File size: 8,141 Bytes
7f2ce96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13de6d0
 
 
 
 
 
7f2ce96
 
 
 
13de6d0
 
 
 
 
 
 
 
 
7f2ce96
13de6d0
7f2ce96
 
 
 
 
13de6d0
7f2ce96
 
 
13de6d0
7f2ce96
 
13de6d0
7f2ce96
 
 
 
13de6d0
 
7f2ce96
 
13de6d0
7f2ce96
 
13de6d0
7f2ce96
 
 
73c256d
7f2ce96
 
 
 
13de6d0
 
 
 
 
7f2ce96
 
 
 
13de6d0
 
7f2ce96
 
 
13de6d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f2ce96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""


import csv
import json
import os
from typing import List
import datasets
import logging
import csv
import numpy as np
from PIL import Image
import os
import io


# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@article{chen2023dataset,
  title={A dataset of the quality of soybean harvested by mechanization for deep-learning-based monitoring and analysis},
  author={Chen, M and Jin, C and Ni, Y and Yang, T and Xu, J},
  journal={Data in Brief},
  volume={52},
  pages={109833},
  year={2023},
  publisher={Elsevier},
  doi={10.1016/j.dib.2023.109833}
}

"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This dataset contains images captured during the mechanized harvesting of soybeans, aimed at facilitating the development of machine vision and deep learning models for quality analysis. It contains information of original soybean pictures in different forms, labels of whether the soybean belongs to training, validation, or testing datasets, segmentation class of soybean pictures in one dataset.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://huggingface.co/datasets/lisawen/soybean_dataset"

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "Under a Creative Commons license"

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL = "/content/drive/MyDrive/sta_663/soybean/dataset.csv"


# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class SoybeanDataset(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    _URLS = _URL
    VERSION = datasets.Version("1.1.0")

    def _info(self):
      # raise ValueError('woops!')
      return datasets.DatasetInfo(
          description=_DESCRIPTION,
          features=datasets.Features(
              {
                  "unique_id": datasets.Value("string"),
                  "sets": datasets.Value("string"),
                  "original_image": datasets.Value("string"),
                  "segmentation_image": datasets.Value("string"),
                  
              }
          ),
          # No default supervised_keys (as we have to pass both question
          # and context as input).
          supervised_keys=("original_image","segmentation_image"),
          #homepage="https://rajpurkar.github.io/SQuAD-explorer/",
          citation=_CITATION,
      )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
        # Since the dataset is on Google Drive, you need to implement a way to download it using the Google Drive API.

        # The path to the dataset file in Google Drive
        dataset_path = "/content/drive/MyDrive/sta_663/soybean/dataset.csv"

        # Check if the file exists (you may need to mount the drive and use the appropriate path)
        if not os.path.exists(dataset_path):
            raise FileNotFoundError(f"{dataset_path} does not exist. Have you mounted Google Drive?")

        # Since we're using a local file, we don't need to download it, so we just return the path.
        return [
            datasets.SplitGenerator(
                name=datasets.Split,
                gen_kwargs={
                    "filepath": dataset_path
                }
            ),
        ]

    def _generate_examples(self, filepath):
    #"""Yields examples as (key, example) tuples."""
    
        # Check if the file exists (you may need to mount the drive and use the appropriate path)
        if not os.path.exists(filepath):
            raise FileNotFoundError(f"{filepath} does not exist. Have you mounted Google Drive?")
        
        # Read the dataset.csv
        with open(filepath, encoding="utf-8") as f:
            reader = csv.DictReader(f)
            
            for row in reader:
                # Assuming the 'original_image' column has the full path to the image file
                original_image_path = row['original_image']
                segmentation_image_path = row['segmentation_image']
                sets = row['sets']

                # Open the image and convert to numpy array
                with open(original_image_path, "rb") as image_file:
                    original_image = Image.open(image_file)
                    original_image_array = np.array(original_image)
                
                
                # Open the image and convert to numpy array
                with open(segmentation_image_path, "rb") as image_file:
                    segmentation_image = Image.open(image_file)
                    segmentation_image_array = np.array(segmentation_image)

                # Here you need to replace 'initial_radius', 'final_radius', 'initial_angle', 'final_angle', 'target'
                # with actual columns from your CSV or additional processing you need to do
                yield row['unique_id'], {
                    "sets": sets,
                    "original_image": original_image_array,
                    "segmentation_image": segmentation_image_array,
                    # ... add other features if necessary
                }
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    #### origin
    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
      urls_to_download = self._URLS
      downloaded_files = dl_manager.download_and_extract(urls_to_download)

      return [
          datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
          datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
      ]
      
    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        logging.info("generating examples from = %s", filepath)
        with open(filepath) as f:
            squad = json.load(f)
            for article in squad["data"]:
                title = article.get("title", "").strip()
                for paragraph in article["paragraphs"]:
                    context = paragraph["context"].strip()
                    for qa in paragraph["qas"]:
                        question = qa["question"].strip()
                        id_ = qa["id"]

                        answer_starts = [answer["answer_start"] for answer in qa["answers"]]
                        answers = [answer["text"].strip() for answer in qa["answers"]]

                        # Features currently used are "context", "question", and "answers".
                        # Others are extracted here for the ease of future expansions.
                        yield id_, {
                            "title": title,
                            "context": context,
                            "question": question,
                            "id": id_,
                            "answers": {"answer_start": answer_starts, "text": answers,},
                        }