File size: 4,621 Bytes
b90d9df e86549f 9a45c2e 2137b63 9a45c2e e86549f 9a45c2e 2137b63 9a45c2e 193e6b8 9a45c2e 2137b63 9a45c2e 4e93b4e b30eb75 2137b63 9a45c2e 4e93b4e b30eb75 1ae8590 9a45c2e e86549f b90d9df 487cc43 9a45c2e b90d9df 4f1a86d b90d9df ea11515 b90d9df 9a45c2e ea11515 9a45c2e ea11515 93a7062 ea11515 93a7062 ea11515 93a7062 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
---
language:
- en
multilinguality:
- monolingual
size_categories:
- <1K
task_categories:
- feature-extraction
- sentence-similarity
pretty_name: ms-marco-mini
tags:
- sentence-transformers
- colbert
- lightonai
dataset_info:
- config_name: triplet
features:
- name: query
dtype: string
- name: positive
dtype: string
- name: negative
dtype: string
splits:
- name: train
num_examples: 30
- config_name: queries
features:
- name: query_id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_examples: 19
- config_name: documents
features:
- name: document_id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_examples: 32
- config_name: train
features:
- name: query_id
dtype: string
- name: document_ids
sequence:
value:
dtype: string
- name: scores
sequence:
value:
dtype: float16
splits:
- name: train
num_examples: 19
configs:
- config_name: triplet
data_files:
- split: train
path: triplet.parquet
- config_name: queries
data_files:
- split: train
path: queries.parquet
- config_name: documents
data_files:
- split: train
path: documents.parquet
- config_name: train
data_files:
- split: train
path: train.parquet
---
# ms-marco-mini
This dataset gathers very few samples from [MS MARCO](https://microsoft.github.io/msmarco/) to provide an example of triplet-based / knowledge distillation dataset formatting.
#### `triplet` subset
The `triplet` file is all we need to fine-tune a model based on contrastive loss.
* Columns: "query", "positive", "negative"
* Column types: `str`, `str`, `str`
* Examples:
```python
{
"query": "what are the liberal arts?",
"positive": 'liberal arts. 1. the academic course of instruction at a college intended to provide general knowledge and comprising the arts, humanities, natural sciences, and social sciences, as opposed to professional or technical subjects.',
"negative": 'The New York State Education Department requires 60 Liberal Arts credits in a Bachelor of Science program and 90 Liberal Arts credits in a Bachelor of Arts program. In the list of course descriptions, courses which are liberal arts for all students are identified by (Liberal Arts) after the course number.'
}
```
* Datasets
```python
from datasets import load_dataset
dataset = load_dataset("lightonai/lighton-ms-marco-mini", "triplet", split="train")
```
#### `knowledge distillation` subset
To fine-tune a model using knowledge distillation loss we will need three distinct file:
* Datasets
```python
from datasets import load_dataset
train = load_dataset(
"lightonai/lighton-ms-marco-mini",
"train",
split="train",
)
queries = load_dataset(
"lightonai/lighton-ms-marco-mini",
"queries",
split="train",
)
documents = load_dataset(
"lightonai/lighton-ms-marco-mini",
"documents",
split="train",
)
```
Where:
- `train` contains three distinct columns: `['query_id', 'document_ids', 'scores']`
```python
{
"query_id": 54528,
"document_ids": [
6862419,
335116,
339186,
7509316,
7361291,
7416534,
5789936,
5645247,
],
"scores": [
0.4546215673141326,
0.6575686537173476,
0.26825184192900203,
0.5256195579370395,
0.879939718687207,
0.7894968184862693,
0.6450100468854655,
0.5823844608171467,
],
}
```
Assert that the length of document_ids is the same as scores.
- `queries` contains two distinct columns: `['query_id', 'text']`
```python
{"query_id": 749480, "text": "what is function of magnesium in human body"}
```
- `documents` contains two distinct columns: `['document_ids', 'text']`
```python
{
"document_id": 136062,
"text": "2. Also called tan .a fundamental trigonometric function that, in a right triangle, is expressed as the ratio of the side opposite an acute angle to the side adjacent to that angle. 3. in immediate physical contact; touching; abutting. 4. a. touching at a single point, as a tangent in relation to a curve or surface.lso called tan .a fundamental trigonometric function that, in a right triangle, is expressed as the ratio of the side opposite an acute angle to the side adjacent to that angle. 3. in immediate physical contact; touching; abutting. 4. a. touching at a single point, as a tangent in relation to a curve or surface.",
}
```
|