lisawen commited on
Commit
e00560d
·
verified ·
1 Parent(s): 19c593d

Update soybean_dataset.py

Browse files
Files changed (1) hide show
  1. soybean_dataset.py +8 -19
soybean_dataset.py CHANGED
@@ -98,33 +98,22 @@ class SoybeanDataset(datasets.GeneratorBasedBuilder):
98
  citation=_CITATION,
99
  )
100
 
101
- def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
102
- # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
103
- # Since the dataset is on Google Drive, you need to implement a way to download it using the Google Drive API.
104
-
105
- # The path to the dataset file in Google Drive
106
  urls_to_download = self._URLs
107
  downloaded_files = dl_manager.download_and_extract(urls_to_download)
108
-
109
- # Since we're using a local file, we don't need to download it, so we just return the path.
110
  return [
111
  datasets.SplitGenerator(
112
- name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
 
113
  datasets.SplitGenerator(
114
- name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
 
115
  datasets.SplitGenerator(
116
- name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["valid"]}),
 
117
  ]
118
 
119
- # def process_image(self,image_url):
120
- # response = requests.get(image_url)
121
- # response.raise_for_status() # This will raise an exception if there is a download error
122
-
123
- # # Open the image from the downloaded bytes and return the PIL Image
124
- # img = Image.open(BytesIO(response.content))
125
- # return img
126
-
127
-
128
 
129
  def _generate_examples(self, filepath):
130
  logging.info("Generating examples from = %s", filepath)
 
98
  citation=_CITATION,
99
  )
100
 
101
+ def _split_generators(self, dl_manager: datasets.DownloadManager):
 
 
 
 
102
  urls_to_download = self._URLs
103
  downloaded_files = dl_manager.download_and_extract(urls_to_download)
104
+
 
105
  return [
106
  datasets.SplitGenerator(
107
+ name=datasets.Split.TRAIN,
108
+ gen_kwargs={"filepath": os.path.join(downloaded_files["train"], 'some_subfolder_if_exists')}),
109
  datasets.SplitGenerator(
110
+ name=datasets.Split.TEST,
111
+ gen_kwargs={"filepath": os.path.join(downloaded_files["test"], 'some_subfolder_if_exists')}),
112
  datasets.SplitGenerator(
113
+ name=datasets.Split.VALIDATION,
114
+ gen_kwargs={"filepath": os.path.join(downloaded_files["valid"], 'some_subfolder_if_exists')}),
115
  ]
116
 
 
 
 
 
 
 
 
 
 
117
 
118
  def _generate_examples(self, filepath):
119
  logging.info("Generating examples from = %s", filepath)