marksaroufim commited on
Commit
35b5dc4
·
1 Parent(s): a8c8816
Files changed (2) hide show
  1. output_dataset.parquet +2 -2
  2. par.py +71 -0
output_dataset.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dac518fe3d179e85c74aea8d6a6285047e1679485e8efcaafb06ac0d13e25955
3
- size 22461062
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca47ac46bfc9643c362f1e7ff017d807e587320b45e66c147a257421c20cbad6
3
+ size 22455970
par.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pandas as pd
3
+ import pyarrow as pa
4
+ import pyarrow.parquet as pq
5
+ import argparse
6
+ import re
7
+
8
+ def encode_file(file_path):
9
+ """Read file content as string."""
10
+ with open(file_path, 'r', encoding='utf-8') as file:
11
+ return file.read()
12
+
13
+ def extract_images(markdown_content):
14
+ """Extract PHOTO_IDs from markdown files and return as a list."""
15
+ return re.findall(r'\{\{PHOTO_ID:(\d+)\|WIDTH:\d+\}\}', markdown_content)
16
+
17
+ def collect_data(directory):
18
+ data = []
19
+ # Debugging: Print directory content
20
+ print(f"Directory contents: {os.listdir(directory)}")
21
+
22
+ # Create a dictionary to map PHOTO_ID to actual image filenames
23
+ image_files = {}
24
+ for filename in os.listdir(directory):
25
+ if filename.endswith('.jpg'):
26
+ photo_id_match = re.search(r'(\d+)', filename)
27
+ if photo_id_match:
28
+ photo_id = photo_id_match.group(1)
29
+ image_files[photo_id] = filename
30
+
31
+ # Debugging: Print image file mappings
32
+ print(f"Image Files: {image_files}")
33
+
34
+ for filename in os.listdir(directory):
35
+ problem_id = filename.split('.')[0]
36
+ row = {'Problem ID': problem_id, 'Images': []}
37
+ for file in os.listdir(directory):
38
+ if file.startswith(problem_id):
39
+ file_type = file.split('.')[-1]
40
+ file_path = os.path.join(directory, file)
41
+ if file_type in ['in', 'out', 'sol.md' 'cpp', 'md']:
42
+ content = encode_file(file_path)
43
+ row[file_type] = content
44
+ if file_type in ['md', 'sol.md']:
45
+ image_ids = extract_images(content)
46
+ # Debugging: Print extracted image IDs
47
+ print(f"Extracted Image IDs from {file_path}: {image_ids}")
48
+ row['Images'] = [image_files[id] for id in image_ids if id in image_files]
49
+ data.append(row)
50
+
51
+ # Debugging: Print final data before conversion to verify
52
+ # print(f"Final Data Collected: {data}")
53
+
54
+ return data
55
+
56
+ def create_parquet_file(data, output_file):
57
+ df = pd.DataFrame(data)
58
+ table = pa.Table.from_pandas(df)
59
+ pq.write_table(table, output_file)
60
+
61
+ def main():
62
+ parser = argparse.ArgumentParser(description='Convert dataset to Parquet format.')
63
+ parser.add_argument('directory', type=str, help='Directory containing the dataset files.')
64
+ parser.add_argument('-o', '--output', type=str, default='output_dataset.parquet', help='Output Parquet file name.')
65
+ args = parser.parse_args()
66
+
67
+ data = collect_data(args.directory)
68
+ create_parquet_file(data, args.output)
69
+
70
+ if __name__ == "__main__":
71
+ main()