Update soybean_dataset.py
Browse files- soybean_dataset.py +62 -5
soybean_dataset.py
CHANGED
@@ -67,9 +67,9 @@ _LICENSE = "Under a Creative Commons license"
|
|
67 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
68 |
_URL = "/content/drive/MyDrive/sta_663/soybean/dataset.csv"
|
69 |
_URLs = {
|
70 |
-
"train" : "https://
|
71 |
-
"test": "https://
|
72 |
-
"valid": "https://
|
73 |
}
|
74 |
|
75 |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
@@ -136,7 +136,8 @@ class SoybeanDataset(datasets.GeneratorBasedBuilder):
|
|
136 |
|
137 |
with open(filepath, encoding="utf-8") as f:
|
138 |
data = csv.DictReader(f)
|
139 |
-
|
|
|
140 |
for row in data:
|
141 |
# Assuming the 'original_image' column has the full path to the image file
|
142 |
unique_id = row['unique_id']
|
@@ -158,6 +159,28 @@ class SoybeanDataset(datasets.GeneratorBasedBuilder):
|
|
158 |
# ... add other features if necessary
|
159 |
}
|
160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
|
163 |
|
@@ -169,4 +192,38 @@ class SoybeanDataset(datasets.GeneratorBasedBuilder):
|
|
169 |
|
170 |
|
171 |
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
68 |
_URL = "/content/drive/MyDrive/sta_663/soybean/dataset.csv"
|
69 |
_URLs = {
|
70 |
+
"train" : "https://raw.githubusercontent.com/lisawen0707/soybean/main/train_dataset.csv",
|
71 |
+
"test": "https://raw.githubusercontent.com/lisawen0707/soybean/main/test_dataset.csv",
|
72 |
+
"valid": "https://raw.githubusercontent.com/lisawen0707/soybean/main/valid_dataset.csv"
|
73 |
}
|
74 |
|
75 |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
|
|
136 |
|
137 |
with open(filepath, encoding="utf-8") as f:
|
138 |
data = csv.DictReader(f)
|
139 |
+
|
140 |
+
|
141 |
for row in data:
|
142 |
# Assuming the 'original_image' column has the full path to the image file
|
143 |
unique_id = row['unique_id']
|
|
|
159 |
# ... add other features if necessary
|
160 |
}
|
161 |
|
162 |
+
# for row in data:
|
163 |
+
# # Assuming the 'original_image' column has the full path to the image file
|
164 |
+
# unique_id = row['unique_id']
|
165 |
+
# original_image_path = row['original_image']
|
166 |
+
# segmentation_image_path = row['segmentation_image']
|
167 |
+
# sets = row['sets']
|
168 |
+
|
169 |
+
# original_image_array = self.process_image(original_image_path)
|
170 |
+
# segmentation_image_array = self.process_image(segmentation_image_path)
|
171 |
+
|
172 |
+
|
173 |
+
# # Here you need to replace 'initial_radius', 'final_radius', 'initial_angle', 'final_angle', 'target'
|
174 |
+
# # with actual columns from your CSV or additional processing you need to do
|
175 |
+
# yield row['unique_id'], {
|
176 |
+
# "unique_id": unique_id,
|
177 |
+
# "sets": sets,
|
178 |
+
# "original_image": original_image_array,
|
179 |
+
# "segmentation_image": segmentation_image_array,
|
180 |
+
# # ... add other features if necessary
|
181 |
+
# }
|
182 |
+
|
183 |
+
|
184 |
|
185 |
|
186 |
|
|
|
192 |
|
193 |
|
194 |
|
195 |
+
#### origin
|
196 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
197 |
+
urls_to_download = self._URLS
|
198 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
199 |
+
|
200 |
+
return [
|
201 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
202 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
|
203 |
+
]
|
204 |
+
|
205 |
+
def _generate_examples(self, filepath):
|
206 |
+
"""This function returns the examples in the raw (text) form."""
|
207 |
+
logging.info("generating examples from = %s", filepath)
|
208 |
+
with open(filepath) as f:
|
209 |
+
squad = json.load(f)
|
210 |
+
for article in squad["data"]:
|
211 |
+
title = article.get("title", "").strip()
|
212 |
+
for paragraph in article["paragraphs"]:
|
213 |
+
context = paragraph["context"].strip()
|
214 |
+
for qa in paragraph["qas"]:
|
215 |
+
question = qa["question"].strip()
|
216 |
+
id_ = qa["id"]
|
217 |
+
|
218 |
+
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
|
219 |
+
answers = [answer["text"].strip() for answer in qa["answers"]]
|
220 |
+
|
221 |
+
# Features currently used are "context", "question", and "answers".
|
222 |
+
# Others are extracted here for the ease of future expansions.
|
223 |
+
yield id_, {
|
224 |
+
"title": title,
|
225 |
+
"context": context,
|
226 |
+
"question": question,
|
227 |
+
"id": id_,
|
228 |
+
"answers": {"answer_start": answer_starts, "text": answers,},
|
229 |
+
}
|