Update soybean_dataset.py
Browse files- soybean_dataset.py +29 -155
soybean_dataset.py
CHANGED
@@ -121,184 +121,58 @@ class SoybeanDataset(datasets.GeneratorBasedBuilder):
|
|
121 |
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["valid"]}),
|
122 |
]
|
123 |
|
124 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
125 |
-
#
|
126 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
127 |
-
# you may not use this file except in compliance with the License.
|
128 |
-
# You may obtain a copy of the License at
|
129 |
-
#
|
130 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
131 |
-
#
|
132 |
-
# Unless required by applicable law or agreed to in writing, software
|
133 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
134 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
135 |
-
# See the License for the specific language governing permissions and
|
136 |
-
# limitations under the License.
|
137 |
-
# TODO: Address all TODOs and remove all explanatory comments
|
138 |
-
"""TODO: Add a description here."""
|
139 |
-
|
140 |
-
|
141 |
-
import csv
|
142 |
-
import json
|
143 |
-
import os
|
144 |
-
from typing import List
|
145 |
-
import datasets
|
146 |
-
import logging
|
147 |
-
import csv
|
148 |
-
import numpy as np
|
149 |
-
from PIL import Image
|
150 |
-
import os
|
151 |
-
import io
|
152 |
-
import pandas as pd
|
153 |
-
import matplotlib.pyplot as plt
|
154 |
-
from numpy import asarray
|
155 |
-
import requests
|
156 |
-
from io import BytesIO
|
157 |
-
from numpy import asarray
|
158 |
-
|
159 |
-
|
160 |
-
# TODO: Add BibTeX citation
|
161 |
-
# Find for instance the citation on arxiv or on the dataset repo/website
|
162 |
-
_CITATION = """\
|
163 |
-
@article{chen2023dataset,
|
164 |
-
title={A dataset of the quality of soybean harvested by mechanization for deep-learning-based monitoring and analysis},
|
165 |
-
author={Chen, M and Jin, C and Ni, Y and Yang, T and Xu, J},
|
166 |
-
journal={Data in Brief},
|
167 |
-
volume={52},
|
168 |
-
pages={109833},
|
169 |
-
year={2023},
|
170 |
-
publisher={Elsevier},
|
171 |
-
doi={10.1016/j.dib.2023.109833}
|
172 |
-
}
|
173 |
|
174 |
-
|
|
|
|
|
175 |
|
176 |
-
|
177 |
-
#
|
178 |
-
|
179 |
-
|
180 |
-
|
|
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
# TODO: Add link to the official dataset URLs here
|
189 |
-
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
190 |
-
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
191 |
-
_URL = "/content/drive/MyDrive/sta_663/soybean/dataset.csv"
|
192 |
-
_URLs = {
|
193 |
-
"train" : "https://raw.githubusercontent.com/lisawen0707/soybean/main/train_dataset.csv",
|
194 |
-
"test": "https://raw.githubusercontent.com/lisawen0707/soybean/main/test_dataset.csv",
|
195 |
-
"valid": "https://raw.githubusercontent.com/lisawen0707/soybean/main/valid_dataset.csv"
|
196 |
-
}
|
197 |
-
|
198 |
-
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
199 |
-
class SoybeanDataset(datasets.GeneratorBasedBuilder):
|
200 |
-
"""TODO: Short description of my dataset."""
|
201 |
-
|
202 |
-
_URLs = _URLs
|
203 |
-
VERSION = datasets.Version("1.1.0")
|
204 |
-
|
205 |
-
def _info(self):
|
206 |
-
# raise ValueError('woops!')
|
207 |
-
return datasets.DatasetInfo(
|
208 |
-
description=_DESCRIPTION,
|
209 |
-
features=datasets.Features(
|
210 |
-
{
|
211 |
-
"unique_id": datasets.Value("string"),
|
212 |
-
"sets": datasets.Value("string"),
|
213 |
-
"original_image": datasets.Image(),
|
214 |
-
"segmentation_image": datasets.Image(),
|
215 |
-
|
216 |
-
}
|
217 |
-
),
|
218 |
-
# No default supervised_keys (as we have to pass both question
|
219 |
-
# and context as input).
|
220 |
-
supervised_keys=("original_image","segmentation_image"),
|
221 |
-
homepage="https://github.com/lisawen0707/soybean/tree/main",
|
222 |
-
citation=_CITATION,
|
223 |
-
)
|
224 |
-
|
225 |
-
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
226 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
|
227 |
-
# Since the dataset is on Google Drive, you need to implement a way to download it using the Google Drive API.
|
228 |
-
|
229 |
-
# The path to the dataset file in Google Drive
|
230 |
-
urls_to_download = self._URLs
|
231 |
-
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
232 |
-
|
233 |
-
# Since we're using a local file, we don't need to download it, so we just return the path.
|
234 |
-
return [
|
235 |
-
datasets.SplitGenerator(
|
236 |
-
name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
237 |
-
datasets.SplitGenerator(
|
238 |
-
name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
|
239 |
-
datasets.SplitGenerator(
|
240 |
-
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["valid"]}),
|
241 |
-
]
|
242 |
-
|
243 |
-
def download_image(self, image_url):
|
244 |
-
try:
|
245 |
-
response = requests.get(image_url)
|
246 |
-
response.raise_for_status() # This will raise an exception for HTTP errors
|
247 |
-
img = Image.open(BytesIO(response.content))
|
248 |
-
return img
|
249 |
-
except requests.RequestException as e:
|
250 |
-
logging.error(f"Error downloading {image_url}: {e}")
|
251 |
-
return None
|
252 |
-
|
253 |
-
def download_images_in_batch(self, image_urls):
|
254 |
-
images = {}
|
255 |
-
with ThreadPoolExecutor() as executor:
|
256 |
-
future_to_url = {executor.submit(self.download_image, url): url for url in image_urls}
|
257 |
-
for future in as_completed(future_to_url):
|
258 |
-
url = future_to_url[future]
|
259 |
-
try:
|
260 |
-
image = future.result()
|
261 |
-
if image:
|
262 |
-
images[url] = image
|
263 |
-
except Exception as e:
|
264 |
-
logging.error(f"Error processing {url}: {e}")
|
265 |
-
return images
|
266 |
|
267 |
def _generate_examples(self, filepath):
|
268 |
-
logging.info(
|
269 |
|
270 |
with open(filepath, encoding="utf-8") as f:
|
271 |
data = csv.DictReader(f)
|
272 |
-
image_urls = [row['original_image'] for row in data] + [row['segmentation_image'] for row in data]
|
273 |
-
# Remove duplicates and None values
|
274 |
-
image_urls = list(set(filter(None, image_urls)))
|
275 |
|
276 |
-
#
|
277 |
-
|
|
|
|
|
|
|
|
|
278 |
|
279 |
-
# Reset file pointer to the
|
280 |
f.seek(0)
|
281 |
-
data
|
282 |
|
283 |
for row in data:
|
284 |
unique_id = row['unique_id']
|
285 |
original_image_url = row['original_image']
|
286 |
segmentation_image_url = row['segmentation_image']
|
|
|
287 |
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
if not original_image or not segmentation_image:
|
292 |
-
logging.warning(f"Missing image for {unique_id}, skipping example.")
|
293 |
-
continue
|
294 |
|
295 |
yield unique_id, {
|
296 |
"unique_id": unique_id,
|
297 |
-
"sets":
|
298 |
"original_image": original_image,
|
299 |
"segmentation_image": segmentation_image,
|
300 |
# ... add other features if necessary
|
301 |
-
}
|
302 |
|
303 |
|
304 |
|
|
|
121 |
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["valid"]}),
|
122 |
]
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
+
def __init__(self, max_workers=5):
|
126 |
+
# Initialize a ThreadPoolExecutor with the desired number of workers
|
127 |
+
self.executor = ThreadPoolExecutor(max_workers=max_workers)
|
128 |
|
129 |
+
def process_image(self, image_url):
|
130 |
+
# This function is now a static method that doesn't need self
|
131 |
+
response = requests.get(image_url)
|
132 |
+
response.raise_for_status() # This will raise an exception if there is a download error
|
133 |
+
img = Image.open(BytesIO(response.content))
|
134 |
+
return img
|
135 |
|
136 |
+
def download_images(self, image_urls):
|
137 |
+
# Use the executor to download images concurrently
|
138 |
+
# and return a future to image map
|
139 |
+
future_to_url = {self.executor.submit(self.process_image, url): url for url in image_urls}
|
140 |
+
return future_to_url
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
def _generate_examples(self, filepath):
|
143 |
+
logging.info("generating examples from = %s", filepath)
|
144 |
|
145 |
with open(filepath, encoding="utf-8") as f:
|
146 |
data = csv.DictReader(f)
|
|
|
|
|
|
|
147 |
|
148 |
+
# Create a set to collect all unique image URLs to download
|
149 |
+
image_urls = {row['original_image'] for row in data}
|
150 |
+
image_urls.update(row['segmentation_image'] for row in data)
|
151 |
+
|
152 |
+
# Start the batch download
|
153 |
+
future_to_url = self.download_images(image_urls)
|
154 |
|
155 |
+
# Reset the file pointer to the start for the second pass
|
156 |
f.seek(0)
|
157 |
+
next(data) # Skip header
|
158 |
|
159 |
for row in data:
|
160 |
unique_id = row['unique_id']
|
161 |
original_image_url = row['original_image']
|
162 |
segmentation_image_url = row['segmentation_image']
|
163 |
+
sets = row['sets']
|
164 |
|
165 |
+
# Wait for the individual image futures to complete and get the result
|
166 |
+
original_image = future_to_url[self.executor.submit(self.process_image, original_image_url)].result()
|
167 |
+
segmentation_image = future_to_url[self.executor.submit(self.process_image, segmentation_image_url)].result()
|
|
|
|
|
|
|
168 |
|
169 |
yield unique_id, {
|
170 |
"unique_id": unique_id,
|
171 |
+
"sets": sets,
|
172 |
"original_image": original_image,
|
173 |
"segmentation_image": segmentation_image,
|
174 |
# ... add other features if necessary
|
175 |
+
}
|
176 |
|
177 |
|
178 |
|