import argparse import os from huggingface_hub import upload_file, hf_hub_download, create_repo import time import math from pathlib import Path import subprocess def split_large_file(file_path, chunk_size_mb=1000): """Split a large file into smaller chunks.""" file_path = Path(file_path) file_size = os.path.getsize(file_path) / (1024 * 1024) # Size in MB if file_size <= chunk_size_mb: print(f"File {file_path.name} is {file_size:.2f}MB, no need to split.") return [file_path] # Create a directory for chunks if it doesn't exist chunks_dir = file_path.parent / f"{file_path.stem}_chunks" os.makedirs(chunks_dir, exist_ok=True) # Calculate number of chunks needed num_chunks = math.ceil(file_size / chunk_size_mb) print(f"Splitting {file_path.name} ({file_size:.2f}MB) into {num_chunks} chunks...") # Use split command for efficient splitting chunk_prefix = chunks_dir / file_path.stem subprocess.run([ "split", "-b", f"{chunk_size_mb}m", str(file_path), f"{chunk_prefix}_part_" ]) # Get all chunk files chunk_files = sorted(chunks_dir.glob(f"{file_path.stem}_part_*")) print(f"Created {len(chunk_files)} chunk files in {chunks_dir}") return chunk_files def upload_files(api_token, repo_id): # Create the repository first if it doesn't exist try: create_repo( repo_id=repo_id, token=api_token, repo_type="dataset", private=False # Set to False for a public dataset ) print(f"Created repository: {repo_id}") except Exception as e: print(f"Repository already exists or error occurred: {e}") # Add a delay to ensure repository creation is complete time.sleep(5) # Upload the script itself try: script_path = "1_hf_up_and_download.py" print(f"Uploading script: {script_path}") upload_file( repo_id=repo_id, path_or_fileobj=script_path, path_in_repo=script_path, token=api_token, repo_type="dataset", ) print(f"Uploaded {script_path} to {repo_id}/{script_path}") except Exception as e: print(f"Upload failed for script: {e}") # Split the large file into chunks if needed local_file = "pdfs.tar.gz" chunk_files = split_large_file(local_file) # Upload each chunk for i, chunk_file in enumerate(chunk_files): try: repo_file = chunk_file.name print(f"Uploading chunk {i+1}/{len(chunk_files)}: {repo_file}") upload_file( repo_id=repo_id, path_or_fileobj=str(chunk_file), path_in_repo=repo_file, token=api_token, repo_type="dataset", ) print(f"Uploaded {chunk_file} to {repo_id}/{repo_file}") except Exception as e: print(f"Upload failed for {chunk_file}: {e}") def download_files(api_token, repo_id): # Check if we have split files try: # List files in the repository from huggingface_hub import list_repo_files files = list_repo_files(repo_id=repo_id, repo_type="dataset", token=api_token) # Filter for our chunk files chunk_files = [f for f in files if f.startswith("pdfs_part_") or "chunks" in f] if chunk_files: print(f"Found {len(chunk_files)} chunk files. Downloading...") os.makedirs("chunks", exist_ok=True) for file in chunk_files: downloaded_path = hf_hub_download( repo_id=repo_id, filename=file, token=api_token, repo_type="dataset", local_dir="chunks", local_dir_use_symlinks=False ) print(f"Downloaded {file} to {downloaded_path}") print("To combine chunks, use: cat chunks/pdfs_part_* > pdfs.tar.gz") return except Exception as e: print(f"Error checking for chunk files: {e}") # Fall back to downloading the single file if no chunks found try: downloaded_path = hf_hub_download( repo_id=repo_id, filename="pdfs.tar.gz", token=api_token, repo_type="dataset", local_dir=".", local_dir_use_symlinks=False ) print(f"Downloaded pdfs.tar.gz file to {downloaded_path}") except Exception as e: print(f"Download failed: {e}") def main(): parser = argparse.ArgumentParser( description="Upload or download files to/from a remote Hugging Face dataset." ) parser.add_argument( "operation", choices=["upload", "download"], help="Specify the operation: upload or download." ) args = parser.parse_args() # Try to get API token from environment variables or HF cache API_TOKEN = os.environ.get("HUGGINGFACE_API_TOKEN") if not API_TOKEN: API_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN") if not API_TOKEN: try: from huggingface_hub.constants import HF_TOKEN_PATH if os.path.exists(HF_TOKEN_PATH): with open(HF_TOKEN_PATH, "r") as f: API_TOKEN = f.read().strip() except ImportError: pass if not API_TOKEN: raise ValueError("No Hugging Face API token found. Please set HUGGINGFACE_API_TOKEN environment variable or login using `huggingface-cli login`") # Include your username in the repo_id username = "liuganghuggingface" # Replace with your actual Hugging Face username repo_id = f"{username}/polymer_semantic_pdfs" if args.operation == "upload": upload_files(API_TOKEN, repo_id) elif args.operation == "download": download_files(API_TOKEN, repo_id) if __name__ == "__main__": main()