Datasets:
Delete Molecule3D preprocessing script.py
Browse files
Molecule3D preprocessing script.py
DELETED
@@ -1,257 +0,0 @@
|
|
1 |
-
# This is a script for Mole3D dataset preprocessing
|
2 |
-
|
3 |
-
# 1. Load modules
|
4 |
-
|
5 |
-
pip install rdkit
|
6 |
-
pip install molvs
|
7 |
-
|
8 |
-
import pandas as pd
|
9 |
-
import numpy as np
|
10 |
-
import urllib.request
|
11 |
-
import tqdm
|
12 |
-
import rdkit
|
13 |
-
from rdkit import Chem
|
14 |
-
import os
|
15 |
-
import molvs
|
16 |
-
import csv
|
17 |
-
import json
|
18 |
-
|
19 |
-
standardizer = molvs.Standardizer()
|
20 |
-
fragment_remover = molvs.fragment.FragmentRemover()
|
21 |
-
|
22 |
-
|
23 |
-
# 2. Download the original dataset
|
24 |
-
|
25 |
-
# Original data
|
26 |
-
# Molecule3D: A Benchmark for Predicting 3D Geometries from Molecular Graphs
|
27 |
-
# Zhao Xu, Youzhi Luo, Xuan Zhang, Xinyi Xu, Yaochen Xie, Meng Liu, Kaleb Dickerson, Cheng Deng, Maho Nakata, Shuiwang Ji
|
28 |
-
|
29 |
-
# Please download the sdf files from the link below:
|
30 |
-
# https://drive.google.com/drive/u/2/folders/1y-EyoDYMvWZwClc2uvXrM4_hQBtM85BI
|
31 |
-
|
32 |
-
# And please save the files to your local directory
|
33 |
-
|
34 |
-
|
35 |
-
# 3. This part adds SMILES in addition to SDF and save CSV files
|
36 |
-
|
37 |
-
# List of file ranges and corresponding SDF/CSV filenames
|
38 |
-
file_ranges = [
|
39 |
-
(0, 1000000),
|
40 |
-
(1000001, 2000000),
|
41 |
-
(2000001, 3000000),
|
42 |
-
(3000001, 3899647)
|
43 |
-
]
|
44 |
-
|
45 |
-
# Base directory for input and output files
|
46 |
-
base_dir = '/YOUR LOCAL DIRECTORY/' # Please change this part
|
47 |
-
|
48 |
-
for start, end in file_ranges:
|
49 |
-
sdf_file = os.path.join(base_dir, f'combined_mols_{start}_to_{end}.sdf')
|
50 |
-
output_csv = os.path.join(base_dir, f'smiles_{start}_{end}.csv')
|
51 |
-
|
52 |
-
# Read the SDF file
|
53 |
-
suppl = Chem.SDMolSupplier(sdf_file)
|
54 |
-
|
55 |
-
# Write to CSV file with SMILES
|
56 |
-
with open(output_csv, mode='w', newline='') as file:
|
57 |
-
writer = csv.writer(file)
|
58 |
-
writer.writerow(['index', 'SMILES'])
|
59 |
-
|
60 |
-
for idx, mol in enumerate(suppl):
|
61 |
-
if mol is None:
|
62 |
-
continue
|
63 |
-
|
64 |
-
smiles = Chem.MolToSmiles(mol)
|
65 |
-
writer.writerow([f'{idx + start + 1}', smiles])
|
66 |
-
|
67 |
-
|
68 |
-
''' These files would be stored:
|
69 |
-
smiles_sdf_0_1000000.csv
|
70 |
-
smiles_sdf_1000001_2000000.csv
|
71 |
-
smiles_sdf_2000001_3000000.csv
|
72 |
-
smiles_sdf_3000001_3899647.csv'''
|
73 |
-
|
74 |
-
|
75 |
-
# 4. Check if there are any missing SMILES or sdf
|
76 |
-
|
77 |
-
df1 = pd.read_csv(f'{base_dir}/smiles_sdf_0_1000000.csv') # Suppose that you have already change the 'base_dir' above
|
78 |
-
df2 = pd.read_csv(f'{base_dir}/smiles_sdf_1000001_2000000.csv')
|
79 |
-
df3 = pd.read_csv(f'{base_dir}/smiles_sdf_2000001_3000000.csv')
|
80 |
-
df4 = pd.read_csv(f'{base_dir}/smiles_sdf_3000001_3899647.csv')
|
81 |
-
|
82 |
-
missing_1 = df1[df1.isna().any(axis = 1)]
|
83 |
-
missing_2 = df2[df2.isna().any(axis = 1)]
|
84 |
-
missing_3 = df3[df3.isna().any(axis = 1)]
|
85 |
-
missing_4 = df4[df4.isna().any(axis = 1)]
|
86 |
-
|
87 |
-
print('For smiles_sdf_0_1000000.csv file : ', missing_1)
|
88 |
-
print('For smiles_sdf_1000001_2000000.csv file : ', missing_2)
|
89 |
-
print('For smiles_sdf_2000001_3000000.csv file : ', missing_3)
|
90 |
-
print('For smiles_sdf_3000001_3899647.csv file : ', missing_4)
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
# 5. Sanitize the molecules with MolVS
|
95 |
-
|
96 |
-
# This part would take a few hours
|
97 |
-
|
98 |
-
df1['X'] = [ \
|
99 |
-
rdkit.Chem.MolToSmiles(
|
100 |
-
fragment_remover.remove(
|
101 |
-
standardizer.standardize(
|
102 |
-
rdkit.Chem.MolFromSmiles(
|
103 |
-
smiles))))
|
104 |
-
for smiles in df1['SMILES']]
|
105 |
-
|
106 |
-
problems = []
|
107 |
-
for index, row in tqdm.tqdm(df1.iterrows()):
|
108 |
-
result = molvs.validate_smiles(row['X'])
|
109 |
-
if len(result) == 0:
|
110 |
-
continue
|
111 |
-
problems.append( (row['X'], result) )
|
112 |
-
|
113 |
-
# Most are because it includes the salt form and/or it is not neutralized
|
114 |
-
for result, alert in problems:
|
115 |
-
print(f"SMILES: {result}, problem: {alert[0]}")
|
116 |
-
|
117 |
-
df1.to_csv('smiles_sdf_0_1000000_sanitized.csv')
|
118 |
-
|
119 |
-
|
120 |
-
###
|
121 |
-
df2['X'] = [ \
|
122 |
-
rdkit.Chem.MolToSmiles(
|
123 |
-
fragment_remover.remove(
|
124 |
-
standardizer.standardize(
|
125 |
-
rdkit.Chem.MolFromSmiles(
|
126 |
-
smiles))))
|
127 |
-
for smiles in df2['SMILES']]
|
128 |
-
|
129 |
-
problems = []
|
130 |
-
for index, row in tqdm.tqdm(df2.iterrows()):
|
131 |
-
result = molvs.validate_smiles(row['X'])
|
132 |
-
if len(result) == 0:
|
133 |
-
continue
|
134 |
-
problems.append( (row['X'], result) )
|
135 |
-
|
136 |
-
# Most are because it includes the salt form and/or it is not neutralized
|
137 |
-
for result, alert in problems:
|
138 |
-
print(f"SMILES: {result}, problem: {alert[0]}")
|
139 |
-
|
140 |
-
df2.to_csv('smiles_sdf_1000001_2000000_sanitized.csv')
|
141 |
-
|
142 |
-
|
143 |
-
###
|
144 |
-
df3['X'] = [ \
|
145 |
-
rdkit.Chem.MolToSmiles(
|
146 |
-
fragment_remover.remove(
|
147 |
-
standardizer.standardize(
|
148 |
-
rdkit.Chem.MolFromSmiles(
|
149 |
-
smiles))))
|
150 |
-
for smiles in df3['SMILES']]
|
151 |
-
|
152 |
-
problems = []
|
153 |
-
for index, row in tqdm.tqdm(df3.iterrows()):
|
154 |
-
result = molvs.validate_smiles(row['X'])
|
155 |
-
if len(result) == 0:
|
156 |
-
continue
|
157 |
-
problems.append( (row['X'], result) )
|
158 |
-
|
159 |
-
# Most are because it includes the salt form and/or it is not neutralized
|
160 |
-
for result, alert in problems:
|
161 |
-
print(f"SMILES: {result}, problem: {alert[0]}")
|
162 |
-
|
163 |
-
df3.to_csv('smiles_sdf_2000001_3000000_sanitized.csv')
|
164 |
-
|
165 |
-
|
166 |
-
###
|
167 |
-
df4['X'] = [ \
|
168 |
-
rdkit.Chem.MolToSmiles(
|
169 |
-
fragment_remover.remove(
|
170 |
-
standardizer.standardize(
|
171 |
-
rdkit.Chem.MolFromSmiles(
|
172 |
-
smiles))))
|
173 |
-
for smiles in df4['SMILES']]
|
174 |
-
|
175 |
-
problems = []
|
176 |
-
for index, row in tqdm.tqdm(df4.iterrows()):
|
177 |
-
result = molvs.validate_smiles(row['X'])
|
178 |
-
if len(result) == 0:
|
179 |
-
continue
|
180 |
-
problems.append( (row['X'], result) )
|
181 |
-
|
182 |
-
# Most are because it includes the salt form and/or it is not neutralized
|
183 |
-
for result, alert in problems:
|
184 |
-
print(f"SMILES: {result}, problem: {alert[0]}")
|
185 |
-
|
186 |
-
df4.to_csv('smiles_sdf_3000001_3899647_sanitized.csv')
|
187 |
-
|
188 |
-
|
189 |
-
# 6. Concatenate four sanitized files to one long file
|
190 |
-
|
191 |
-
sanitized1 = pd.read_csv('smiles_sdf_0_1000000_sanitized.csv')
|
192 |
-
sanitized2 = pd.read_csv('smiles_sdf_1000001_2000000_sanitized.csv')
|
193 |
-
sanitized3 = pd.read_csv('smiles_sdf_2000001_3000000_sanitized.csv')
|
194 |
-
sanitized4 = pd.read_csv('smiles_sdf_3000001_3899647_sanitized.csv')
|
195 |
-
|
196 |
-
smiles_sdf_concatenated = pd.concat([sanitized1, sanitized2, sanitized3, sanitized4], ignore_index=True)
|
197 |
-
|
198 |
-
smiles_sdf_concatenated.to_csv('smiles_sdf_concatenated.csv', index = False)
|
199 |
-
|
200 |
-
|
201 |
-
# 7. Combine the properties file to the smiles_sdf_concatenated.csv
|
202 |
-
|
203 |
-
smiles_sdf_concatenated = pd.read_csv('smiles_sdf_concatenated.csv')
|
204 |
-
|
205 |
-
properties = pd.read_csv('properties.csv') # This file is also from the link provided above
|
206 |
-
|
207 |
-
smiles_sdf_properties_concatenated = pd.concat([smiles_sdf_concatenated, properties], axis=1)
|
208 |
-
|
209 |
-
smiles_sdf_properties_concatenated.to_csv('smiles_sdf_properties.csv', index = False)
|
210 |
-
|
211 |
-
|
212 |
-
# 8. Rename the columns
|
213 |
-
|
214 |
-
columns_selected = smiles_sdf_properties_concatenated[['Unnamed: 0', 'X', 'sdf', 'cid', 'dipole x', 'dipole y', 'dipole z', 'homo', 'lumo', 'homolumogap', 'scf energy']]
|
215 |
-
columns_selected.rename(columns={'Unnamed: 0': 'index', 'X': 'SMILES'}, inplace=True)
|
216 |
-
|
217 |
-
columns_selected.to_csv('Molecule3D_final.csv', index=False)
|
218 |
-
|
219 |
-
|
220 |
-
# 9. Split the dataset by using radom split and scaffold split
|
221 |
-
|
222 |
-
# Random split
|
223 |
-
|
224 |
-
Molecule3D_final = pd.read_csv('Molecule3D_final.csv')
|
225 |
-
|
226 |
-
with open('random_split_inds.json', 'r') as f: # random or scaffold
|
227 |
-
split_data = json.load(f)
|
228 |
-
|
229 |
-
train_data = Molecule3D_final[Molecule3D_final['index'].isin(split_data['train'])]
|
230 |
-
test_data = Molecule3D_final[Molecule3D_final['index'].isin(split_data['test'])]
|
231 |
-
valid_data = Molecule3D_final[Molecule3D_final['index'].isin(split_data['valid'])]
|
232 |
-
|
233 |
-
train_data.to_csv('Molecule3D_random_train.csv', index=False)
|
234 |
-
test_data.to_csv('Molecule3D_random_test.csv', index=False)
|
235 |
-
valid_data.to_csv('Molecule3D_random_validation.csv', index=False)
|
236 |
-
|
237 |
-
print(f"Length of the train dataset: {len(train_data)} rows")
|
238 |
-
print(f"Length of the test dataset: {len(test_data)} rows")
|
239 |
-
print(f"Length of the valid dataset: {len(valid_data)} rows")
|
240 |
-
|
241 |
-
|
242 |
-
# Scaffold split
|
243 |
-
|
244 |
-
with open('scaffold_split_inds.json', 'r') as f: # random or scaffold
|
245 |
-
split_scaffold = json.load(f)
|
246 |
-
|
247 |
-
scaffold_train = Molecule3D_final[Molecule3D_final['index'].isin(split_scaffold['train'])]
|
248 |
-
scaffold_test = Molecule3D_final[Molecule3D_final['index'].isin(split_scaffold['test'])]
|
249 |
-
scaffold_valid = Molecule3D_final[Molecule3D_final['index'].isin(split_scaffold['valid'])]
|
250 |
-
|
251 |
-
scaffold_train.to_csv('Molecule3D_scaffold_train.csv', index=False)
|
252 |
-
scaffold_test.to_csv('Molecule3D_scaffold_test.csv', index=False)
|
253 |
-
scaffold_valid.to_csv('Molecule3D_scaffold_validation.csv', index=False)
|
254 |
-
|
255 |
-
print(f"Length of the train dataset: {len(scaffold_train)} rows")
|
256 |
-
print(f"Length of the test dataset: {len(scaffold_test)} rows")
|
257 |
-
print(f"Length of the valid dataset: {len(scaffold_valid)} rows")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|