Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -79,7 +79,9 @@ configs:
|
|
79 |
path: IUPAC_pKa/test-*
|
80 |
---
|
81 |
|
82 |
-
|
|
|
|
|
83 |
|
84 |
|
85 |
## Quickstart Usage
|
@@ -94,29 +96,26 @@ then, from within python load the datasets library
|
|
94 |
|
95 |
>>> import datasets
|
96 |
|
97 |
-
and load
|
98 |
|
99 |
-
>>>
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
Generating
|
104 |
-
Generating
|
105 |
|
106 |
and inspecting the loaded dataset
|
107 |
|
108 |
-
>>>
|
109 |
-
AqSolDB
|
110 |
DatasetDict({
|
111 |
-
test: Dataset({
|
112 |
-
features: ['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'Y', 'SD', 'Ocurrences', 'Group', 'MolWt', 'MolLogP', 'MolMR', 'HeavyAtomCount', 'NumHAcceptors', 'NumHDonors', 'NumHeteroatoms', 'NumRotatableBonds', 'NumValenceEl\
|
113 |
-
ectrons', 'NumAromaticRings', 'NumSaturatedRings', 'NumAliphaticRings', 'RingCount', 'TPSA', 'LabuteASA', 'BalabanJ', 'BertzCT', 'ClusterNo', 'MolCount', 'group'],
|
114 |
-
num_rows: 2494
|
115 |
-
})
|
116 |
train: Dataset({
|
117 |
-
features: ['
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
120 |
})
|
121 |
})
|
122 |
|
@@ -136,7 +135,7 @@ then load, featurize, split, fit, and evaluate the catboost model
|
|
136 |
from molflux.modelzoo import load_from_dict as load_model_from_dict
|
137 |
from molflux.metrics import load_suite
|
138 |
|
139 |
-
split_dataset = load_dataset('maomlab/
|
140 |
|
141 |
split_featurised_dataset = featurise_dataset(
|
142 |
split_dataset,
|
@@ -156,4 +155,9 @@ then load, featurize, split, fit, and evaluate the catboost model
|
|
156 |
|
157 |
scores = regression_suite.compute(
|
158 |
references=split_featurised_dataset["test"]['Y'],
|
159 |
-
predictions=preds["cat_boost_regressor::Y"])
|
|
|
|
|
|
|
|
|
|
|
|
79 |
path: IUPAC_pKa/test-*
|
80 |
---
|
81 |
|
82 |
+
# IUPAC_pKa
|
83 |
+
IUPAC_pKa
|
84 |
+
This is a mirror of the [Official Github repo](https://github.com/IUPAC/Dissociation-Constants?tab=readme-ov-file) where the dataset v2_2 was uploaded.
|
85 |
|
86 |
|
87 |
## Quickstart Usage
|
|
|
96 |
|
97 |
>>> import datasets
|
98 |
|
99 |
+
and load the `IUPAC_pKa` datasets, e.g.,
|
100 |
|
101 |
+
>>> IUPAC_pKa = datasets.load_dataset('maomlab/IUPAC_pKa')
|
102 |
+
README.md: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 5.06k/5.06k [00:00<00:00, 771kB/s]
|
103 |
+
train-00000-of-00001.parquet: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 947k/947k [00:00<00:00, 34.0MB/s]
|
104 |
+
test-00000-of-00001.parquet: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 519k/519k [00:00<00:00, 23.5MB/s]
|
105 |
+
Generating train split: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 18168/18168 [00:00<00:00, 260823.23 examples/s]
|
106 |
+
Generating test split: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 6054/6054 [00:00<00:00, 231724.00 examples/s]
|
107 |
|
108 |
and inspecting the loaded dataset
|
109 |
|
110 |
+
>>> IUPAC_pKa
|
|
|
111 |
DatasetDict({
|
|
|
|
|
|
|
|
|
|
|
112 |
train: Dataset({
|
113 |
+
features: ['unique_ID', 'SMILES', 'InChI', 'pka_type', 'Y', 'T', 'remarks', 'method', 'assessment', 'ref', 'ref_remarks', 'entry_remarks', 'original_IUPAC_names', 'name_contributors', 'num_name_contributors', 'original_IUPAC_nicknames', 'source', 'pressure', 'acidity_label', 'original_T', 'solvent', 'ClusterNo', 'MolCount', 'group'],
|
114 |
+
num_rows: 18168
|
115 |
+
})
|
116 |
+
test: Dataset({
|
117 |
+
features: ['unique_ID', 'SMILES', 'InChI', 'pka_type', 'Y', 'T', 'remarks', 'method', 'assessment', 'ref', 'ref_remarks', 'entry_remarks', 'original_IUPAC_names', 'name_contributors', 'num_name_contributors', 'original_IUPAC_nicknames', 'source', 'pressure', 'acidity_label', 'original_T', 'solvent', 'ClusterNo', 'MolCount', 'group'],
|
118 |
+
num_rows: 6054
|
119 |
})
|
120 |
})
|
121 |
|
|
|
135 |
from molflux.modelzoo import load_from_dict as load_model_from_dict
|
136 |
from molflux.metrics import load_suite
|
137 |
|
138 |
+
split_dataset = load_dataset('maomlab/IUPAC_pKa')
|
139 |
|
140 |
split_featurised_dataset = featurise_dataset(
|
141 |
split_dataset,
|
|
|
155 |
|
156 |
scores = regression_suite.compute(
|
157 |
references=split_featurised_dataset["test"]['Y'],
|
158 |
+
predictions=preds["cat_boost_regressor::Y"])
|
159 |
+
|
160 |
+
|
161 |
+
### Citation
|
162 |
+
https://zenodo.org/records/13987352
|
163 |
+
|