYPE", PosixGroupType()) searchfilter = "(objectClass=posixGroup)" setattr(settings, "AUTH_LDAP_GROUP_SEARCH", LDAPSearch( values["ldap_groups_search_base"], ldap.SCOPE_SUBTREE, searchfilter )) if values["ldap_auth_method"] == "searchbind": setattr(settings, "AUTH_LDAP_BIND_DN", values["ldap_bind_dn"]) setattr( settings, "AUTH_LDAP_BIND_PASSWORD", values["ldap_bind_password"] ) search = LDAPSearch( values["ldap_search_base"], ldap.SCOPE_SUBTREE, values["ldap_search_filter"] ) setattr(settings, "AUTH_LDAP_USER_SEARCH", search) else: setattr( settings, "AUTH_LDAP_USER_DN_TEMPLATE", values["ldap_user_dn_template"] ) if values["ldap_is_active_directory"]: if not hasattr(settings, "AUTH_LDAP_GLOBAL_OPTIONS"): setattr(settings, "AUTH_LDAP_GLOBAL_OPTIONS", { ldap.OPT_REFERRALS: False }) else: settings.AUTH_LDAP_GLOBAL_OPTIONS[ldap.OPT_REFERRALS] = False
"""This module contains classes for creating ELFI graphs (`ElfiModel`). The ElfiModel is a directed acyclic graph (DAG), whose nodes represent parts of the inference task, for example the parameters to be inferred, the simulator or a summary statistic. https://en.wikipedia.org/wiki/Directed_acyclic_graph """ import inspect import logging import os import pickle import re import uuid from functools import partial import numpy as np import scipy.spatial import elfi.client from elfi.model.graphical_model import GraphicalModel from elfi.model.utils import distance_as_discrepancy, rvs_from_distribution from elfi.store import OutputPool from elfi.utils import observed_name, random_seed, scipy_from_str __all__ = [ 'ElfiModel', 'ComputationContext', 'NodeReference', 'Constant', 'Operation', 'RandomVariable', 'Prior', 'Simulator', 'Summary', 'Discrepancy', 'Distance', 'AdaptiveDistance', 'get_default_model', 'set_default_model', 'new_model', 'load_model' ] logger = logging.getLogger(__name__) _default_model = None def get_default_model(): """Return the current default ``ElfiModel`` instance. New nodes will be added to this model by default. """ global _default_model if _default_model is None: _default_model = ElfiModel() return _default_model def set_default_model(model=None): """Set the current default ``ElfiModel`` instance. New nodes will be placed the given model by default. Parameters ---------- model : ElfiModel, optional If None, creates a new ``ElfiModel``. """ global _default_model if model is None: model = ElfiModel() if not isinstance(model, ElfiModel): raise ValueError('{} is not an instance of ElfiModel'.format(ElfiModel)) _default_model = model def new_model(name=None, set_default=True): """Create a new ``ElfiModel`` instance. In addition to making a new ElfiModel instance, this method sets the new instance as the default for new nodes. Parameters ---------- name : str, optional set_default : bool, optional Whether to set the newly created model as the current model. """ model = ElfiModel(name=name) if set_default: set_default_model(model) return model def load_model(name, prefix=None, set_default=True): """Load the pickled ElfiModel. Assumes there exists a file "name.pkl" in the current directory. Also sets the loaded model as the default model for new nodes. Parameters ---------- name : str Name of the model file to load (without the .pkl extension). prefix : str Path to directory where the model file is located, optional. set_default : bool, optional Set the loaded model as the default model. Default is True. Returns ------- ElfiModel """ model = ElfiModel.load(name, prefix=prefix) if set_default: set_default_model(model) return model def random_name(length=4, prefix=''): """Generate a random string. Parameters ---------- length : int, optional prefix : str, optional """ return prefix + str(uuid.uuid4().hex[0:length]) # TODO: move to another file? class ComputationContext: """Container object for key components for consistent computation results. Attributes ---------- seed : int batch_size : int pool : OutputPool num_submissions : int Number of submissions using this context. sub_seed_cache : dict Caches the sub seed generation state variables. This is Notes ----- The attributes are immutable. """ def __init__(self, batch_size=None, seed=None, pool=None): """Set up a ComputationContext. Parameters ---------- batch_size : int, optional seed : int, None, 'global', optional When None generates a random integer seed. When `'global'` uses the global numpy random state. Only recommended for debugging. pool : elfi.OutputPool, optional Used for storing output. """ # Check pool context if pool is not None and pool.has_context: if batch_size is None: batch_size = pool.batch_size elif batch_size != pool.batch_size: raise ValueError('Pool batch_size differs from the given batch_size!') if seed is None: seed = pool.seed elif seed != pool.seed: raise ValueError('Pool seed differs from the given seed!') self._batch_size = batch_size or 1 self._seed = random_seed() if seed is None else seed self._pool = pool # Caches will not be used if they are not found from the caches dict self.caches = {'executor': {}, 'sub_seed': {}} # Count the number of submissions from this context self.num_submissions = 0 if pool is not None and not pool.has_context: self._pool.set_context(self) @property def pool(self): """Return the output pool.""" return self._pool @property def batch_size(self): """Return the batch size.""" return self._batch_size @property def seed(self): """Return the random seed.""" return self._seed def callback(self, batch, batch_index): """Add the batch to pool. Parameters ---------- batch : dict batch_index : int """ if self._pool is not None: self._pool.add_batch(batch, batch_index) class ElfiModel(GraphicalModel): """A container for the inference model. The ElfiModel is a directed acyclic graph (DAG), whose nodes represent parts of the inference task, for example the parameters to be inferred, the simulator or a summary statistic. """ def __init__(self, name=None, observed=None, source_net=None): """Initialize the inference model. Parameters ---------- name : str, optional observed : dict, optional Observed data with node names as keys. source_net : nx.DiGraph, optional set_current : bool, optional Sets this model as the current (default) ELFI model """ super(ElfiModel, self).__init__(source_net) self.name = name or "model_{}".format(random_name()) self.observed = observed or {} @property def name(self): """Return name of the model.""" return self.source_net.graph['name'] @name.setter def name(self, name): """Set the name of the model.""" self.source_net.graph['name'] = name @property def observed(self): """Return the observed data for the nodes in a dictionary.""" return self.source_net.graph['observed'] @observed.setter def observed(self, observed): """Set the observed data of the model. Parameters ---------- observed : dict """ if not isinstance(observed, dict): raise ValueError("Observed data must be given in a dictionary with the node" "name as the key") self.source_net.graph['observed'] = observed def generate(self, batch_size=1, outputs=None, with_values=None, seed=None): """Generate a batch of outputs. This method is useful for testing that the ELFI graph works. Parameters ---------- batch_size : int, optional outputs : list, optional with_values : dict, optional You can specify values for nodes to use when generating data seed : int, optional Defaults to global numpy seed. """ if outputs is None: outputs = self.source_net.nodes() elif isinstance(outputs, str): outputs = [outputs] if not isinstance(outputs, list): raise ValueError('Outputs must be a list of node names') if seed is None: seed = 'global' pool = None if with_values is not None: pool = OutputPool(with_values.keys()) pool.add_batch(with_values, 0) context = ComputationContext(batch_size, seed=seed, pool=pool) client = elfi.client.get_client() compiled_net = client.compile(self.source_net, outputs) loaded_net = client.load_data(compiled_net, context, batch_index=0) return client.compute(loaded_net) def get_reference(self, name): """Return a new reference object for a node in the model. Parameters ---------- name : str """ cls = self.get_node(name)['attr_dict']['_class'] return cls.reference(name, self) def get_state(self, name): """Return the state of the node. Parameters ---------- name : str """ return self.source_net.nodes[name] def update_node(self, name, updating_name): """Update `node` with `updating_node` in the model. The node with name `name` gets the state (operation), parents and observed data (if applicable) of the updating_node. The updating node is then removed from the graph. Parameters ---------- name : str updating_name : str """ update_observed = False obs = None if updating_name in self.observed: update_observed = True obs = self.observed.pop(updating_name) super(ElfiModel, self).update_node(name, updating_name) # Move data to the updated node if update_observed: self.observed[name] = obs def remove_node(self, name): """Remove a node from the graph. Parameters ---------- name : str """ if name in self.observed: self.observed.pop(name) super(ElfiModel, self).remove_node(name) @property def parameter_names(self): """Return a list of model parameter names in an alphabetical order.""" return sorted([n for n in self.nodes if '_parameter' in self.get_state(n)['attr_dict']]) @parameter_names.setter def parameter_names(self, parameter_names): """Set the model parameter nodes. For each node name in parameters, the corresponding node will be marked as being a parameter node. Other nodes will be marked as not being parameter nodes. Parameters ---------- parameter_names : list A list of parameter names """ parameter_names = set(parameter_names) for n in self.nodes: state = self.get_state(n)['attr_dict'] if n in parameter_names: parameter_names.remove(n) state['_parameter'] = True else: if '_parameter' in state: state.pop('_parameter') if len(parameter_names) > 0: raise ValueError('Parameters {} not found from the model'.format(parameter_names)) def copy(self): """Return a copy of the ElfiModel instance. Returns ------- ElfiModel """ kopy = super(ElfiModel, self).copy() kopy.name = "{}_copy_{}".format(self.name, random_name()) return kopy def save(self, prefix=None): """Save the current model to pickled file. Parameters ---------- prefix : str, optional Path to the directory under which to save the model. Default is the current working directory. """ path = self.name + '.pkl' if prefix is not None: os.makedirs(prefix, exist_ok=True) path = os.path.join(prefix, path) pickle.dump(self, open(path, "wb")) @classmethod def load(cls, name, prefix): """Load the pickled ElfiModel. Assumes there exists a file "name.pkl" in the current directory. Parameters ---------- name : str Name of the model file to load (without the .pkl extension). prefix : str Path to directory where the model file is located, optional. Returns ------- ElfiModel """ path = name + '.pkl' if prefix is not None: path = os.path.join(prefix, path) return pickle.load(open(path, "rb")) def __getitem__(self, node_name): """Return a new reference object for a node in the model. Parameters ---------- node_name : str """ return self.get_reference(node_name) class InstructionsMapper: @property def state(self): raise NotImplementedError() @property def uses_meta(self): return self.state['attr_dict'].get('_uses_meta', False) @uses_meta.setter def uses_meta(self, val): self.state['attr_dict']['_uses_meta'] = val class NodeReference(InstructionsMapper): """A base class for node objects in the model. A user of ELFI will typically use, e.g. `elfi.Prior` or `elfi.Simulator` to create state dictionaries for nodes. Each node has a state dictionary that describes how the node ultimately produces its output (see module documentation for more details). The state is stored in the `ElfiModel` so that serializing the model is straightforward. `NodeReference` and its subclasses are convenience classes that make it easy to manipulate the state. They only contain a reference to the corresponding state in the `ElfiModel`. Examples -------- :: elfi.Simulator(fn, arg1, ...) creates a node to `self.model.source_net` with the following state dictionary:: dict(_operation=fn, _class=elfi.Simulator, ...) and adds and edge from arg1 to to the new simulator node in the `self.model.source_net`. """ def __init__(self, *parents, state=None, model=None, name=None): """Initialize a NodeReference. Parameters ---------- parents : variable, optional name : string, optional If name ends in an asterisk '*' character, the asterisk will be replaced with a random string and the name is ensured to be unique within the model. state : dict, optional model : elfi.ElfiModel, optional Examples -------- >>> node = NodeReference(name='name*') # doctest: +SKIP >>> node.name # doctest: +SKIP name_1f4rgh """ state = state or {} state['_class'] = self.__class__ model = self._determine_model(model, parents) name = self._give_name(name, model) model.add_node(name, state) self._init_reference(name, model) self._add_parents(parents) def _add_parents(self, parents): for parent in parents: if not isinstance(parent, NodeReference): parent_name = self._new_name('_' + self.name) parent = Constant(parent, name=parent_name, model=self.model) self.model.add_edge(parent.name, self.name) def _determine_model(self, model, parents): if not isinstance(model, ElfiModel) and model is not None: return ValueError('Invalid model passed {}'.format(model)) # Check that parents belong to the same model and inherit the model if needed for p in parents: if isinstance(p, NodeReference): if model is None: model = p.model elif model != p.model: raise ValueError('Parents are from different models!') if model is None: model = get_default_model() return model @property def parents(self): """Get all positional parent nodes (inputs) of this node. Returns ------- parents : list List of positional parents """ return [self.model[p] for p in self.model.get_parents(self.name)] @classmethod def reference(cls, name, model): """Construct a reference for an existing node in the model. Parameters ---------- name : string name of the node model : ElfiModel Returns ------- NodePointer instance """ instance = cls.__new__(cls) instance._init_reference(name, model) return instance def become(self, other_node): """Make this node become the `other_node`. The children of this node will be preserved. Parameters ---------- other_node : NodeReference """ if other_node.model is not self.model: raise ValueError('The other node belongs to a different model') self.model.update_node(self.name, other_node.name) # Update the reference class _class = self.state.get('_class', NodeReference) if not isinstance(self, _class): self.__class__ = _class # Update also the other node reference other_node.name = self.name other_node.model = self.model def _init_reference(self, name, model): """Initialize all internal variables of the instance. Parameters ---------- name : name of the node in the model model : ElfiModel """ self.name = name self.model = model def generate(self, batch_size=1, with_values=None): """Generate output from this node. Useful for testing. Parameters ---------- batch_size : int, optional with_values : dict, optional """ result = self.model.generate(batch_size, self.name, with_values=with_values) return result[self.name] def _give_name(self, name, model): if name is not None: if name[-1] == '*': # Generate unique name name = self._new_name(name[:-1], model) return name try: name = self._inspect_name() except BaseException: logger.warning("Automatic name inspection failed, using a random name " "instead. This may be caused by using an interactive Python " "shell. You can provide a name parameter e.g. " "elfi.Prior('uniform', name='nodename') to suppress this " "warning.") name = None if name is None or model.has_node(name): name = self._new_name(model=model) return name def _inspect_name(self): """Magic method that tries to infer the name from the code. Does not work in interactive python shell. """ # Test if context info is available and try to give the same name as the variable # Please note that this is only a convenience method which is not guaranteed to # work in all cases. If you require a specific name, pass the name argument. frame = inspect.currentframe() if frame is None: return None # Frames are available # Take the callers frame frame = frame.f_back.f_back.f_back info = inspect.getframeinfo(frame, 1) # Skip super calls to find the assignment frame while re.match(r'\s*super\(', info.code_context[0]): frame = frame.f_back info = inspect.getframeinfo(frame, 1) # Match simple direct assignment with the class name, no commas or semicolons # Also do not accept a name starting with an underscore rex = r'\s*([^\W_][\w]*)\s*=\s*\w?[\w\.]*{}\('.format(self.__class__.__name__) match = re.match(rex, info.code_context[0]) if match: name = match.groups()[0] return name else: return None def _new_name(self, basename='', model=None): model = model or self.model if not basename: basename = '_{}'.format(self.__class__.__name__.lower()) while True: name = "{}_{}".format(basename, random_name()) if not model.has_node(name): break return name @property def state(self): """Return the state dictionary of the node.""" if self.model is None: raise ValueError('{} {} is not initialized'.format(self.__class__.__name__, self.name)) return self.model.get_node(self.name) def __getitem__(self, item): """Get item from the state dict of the node.""" return self.state[item] def __setitem__(self, item, value): """Set item into the state dict of the node.""" self.state[item] = value def __repr__(self): """Return a representation comprised of the names of the class and the node.""" return "{}(name='{}')".format(self.__class__.__name__, self.name) def __str__(self): """Return the name of the node.""" return self.name class StochasticMixin(NodeReference): """Define the inheriting node as stochastic. Operations of stochastic nodes will receive a `random_state` keyword argument. """ def __init__(self, *parents, state, **kwargs): # Flag that this node is stochastic state['_stochastic'] = True super(StochasticMixin, self).__init__(*parents, state=state, **kwargs) class ObservableMixin(NodeReference): """Define the inheriting node as observable. Observable nodes accept observed keyword argument. In addition the compiled model will contain a sister node that contains the observed value or will compute the observed value from the observed values of it's parents. """ def __init__(self, *parents, state, observed=None, **kwargs): # Flag that this node can be observed state['_observable'] = True super(ObservableMixin, self).__init__(*parents, state=state, **kwargs) # Set the observed value if observed is not None: self.model.observed[self.name] = observed @property def observed(self): obs_name = observed_name(self.name) result = self.model.generate(0, obs_name) return result[obs_name] # User interface nodes class Constant(NodeReference): """A node holding a constant value.""" def __init__(self, value, **kwargs): """Initialize a node holding a constant value. Parameters ---------- value The constant value of the node. """ state = dict(_output=value) super(Constant, self).__init__(state=state, **kwargs) class Operation(NodeReference): """A generic deterministic operation node.""" def __init__(self, fn, *parents, **kwargs): """Initialize a node that performs an operation. Parameters ---------- fn : callable The operation of the node. """ state = dict(_operation=fn) super(Operation, self).__init__(*parents, state=state, **kwargs) class RandomVariable(StochasticMixin, NodeReference): """A node that draws values from a random distribution.""" def __init__(self, distribution, *params, size=None, **kwargs): """Initialize a node that represents a random variable. Parameters ---------- distribution : str or scipy-like distribution object params : params of the distribution size : int, tuple or None, optional Output size of a single random draw. """ state = dict(distribution=distribution, size=size, _uses_batch_size=True) state['_operation'] = self.compile_operation(state) super(RandomVariable, self).__init__(*params, state=state, **kwargs) @staticmethod def compile_operation(state): """Compile a callable operation that samples the associated distribution. Parameters ---------- state : dict """ size = state['size'] distribution = state['distribution'] if not (size is None or isinstance(size, tuple)): size = (size, ) # Note: sending the scipy distribution object also pickles the global numpy random # state with it. If this needs to be avoided, the object needs to be constructed # on the worker. if isinstance(distribution, str): distribution = scipy_from_str(distribution) if not hasattr(distribution, 'rvs'): raise ValueError("Distribution {} " "must implement a rvs method".format(distribution)) op = partial(rvs_from_distribution, distribution=distribution, size=size) return op @property def distribution(self): """Return the distribution object.""" distribution = self.state['attr_dict']['distribution'] if isinstance(distribution, str): distribution = scipy_from_str(distribution) return distribution @property def size(self): """Return the size of the output from the distribution.""" return self['size'] def __repr__(self): """Return a string representation of the node.""" d = self.distribution if isinstance(d, str): name = "'{}'".format(d) elif hasattr(d, 'name'): name = "'{}'".format(d.name) elif isinstance(d, type): name = d.__name__ else: name = d.__class__.__name__ return super(RandomVariable, self).__repr__()[0:-1] + ", {})".format(name) class Prior(RandomVariable): """A parameter node of an ELFI graph.""" def __init__(self, distribution, *params, size=None, **kwargs): """Initialize a Prior. Parameters ---------- distribution : str, object Any distribution from `scipy.stats`, either as a string or an object. Objects must implement at least an `rvs` method with signature `rvs(*parameters, size, random_state)`. Can also be a custom distribution object that implements at least an `rvs` method. Many of the algorithms also require the `pdf` and `logpdf` methods to be available. size : int, tuple or None, optional Output size of a single random draw. params Parameters of the prior distribution kwargs Notes ----- The parameters of the `scipy` distributions (typically `loc` and `scale`) must be given as positional arguments. Many algorithms (e.g. SMC) also require a `pdf` method for the distribution. In general the definition of the distribution is a subset of `scipy.stats.rv_continuous`. Scipy distributions: https://docs.scipy.org/doc/scipy-0.19.0/reference/stats.html """ super(Prior, self).__init__(distribution, *params, size=size, **kwargs) self['attr_dict']['_parameter'] = True class Simulator(StochasticMixin, ObservableMixin, NodeReference): """A simulator node of an ELFI graph. Simulator nodes are stochastic and may have observed data in the model. """ def __init__(self, fn, *params, **kwargs): """Initialize a Simulator. Parameters ---------- fn : callable Simulator function with a signature `sim(*params, batch_size, random_state)` params Input parameters for the simulator. kwargs """ state = dict(_operation=fn, _uses_batch_size=True) super(Simulator, self).__init__(*params, state=state, **kwargs) class Summary(ObservableMixin, NodeReference): """A summary node of an ELFI graph. Summary nodes are deterministic operations associated with the observed data. if their parents hold observed data it will be automatically transformed. """ def __init__(self, fn, *parents, **kwargs): """Initialize a Summary. Parameters ---------- fn : callable Summary function with a signature `summary(*parents)` parents Input data for the summary function. kwargs """ if not parents: raise ValueError('This node requires that at least one parent is specified.') state = dict(_operation=fn) super(Summary, self).__init__(*parents, state=state, **kwargs) class Discrepancy(NodeReference): """A discrepancy node of an ELFI graph. This class provides a convenience node for custom distance operations. """ def __init__(self, discrepancy, *parents, **kwargs): """Initialize a Discrepancy. Parameters ---------- discrepancy : callable Signature of the discrepancy function is of the form: `discrepancy(summary_1, summary_2, ..., observed)`, where summaries are arrays containing `batch_size` simulated values and observed is a tuple (observed_summary_1, observed_summary_2, ...). The callable object should return a vector of discrepancies between the simulated summaries and the observed summaries. *parents Typically the summaries for the discrepancy function. **kwargs See Also -------- elfi.Distance : creating common distance discrepancies. """ if not parents: raise ValueError('This node requires that at least one parent is specified.') state = dict(_operation=discrepancy, _uses_observed=True) super(Discrepancy, self).__init__(*parents, state=state, **kwargs) # TODO: add weights class Distance(Discrepancy): """A convenience class for the discrepancy node.""" def __init__(self, distance, *summaries, **kwargs): """Initialize a distance node of an ELFI graph. This class contains many common distance implementations through scipy. Parameters ---------- distance : str, callable If string it must be a valid metric from `scipy.spatial.distance.cdist`. Is a callable, the signature must be `distance(X, Y)`, where X is a n x m array containing n simulated values (summaries) in rows and Y is a 1 x m array that contains the observed values (summaries). The callable should return a vector of distances between the simulated summaries and the observed summaries. *summaries Summary nodes of the model. **kwargs Additional parameters may be required depending on the chosen distance. See the scipy documentation. (The support is not exhaustive.) ELFI-related kwargs are passed on to elfi.Discrepancy. Examples -------- >>> d = elfi.Distance('euclidean', summary1, summary2...) # doctest: +SKIP >>> d = elfi.Distance('minkowski', summary, p=1) # doctest: +SKIP Notes ----- Your summaries need to be scalars or vectors for this method to work. The summaries will be first stacked to a single 2D array with the simulated summaries in the rows for every simulation and the distance is taken row wise against the corresponding observed summary vector. Scipy distances: https://docs.scipy.org/doc/scipy/reference/generated/generated/scipy.spatial.distance.cdist.html # noqa See Also -------- elfi.Discrepancy : A general discrepancy node """ if not summaries: raise ValueError("This node requires that at least one parent is specified.") if isinstance(distance, str): cdist_kwargs = dict(metric=distance) if distance == 'wminkowski' and 'w' not in kwargs.keys(): raise ValueError('Parameter w must be specified for distance=wminkowski.') elif distance == 'seuclidean' and 'V' not in kwargs.keys(): raise ValueError('Parameter V must be specified for distance=seuclidean.') elif distance == 'mahalanobis' and 'VI' not in kwargs.keys(): raise ValueError('Parameter VI must be specified for distance=mahalanobis.') # extract appropriate keyword arguments (depends on distance, not exhaustive!) for key in ['p', 'w', 'V', 'VI']: if key in kwargs.keys(): cdist_kwargs[key] = kwargs.pop(key) dist_fn = partial(scipy.spatial.distance.cdist, **cdist_kwargs) else: dist_fn = distance discrepancy = partial(distance_as_discrepancy, dist_fn) super(Distance, self).__init__(discrepancy, *summaries, **kwargs) # Store the original passed distance self.state['distance'] = distance class AdaptiveDistance(Discrepancy): """Euclidean (2-norm) distance calculation with adaptive scale. Summary statistics are normalised to vary on similar scales. References ---------- Prangle D (2017). Adapting the ABC Distance Function. Bayesian Analysis 12(1):289-309, 2017. https://projecteuclid.org/euclid.ba/1460641065 """ def __init__(self, *summaries, **kwargs): """Initialize an AdaptiveDistance. Parameters ---------- *summaries Summary nodes of the model. **kwargs Notes ----- Your summaries need to be scalars or vectors for this method to work. The summaries will be first stacked to a single 2D array with the simulated summaries in the rows for every simulation and the distances are taken row wise against the corresponding observed summary vector. """ if not summaries: raise ValueError("This node requires that at least one parent is specified.") discrepancy = partial(distance_as_discrepancy, self.nested_distance) super(AdaptiveDistance, self).__init__(discrepancy, *summaries, **kwargs) distance = partial(scipy.spatial.distance.cdist, metric='euclidean') self.state['attr_dict']['distance'] = distance self.init_state() def init_state(self): """Initialise adaptive distance state.""" self.state['w'] = [None] dist_fn = partial(self.state['attr_dict']['distance'], w=None) self.state['distance_functions'] = [dist_fn] self.state['store'] = 3 * [None] self.init_adaptation_round() def init_adaptation_round(self): """Initialise data stores to start a new adaptation round.""" if 'store' not in self.state: self.init_state() self.state['store'][0] = 0 self.state['store'][1] = 0 self.state['store'][2] = 0 def add_data(self, *data): """Add summaries data to update estimated standard deviation. Parameters ---------- *data Summary nodes output data. Notes ----- Standard deviation is computed with Welford's online algorithm. """ data = np.column_stack(data) self.state['store'][0] += len(data) delta_1 = data - self.state['store'][1] self.state['store'][1] += np.sum(delta_1, axis=0) / self.state['store'][0] delta_2 = data - self.state['store'][1] self.state['store'][2] += np.sum(delta_1 * delta_2, axis=0) self.state['scale'] = np.sqrt(self.state['store'][2]/self.state['store'][0]) def update_distance(self): """Update distance based on accumulated summaries data.""" weis = 1/self.state['scale'] self.state['w'].append(weis) self.init_adaptation_round() dist_fn = partial(self.state['attr_dict']['distance'], w=weis**2) self.state['distance_functions'].append(dist_fn) def nested_distance(self, u, v): """Compute distance between simulated and observed summaries. Parameters ---------- u : ndarray 2D array with M x (num summaries) observations v : ndarray 2D array with 1 x (num summaries) observations Returns ------- ndarray 2D array with M x (num distance functions) distances """ return np.column_stack([d(u, v) for d in self.state['distance_functions']])
#!/usr/bin/python import numpy as np import matplotlib.pyplot as plt import scipy.special as spc ''' We have oribtals Phi_1 = c_a * chi_a + c_b * chi_b Phi_2 = c_c * chi_c + c_d * chi_d where chi_i are gaussian type basis functions and c_i are expansion coefficients electron density of molecular orbitals Rho_1 = <phi_1|phi_1> can be expressed using auxuliary gaussian basisfunctionc rho_ab = chi_a * chi_b Rho_1 = sim_ab c_a*c_b*S_ab * rho_ab = sim_ab q_ab * rho_ab where q_ab = c_a*c_b*S_ab is charge of the auxuliary electron blob with S_ab being overlap integral between the basis functions chi_a*chi_b we can use collective index i=ab and j=cd qi = Sab*ca*cb qj = Scd*cc*cd The repulsion between blobs qi,qj can be expressed as qi*qj / = ''' const_hbar_SI = 1.054571817e-34; #< [J.s] #6.582119569e-16 # [eV/s] const_Me_SI = 9.10938356e-31; #< [kg] const_e_SI = 1.602176620898e-19; #< [Coulomb] const_eps0_SI = 8.854187812813e-12; #< [F.m = Coulomb/(Volt*m)] const_eV_SI = 1.602176620898e-19; #< [J] const_Angstroem_SI = 1.0e-10; const_K_SI = const_hbar_SI*const_hbar_SI/const_Me_SI; const_El_SI = const_e_SI*const_e_SI/(4.*np.pi*const_eps0_SI); const_Ry_SI = 0.5 * const_El_SI*const_El_SI/const_K_SI; const_Ry_eV = 13.6056925944; const_El_eVA = const_El_SI/( const_e_SI*const_Angstroem_SI ); const_K_eVA = (const_El_eVA*const_El_eVA)/(2*const_Ry_eV); const_Ke_eVA = const_K_eVA*1.5; def Coulomb( r, s ): ''' double ir = 1./r; //(r+1.e-8); double is = 1./s; //(s+1.e-8); double r_s = r*is; double r_2s = M_SQRT1_2 * r_s; // This is for charge-density blobs (assuming si,sj comes from charge denisty) //double r_2s = r_s; //double r_2s = M_SQRT2 * r_s; // This is for wavefunction blobs (assuming si,sj comes from wavefunction) double e1 = ir * const_El_eVA; double e2 = erf( r_2s ); // ToDo : this should be possible to compute together !!! double g = exp( -r_2s*r_2s ) * const_F2; double f1 = -e1*ir; double f2 = g*is*0.5; double e1f2 = e1*f2; fr = (f1*e2 + e1f2)*ir; fs = e1f2 *r_s * is; return e1 * e2; ''' # ToDo: maybe we can do without s=sqrt(s2) and r=sqrt(r2) #constexpr const double const_F2 = -2.*sqrt(2./np.pi); #const_F2 = M_2_SQRTPI * M_SQRT2; M_SQRT2 = 1.41421356237 M_SQRT1_2 = 1/M_SQRT2 const_F2 = 2*np.sqrt(2/np.pi) ir = 1./r #(r+1.e-8); is_ = 1./s #(s+1.e-8); r_s = r*is_ r_2s = M_SQRT1_2 * r_s; # This is for charge-density blobs (assuming si,sj comes from charge denisty) #r_2s = r_s; #r_2s = M_SQRT2 * r_s; # This is for wavefunction blobs (assuming si,sj comes from wavefunction) e1 = ir * const_El_eVA e2 = spc.erf( r_2s ) g = np.exp( -r_2s*r_2s ) * const_F2 f1 = -e1*ir #f2 = g*is_ # This is for wavefunction blobs (assuming si,sj comes from wavefunction) f2 = g*is_*0.5 # This is for charge-density blobs (assuming si,sj comes from charge denisty) e1f2 = e1*f2 fr = (f1*e2 + e1f2)*ir fs = e1f2 *r_s * is_ E = e1 * e2 #for i in range(len(r)): # print "Gauss::Coulomb r %g s %g E %g fr %g " %(r[i],s, E[i], fr[i] ) return E,fr,fs def product3D_s_deriv( si,pi, sj,pj ): ''' returns S, p, dSsi, dSsj, dXsi, dXsj, dXxi, dXxj, dCsi, dCsj, dCr ''' si2 = si*si sj2 = sj*sj s2 = si2 + sj2 is2 = 1/s2 is4 = is2*is2 sqrtis2 = np.sqrt(is2) s = si*sj*sqrtis2 # size p = pj*(si2*is2) + pi*(sj2*is2) # position #X = ( si2*xj + sj2*xi )*inv; inv3_2 = sqrtis2*is2 dSsi = sj*sj2*inv3_2 dSsj = si*si2*inv3_2 dp = pi-pj dXsi = dp*(-2*si*sj2*is4) dXsj = dp*( 2*sj*si2*is4) dXxi = sj2*is2 dXxj = si2*is2 #r2 = dp.norm2() r2 = dp*dp a2 = 2.*(si*sj)*is2 a = np.sqrt(a2) e1 = a2*a e2 = np.exp( -r2*is2 ) f1 = 3.*a * (si2-sj2)*is4 f2 = 2.*e2 * r2*is4 dCsi = e1*f2*si - e2*f1*sj dCsj = e1*f2*sj + e2*f1*si C = e1*e2 # Overlap dCr = C*(-2.*is2) # derivative is correct, tested ! # TODO : How is it possible that derivative is the same as value (just rescaled) ???? #double logC = wxi*xi + wxj*xj - wx*X; #double C = np.exp(-logC) * Ci * Cj #try: # for i in range(len(r2)): # print "product3D_s_deriv r %g s %g S %g dS %g " %(np.sqrt(r2[i]),s, S[i], dCr[i] ) #except: # pass return C,s,p, dCr*dp, (dSsi,dXsi,dXxi,dCsi), (dSsj,dXsj,dXxj,dCsj) def checkNumDeriv( x, func, dfunc, name ): dy = dfunc( x ) y = func(x) dynum,xnum = numDeriv( x, y ) #print y #print "y.shape, ynum.shape ", y.shape, ynum.shape plotVsNum( x,dy,dynum, name ) plt.plot(x, y,'-.', label=name+"_F" ) if __name__ == "__main__": #s = np.arange( 0.1, 5.0, 0.05 ) #rs = np.arange( 0.1, 5.0, 0.05 ) #S = np.arange( 1.25, 5.0, 0.05 ) #r = 1.5 + 0.*s ca = 1.0 cb = 1.0 cc = 1.0 cd = 1.0 sa = 1.0 sb = 1.0 sc = 1.0 sd = 1.0 dx = 0.1 xa = np.arange( 0.01, 3.0, dx ) xb = 0.0 xc = -1.5 xd = 0.0 xs_ = (xa[1:]+xa[:-1])*0.5 # overlaps Sab, si, xab, dQab, dA, dB = product3D_s_deriv( sa,xa, sb,xb ) Scd, sj, xcd, dQcd, dC, dD = product3D_s_deriv( sc,xc, sd,xd ) # coulomb s2 = si*si + sj*sj s = np.sqrt(s2) r = xab-xcd e, fx, fs = Coulomb( r, s ) dXxi = dA[2] + xa*0 plt.plot( xa, Sab , label='Sab' ) plt.plot( xa, r , label='r' ) #plt.plot( xa, dQab, label='dSab_ana' ) #plt.plot( xs_, (Sab[1:]-Sab[:-1])/dx,':', label='dSab_num' ) qij = 4*Scd*Sab #qij = Sab dQij = 4*Scd*dQab # Q: Why we dont need derivatives of charge ???? #Fx = -fx*0.5*dA[1] # This works for zero initial distance between blobs Fx = fx*r*dXxi Fpi = fx*r*qij # see fxi = Fpi*dXxi print "Scd, 4*Scd ", Scd, 4*Scd print "For some reason each charge is scaled by 2.0" E = e*qij F = fxi + e*dQij # total derivtive F = dE/dx = d(e*qi)/dx # Note: e,fx=de/dx are NOT multiplied by charge Qij # Total force Fx = dE/dx = d(e*q)/dx = q*(de/dx) + e*(dq/dx) for i in range(len(r)): #print "Gauss::Coulomb r %g s %g E %g Fx %g fx %g " %(r[i], s, E[i], Fx[i], fx[i] ) #print "fromRho r %g s %g E %g Fx %g fx %g " %((xa-xb)[i], s, E[i], Fx[i], fx[i] ) #print "CoublombElement r %g s %g E %g fr %g qij %g frq %g fij %g" %((xa-xb)[i], s, e[i], fx[i], qij[i], (fx*qij)[i], (fx*qij*r)[i] ) #print "fromRho r %g s %g | E %g e %g qij %g(%g) | Fx %g Fpi %g dQij %g " %((xa-xb)[i], si, E[i],e[i]*2*Scd,qij[i],Sab[i], Fx[i], Fpi[i],dQij[i] ) print "fromRho r %g Eqi %g Cij %g | Fpi %g dXxi %g fxi %g Fxi %g " %((xa-xb)[i], e[i]*2*Scd, Sab[i], Fpi[i], dXxi[i], fxi[i], F[i] ); pass # ==== Derivative of Coulomb term without considering changes of Charges #plt.plot( xa, e , label='e' ) #plt.plot( xa, Fx, label='dedx_ana' ) #plt.plot( xs_, (e[1:]-e[:-1])/dx,':', label='dedx_num' ) # ==== Derivative of Coulomb term with considering the Charges plt.plot( xa, E, label='E' ) plt.plot( xa, F, label='dEdx_ana' ) plt.plot( xs_, (E[1:]-E[:-1])/dx,':', label='dEdx_num', lw=3 ) plt.plot( xa, fxi, label='fxi' ) #plt.plot( xa, fx, label='fx' ) #plt.plot( xa, dXxi, label='dXxi' ) plt.grid() plt.legend() plt.show()