modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-05-29 12:28:49
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
457 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
54 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-05-29 12:28:19
card
stringlengths
11
1.01M
shallow6414/sn11-3-12-3
shallow6414
2025-05-26T09:29:03Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "gemma", "google", "Bifröst", "Bifrost", "code", "text-generation", "conversational", "base_model:google/gemma-3-27b-it", "base_model:finetune:google/gemma-3-27b-it", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-26T09:28:59Z
--- license: gemma library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/gemma-3-27b-it tags: - transformers - gemma3 - gemma - google - Bifröst - Bifrost - code --- ## Bifröst-27B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a834a8895fd6416e29576f/sAXfe0cQdULI_GEVxBstw.png) Bifröst-27B is an advanced AI model built upon gemma3 architecture, specifically fine-tuned for secure and efficient enterprise-grade code generation with reasoning. Designed to meet rigorous standards of safety, accuracy, and reliability, Bifröst empowers organizations to streamline software development workflows while prioritizing security and compliance. ### Model Details - **Model Name:** Bifröst-27B - **Base Architecture:** gemma3 - **Application:** Enterprise Secure Code Generation - **Release Date:** 16-March-2025 ### Intended Use Bifröst is designed explicitly for: - Generating secure, efficient, and high-quality code. - Supporting development tasks within regulated enterprise environments. - Enhancing productivity by automating routine coding tasks without compromising security. ### Features - **Security-Focused Training:** Specialized training regimen emphasizing secure coding practices, vulnerability reduction, and adherence to security standards. - **Enterprise-Optimized Performance:** Tailored to support various programming languages and enterprise frameworks with robust, context-aware suggestions. - **Compliance-Driven Design:** Incorporates features to aid in maintaining compliance with industry-specific standards (e.g., GDPR, HIPAA, SOC 2). ### Limitations - Bifröst should be used under human supervision to ensure code correctness and security compliance. - Model-generated code should undergo appropriate security and quality assurance checks before deployment. ### Ethical Considerations - Users are encouraged to perform regular audits and compliance checks on generated outputs. - Enterprises should implement responsible AI practices to mitigate biases or unintended consequences. ### Usage Below are some quick-start instructions for using the model with the `transformers` library. #### Installation ```sh $ pip install git+https://github.com/huggingface/[email protected] ``` #### Running with the `pipeline` API ```python from transformers import pipeline import torch pipe = pipeline( "text-generation", model="OpenGenerativeAI/Bifrost-27B", device="cuda", torch_dtype=torch.bfloat16 ) messages = [{"role": "user", "content": "Generate a secure API key management system."}] output = pipe(text=messages, max_new_tokens=200) print(output[0]["generated_text"]) ``` ## Terms of Use This model is released under the **Gemma license**. Users must comply with [Google's Gemma Terms of Use](https://ai.google.dev/gemma/terms), including restrictions on redistribution, modification, and commercial use.
JavaneseHonorifics/Unggah-Ungguh-Javanese-GPT2-Classifier
JavaneseHonorifics
2025-05-26T09:29:00Z
0
0
transformers
[ "transformers", "safetensors", "gpt2", "text-classification", "jv", "dataset:JavaneseHonorifics/Unggah-Ungguh", "arxiv:2502.20864", "base_model:w11wo/javanese-gpt2-small-imdb", "base_model:finetune:w11wo/javanese-gpt2-small-imdb", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2025-05-26T09:20:29Z
--- license: cc-by-nc-4.0 language: - jv datasets: - JavaneseHonorifics/Unggah-Ungguh base_model: - w11wo/javanese-gpt2-small-imdb pipeline_tag: text-classification library_name: transformers --- # Unggah-Ungguh-Javanese-GPT2-Classifier Unggah-Ungguh-Javanese-GPT2-Classifier is part of the Unggah-Ungguh's model family, a classifier model for Javanese Honorific Classification task that was mentioned in "Do Language Models Understand Honorific Systems in Javanese?". Check out [our paper](https://arxiv.org/abs/2502.20864) for more information! ## Model description - **Model type**: A classifier model trained on a highly curated Unggah-Ungguh dataset that represent Javanese Honorific rules and systems. - **Language(s) NLP**: Javanese - **License:** CC-BY-NC 4.0 - **Finetuned from model:** w11wo/javanese-distilbert-small-imdb ## Model Sources - **Project Page:** https://javanesehonorifics.github.io/ - **Repository:** https://github.com/JavaneseHonorifics - **Paper:** https://arxiv.org/abs/2502.20864 ## Using the model ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model_path = "JavaneseHonorifics/Unggah-Ungguh-Javanese-GPT2-Classifier" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForSequenceClassification.from_pretrained(model_path) INPUT_TEXT = "Mbak Srini mangan pecel ajange pincuk" tokenized_input = tokenizer([INPUT_TEXT], return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = model(**tokenized_input) y_pred = outputs.logits.argmax(-1) print("Predicted class:", y_pred.item()) ``` ## License and Use Unggah-Ungguh is licensed under the CC-BY-NC 4.0 ## Citation ```bibtex @article{farhansyah2025language, title={Do Language Models Understand Honorific Systems in Javanese?}, author={Farhansyah, Mohammad Rifqi and Darmawan, Iwan and Kusumawardhana, Adryan and Winata, Genta Indra and Aji, Alham Fikri and Wijaya, Derry Tanti}, journal={arXiv preprint arXiv:2502.20864}, year={2025} } ```
akashmadisetty/fine-tuned-translation-qwen
akashmadisetty
2025-05-26T09:25:40Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "base_model:unsloth/Qwen3-1.7B-unsloth-bnb-4bit", "base_model:finetune:unsloth/Qwen3-1.7B-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-26T09:25:29Z
--- base_model: unsloth/Qwen3-1.7B-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** akashmadisetty - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-1.7B-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
TanAlexanderlz/ALL_RGBCROP_ori16F-8B16F
TanAlexanderlz
2025-05-26T09:23:04Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base-finetuned-kinetics", "base_model:finetune:MCG-NJU/videomae-base-finetuned-kinetics", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2025-05-26T08:33:29Z
--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base-finetuned-kinetics tags: - generated_from_trainer metrics: - accuracy model-index: - name: ALL_RGBCROP_ori16F-8B16F results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ALL_RGBCROP_ori16F-8B16F This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6047 - Accuracy: 0.8443 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 768 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4388 | 0.125 | 96 | 0.4338 | 0.7988 | | 0.2352 | 1.125 | 192 | 0.6832 | 0.7622 | | 0.1411 | 2.125 | 288 | 0.8688 | 0.8476 | | 0.0005 | 3.125 | 384 | 0.9177 | 0.8354 | | 0.0002 | 4.125 | 480 | 1.0111 | 0.8354 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1
Darkknight535/Contrl-Stheno-v1-8B
Darkknight535
2025-05-26T09:22:58Z
7
3
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "mergekit", "lazymergekit", "Sao10K/L3-8B-Stheno-v3.2", "Delta-Vector/Control-Nanuq-8B", "conversational", "en", "base_model:Delta-Vector/Control-Nanuq-8B", "base_model:merge:Delta-Vector/Control-Nanuq-8B", "base_model:Sao10K/L3-8B-Stheno-v3.2", "base_model:merge:Sao10K/L3-8B-Stheno-v3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-25T08:26:12Z
--- base_model: - Sao10K/L3-8B-Stheno-v3.2 - Delta-Vector/Control-Nanuq-8B tags: - merge - mergekit - lazymergekit - Sao10K/L3-8B-Stheno-v3.2 - Delta-Vector/Control-Nanuq-8B language: - en library_name: transformers --- <style> ebody { font-family: 'Quicksand', sans-serif; background: linear-gradient(135deg, #FF69B4 0%, #800080 100%); color: #FFFFFF; margin: 0; padding: 0; font-size: 16px; min-height: 100vh; } .container { margin: 20px; background-color: rgba(28, 14, 36, 0.95); padding: 20px; border-radius: 12px; box-shadow: 0 4px 20px rgba(255, 105, 180, 0.4); border: 1px solid rgba(255, 105, 180, 0.4); outline: 1px solid rgba(255, 105, 180, 0.7); outline-offset: -1px; position: relative; backdrop-filter: blur(10px); } .container::before { content: ''; position: absolute; top: -1px; left: -1px; right: -1px; bottom: -1px; border: 1px solid rgba(255, 105, 180, 0.98); border-radius: 12px; pointer-events: none; animation: borderGlow 2s ease-in-out infinite; } @keyframes borderGlow { 0% { box-shadow: 0 0 5px rgba(255, 105, 180, 0.98); } 50% { box-shadow: 0 0 20px rgba(255, 105, 180, 0.98); } 100% { box-shadow: 0 0 5px rgba(255, 105, 180, 0.98); } } .header h1 { font-size: 28px; color: #FF69B4; margin: 0 0 20px 0; text-shadow: 0 0 15px rgba(255, 105, 180, 0.8); letter-spacing: 1px; } .update-section { margin-top: 30px; } .update-section h2, h2 { font-size: 24px; color: #FF69B4; text-shadow: 0 0 15px rgba(255, 105, 180, 0.8); letter-spacing: 0.5px; } .update-section p { font-size: 16px; line-height: 1.6; color: #FFE1FF; } .info p { color: #FFE1FF; line-height: 1.6; font-size: 16px; } .info img { width: 100%; border-radius: 10px; margin-bottom: 15px; box-shadow: 0 0 30px rgba(255, 105, 180, 0.5); border: 1px solid rgba(255, 105, 180, 0.4); outline: 1px solid rgba(255, 105, 180, 0.7); outline-offset: -1px; transition: transform 0.3s ease, box-shadow 0.3s ease; } .info img:hover { transform: scale(1.01); box-shadow: 0 0 40px rgba(255, 105, 180, 0.6); } a { color: #00FFEE; text-decoration: none; transition: color 0.3s ease; } a:hover { color: #FF1493; } .button { display: inline-block; background: linear-gradient(45deg, rgba(255, 105, 180, 0.9), rgba(128, 0, 128, 0.9)); color: #FFFFFF; padding: 12px 24px; border-radius: 5px; cursor: pointer; text-decoration: none; transition: all 0.3s ease; border: 1px solid rgba(255, 105, 180, 0.4); } .button:hover { background: linear-gradient(45deg, rgba(255, 105, 180, 1), rgba(128, 0, 128, 1)); box-shadow: 0 0 20px rgba(255, 105, 180, 0.7); transform: translateY(-2px); } pre { background-color: rgba(28, 14, 36, 0.95); padding: 15px; border-radius: 5px; overflow-x: auto; border: 1px solid rgba(255, 20, 147, 0.3); outline: 1px solid rgba(255, 20, 147, 0.6); outline-offset: -1px; } code { font-family: 'Courier New', monospace; color: #FFE1FF; } .benchmark-container { background: rgba(28, 14, 36, 0.95); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 12px; padding: 20px; margin: 20px 0; position: relative; overflow: hidden; } .benchmark-container::before { content: ''; position: absolute; top: -1px; left: -1px; right: -1px; bottom: -1px; border: 1px solid rgba(255, 20, 147, 0.98); border-radius: 12px; pointer-events: none; animation: borderGlow 2s ease-in-out infinite; } .benchmark-grid { display: grid; grid-template-columns: repeat(4, 1fr); gap: 15px; } .metric-box { background: rgba(28, 14, 36, 0.95); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 8px; padding: 15px; display: flex; flex-direction: column; align-items: center; text-align: center; transition: transform 0.3s ease, box-shadow 0.3s ease; } .metric-box:hover { transform: translateY(-2px); box-shadow: 0 4px 15px rgba(255, 20, 147, 0.3); } .metric-box .label { color: #00FFEE; font-size: 14px; margin-bottom: 8px; font-weight: 500; } .metric-box .value { color: #FFE1FF; font-size: 18px; font-weight: 600; text-shadow: 0 0 5px rgba(255, 20, 147, 0.5); } .metrics-section { margin-bottom: 30px; } .metrics-section details { background: rgba(28, 14, 36, 0.95); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 8px; padding: 15px; margin-bottom: 15px; } .metrics-section summary { color: #FF1493; font-size: 20px; cursor: pointer; text-shadow: 0 0 5px rgba(255, 20, 147, 0.3); outline: none; padding: 5px 0; } .metrics-section summary::-webkit-details-marker { display: none; } .core-metrics-grid { display: grid; grid-template-columns: repeat(4, 1fr); gap: 15px; margin-bottom: 20px; } .progress-metrics { display: grid; gap: 15px; } .progress-metric { background: rgba(28, 14, 36, 0.95); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 8px; padding: 15px; transition: transform 0.3s ease; } .progress-metric:hover { transform: translateY(-2px); } .progress-label { display: flex; justify-content: space-between; margin-bottom: 8px; color: #00FFEE; font-size: 14px; } .progress-value { color: #FFE1FF; } .progress-bar { width: 100%; height: 8px; background: rgba(0, 0, 0, 0.3); border: 1px solid rgba(255, 20, 147, 0.15); border-radius: 4px; position: relative; margin: 10px 0; overflow: hidden; } .progress-fill { height: 100%; background: linear-gradient(90deg, #FF69B4 0%, #800080 100%); border-radius: 4px; transition: width 1s ease-in-out; box-shadow: 0 0 15px rgba(255, 105, 180, 0.4); } .progress-bar.split { display: flex; justify-content: center; background: rgba(0, 0, 0, 0.3); border: 1px solid rgba(255, 20, 147, 0.15); overflow: visible; } .progress-fill-left { height: 100%; position: absolute; right: 50%; background: linear-gradient(90deg, #FF69B4 30%, rgba(255, 105, 180, 0.5) 100%); border-radius: 4px 0 0 4px; transition: width 0.3s ease-in-out; } .progress-fill-right { height: 100%; position: absolute; left: 50%; background: linear-gradient(90deg, rgba(128, 0, 128, 0.5) 0%, #800080 70%); border-radius: 0 4px 4px 0; transition: width 0.3s ease-in-out; } .progress-metric.split .progress-bar::before, .progress-metric.split .progress-bar::after { content: ''; position: absolute; width: 2px; height: 20px; background: rgba(255, 255, 255, 0.7); top: 50%; transform: translateY(-50%); z-index: 2; box-shadow: 0 0 8px rgba(255, 255, 255, 0.5); } .progress-metric.split .progress-bar::before { left: 0; } .progress-metric.split .progress-bar::after { right: 0; } .progress-metric.split:hover .progress-fill-left { box-shadow: 0 0 15px rgba(255, 20, 147, 0.5); } .progress-metric.split:hover .progress-fill-right { box-shadow: 0 0 15px rgba(75, 0, 130, 0.5); } .progress-metric.split { padding: 12px 15px; } .progress-metric.split .progress-label { margin-bottom: 8px; gap: 12px; } .progress-metric.split .progress-label span:first-child, .progress-metric.split .progress-label span:last-child { flex: 0 0 80px; font-size: 14px; } .progress-metric.split .progress-value { font-weight: 600; text-shadow: 0 0 5px rgba(255, 20, 147, 0.3); font-size: 14px; min-width: 60px; text-align: center; } .progress-metric:hover .progress-fill-center { box-shadow: 0 0 15px rgba(255, 20, 147, 0.5); } .progress-label { display: flex; justify-content: space-between; align-items: center; margin-bottom: 4px; color: #00FFEE; font-size: 14px; } .progress-metric:not(.split) .progress-label { gap: 12px; } .progress-metric:not(.split) .progress-label span { flex: 0 0 auto; } .progress-metric:not(.split) .progress-value { color: #FFE1FF; } .progress-metric.split .progress-label { gap: 20px; } .progress-metric.split .progress-label span:first-child, .progress-metric.split .progress-label span:last-child { flex: 0 0 80px; } .progress-metric.split .progress-label span:first-child { text-align: right; } .progress-metric.split .progress-label span:last-child { text-align: left; } .progress-metric.split .progress-value { color: #FFE1FF; flex: 0 0 60px; text-align: center; } .progress-metric:hover .progress-fill { box-shadow: 0 0 15px rgba(255, 20, 147, 0.5); } .progress-metric:hover .progress-fill-center { box-shadow: 0 0 15px rgba(75, 0, 130, 0.5); } .info-grid { display: grid; grid-template-columns: repeat(3, 1fr); gap: 15px; } .creator-section { margin: 20px 0; } .creator-badge { display: inline-flex; align-items: center; background: rgba(28, 14, 36, 0.95); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 8px; padding: 10px 15px; } .creator-label { color: #FFE1FF; font-size: 14px; margin-right: 8px; } .creator-link { display: flex; align-items: center; gap: 5px; color: #00FFEE; text-decoration: none; transition: all 0.3s ease; } .creator-name { font-weight: 600; } .creator-arrow { font-size: 16px; transition: transform 0.3s ease; } .creator-link:hover { color: #FF1493; } .creator-link:hover .creator-arrow { transform: translateX(3px); } .model-info { margin-top: 30px; } .name-legend { background: rgba(28, 14, 36, 0.95); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 8px; padding: 20px; margin: 20px 0; } .name-legend h3 { color: #FF1493; font-size: 18px; margin: 0 0 15px 0; } .legend-grid { display: grid; gap: 12px; } .legend-item { display: flex; align-items: baseline; gap: 10px; } .legend-key { color: #00FFEE; font-weight: 600; min-width: 80px; } .legend-value { color: #FFE1FF; } .model-description { background: rgba(28, 14, 36, 0.95); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 8px; padding: 20px; } .model-description p { margin: 0 0 15px 0; line-height: 1.6; } .model-description p:last-child { margin-bottom: 0; } .section-container { margin: 40px 0; } .info-card { background: rgba(28, 14, 36, 0.95); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 8px; overflow: hidden; } .info-header { background: rgba(255, 20, 147, 0.1); padding: 20px; border-bottom: 1px solid rgba(255, 20, 147, 0.3); } .info-header h3 { color: #FF1493; margin: 0 0 10px 0; font-size: 20px; text-shadow: 0 0 5px rgba(255, 20, 147, 0.3); } .model-tags { display: flex; gap: 8px; flex-wrap: wrap; } .model-tag { background: rgba(0, 255, 238, 0.1); color: #00FFEE; padding: 4px 8px; border-radius: 4px; font-size: 12px; border: 1px solid rgba(0, 255, 238, 0.2); } .model-composition { padding: 20px; border-bottom: 1px solid rgba(255, 20, 147, 0.3); } .model-composition h4 { color: #FF1493; margin: 0 0 15px 0; font-size: 16px; } .composition-list { list-style: none; padding: 0; margin: 0; display: grid; gap: 10px; } .composition-list li { color: #FFE1FF; display: flex; align-items: baseline; gap: 8px; } .model-component { color: #00FFEE; font-weight: 500; min-width: 120px; } .template-card { background: rgba(28, 14, 36, 0.95); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 8px; padding: 15px; } .template-item { display: flex; align-items: center; gap: 12px; } .template-icon { width: 24px; height: 24px; opacity: 0.8; } .template-content { display: flex; align-items: baseline; gap: 8px; } .template-link { color: #00FFEE; text-decoration: none; font-weight: 500; display: flex; align-items: center; gap: 5px; } .template-author { color: rgba(255, 225, 255, 0.7); font-size: 14px; } .quantized-container { display: grid; gap: 20px; } .quantized-section { background: rgba(28, 14, 36, 0.95); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 8px; padding: 20px; } .quantized-section h3 { color: #FF1493; font-size: 18px; margin: 0 0 15px 0; } .quantized-items { display: grid; gap: 12px; } .quantized-item { display: flex; align-items: baseline; gap: 10px; } .quantized-item .author { color: rgba(255, 225, 255, 0.7); min-width: 100px; } .multi-links { display: flex; align-items: center; gap: 8px; } .separator { color: rgba(255, 225, 255, 0.5); } .config-container { background: rgba(28, 14, 36, 0.95); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 8px; overflow: hidden; } .config-header { background: rgba(255, 20, 147, 0.1); padding: 15px 20px; border-bottom: 1px solid rgba(255, 20, 147, 0.3); } .model-name { color: #FF1493; font-weight: 600; } .config-content { padding: 20px; } .config-item { display: flex; flex-direction: column; gap: 5px; margin-bottom: 15px; } .config-label { color: #00FFEE; font-size: 14px; font-weight: 500; } .config-value { color: #FFE1FF; font-family: 'Courier New', monospace; } .config-models { margin-top: 20px; } .model-list { list-style: none; padding: 0; margin: 10px 0 0 0; } .model-list li { color: #FFE1FF; font-family: 'Courier New', monospace; padding: 5px 0; padding-left: 20px; position: relative; } .model-list li::before { content: '-'; position: absolute; left: 0; color: #00FFEE; } .link-arrow { display: inline-block; transition: transform 0.3s ease; } a:hover .link-arrow { transform: translateX(3px); } .benchmark-notification { background: rgba(255, 20, 147, 0.15); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 8px; margin-bottom: 20px; padding: 12px; animation: glowPulse 2s infinite; } .notification-content { display: flex; align-items: center; justify-content: center; gap: 10px; text-align: center; } .notification-icon { font-size: 20px; } .notification-text { color: #FFE1FF; font-size: 16px; font-weight: 500; display: flex; flex-direction: column; align-items: center; gap: 5px; } .benchmark-link { color: #00FFEE; text-decoration: none; font-size: 14px; padding: 4px 8px; border-radius: 4px; transition: all 0.3s ease; border: 1px solid rgba(0, 255, 238, 0.3); } .benchmark-link:hover { background: rgba(0, 255, 238, 0.1); border-color: rgba(0, 255, 238, 0.5); color: #00FFEE; text-shadow: 0 0 5px rgba(0, 255, 238, 0.5); } @keyframes glowPulse { 0% { box-shadow: 0 0 5px rgba(255, 20, 147, 0.3); } 50% { box-shadow: 0 0 15px rgba(255, 20, 147, 0.5); } 100% { box-shadow: 0 0 5px rgba(255, 20, 147, 0.3); } } .review-card { background: rgba(28, 14, 36, 0.95); border: 1px solid rgba(255, 20, 147, 0.3); border-radius: 8px; padding: 15px; margin-bottom: 15px; } .review-card:last-child { margin-bottom: 0; } </style> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Contrl-Stheno-8B-v1</title> <link href="https://fonts.googleapis.com/css2?family=Quicksand:wght@400;500;600&display=swap" rel="stylesheet"> <link href="styles.css" rel="stylesheet"> </head> <body> <div class="container"> <div class="header"> <h1>Contrl-Stheno-8B-v1</h1> </div> <div class="info"> <img src="https://huggingface.co/Darkknight535/Contrl-Stheno-v1-8B/resolve/main/img_.jpg" alt="Model banner"> <div class="creator-section"> <div class="creator-badge"> <span class="creator-label">Created by</span> <a href="https://huggingface.co/Darkknight535" target="_blank" class="creator-link"> <span class="creator-name">Darkknight535</span> <span class="creator-arrow">→</span> </a> </div> </div> <div class="model-info"> <h2>Model Information</h2> <div class="info-card"> <div class="info-header"> <h3>Contrl-Stheno-8B-v1</h3> <div class="model-tags"> <span class="model-tag">Stheno = Stheno-v3.2</span> <span class="model-tag">Contrl = Control-Nanuq</span> <span class="model-tag">8b Parameters</span> </div> </div> <div class="model-composition"> <h4>Model Composition</h4> <ul class="composition-list"> <li><span class="model-component"><a href="https://huggingface.co/Delta-Vector/Control-Nanuq-8B" target="_blank">Control Nanuq 8B</a></span> Sweetness and Creativity capabilities</li> <li><span class="model-component"><a href="https://huggingface.co/Sao10K/L3-8B-Stheno-v3.2" target="_blank">Stheno-3.2 8B</a></span> Roleplay and logic</li> </ul> </div> <div class="model-description"> <p>An Experiment of mine which turned out to be great! It has dialogues I hadn't found even in 70B models.</p> </div> </div> <!--<div class="metrics-section"> <details open> <summary>User Reviews</summary> <div class="progress-metrics"> <div> <div class="review-card"> <div> <span>[USERNAME]</span> </div> <p>[REVIEW]</p> </div> <div class="review-card"> <div> <span>[USERNAME]</span> </div> <p>[REVIEW]</p> </div> <div class="review-card"> <div> <span>[USERNAME]</span> </div> <p>[REVIEW]</p> </div> </div> </div> </details> </div>--> </div> <div class="section-container"> <h2>Reccomended Templates & Prompts</h2> <div class="template-card"> <div class="template-item"> <div class="template-content"> <a href="" target="_blank" class="template-link"> Sao10k's Euryale System Prompt OR EVA System Prompt <span class="link-arrow">→</span> </a> <span class="template-author">by Sao10k and EVA-UNIT-01</span> </div> </div> </div> </div> <div class="section-container"> <h2>Quantized Versions</h2> <div class="quantized-container"> <div class="quantized-section"> <h3>GGUF Quantizations</h3> <div class="quantized-items"> <div class="quantized-item"> <span class="author">mradermacher</span> <a href="https://huggingface.co/mradermacher/Contrl-Stheno-v1-8B-GGUF" target="_blank"> STATIC-GGUF <span class="link-arrow">→</span> </a> </div> </div> </div> <div class="quantized-section"> <h3>Imat GGUF Quantizations</h3> <div class="quantized-items"> <div class="quantized-item"> <span class="author">mradermacher</span> <a href="https://huggingface.co/mradermacher/Contrl-Stheno-v1-8B-i1-GGUF" target="_blank"> IMAT-GGUF <span class="link-arrow">→</span> </a> </div> </div> </div> </div> </div> <div class="support-section"> <h2>Thanks to these people (I just made a script and Stole SteelSkull's Readme Template)</h2> <div class="support-buttons"> <a href="https://huggingface.co/Sao10k" target="_blank" class="button"> Support Sao10K </a> <a href="https://huggingface.co/Delta-Vector" target="_blank" class="button"> Support Delta-Vector </a> <a href="https://huggingface.co/Steelskull" target="_blank" class="button"> Support SteelSkull </a> </div> </div> </div> </div> </body> </html>
mradermacher/pythia-6.9b-HC3-GGUF
mradermacher
2025-05-26T09:22:21Z
41
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "HC3", "chatGPT", "assistant", "en", "dataset:pszemraj/HC3-textgen-qa", "base_model:pszemraj/pythia-6.9b-HC3", "base_model:quantized:pszemraj/pythia-6.9b-HC3", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-25T07:17:10Z
--- base_model: pszemraj/pythia-6.9b-HC3 datasets: - pszemraj/HC3-textgen-qa language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - generated_from_trainer - HC3 - chatGPT - assistant --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/pszemraj/pythia-6.9b-HC3 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/pythia-6.9b-HC3-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/pythia-6.9b-HC3-GGUF/resolve/main/pythia-6.9b-HC3.Q2_K.gguf) | Q2_K | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/pythia-6.9b-HC3-GGUF/resolve/main/pythia-6.9b-HC3.Q3_K_S.gguf) | Q3_K_S | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/pythia-6.9b-HC3-GGUF/resolve/main/pythia-6.9b-HC3.Q3_K_M.gguf) | Q3_K_M | 3.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/pythia-6.9b-HC3-GGUF/resolve/main/pythia-6.9b-HC3.IQ4_XS.gguf) | IQ4_XS | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/pythia-6.9b-HC3-GGUF/resolve/main/pythia-6.9b-HC3.Q3_K_L.gguf) | Q3_K_L | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/pythia-6.9b-HC3-GGUF/resolve/main/pythia-6.9b-HC3.Q4_K_S.gguf) | Q4_K_S | 4.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/pythia-6.9b-HC3-GGUF/resolve/main/pythia-6.9b-HC3.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/pythia-6.9b-HC3-GGUF/resolve/main/pythia-6.9b-HC3.Q5_K_S.gguf) | Q5_K_S | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/pythia-6.9b-HC3-GGUF/resolve/main/pythia-6.9b-HC3.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/pythia-6.9b-HC3-GGUF/resolve/main/pythia-6.9b-HC3.Q6_K.gguf) | Q6_K | 5.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/pythia-6.9b-HC3-GGUF/resolve/main/pythia-6.9b-HC3.Q8_0.gguf) | Q8_0 | 7.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/pythia-6.9b-HC3-GGUF/resolve/main/pythia-6.9b-HC3.f16.gguf) | f16 | 13.8 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
StanfordAIMI/SRR-BERT2BERT
StanfordAIMI
2025-05-26T09:21:53Z
1
0
transformers
[ "transformers", "safetensors", "encoder-decoder", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-03-27T00:11:50Z
--- library_name: transformers tags: [] --- ## 🎬 Get Started ```python import torch from transformers import EncoderDecoderModel, AutoTokenizer, AutoConfig # step 1: Setup constant model_name = "StanfordAIMI/SRR-BERT2BERT" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # step 2: Load Processor and Model model = EncoderDecoderModel.from_pretrained(model_name).to(device) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, padding_side="right", use_fast=False) model.config.decoder_start_token_id = tokenizer.cls_token_id model.config.bos_token_id = tokenizer.cls_token_id model.eval() # step 3: Inference (example from MIMIC-CXR dataset) input_text = "CHEST RADIOGRAPH PERFORMED ON ___ COMPARISON: Prior exam from ___. CLINICAL HISTORY: Weakness, assess pneumonia. FINDINGS: Frontal and lateral views of the chest were provided. Midline sternotomy wires are again noted. The heart is poorly assessed, though remains enlarged. There are at least small bilateral pleural effusions. There may be mild interstitial edema. No pneumothorax. Bony structures are demineralized with kyphotic angulation in the lower T-spine again noted. IMPRESSION: Limited exam with small bilateral effusions, cardiomegaly, and possible mild interstitial edema." inputs = tokenizer(input_text, padding="max_length", truncation=True, max_length=512, return_tensors="pt") inputs["attention_mask"] = inputs["input_ids"].ne(tokenizer.pad_token_id) # Add attention mask input_ids = inputs['input_ids'].to(device) attention_mask=inputs["attention_mask"].to(device) generated_ids = model.generate( input_ids, attention_mask=attention_mask, max_new_tokens=286, min_new_tokens= 120,decoder_start_token_id=model.config.decoder_start_token_id, num_beams=5, early_stopping=True, max_length=None )[0] decoded = tokenizer.decode(generated_ids, skip_special_tokens=True) print(decoded) ```
Borui-Chan/codeparrot-ds
Borui-Chan
2025-05-26T09:21:19Z
0
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-26T08:01:50Z
--- library_name: transformers license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.476 | 0.0931 | 500 | 2.3260 | | 2.2028 | 0.1861 | 1000 | 2.1672 | | 2.074 | 0.2792 | 1500 | 2.0317 | | 1.9791 | 0.3722 | 2000 | 1.9181 | | 1.8762 | 0.4653 | 2500 | 1.8222 | | 1.7815 | 0.5583 | 3000 | 1.7436 | | 1.7088 | 0.6514 | 3500 | 1.6765 | | 1.6439 | 0.7444 | 4000 | 1.6315 | | 1.6023 | 0.8375 | 4500 | 1.5997 | | 1.5815 | 0.9305 | 5000 | 1.5870 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
banhkeomath2/sound
banhkeomath2
2025-05-26T09:20:07Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-03-07T05:40:54Z
--- license: apache-2.0 ---
dimasik87/492f5d86-02df-4ab1-809e-25ff65e925e5
dimasik87
2025-05-26T09:19:31Z
0
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "llama", "text-generation", "generated_from_trainer", "axolotl", "dpo", "trl", "conversational", "arxiv:2305.18290", "base_model:Orenguteng/Llama-3-8B-Lexi-Uncensored", "base_model:quantized:Orenguteng/Llama-3-8B-Lexi-Uncensored", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-05-26T08:33:01Z
--- base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored library_name: transformers model_name: 492f5d86-02df-4ab1-809e-25ff65e925e5 tags: - generated_from_trainer - axolotl - dpo - trl licence: license --- # Model Card for 492f5d86-02df-4ab1-809e-25ff65e925e5 This model is a fine-tuned version of [Orenguteng/Llama-3-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="dimasik87/492f5d86-02df-4ab1-809e-25ff65e925e5", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/dedok-yo/s56-7/runs/b2djyfkn) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.46.0 - Pytorch: 2.5.0+cu124 - Datasets: 3.0.1 - Tokenizers: 0.20.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
leobianco/npov_RM_model_google_seed_12345_SYN_LLM_false_SYN_STRUCT_true_epochs_3_lr_1e-4_lora_1
leobianco
2025-05-26T09:17:34Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-26T09:02:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
phospho-app/jmota27-gr00t-boat_cup_dataset-npbv8
phospho-app
2025-05-26T09:15:29Z
0
0
null
[ "safetensors", "gr00t_n1", "phosphobot", "gr00t", "region:us" ]
null
2025-05-26T08:49:06Z
--- tags: - phosphobot - gr00t task_categories: - robotics --- # gr00t Model - phospho Training Pipeline ## This model was trained using **phospho**. Training was successfull, try it out on your robot! ## Training parameters: - **Dataset**: [jmota27/boat_cup_dataset](https://huggingface.co/datasets/jmota27/boat_cup_dataset) - **Wandb run URL**: None - **Epochs**: 10 - **Batch size**: 49 - **Training steps**: None 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
qnguyen3/colqwen2_5-multilingual
qnguyen3
2025-05-26T09:14:10Z
0
0
transformers
[ "transformers", "safetensors", "multimodal_embedding", "multilingual_embedding", "Text-to-Visual Document (T→VD) retrieval", "visual-document-retrieval", "en", "fr", "es", "it", "de", "dataset:openbmb/VisRAG-Ret-Train-Synthetic-data", "dataset:openbmb/VisRAG-Ret-Train-In-domain-data", "dataset:tsystems/vqa_de_en_batch1", "dataset:vidore/colpali_train_set", "dataset:llamaindex/vdr-multilingual-train", "dataset:Metric-AI/tabfquad_train_set", "arxiv:2004.12832", "arxiv:2407.01449", "arxiv:2106.09685", "base_model:Qwen/Qwen2.5-VL-3B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-3B-Instruct", "license:mit", "endpoints_compatible", "region:us" ]
visual-document-retrieval
2025-05-26T09:10:18Z
--- license: mit datasets: - openbmb/VisRAG-Ret-Train-Synthetic-data - openbmb/VisRAG-Ret-Train-In-domain-data - tsystems/vqa_de_en_batch1 - vidore/colpali_train_set - llamaindex/vdr-multilingual-train - Metric-AI/tabfquad_train_set language: - en - fr - es - it - de base_model: - Qwen/Qwen2.5-VL-3B-Instruct tags: - multimodal_embedding - multilingual_embedding - Text-to-Visual Document (T→VD) retrieval library_name: transformers pipeline_tag: visual-document-retrieval --- # ColQwen2.5-3b-multilingual-v1.0: Multilingual Visual Retriever based on Qwen2.5-VL-3B-Instruct with ColBERT strategy ### This is the base version trained on 8xH100 80GB with per_device_batch_size=128 for 8 epoch. ColQwen is a model based on a novel model architecture and training strategy based on Vision Language Models (VLMs) to efficiently index documents from their visual features. It is a [Qwen2.5-VL-3B](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct) extension that generates [ColBERT](https://arxiv.org/abs/2004.12832)- style multi-vector representations of text and images. It was introduced in the paper [ColPali: Efficient Document Retrieval with Vision Language Models](https://arxiv.org/abs/2407.01449) and first released in [this repository](https://github.com/ManuelFay/colpali) <p align="center"><img width=800 src="https://github.com/illuin-tech/colpali/blob/main/assets/colpali_architecture.webp?raw=true"/></p> ## Version specificity This model takes dynamic image resolutions in input and does not resize them, changing their aspect ratio as in ColPali. Maximal resolution is set so that 768 image patches are created at most. Experiments show clear improvements with larger amounts of image patches, at the cost of memory requirements. This version is trained with `colpali-engine==0.3.9`. ## Data - **German & English**: Taken from the `tsystems/vqa_de_en_batch1` dataset. - **Multilingual dataset**: Taken from `llamaindex/vdr-multilingual-train`. - **Synthetic data**: Taken from `openbmb/VisRAG-Ret-Train-Synthetic-data` dataset. - **In-domain VQA dataset**: Taken from `openbmb/VisRAG-Ret-Train-In-domain-data` dataset. - **Colpali dataset**: Taken from `vidore/colpali_train_set`. ## Model Training ### Parameters We train models use low-rank adapters ([LoRA](https://arxiv.org/abs/2106.09685)) with `alpha=128` and `r=128` on the transformer layers from the language model, as well as the final randomly initialized projection layer, and use a `paged_adamw_8bit` optimizer. We train on an 8xH100 GPU setup with distributed data parallelism (via accelerate), a learning rate of 2e-4 with linear decay with 1% warmup steps, batch size per device is 128 in `bfloat16` format ## Installation ```bash pip install git+https://github.com/illuin-tech/colpali pip install transformers==4.49.0 pip install flash-attn --no-build-isolation ``` ## Usage ```python import torch from PIL import Image from colpali_engine.models import ColQwen2_5, ColQwen2_5_Processor model = ColQwen2_5.from_pretrained( "tsystems/colqwen2.5-3b-multilingual-v1.0", torch_dtype=torch.bfloat16, device_map="cuda:0", # or "mps" if on Apple Silicon ).eval() processor = ColQwen2_5_Processor.from_pretrained("tsystems/colqwen2.5-3b-multilingual-v1.0") # Your inputs images = [ Image.new("RGB", (32, 32), color="white"), Image.new("RGB", (16, 16), color="black"), ] queries = [ "Is attention really all you need?", "What is the amount of bananas farmed in Salvador?", ] # Process the inputs batch_images = processor.process_images(images).to(model.device) batch_queries = processor.process_queries(queries).to(model.device) # Forward pass with torch.no_grad(): image_embeddings = model(**batch_images) query_embeddings = model(**batch_queries) scores = processor.score_multi_vector(query_embeddings, image_embeddings) ``` ## Limitations - **Focus**: The model primarily focuses on PDF-type documents and high-ressources languages, potentially limiting its generalization to other document types or less represented languages. - **Support**: The model relies on multi-vector retreiving derived from the ColBERT late interaction mechanism, which may require engineering efforts to adapt to widely used vector retrieval frameworks that lack native multi-vector support. ## License ColQwen2.5's vision language backbone model (Qwen2.5-VL) is under `apache2.0` license. The adapters attached to the model are under MIT license. ## Citation If you use this models from this organization in your research, please cite the original paper as follows: ```bibtex @misc{faysse2024colpaliefficientdocumentretrieval, title={ColPali: Efficient Document Retrieval with Vision Language Models}, author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo}, year={2024}, eprint={2407.01449}, archivePrefix={arXiv}, primaryClass={cs.IR}, url={https://arxiv.org/abs/2407.01449}, } ``` - **Developed by:** [T-Systems International](https://www.t-systems.com/de/en)
Hyaline/Domaino1s-finance
Hyaline
2025-05-26T09:13:41Z
1
0
null
[ "safetensors", "qwen2", "arxiv:2501.14431", "license:apache-2.0", "region:us" ]
null
2025-01-19T01:32:02Z
--- license: apache-2.0 --- This repository stores the model parameters for our paper [Domaino1s: Guiding LLM Reasoning for Explainable Answers in High-Stakes Domains](https://arxiv.org/abs/2501.14431). Our paper is now accepted as findings of **ACL 2025**. More details: [Domaino1s](https://github.com/Hyalinesky/Domaino1s) ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{chu2025domaino1s, title={Domaino1s: Guiding LLM Reasoning for Explainable Answers in High-Stakes Domains}, author={Chu, Xu and Tan, Zhijie and Xue, Hanlin and Wang, Guanyu and Mo, Tong and Li, Weiping}, journal={arXiv preprint arXiv:2501.14431}, year={2025} } ```
ashani/ppo-SnowballTarget
ashani
2025-05-26T09:09:56Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2025-05-26T09:09:52Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: ashani/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sp-embraceable/Phi4-FT-unsloth-runpod-3000steps-e1-above90-adapter
sp-embraceable
2025-05-26T09:08:05Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:unsloth/phi-4", "base_model:adapter:unsloth/phi-4", "region:us" ]
null
2025-05-26T09:05:51Z
--- base_model: unsloth/Phi-4 library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
ggml-org/Qwen2.5-Omni-3B-GGUF
ggml-org
2025-05-26T09:07:29Z
0
0
null
[ "gguf", "multimodal", "any-to-any", "en", "base_model:Qwen/Qwen2.5-Omni-3B", "base_model:quantized:Qwen/Qwen2.5-Omni-3B", "license:other", "endpoints_compatible", "region:us", "conversational" ]
any-to-any
2025-05-26T08:52:28Z
--- license: other license_name: qwen-research license_link: https://huggingface.co/Qwen/Qwen2.5-Omni-3B/blob/main/LICENSE language: - en tags: - multimodal pipeline_tag: any-to-any base_model: - Qwen/Qwen2.5-Omni-3B --- # Qwen2.5-Omni-3B-GGUF Original model: https://huggingface.co/Qwen/Qwen2.5-Omni-3B Modalities: - ✅ Text input - ✅ Audio input - ✅ Image input - ❌ Video input - ❌ Audio generation Ref PR: https://github.com/ggml-org/llama.cpp/pull/13784
ahmedelgebaly/llama-3.1-8b-squadv2_SciQ_E4_V2
ahmedelgebaly
2025-05-26T09:05:21Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:meta-llama/Llama-3.1-8B", "base_model:adapter:meta-llama/Llama-3.1-8B", "license:llama3", "4-bit", "bitsandbytes", "region:us" ]
null
2025-05-22T22:08:30Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3.1-8B tags: - axolotl - generated_from_trainer model-index: - name: llama-3.1-8b-squadv2_SciQ_E4_V2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml base_model: meta-llama/Meta-Llama-3.1-8B lora_model_dir: ahmedelgebaly/llama-3.1-8b-squadv2_E4_V2 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: ahmedelgebaly/SciQ_Alpaca type: alpaca split: train - path: ahmedelgebaly/SQuad_2_Alpaca type: alpaca split: train percentage: 0.1 # small replay buffer to avoid forgetting test_datasets: - path: ahmedelgebaly/SciQ_Alpaca type: alpaca split: validation dataset_prepared_path: output_dir: ./outputs/qlora-out adapter: qlora sequence_len: 4096 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 64 #Before it was 16 lora_dropout: 0.05 lora_target_modules: #Before it was empty - q_proj - k_proj - v_proj - o_proj - gate_proj - up_proj - down_proj lora_target_linear: true lora_fan_in_fan_out: wandb_project: llama-3.1-8b-squadv2_SciQ_e4_v2 wandb_entity: wandb_watch: wandb_name: llama-3.1-8b-squadv2-v0_SciQ_e4_v2 wandb_log_model: hub_model_id: ahmedelgebaly/llama-3.1-8b-squadv2_SciQ_E4_V2 gradient_accumulation_steps: 4 micro_batch_size: 4 num_epochs: 4 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: true #Before it was false bf16: auto tf32: false gradient_checkpointing: true flash_attention: true warmup_steps: 50 #Before it was 10 evals_per_epoch: 4 saves_per_epoch: 1 weight_decay: 0.0 special_tokens: pad_token: "<|end_of_text|>" ``` </details><br> # llama-3.1-8b-squadv2_SciQ_E4_V2 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0029 | 1 | 3.2906 | | 0.5404 | 0.2504 | 85 | 0.9333 | | 0.5631 | 0.5007 | 170 | 0.9100 | | 0.575 | 0.7511 | 255 | 0.8983 | | 0.5583 | 1.0015 | 340 | 0.8907 | | 0.3664 | 1.2496 | 425 | 0.9217 | | 0.38 | 1.5 | 510 | 0.9176 | | 0.388 | 1.7504 | 595 | 0.9175 | | 0.3737 | 2.0007 | 680 | 0.9100 | | 0.2372 | 2.2489 | 765 | 1.0172 | | 0.2475 | 2.4993 | 850 | 0.9950 | | 0.2375 | 2.7496 | 935 | 1.0111 | | 0.2395 | 3.0 | 1020 | 1.0045 | | 0.1628 | 3.2482 | 1105 | 1.1457 | | 0.1648 | 3.4985 | 1190 | 1.1547 | | 0.1625 | 3.7489 | 1275 | 1.1591 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
llmware/phi-4-ov
llmware
2025-05-26T09:04:20Z
2
0
null
[ "openvino", "phi3", "green", "llmware-chat", "p14", "ov", "emerald", "custom_code", "base_model:microsoft/phi-4", "base_model:quantized:microsoft/phi-4", "license:apache-2.0", "region:us" ]
null
2025-01-14T21:40:57Z
--- license: apache-2.0 inference: false base_model: microsoft/phi-4 base_model_relation: quantized tags: [green, llmware-chat, p14, ov, emerald] --- # phi-4-ov <!-- Provide a quick summary of what the model is/does. --> **phi-4-ov** is an OpenVino int4 quantized version of [Microsoft Phi-4](https://www.huggingface.co/microsoft/phi-4), providing a fast, small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU. ### Model Description - **Developed by:** microsoft - **Quantized by:** llmware - **Model type:** phi4 - **Parameters:** 14.7 billion - **Model Parent:** microsoft/phi-4 - **Language(s) (NLP):** English - **License:** Apache 2.0 - **Uses:** Chat, general-purpose LLM - **Quantization:** int4 ## Model Card Contact [llmware on hf](https://www.huggingface.co/llmware) [llmware website](https://www.llmware.ai)
ai-forever/FRIDA
ai-forever
2025-05-26T09:04:19Z
13,940
54
sentence-transformers
[ "sentence-transformers", "safetensors", "t5", "mteb", "transformers", "feature-extraction", "ru", "en", "dataset:ai-forever/solyanka", "arxiv:2309.10931", "arxiv:2408.12503", "base_model:ai-forever/FRED-T5-1.7B", "base_model:finetune:ai-forever/FRED-T5-1.7B", "license:mit", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2024-12-26T15:07:35Z
--- model-index: - name: FRIDA results: - dataset: config: default name: MTEB CEDRClassification (default) revision: c0ba03d058e3e1b2f3fd20518875a4563dd12db4 split: test type: ai-forever/cedr-classification metrics: - type: accuracy value: 64.60148777895856 - type: f1 value: 70.36630348039266 - type: lrap value: 92.47290116896953 - type: main_score value: 64.60148777895856 task: type: MultilabelClassification - dataset: config: default name: MTEB GeoreviewClassification (default) revision: 3765c0d1de6b7d264bc459433c45e5a75513839c split: test type: ai-forever/georeview-classification metrics: - type: accuracy value: 57.70996093750001 - type: f1 value: 53.18542982057098 - type: f1_weighted value: 53.17663229582108 - type: main_score value: 57.70996093750001 task: type: Classification - dataset: config: default name: MTEB GeoreviewClusteringP2P (default) revision: 97a313c8fc85b47f13f33e7e9a95c1ad888c7fec split: test type: ai-forever/georeview-clustering-p2p metrics: - type: main_score value: 78.25468393043356 - type: v_measure value: 78.25468393043356 - type: v_measure_std value: 0.5094366871364238 task: type: Clustering - dataset: config: default name: MTEB HeadlineClassification (default) revision: 2fe05ee6b5832cda29f2ef7aaad7b7fe6a3609eb split: test type: ai-forever/headline-classification metrics: - type: accuracy value: 89.0185546875 - type: f1 value: 88.993933120612 - type: f1_weighted value: 88.99276764225768 - type: main_score value: 89.0185546875 task: type: Classification - dataset: config: default name: MTEB InappropriatenessClassification (default) revision: 601651fdc45ef243751676e62dd7a19f491c0285 split: test type: ai-forever/inappropriateness-classification metrics: - type: accuracy value: 78.330078125 - type: ap value: 73.17856750532495 - type: ap_weighted value: 73.17856750532495 - type: f1 value: 78.20169867599041 - type: f1_weighted value: 78.20169867599041 - type: main_score value: 78.330078125 task: type: Classification - dataset: config: default name: MTEB KinopoiskClassification (default) revision: 5911f26666ac11af46cb9c6849d0dc80a378af24 split: test type: ai-forever/kinopoisk-sentiment-classification metrics: - type: accuracy value: 70.46666666666665 - type: f1 value: 65.83951766538878 - type: f1_weighted value: 65.83951766538878 - type: main_score value: 70.46666666666665 task: type: Classification - dataset: config: ru name: MTEB MIRACLReranking (ru) revision: 6d1962c527217f8927fca80f890f14f36b2802af split: dev type: miracl/mmteb-miracl-reranking metrics: - type: MAP@1(MIRACL) value: 39.023 - type: MAP@10(MIRACL) value: 60.208 - type: MAP@100(MIRACL) value: 61.672000000000004 - type: MAP@1000(MIRACL) value: 61.672000000000004 - type: MAP@20(MIRACL) value: 61.30799999999999 - type: MAP@3(MIRACL) value: 53.33 - type: MAP@5(MIRACL) value: 57.289 - type: NDCG@1(MIRACL) value: 63.352 - type: NDCG@10(MIRACL) value: 66.042 - type: NDCG@100(MIRACL) value: 68.702 - type: NDCG@1000(MIRACL) value: 68.702 - type: NDCG@20(MIRACL) value: 67.768 - type: NDCG@3(MIRACL) value: 61.925 - type: NDCG@5(MIRACL) value: 63.327 - type: P@1(MIRACL) value: 63.352 - type: P@10(MIRACL) value: 16.512 - type: P@100(MIRACL) value: 1.9529999999999998 - type: P@1000(MIRACL) value: 0.19499999999999998 - type: P@20(MIRACL) value: 9.13 - type: P@3(MIRACL) value: 37.878 - type: P@5(MIRACL) value: 27.586 - type: Recall@1(MIRACL) value: 39.023 - type: Recall@10(MIRACL) value: 72.35000000000001 - type: Recall@100(MIRACL) value: 79.952 - type: Recall@1000(MIRACL) value: 79.952 - type: Recall@20(MIRACL) value: 76.828 - type: Recall@3(MIRACL) value: 57.769999999999996 - type: Recall@5(MIRACL) value: 64.91900000000001 - type: main_score value: 66.042 - type: nAUC_MAP@1000_diff1(MIRACL) value: 27.150388833033052 - type: nAUC_MAP@1000_max(MIRACL) value: 55.15672274267081 - type: nAUC_MAP@1000_std(MIRACL) value: 30.088939934575553 - type: nAUC_MAP@100_diff1(MIRACL) value: 27.150388833033052 - type: nAUC_MAP@100_max(MIRACL) value: 55.15672274267081 - type: nAUC_MAP@100_std(MIRACL) value: 30.088939934575553 - type: nAUC_MAP@10_diff1(MIRACL) value: 27.853691773641742 - type: nAUC_MAP@10_max(MIRACL) value: 52.89390350055654 - type: nAUC_MAP@10_std(MIRACL) value: 28.08732516551691 - type: nAUC_MAP@1_diff1(MIRACL) value: 43.23179150244192 - type: nAUC_MAP@1_max(MIRACL) value: 29.923943954188864 - type: nAUC_MAP@1_std(MIRACL) value: 7.447084370195121 - type: nAUC_MAP@20_diff1(MIRACL) value: 27.328384072311675 - type: nAUC_MAP@20_max(MIRACL) value: 54.60286379835721 - type: nAUC_MAP@20_std(MIRACL) value: 29.8084128980043 - type: nAUC_MAP@3_diff1(MIRACL) value: 31.244971536944554 - type: nAUC_MAP@3_max(MIRACL) value: 43.63984692803854 - type: nAUC_MAP@3_std(MIRACL) value: 18.609234683765887 - type: nAUC_MAP@5_diff1(MIRACL) value: 29.088760492638286 - type: nAUC_MAP@5_max(MIRACL) value: 48.30474364461509 - type: nAUC_MAP@5_std(MIRACL) value: 23.817514353844224 - type: nAUC_NDCG@1000_diff1(MIRACL) value: 23.12754356408408 - type: nAUC_NDCG@1000_max(MIRACL) value: 64.24894553363303 - type: nAUC_NDCG@1000_std(MIRACL) value: 38.19318050598967 - type: nAUC_NDCG@100_diff1(MIRACL) value: 23.12754356408408 - type: nAUC_NDCG@100_max(MIRACL) value: 64.24894553363303 - type: nAUC_NDCG@100_std(MIRACL) value: 38.19318050598967 - type: nAUC_NDCG@10_diff1(MIRACL) value: 24.779856373697275 - type: nAUC_NDCG@10_max(MIRACL) value: 60.4054459738118 - type: nAUC_NDCG@10_std(MIRACL) value: 35.148950441182784 - type: nAUC_NDCG@1_diff1(MIRACL) value: 35.605865569438556 - type: nAUC_NDCG@1_max(MIRACL) value: 65.77787399715454 - type: nAUC_NDCG@1_std(MIRACL) value: 34.34726892885082 - type: nAUC_NDCG@20_diff1(MIRACL) value: 23.71231783125691 - type: nAUC_NDCG@20_max(MIRACL) value: 62.89676599488004 - type: nAUC_NDCG@20_std(MIRACL) value: 37.697052941884316 - type: nAUC_NDCG@3_diff1(MIRACL) value: 26.109027741640865 - type: nAUC_NDCG@3_max(MIRACL) value: 56.22356793638693 - type: nAUC_NDCG@3_std(MIRACL) value: 29.9437568508688 - type: nAUC_NDCG@5_diff1(MIRACL) value: 25.98644715327336 - type: nAUC_NDCG@5_max(MIRACL) value: 56.25032008404774 - type: nAUC_NDCG@5_std(MIRACL) value: 31.581899860862578 - type: nAUC_P@1000_diff1(MIRACL) value: -18.29912787064644 - type: nAUC_P@1000_max(MIRACL) value: 31.811344878776087 - type: nAUC_P@1000_std(MIRACL) value: 30.163820183304914 - type: nAUC_P@100_diff1(MIRACL) value: -18.299127870646405 - type: nAUC_P@100_max(MIRACL) value: 31.811344878776133 - type: nAUC_P@100_std(MIRACL) value: 30.163820183304956 - type: nAUC_P@10_diff1(MIRACL) value: -15.96416268531149 - type: nAUC_P@10_max(MIRACL) value: 36.989578896466526 - type: nAUC_P@10_std(MIRACL) value: 34.54507111688143 - type: nAUC_P@1_diff1(MIRACL) value: 35.605865569438556 - type: nAUC_P@1_max(MIRACL) value: 65.77787399715454 - type: nAUC_P@1_std(MIRACL) value: 34.34726892885082 - type: nAUC_P@20_diff1(MIRACL) value: -17.443963421383287 - type: nAUC_P@20_max(MIRACL) value: 34.309618168778385 - type: nAUC_P@20_std(MIRACL) value: 33.38820956485373 - type: nAUC_P@3_diff1(MIRACL) value: -8.533621861815652 - type: nAUC_P@3_max(MIRACL) value: 45.90408386776497 - type: nAUC_P@3_std(MIRACL) value: 34.50459351305535 - type: nAUC_P@5_diff1(MIRACL) value: -13.207968899314865 - type: nAUC_P@5_max(MIRACL) value: 40.37718282248973 - type: nAUC_P@5_std(MIRACL) value: 35.601417332196206 - type: nAUC_Recall@1000_diff1(MIRACL) value: 7.907304198177226 - type: nAUC_Recall@1000_max(MIRACL) value: 77.82197832361145 - type: nAUC_Recall@1000_std(MIRACL) value: 52.66957487246724 - type: nAUC_Recall@100_diff1(MIRACL) value: 7.907304198177226 - type: nAUC_Recall@100_max(MIRACL) value: 77.82197832361145 - type: nAUC_Recall@100_std(MIRACL) value: 52.66957487246724 - type: nAUC_Recall@10_diff1(MIRACL) value: 15.498121023488693 - type: nAUC_Recall@10_max(MIRACL) value: 62.24320529338724 - type: nAUC_Recall@10_std(MIRACL) value: 40.60221460946224 - type: nAUC_Recall@1_diff1(MIRACL) value: 43.23179150244192 - type: nAUC_Recall@1_max(MIRACL) value: 29.923943954188864 - type: nAUC_Recall@1_std(MIRACL) value: 7.447084370195121 - type: nAUC_Recall@20_diff1(MIRACL) value: 11.457044176116248 - type: nAUC_Recall@20_max(MIRACL) value: 70.3493054342368 - type: nAUC_Recall@20_std(MIRACL) value: 49.27124296325928 - type: nAUC_Recall@3_diff1(MIRACL) value: 25.12077828977941 - type: nAUC_Recall@3_max(MIRACL) value: 42.903379317937166 - type: nAUC_Recall@3_std(MIRACL) value: 20.324501722161497 - type: nAUC_Recall@5_diff1(MIRACL) value: 20.925701235197977 - type: nAUC_Recall@5_max(MIRACL) value: 49.85323960390812 - type: nAUC_Recall@5_std(MIRACL) value: 29.04484539530469 task: type: Reranking - dataset: config: ru name: MTEB MIRACLRetrieval (ru) revision: main split: dev type: miracl/mmteb-miracl metrics: - type: main_score value: 71.882 - type: map_at_1 value: 37.913000000000004 - type: map_at_10 value: 62.604000000000006 - type: map_at_100 value: 64.925 - type: map_at_1000 value: 64.992 - type: map_at_20 value: 64.081 - type: map_at_3 value: 55.212 - type: map_at_5 value: 59.445 - type: mrr_at_1 value: 73.24281150159744 - type: mrr_at_10 value: 81.65043866321825 - type: mrr_at_100 value: 81.85391378818977 - type: mrr_at_1000 value: 81.85753390802569 - type: mrr_at_20 value: 81.81045606130179 - type: mrr_at_3 value: 80.56443024494146 - type: mrr_at_5 value: 81.30724174653893 - type: nauc_map_at_1000_diff1 value: 26.962150235593356 - type: nauc_map_at_1000_max value: 29.234958037854568 - type: nauc_map_at_1000_std value: -2.4294465103633884 - type: nauc_map_at_100_diff1 value: 26.92990252114163 - type: nauc_map_at_100_max value: 29.206328533120118 - type: nauc_map_at_100_std value: -2.437371090941197 - type: nauc_map_at_10_diff1 value: 25.758265691179226 - type: nauc_map_at_10_max value: 26.949978490795317 - type: nauc_map_at_10_std value: -5.484961002106038 - type: nauc_map_at_1_diff1 value: 34.70849461278043 - type: nauc_map_at_1_max value: 12.778570893623042 - type: nauc_map_at_1_std value: -13.018292652743938 - type: nauc_map_at_20_diff1 value: 26.659923008218268 - type: nauc_map_at_20_max value: 28.341440871568185 - type: nauc_map_at_20_std value: -3.614549844913084 - type: nauc_map_at_3_diff1 value: 27.197629021438203 - type: nauc_map_at_3_max value: 20.701094874050856 - type: nauc_map_at_3_std value: -12.062992301112041 - type: nauc_map_at_5_diff1 value: 25.51793537203295 - type: nauc_map_at_5_max value: 23.80396771243794 - type: nauc_map_at_5_std value: -8.920465695323575 - type: nauc_mrr_at_1000_diff1 value: 45.14819989592967 - type: nauc_mrr_at_1000_max value: 53.29202156141053 - type: nauc_mrr_at_1000_std value: 18.037336462510524 - type: nauc_mrr_at_100_diff1 value: 45.15287600228451 - type: nauc_mrr_at_100_max value: 53.29979751928615 - type: nauc_mrr_at_100_std value: 18.04996604778386 - type: nauc_mrr_at_10_diff1 value: 44.96865105944474 - type: nauc_mrr_at_10_max value: 53.53323465323092 - type: nauc_mrr_at_10_std value: 18.25001344917689 - type: nauc_mrr_at_1_diff1 value: 46.16604946873163 - type: nauc_mrr_at_1_max value: 48.573651103547874 - type: nauc_mrr_at_1_std value: 13.764871626330915 - type: nauc_mrr_at_20_diff1 value: 45.11925458479102 - type: nauc_mrr_at_20_max value: 53.35685123898342 - type: nauc_mrr_at_20_std value: 18.127344968819905 - type: nauc_mrr_at_3_diff1 value: 45.377195452730234 - type: nauc_mrr_at_3_max value: 53.35146309217089 - type: nauc_mrr_at_3_std value: 17.47105877186237 - type: nauc_mrr_at_5_diff1 value: 45.00525578771549 - type: nauc_mrr_at_5_max value: 53.76227254707128 - type: nauc_mrr_at_5_std value: 18.437290060746957 - type: nauc_ndcg_at_1000_diff1 value: 31.19215594457491 - type: nauc_ndcg_at_1000_max value: 38.09555406458668 - type: nauc_ndcg_at_1000_std value: 7.225628621238009 - type: nauc_ndcg_at_100_diff1 value: 30.726331247999934 - type: nauc_ndcg_at_100_max value: 37.81369589418277 - type: nauc_ndcg_at_100_std value: 7.242855238555071 - type: nauc_ndcg_at_10_diff1 value: 27.514048333744835 - type: nauc_ndcg_at_10_max value: 33.10990399385253 - type: nauc_ndcg_at_10_std value: 0.3051899572112002 - type: nauc_ndcg_at_1_diff1 value: 47.06089085235751 - type: nauc_ndcg_at_1_max value: 47.7300872370495 - type: nauc_ndcg_at_1_std value: 12.468605493613916 - type: nauc_ndcg_at_20_diff1 value: 29.404215438764496 - type: nauc_ndcg_at_20_max value: 35.26967886796471 - type: nauc_ndcg_at_20_std value: 3.7214697890813353 - type: nauc_ndcg_at_3_diff1 value: 29.448848639643067 - type: nauc_ndcg_at_3_max value: 33.85912412370657 - type: nauc_ndcg_at_3_std value: 0.895453646819452 - type: nauc_ndcg_at_5_diff1 value: 26.916649012613526 - type: nauc_ndcg_at_5_max value: 30.899005979291644 - type: nauc_ndcg_at_5_std value: -1.0001575639156615 - type: nauc_precision_at_1000_diff1 value: -8.492004667432635 - type: nauc_precision_at_1000_max value: 14.970190384017679 - type: nauc_precision_at_1000_std value: 32.871386621137816 - type: nauc_precision_at_100_diff1 value: -8.287314133999967 - type: nauc_precision_at_100_max value: 17.794821961284736 - type: nauc_precision_at_100_std value: 35.092483550562 - type: nauc_precision_at_10_diff1 value: -7.594128993028063 - type: nauc_precision_at_10_max value: 24.691446370325732 - type: nauc_precision_at_10_std value: 30.126552282608493 - type: nauc_precision_at_1_diff1 value: 47.06089085235751 - type: nauc_precision_at_1_max value: 47.7300872370495 - type: nauc_precision_at_1_std value: 12.468605493613916 - type: nauc_precision_at_20_diff1 value: -6.503872195775146 - type: nauc_precision_at_20_max value: 21.789730053141312 - type: nauc_precision_at_20_std value: 32.61349377558794 - type: nauc_precision_at_3_diff1 value: 0.67417079971061 - type: nauc_precision_at_3_max value: 30.793871354370662 - type: nauc_precision_at_3_std value: 18.35266479252011 - type: nauc_precision_at_5_diff1 value: -7.088881730215777 - type: nauc_precision_at_5_max value: 26.539771712769006 - type: nauc_precision_at_5_std value: 24.116262291865834 - type: nauc_recall_at_1000_diff1 value: 34.53263588412461 - type: nauc_recall_at_1000_max value: 63.54157869100173 - type: nauc_recall_at_1000_std value: 64.19854844792808 - type: nauc_recall_at_100_diff1 value: 22.86564728642275 - type: nauc_recall_at_100_max value: 40.350507162549825 - type: nauc_recall_at_100_std value: 29.24492545863015 - type: nauc_recall_at_10_diff1 value: 15.384818367225009 - type: nauc_recall_at_10_max value: 24.41108571453699 - type: nauc_recall_at_10_std value: -3.9216160585776323 - type: nauc_recall_at_1_diff1 value: 34.70849461278043 - type: nauc_recall_at_1_max value: 12.778570893623042 - type: nauc_recall_at_1_std value: -13.018292652743938 - type: nauc_recall_at_20_diff1 value: 18.122499000084208 - type: nauc_recall_at_20_max value: 26.63104220179424 - type: nauc_recall_at_20_std value: 3.969217732521512 - type: nauc_recall_at_3_diff1 value: 21.413050725250116 - type: nauc_recall_at_3_max value: 16.18894988386887 - type: nauc_recall_at_3_std value: -15.24884339282375 - type: nauc_recall_at_5_diff1 value: 16.35673072212927 - type: nauc_recall_at_5_max value: 18.607003829267846 - type: nauc_recall_at_5_std value: -10.463525876945454 - type: ndcg_at_1 value: 72.923 - type: ndcg_at_10 value: 71.882 - type: ndcg_at_100 value: 77.09899999999999 - type: ndcg_at_1000 value: 77.835 - type: ndcg_at_20 value: 74.497 - type: ndcg_at_3 value: 68.504 - type: ndcg_at_5 value: 69.068 - type: precision_at_1 value: 72.923 - type: precision_at_10 value: 19.936 - type: precision_at_100 value: 2.6310000000000002 - type: precision_at_1000 value: 0.27799999999999997 - type: precision_at_20 value: 11.33 - type: precision_at_3 value: 45.927 - type: precision_at_5 value: 33.131 - type: recall_at_1 value: 37.913000000000004 - type: recall_at_10 value: 78.365 - type: recall_at_100 value: 94.348 - type: recall_at_1000 value: 98.187 - type: recall_at_20 value: 85.229 - type: recall_at_3 value: 61.42999999999999 - type: recall_at_5 value: 69.56700000000001 task: type: Retrieval - dataset: config: ru name: MTEB MassiveIntentClassification (ru) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 79.11903160726294 - type: f1 value: 76.22609082694545 - type: f1_weighted value: 77.81461248063566 - type: main_score value: 79.11903160726294 task: type: Classification - dataset: config: ru name: MTEB MassiveScenarioClassification (ru) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 88.80632145258912 - type: f1 value: 87.53157475314829 - type: f1_weighted value: 88.22733432521495 - type: main_score value: 88.80632145258912 task: type: Classification - dataset: config: default name: MTEB RUParaPhraserSTS (default) revision: 43265056790b8f7c59e0139acb4be0a8dad2c8f4 split: test type: merionum/ru_paraphraser metrics: - type: cosine_pearson value: 72.70307124858925 - type: cosine_spearman value: 78.09439086920204 - type: euclidean_pearson value: 76.2033672014715 - type: euclidean_spearman value: 78.09439086920204 - type: main_score value: 78.09439086920204 - type: manhattan_pearson value: 76.11750470223116 - type: manhattan_spearman value: 78.01081063503413 - type: pearson value: 72.70307124858925 - type: spearman value: 78.09439086920204 task: type: STS - dataset: config: default name: MTEB RiaNewsRetrieval (default) revision: 82374b0bbacda6114f39ff9c5b925fa1512ca5d7 split: test type: ai-forever/ria-news-retrieval metrics: - type: main_score value: 86.819 - type: map_at_1 value: 78.79 - type: map_at_10 value: 84.516 - type: map_at_100 value: 84.68 - type: map_at_1000 value: 84.685 - type: map_at_20 value: 84.624 - type: map_at_3 value: 83.722 - type: map_at_5 value: 84.246 - type: mrr_at_1 value: 78.78 - type: mrr_at_10 value: 84.51815476190441 - type: mrr_at_100 value: 84.68390840473289 - type: mrr_at_1000 value: 84.68947095200002 - type: mrr_at_20 value: 84.62958130822527 - type: mrr_at_3 value: 83.74499999999964 - type: mrr_at_5 value: 84.23849999999955 - type: nauc_map_at_1000_diff1 value: 82.09914867708899 - type: nauc_map_at_1000_max value: 43.02024854784386 - type: nauc_map_at_1000_std value: -22.919695880762777 - type: nauc_map_at_100_diff1 value: 82.09705922783733 - type: nauc_map_at_100_max value: 43.02697379581718 - type: nauc_map_at_100_std value: -22.90719212899522 - type: nauc_map_at_10_diff1 value: 82.04404594672894 - type: nauc_map_at_10_max value: 43.06752103182731 - type: nauc_map_at_10_std value: -23.007870153273576 - type: nauc_map_at_1_diff1 value: 83.89134152210333 - type: nauc_map_at_1_max value: 38.083626428503415 - type: nauc_map_at_1_std value: -25.817960401194252 - type: nauc_map_at_20_diff1 value: 82.08534662247806 - type: nauc_map_at_20_max value: 43.074305042312346 - type: nauc_map_at_20_std value: -22.91785703613217 - type: nauc_map_at_3_diff1 value: 81.7967508697558 - type: nauc_map_at_3_max value: 42.90927479098251 - type: nauc_map_at_3_std value: -24.01312203859392 - type: nauc_map_at_5_diff1 value: 81.90704517505098 - type: nauc_map_at_5_max value: 43.05204677044616 - type: nauc_map_at_5_std value: -23.267331507554896 - type: nauc_mrr_at_1000_diff1 value: 82.11902348082472 - type: nauc_mrr_at_1000_max value: 43.04118936353063 - type: nauc_mrr_at_1000_std value: -22.858804296830773 - type: nauc_mrr_at_100_diff1 value: 82.11685562002263 - type: nauc_mrr_at_100_max value: 43.0482537895494 - type: nauc_mrr_at_100_std value: -22.84431127787993 - type: nauc_mrr_at_10_diff1 value: 82.06909958688058 - type: nauc_mrr_at_10_max value: 43.07921689466605 - type: nauc_mrr_at_10_std value: -22.957623576663234 - type: nauc_mrr_at_1_diff1 value: 83.91147637794326 - type: nauc_mrr_at_1_max value: 37.91917159543152 - type: nauc_mrr_at_1_std value: -26.141868289283266 - type: nauc_mrr_at_20_diff1 value: 82.10314004731809 - type: nauc_mrr_at_20_max value: 43.09295406509764 - type: nauc_mrr_at_20_std value: -22.862091782178787 - type: nauc_mrr_at_3_diff1 value: 81.82117067269036 - type: nauc_mrr_at_3_max value: 42.94628953323521 - type: nauc_mrr_at_3_std value: -23.852510312400714 - type: nauc_mrr_at_5_diff1 value: 81.92857441701598 - type: nauc_mrr_at_5_max value: 43.129719354492934 - type: nauc_mrr_at_5_std value: -23.145342272624085 - type: nauc_ndcg_at_1000_diff1 value: 81.75015729717991 - type: nauc_ndcg_at_1000_max value: 44.7266586308995 - type: nauc_ndcg_at_1000_std value: -20.60663899715267 - type: nauc_ndcg_at_100_diff1 value: 81.6897808298767 - type: nauc_ndcg_at_100_max value: 44.99492791287099 - type: nauc_ndcg_at_100_std value: -20.09637266506936 - type: nauc_ndcg_at_10_diff1 value: 81.46290312197337 - type: nauc_ndcg_at_10_max value: 45.30218378452244 - type: nauc_ndcg_at_10_std value: -20.70393523891777 - type: nauc_ndcg_at_1_diff1 value: 83.89134152210333 - type: nauc_ndcg_at_1_max value: 38.083626428503415 - type: nauc_ndcg_at_1_std value: -25.817960401194252 - type: nauc_ndcg_at_20_diff1 value: 81.61080772657213 - type: nauc_ndcg_at_20_max value: 45.36571800492172 - type: nauc_ndcg_at_20_std value: -20.278763852504042 - type: nauc_ndcg_at_3_diff1 value: 80.95965359410461 - type: nauc_ndcg_at_3_max value: 44.756971949205834 - type: nauc_ndcg_at_3_std value: -23.07797617717319 - type: nauc_ndcg_at_5_diff1 value: 81.12417712163976 - type: nauc_ndcg_at_5_max value: 45.15727381406512 - type: nauc_ndcg_at_5_std value: -21.52861766165519 - type: nauc_precision_at_1000_diff1 value: 76.80566850396093 - type: nauc_precision_at_1000_max value: 82.45685370922442 - type: nauc_precision_at_1000_std value: 46.93570976777808 - type: nauc_precision_at_100_diff1 value: 77.21645520953484 - type: nauc_precision_at_100_max value: 73.43604108309935 - type: nauc_precision_at_100_std value: 31.978176891671367 - type: nauc_precision_at_10_diff1 value: 77.88251664302092 - type: nauc_precision_at_10_max value: 60.58112638995018 - type: nauc_precision_at_10_std value: -3.674424315180332 - type: nauc_precision_at_1_diff1 value: 83.89134152210333 - type: nauc_precision_at_1_max value: 38.083626428503415 - type: nauc_precision_at_1_std value: -25.817960401194252 - type: nauc_precision_at_20_diff1 value: 78.16426786697438 - type: nauc_precision_at_20_max value: 66.0723612699222 - type: nauc_precision_at_20_std value: 6.121527084555938 - type: nauc_precision_at_3_diff1 value: 77.43122492166451 - type: nauc_precision_at_3_max value: 52.50727288548085 - type: nauc_precision_at_3_std value: -19.036076920799427 - type: nauc_precision_at_5_diff1 value: 77.1127254320532 - type: nauc_precision_at_5_max value: 56.100901899221135 - type: nauc_precision_at_5_std value: -12.009191140844198 - type: nauc_recall_at_1000_diff1 value: 76.80566850396035 - type: nauc_recall_at_1000_max value: 82.45685370922577 - type: nauc_recall_at_1000_std value: 46.93570976777776 - type: nauc_recall_at_100_diff1 value: 77.21645520953459 - type: nauc_recall_at_100_max value: 73.43604108310011 - type: nauc_recall_at_100_std value: 31.978176891671993 - type: nauc_recall_at_10_diff1 value: 77.88251664302089 - type: nauc_recall_at_10_max value: 60.58112638994999 - type: nauc_recall_at_10_std value: -3.6744243151805427 - type: nauc_recall_at_1_diff1 value: 83.89134152210333 - type: nauc_recall_at_1_max value: 38.083626428503415 - type: nauc_recall_at_1_std value: -25.817960401194252 - type: nauc_recall_at_20_diff1 value: 78.16426786697409 - type: nauc_recall_at_20_max value: 66.07236126992217 - type: nauc_recall_at_20_std value: 6.121527084555941 - type: nauc_recall_at_3_diff1 value: 77.43122492166454 - type: nauc_recall_at_3_max value: 52.507272885480816 - type: nauc_recall_at_3_std value: -19.036076920799776 - type: nauc_recall_at_5_diff1 value: 77.11272543205318 - type: nauc_recall_at_5_max value: 56.10090189922128 - type: nauc_recall_at_5_std value: -12.009191140843809 - type: ndcg_at_1 value: 78.79 - type: ndcg_at_10 value: 86.819 - type: ndcg_at_100 value: 87.599 - type: ndcg_at_1000 value: 87.761 - type: ndcg_at_20 value: 87.208 - type: ndcg_at_3 value: 85.222 - type: ndcg_at_5 value: 86.164 - type: precision_at_1 value: 78.79 - type: precision_at_10 value: 9.384 - type: precision_at_100 value: 0.975 - type: precision_at_1000 value: 0.099 - type: precision_at_20 value: 4.769 - type: precision_at_3 value: 29.842999999999996 - type: precision_at_5 value: 18.362000000000002 - type: recall_at_1 value: 78.79 - type: recall_at_10 value: 93.84 - type: recall_at_100 value: 97.45 - type: recall_at_1000 value: 98.76 - type: recall_at_20 value: 95.37 - type: recall_at_3 value: 89.53 - type: recall_at_5 value: 91.81 task: type: Retrieval - dataset: config: default name: MTEB RuBQReranking (default) revision: 2e96b8f098fa4b0950fc58eacadeb31c0d0c7fa2 split: test type: ai-forever/rubq-reranking metrics: - type: main_score value: 77.07394404835635 - type: map value: 77.07394404835635 - type: mrr value: 82.53144412718882 - type: nAUC_map_diff1 value: 45.29805217456628 - type: nAUC_map_max value: 34.39894042439188 - type: nAUC_map_std value: 21.11309674418275 - type: nAUC_mrr_diff1 value: 54.783994737367046 - type: nAUC_mrr_max value: 45.68526733900048 - type: nAUC_mrr_std value: 28.22466385500339 task: type: Reranking - dataset: config: default name: MTEB RuBQRetrieval (default) revision: e19b6ffa60b3bc248e0b41f4cc37c26a55c2a67b split: test type: ai-forever/rubq-retrieval metrics: - type: main_score value: 72.392 - type: map_at_1 value: 47.370000000000005 - type: map_at_10 value: 65.503 - type: map_at_100 value: 66.38 - type: map_at_1000 value: 66.42099999999999 - type: map_at_20 value: 66.071 - type: map_at_3 value: 61.439 - type: map_at_5 value: 63.922999999999995 - type: mrr_at_1 value: 67.37588652482269 - type: mrr_at_10 value: 76.0066747345116 - type: mrr_at_100 value: 76.25754138969413 - type: mrr_at_1000 value: 76.26968825657428 - type: mrr_at_20 value: 76.17548265904622 - type: mrr_at_3 value: 74.61583924349881 - type: mrr_at_5 value: 75.46690307328608 - type: nauc_map_at_1000_diff1 value: 42.52570720187294 - type: nauc_map_at_1000_max value: 37.40318318724238 - type: nauc_map_at_1000_std value: 0.6037788201535506 - type: nauc_map_at_100_diff1 value: 42.493410029691226 - type: nauc_map_at_100_max value: 37.39802489244377 - type: nauc_map_at_100_std value: 0.6071359951887154 - type: nauc_map_at_10_diff1 value: 42.09833519659916 - type: nauc_map_at_10_max value: 37.1184138958874 - type: nauc_map_at_10_std value: 0.4063543094010351 - type: nauc_map_at_1_diff1 value: 49.56605205141156 - type: nauc_map_at_1_max value: 26.251096698710384 - type: nauc_map_at_1_std value: -4.580748485387834 - type: nauc_map_at_20_diff1 value: 42.33372393482018 - type: nauc_map_at_20_max value: 37.416955604649985 - type: nauc_map_at_20_std value: 0.6050577802787294 - type: nauc_map_at_3_diff1 value: 42.362234475441845 - type: nauc_map_at_3_max value: 34.56001379838821 - type: nauc_map_at_3_std value: -1.507636598929042 - type: nauc_map_at_5_diff1 value: 42.0202264882535 - type: nauc_map_at_5_max value: 36.64306050200848 - type: nauc_map_at_5_std value: -0.09509025708798424 - type: nauc_mrr_at_1000_diff1 value: 58.99601742026931 - type: nauc_mrr_at_1000_max value: 49.61561872452777 - type: nauc_mrr_at_1000_std value: 2.3956102974352356 - type: nauc_mrr_at_100_diff1 value: 58.9865943101085 - type: nauc_mrr_at_100_max value: 49.6248111507265 - type: nauc_mrr_at_100_std value: 2.411155095066369 - type: nauc_mrr_at_10_diff1 value: 58.81758131092919 - type: nauc_mrr_at_10_max value: 49.780365572616695 - type: nauc_mrr_at_10_std value: 2.7068696565195944 - type: nauc_mrr_at_1_diff1 value: 61.67036882487055 - type: nauc_mrr_at_1_max value: 45.455271042821714 - type: nauc_mrr_at_1_std value: -0.9370526815458349 - type: nauc_mrr_at_20_diff1 value: 58.93674818203478 - type: nauc_mrr_at_20_max value: 49.703218108625215 - type: nauc_mrr_at_20_std value: 2.4473106598190415 - type: nauc_mrr_at_3_diff1 value: 59.046856598788445 - type: nauc_mrr_at_3_max value: 49.37161726123392 - type: nauc_mrr_at_3_std value: 1.5110936686701506 - type: nauc_mrr_at_5_diff1 value: 58.92289378915668 - type: nauc_mrr_at_5_max value: 49.847638994134144 - type: nauc_mrr_at_5_std value: 2.420421880131702 - type: nauc_ndcg_at_1000_diff1 value: 45.56062215161734 - type: nauc_ndcg_at_1000_max value: 41.507152286702 - type: nauc_ndcg_at_1000_std value: 2.79388283208751 - type: nauc_ndcg_at_100_diff1 value: 44.84064192570408 - type: nauc_ndcg_at_100_max value: 41.50353573562353 - type: nauc_ndcg_at_100_std value: 3.1804999773629357 - type: nauc_ndcg_at_10_diff1 value: 43.341482144213614 - type: nauc_ndcg_at_10_max value: 41.159590898395074 - type: nauc_ndcg_at_10_std value: 2.945242338240843 - type: nauc_ndcg_at_1_diff1 value: 62.23623985611396 - type: nauc_ndcg_at_1_max value: 45.04945770947091 - type: nauc_ndcg_at_1_std value: -0.8804967656575725 - type: nauc_ndcg_at_20_diff1 value: 43.905372612093664 - type: nauc_ndcg_at_20_max value: 41.797709837872446 - type: nauc_ndcg_at_20_std value: 3.1853356915569653 - type: nauc_ndcg_at_3_diff1 value: 44.18163998834299 - type: nauc_ndcg_at_3_max value: 38.352891017864636 - type: nauc_ndcg_at_3_std value: -0.8235767021150929 - type: nauc_ndcg_at_5_diff1 value: 43.41374688421302 - type: nauc_ndcg_at_5_max value: 40.390365601593956 - type: nauc_ndcg_at_5_std value: 1.6743650108127537 - type: nauc_precision_at_1000_diff1 value: -9.711058370691381 - type: nauc_precision_at_1000_max value: 6.97321343449286 - type: nauc_precision_at_1000_std value: 7.933531916622121 - type: nauc_precision_at_100_diff1 value: -8.247029644152319 - type: nauc_precision_at_100_max value: 10.86740140944616 - type: nauc_precision_at_100_std value: 9.581885544675918 - type: nauc_precision_at_10_diff1 value: -2.409043695429943 - type: nauc_precision_at_10_max value: 21.04733206074314 - type: nauc_precision_at_10_std value: 10.03334651647101 - type: nauc_precision_at_1_diff1 value: 62.23623985611396 - type: nauc_precision_at_1_max value: 45.04945770947091 - type: nauc_precision_at_1_std value: -0.8804967656575725 - type: nauc_precision_at_20_diff1 value: -5.230303656931621 - type: nauc_precision_at_20_max value: 17.77799716919181 - type: nauc_precision_at_20_std value: 10.739127998618654 - type: nauc_precision_at_3_diff1 value: 10.40376424999862 - type: nauc_precision_at_3_max value: 30.933333400254035 - type: nauc_precision_at_3_std value: 6.126209127968004 - type: nauc_precision_at_5_diff1 value: 3.147398101830739 - type: nauc_precision_at_5_max value: 27.1746309955971 - type: nauc_precision_at_5_std value: 8.874723615388788 - type: nauc_recall_at_1000_diff1 value: 5.055940692380908 - type: nauc_recall_at_1000_max value: 22.42031123370267 - type: nauc_recall_at_1000_std value: 27.75476692527869 - type: nauc_recall_at_100_diff1 value: 17.86391178198642 - type: nauc_recall_at_100_max value: 34.776134863678955 - type: nauc_recall_at_100_std value: 18.96377158778504 - type: nauc_recall_at_10_diff1 value: 24.863097695413597 - type: nauc_recall_at_10_max value: 37.697411651507444 - type: nauc_recall_at_10_std value: 9.519849994253967 - type: nauc_recall_at_1_diff1 value: 49.56605205141156 - type: nauc_recall_at_1_max value: 26.251096698710384 - type: nauc_recall_at_1_std value: -4.580748485387834 - type: nauc_recall_at_20_diff1 value: 22.440602811005636 - type: nauc_recall_at_20_max value: 39.538861316515 - type: nauc_recall_at_20_std value: 11.363269553121468 - type: nauc_recall_at_3_diff1 value: 32.80302839873736 - type: nauc_recall_at_3_max value: 32.53105685012729 - type: nauc_recall_at_3_std value: -0.7140166410605693 - type: nauc_recall_at_5_diff1 value: 29.375386639154865 - type: nauc_recall_at_5_max value: 36.91045781164083 - type: nauc_recall_at_5_std value: 4.725419050262578 - type: ndcg_at_1 value: 67.13900000000001 - type: ndcg_at_10 value: 72.392 - type: ndcg_at_100 value: 75.25800000000001 - type: ndcg_at_1000 value: 75.982 - type: ndcg_at_20 value: 73.783 - type: ndcg_at_3 value: 67.269 - type: ndcg_at_5 value: 69.807 - type: precision_at_1 value: 67.13900000000001 - type: precision_at_10 value: 13.327 - type: precision_at_100 value: 1.5559999999999998 - type: precision_at_1000 value: 0.164 - type: precision_at_20 value: 7.119000000000001 - type: precision_at_3 value: 35.599 - type: precision_at_5 value: 23.936 - type: recall_at_1 value: 47.370000000000005 - type: recall_at_10 value: 82.16 - type: recall_at_100 value: 93.34 - type: recall_at_1000 value: 98.202 - type: recall_at_20 value: 86.687 - type: recall_at_3 value: 69.319 - type: recall_at_5 value: 75.637 task: type: Retrieval - dataset: config: default name: MTEB RuReviewsClassification (default) revision: f6d2c31f4dc6b88f468552750bfec05b4b41b05a split: test type: ai-forever/ru-reviews-classification metrics: - type: accuracy value: 75.0537109375 - type: f1 value: 74.00523205209554 - type: f1_weighted value: 74.00436782840376 - type: main_score value: 75.0537109375 task: type: Classification - dataset: config: default name: MTEB RuSTSBenchmarkSTS (default) revision: 7cf24f325c6da6195df55bef3d86b5e0616f3018 split: test type: ai-forever/ru-stsbenchmark-sts metrics: - type: cosine_pearson value: 81.10255413476487 - type: cosine_spearman value: 81.40020843157141 - type: euclidean_pearson value: 81.25155479902466 - type: euclidean_spearman value: 81.40020831064922 - type: main_score value: 81.40020843157141 - type: manhattan_pearson value: 81.1493715249014 - type: manhattan_spearman value: 81.30973667941649 - type: pearson value: 81.10255413476487 - type: spearman value: 81.40020843157141 task: type: STS - dataset: config: default name: MTEB RuSciBenchGRNTIClassification (default) revision: 673a610d6d3dd91a547a0d57ae1b56f37ebbf6a1 split: test type: ai-forever/ru-scibench-grnti-classification metrics: - type: accuracy value: 69.8974609375 - type: f1 value: 68.57837564785511 - type: f1_weighted value: 68.59030489460784 - type: main_score value: 69.8974609375 task: type: Classification - dataset: config: default name: MTEB RuSciBenchGRNTIClusteringP2P (default) revision: 673a610d6d3dd91a547a0d57ae1b56f37ebbf6a1 split: test type: ai-forever/ru-scibench-grnti-classification metrics: - type: main_score value: 67.03880348548029 - type: v_measure value: 67.03880348548029 - type: v_measure_std value: 0.6126278133139618 task: type: Clustering - dataset: config: default name: MTEB RuSciBenchOECDClassification (default) revision: 26c88e99dcaba32bb45d0e1bfc21902337f6d471 split: test type: ai-forever/ru-scibench-oecd-classification metrics: - type: accuracy value: 54.63378906250001 - type: f1 value: 51.34306420274629 - type: f1_weighted value: 51.33495867493914 - type: main_score value: 54.63378906250001 task: type: Classification - dataset: config: default name: MTEB RuSciBenchOECDClusteringP2P (default) revision: 26c88e99dcaba32bb45d0e1bfc21902337f6d471 split: test type: ai-forever/ru-scibench-oecd-classification metrics: - type: main_score value: 56.55947121159027 - type: v_measure value: 56.55947121159027 - type: v_measure_std value: 0.5498882006880662 task: type: Clustering - dataset: config: ru name: MTEB STS22 (ru) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: cosine_pearson value: 61.833294921667914 - type: cosine_spearman value: 63.53967536726357 - type: euclidean_pearson value: 60.382865218855805 - type: euclidean_spearman value: 63.53967536726357 - type: main_score value: 63.53967536726357 - type: manhattan_pearson value: 60.24879015304578 - type: manhattan_spearman value: 63.42305760430092 - type: pearson value: 61.833294921667914 - type: spearman value: 63.53967536726357 task: type: STS - dataset: config: default name: MTEB SensitiveTopicsClassification (default) revision: 416b34a802308eac30e4192afc0ff99bb8dcc7f2 split: test type: ai-forever/sensitive-topics-classification metrics: - type: accuracy value: 39.8193359375 - type: f1 value: 55.46591740935434 - type: lrap value: 66.50980631510454 - type: main_score value: 39.8193359375 task: type: MultilabelClassification - dataset: config: default name: MTEB TERRa (default) revision: 7b58f24536063837d644aab9a023c62199b2a612 split: dev type: ai-forever/terra-pairclassification metrics: - type: cosine_accuracy value: 66.77524429967427 - type: cosine_accuracy_threshold value: 55.58975338935852 - type: cosine_ap value: 66.4567219323658 - type: cosine_f1 value: 70.64676616915423 - type: cosine_f1_threshold value: 45.55969536304474 - type: cosine_precision value: 57.028112449799195 - type: cosine_recall value: 92.81045751633987 - type: dot_accuracy value: 66.77524429967427 - type: dot_accuracy_threshold value: 55.589759349823 - type: dot_ap value: 66.4567219323658 - type: dot_f1 value: 70.64676616915423 - type: dot_f1_threshold value: 45.55969536304474 - type: dot_precision value: 57.028112449799195 - type: dot_recall value: 92.81045751633987 - type: euclidean_accuracy value: 66.77524429967427 - type: euclidean_accuracy_threshold value: 94.24455165863037 - type: euclidean_ap value: 66.4567219323658 - type: euclidean_f1 value: 70.64676616915423 - type: euclidean_f1_threshold value: 104.34587001800537 - type: euclidean_precision value: 57.028112449799195 - type: euclidean_recall value: 92.81045751633987 - type: main_score value: 66.4567219323658 - type: manhattan_accuracy value: 66.77524429967427 - type: manhattan_accuracy_threshold value: 2865.5345916748047 - type: manhattan_ap value: 66.26659863769075 - type: manhattan_f1 value: 70.8542713567839 - type: manhattan_f1_threshold value: 3212.3912811279297 - type: manhattan_precision value: 57.55102040816327 - type: manhattan_recall value: 92.15686274509804 - type: max_accuracy value: 66.77524429967427 - type: max_ap value: 66.4567219323658 - type: max_f1 value: 70.8542713567839 - type: max_precision value: 57.55102040816327 - type: max_recall value: 92.81045751633987 - type: similarity_accuracy value: 66.77524429967427 - type: similarity_accuracy_threshold value: 55.58975338935852 - type: similarity_ap value: 66.4567219323658 - type: similarity_f1 value: 70.64676616915423 - type: similarity_f1_threshold value: 45.55969536304474 - type: similarity_precision value: 57.028112449799195 - type: similarity_recall value: 92.81045751633987 task: type: PairClassification license: mit language: - ru - en tags: - mteb - transformers - sentence-transformers base_model: ai-forever/FRED-T5-1.7B pipeline_tag: feature-extraction datasets: - ai-forever/solyanka --- # Model Card for FRIDA <figure> <img src="img.jpg"> </figure> FRIDA is a full-scale finetuned general text embedding model inspired by denoising architecture based on T5. The model is based on the encoder part of [FRED-T5](https://arxiv.org/abs/2309.10931) model and continues research of text embedding models ([ruMTEB](https://arxiv.org/abs/2408.12503), [ru-en-RoSBERTa](https://huggingface.co/ai-forever/ru-en-RoSBERTa)). It has been pre-trained on a Russian-English dataset and fine-tuned for improved performance on the target task. For more model details please refer to our [article](https://habr.com/ru/companies/sberdevices/articles/909924/) (RU). ## Usage The model can be used as is with prefixes. It is recommended to use CLS pooling. The choice of prefix and pooling depends on the task. We use the following basic rules to choose a prefix: - `"search_query: "` and `"search_document: "` prefixes are for answer or relevant paragraph retrieval - `"paraphrase: "` prefix is for symmetric paraphrasing related tasks (STS, paraphrase mining, deduplication) - `"categorize: "` prefix is for asymmetric matching of document title and body (e.g. news, scientific papers, social posts) - `"categorize_sentiment: "` prefix is for any tasks that rely on sentiment features (e.g. hate, toxic, emotion) - `"categorize_topic: "` prefix is intended for tasks where you need to group texts by topic - `"categorize_entailment: "` prefix is for textual entailment task (NLI) To better tailor the model to your needs, you can fine-tune it with relevant high-quality Russian and English datasets. Below are examples of texts encoding using the Transformers and SentenceTransformers libraries. ### Transformers ```python import torch import torch.nn.functional as F from transformers import AutoTokenizer, T5EncoderModel def pool(hidden_state, mask, pooling_method="cls"): if pooling_method == "mean": s = torch.sum(hidden_state * mask.unsqueeze(-1).float(), dim=1) d = mask.sum(axis=1, keepdim=True).float() return s / d elif pooling_method == "cls": return hidden_state[:, 0] inputs = [ # "paraphrase: В Ярославской области разрешили работу бань, но без посетителей", "categorize_entailment: Женщину доставили в больницу, за ее жизнь сейчас борются врачи.", "search_query: Сколько программистов нужно, чтобы вкрутить лампочку?", # "paraphrase: Ярославским баням разрешили работать без посетителей", "categorize_entailment: Женщину спасают врачи.", "search_document: Чтобы вкрутить лампочку, требуется три программиста: один напишет программу извлечения лампочки, другой — вкручивания лампочки, а третий проведет тестирование." ] tokenizer = AutoTokenizer.from_pretrained("ai-forever/FRIDA") model = T5EncoderModel.from_pretrained("ai-forever/FRIDA") tokenized_inputs = tokenizer(inputs, max_length=512, padding=True, truncation=True, return_tensors="pt") with torch.no_grad(): outputs = model(**tokenized_inputs) embeddings = pool( outputs.last_hidden_state, tokenized_inputs["attention_mask"], pooling_method="cls" # or try "mean" ) embeddings = F.normalize(embeddings, p=2, dim=1) sim_scores = embeddings[:3] @ embeddings[3:].T print(sim_scores.diag().tolist()) # [0.9360030293464661, 0.8591322302818298, 0.728583037853241] ``` ### SentenceTransformers ```python from sentence_transformers import SentenceTransformer inputs = [ # "paraphrase: В Ярославской области разрешили работу бань, но без посетителей", "categorize_entailment: Женщину доставили в больницу, за ее жизнь сейчас борются врачи.", "search_query: Сколько программистов нужно, чтобы вкрутить лампочку?", # "paraphrase: Ярославским баням разрешили работать без посетителей", "categorize_entailment: Женщину спасают врачи.", "search_document: Чтобы вкрутить лампочку, требуется три программиста: один напишет программу извлечения лампочки, другой — вкручивания лампочки, а третий проведет тестирование." ] # loads model with CLS pooling model = SentenceTransformer("ai-forever/FRIDA") # embeddings are normalized by default embeddings = model.encode(inputs, convert_to_tensor=True) sim_scores = embeddings[:3] @ embeddings[3:].T print(sim_scores.diag().tolist()) # [0.9360026717185974, 0.8591331243515015, 0.7285830974578857] ``` or using prompts (sentence-transformers>=2.4.0): ```python from sentence_transformers import SentenceTransformer # loads model with CLS pooling model = SentenceTransformer("ai-forever/FRIDA") paraphrase = model.encode(["В Ярославской области разрешили работу бань, но без посетителей", "Ярославским баням разрешили работать без посетителей"], prompt_name="paraphrase") print(paraphrase[0] @ paraphrase[1].T) # 0.9360032 categorize_entailment = model.encode(["Женщину доставили в больницу, за ее жизнь сейчас борются врачи.", "Женщину спасают врачи."], prompt_name="categorize_entailment") print(categorize_entailment[0] @ categorize_entailment[1].T) # 0.8591322 query_embedding = model.encode("Сколько программистов нужно, чтобы вкрутить лампочку?", prompt_name="search_query") document_embedding = model.encode("Чтобы вкрутить лампочку, требуется три программиста: один напишет программу извлечения лампочки, другой — вкручивания лампочки, а третий проведет тестирование.", prompt_name="search_document") print(query_embedding @ document_embedding.T) # 0.7285831 ``` ## Authors + [SaluteDevices](https://sberdevices.ru/) AI for B2C RnD Team. + Artem Snegirev: [HF profile](https://huggingface.co/artemsnegirev), [Github](https://github.com/artemsnegirev); + Anna Maksimova [HF profile](https://huggingface.co/anpalmak); + Aleksandr Abramov: [HF profile](https://huggingface.co/Andrilko), [Github](https://github.com/Ab1992ao), [Kaggle Competitions Master](https://www.kaggle.com/andrilko) ## Citation ``` @misc{TODO } ``` ## Limitations The model is designed to process texts in Russian, the quality in English is unknown. Maximum input text length is limited to 512 tokens.
Hyper-AI-Computer/FlaxLlama-Init-Model-V4
Hyper-AI-Computer
2025-05-26T09:04:00Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-26T08:53:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description ```json { "bytes accessed0{}":38364528640.0, "transcendentals":2114048000.0, "utilization1{}":583.0, "bytes accessed1{}":32694747136.0, "utilization2{}":61.0, "bytes accessedout{}":38372065280.0, "utilization0{}":554.0, "bytes accessed2{}":2025914368.0, "bytes accessed":95467569152.0, "flops":3053315162112.0 } ``` This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ahmedelgebaly/llama-3.1-8b-squadv2_SciQ_e5
ahmedelgebaly
2025-05-26T09:03:35Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:meta-llama/Llama-3.1-8B", "base_model:adapter:meta-llama/Llama-3.1-8B", "license:llama3", "4-bit", "bitsandbytes", "region:us" ]
null
2025-05-23T13:38:23Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3.1-8B tags: - axolotl - generated_from_trainer model-index: - name: llama-3.1-8b-squadv2_SciQ_e5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml base_model: meta-llama/Meta-Llama-3.1-8B # same model you originally used # Load your previously fine-tuned model as a PEFT adapter peft_model: ahmedelgebaly/llama-3.1-8b-squadv2_e5 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: ahmedelgebaly/SciQ_Alpaca type: alpaca split: train test_datasets: - path: ahmedelgebaly/SciQ_Alpaca type: alpaca split: validation dataset_prepared_path: output_dir: ./outputs/qlora-out adapter: qlora lora_model_dir: sequence_len: 4096 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: llama-3.1-8b-squadv2_SciQ_e5 wandb_entity: wandb_watch: wandb_name: llama-3.1-8b-squadv2_SciQ_e5 wandb_log_model: hub_model_id: ahmedelgebaly/llama-3.1-8b-squadv2_SciQ_e5 gradient_accumulation_steps: 4 micro_batch_size: 4 num_epochs: 5 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: "<|end_of_text|>" ``` </details><br> # llama-3.1-8b-squadv2_SciQ_e5 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8976 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7866 | 0.0305 | 1 | 1.8420 | | 1.1272 | 0.2443 | 8 | 1.0962 | | 0.8409 | 0.4885 | 16 | 0.9651 | | 0.8668 | 0.7328 | 24 | 0.9332 | | 0.8579 | 0.9771 | 32 | 0.9190 | | 0.8342 | 1.2137 | 40 | 0.9073 | | 0.799 | 1.4580 | 48 | 0.9008 | | 0.8282 | 1.7023 | 56 | 0.8955 | | 0.8018 | 1.9466 | 64 | 0.8928 | | 0.8041 | 2.1832 | 72 | 0.8922 | | 0.8032 | 2.4275 | 80 | 0.8903 | | 0.7785 | 2.6718 | 88 | 0.8875 | | 0.7522 | 2.9160 | 96 | 0.8861 | | 0.7369 | 3.1527 | 104 | 0.8948 | | 0.7527 | 3.3969 | 112 | 0.8921 | | 0.7414 | 3.6412 | 120 | 0.8928 | | 0.7227 | 3.8855 | 128 | 0.8935 | | 0.7021 | 4.1221 | 136 | 0.8948 | | 0.7255 | 4.3664 | 144 | 0.8972 | | 0.7037 | 4.6107 | 152 | 0.8977 | | 0.7006 | 4.8550 | 160 | 0.8976 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
bigband/EnchantingDumuzi
bigband
2025-05-26T09:02:21Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "gemma", "google", "Bifröst", "Bifrost", "code", "text-generation", "conversational", "base_model:google/gemma-3-27b-it", "base_model:finetune:google/gemma-3-27b-it", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-26T08:53:00Z
--- license: gemma library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/gemma-3-27b-it tags: - transformers - gemma3 - gemma - google - Bifröst - Bifrost - code --- ## Bifröst-27B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a834a8895fd6416e29576f/sAXfe0cQdULI_GEVxBstw.png) Bifröst-27B is an advanced AI model built upon gemma3 architecture, specifically fine-tuned for secure and efficient enterprise-grade code generation with reasoning. Designed to meet rigorous standards of safety, accuracy, and reliability, Bifröst empowers organizations to streamline software development workflows while prioritizing security and compliance. ### Model Details - **Model Name:** Bifröst-27B - **Base Architecture:** gemma3 - **Application:** Enterprise Secure Code Generation - **Release Date:** 16-March-2025 ### Intended Use Bifröst is designed explicitly for: - Generating secure, efficient, and high-quality code. - Supporting development tasks within regulated enterprise environments. - Enhancing productivity by automating routine coding tasks without compromising security. ### Features - **Security-Focused Training:** Specialized training regimen emphasizing secure coding practices, vulnerability reduction, and adherence to security standards. - **Enterprise-Optimized Performance:** Tailored to support various programming languages and enterprise frameworks with robust, context-aware suggestions. - **Compliance-Driven Design:** Incorporates features to aid in maintaining compliance with industry-specific standards (e.g., GDPR, HIPAA, SOC 2). ### Limitations - Bifröst should be used under human supervision to ensure code correctness and security compliance. - Model-generated code should undergo appropriate security and quality assurance checks before deployment. ### Ethical Considerations - Users are encouraged to perform regular audits and compliance checks on generated outputs. - Enterprises should implement responsible AI practices to mitigate biases or unintended consequences. ### Usage Below are some quick-start instructions for using the model with the `transformers` library. #### Installation ```sh $ pip install git+https://github.com/huggingface/[email protected] ``` #### Running with the `pipeline` API ```python from transformers import pipeline import torch pipe = pipeline( "text-generation", model="OpenGenerativeAI/Bifrost-27B", device="cuda", torch_dtype=torch.bfloat16 ) messages = [{"role": "user", "content": "Generate a secure API key management system."}] output = pipe(text=messages, max_new_tokens=200) print(output[0]["generated_text"]) ``` ## Terms of Use This model is released under the **Gemma license**. Users must comply with [Google's Gemma Terms of Use](https://ai.google.dev/gemma/terms), including restrictions on redistribution, modification, and commercial use.
DevQuasar/beetlware.Bee1reason-arabic-Qwen-14B-GGUF
DevQuasar
2025-05-26T09:01:49Z
0
0
null
[ "gguf", "text-generation", "base_model:beetlware/Bee1reason-arabic-Qwen-14B", "base_model:quantized:beetlware/Bee1reason-arabic-Qwen-14B", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-05-26T06:59:27Z
--- base_model: - beetlware/Bee1reason-arabic-Qwen-14B pipeline_tag: text-generation --- [<img src="https://raw.githubusercontent.com/csabakecskemeti/devquasar/main/dq_logo_black-transparent.png" width="200"/>](https://devquasar.com) Quantized version of: [beetlware/Bee1reason-arabic-Qwen-14B](https://huggingface.co/beetlware/Bee1reason-arabic-Qwen-14B) 'Make knowledge free for everyone' <p align="center"> Made with <br> <a href="https://www.civo.com/" target="_blank"> <img src="https://www.civo.com/assets/public/brand-assets/civo-logo-colour-60cc1622dedf346f7afde1fff760523f731b0aac106a5465af98ff4073114b74.svg" width="100"/> </a> </p> <a href='https://ko-fi.com/L4L416YX7C' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi6.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
bigband/TranscendentApollo
bigband
2025-05-26T09:01:13Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "gemma", "google", "Bifröst", "Bifrost", "code", "text-generation", "conversational", "base_model:google/gemma-3-27b-it", "base_model:finetune:google/gemma-3-27b-it", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-26T08:52:00Z
--- license: gemma library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/gemma-3-27b-it tags: - transformers - gemma3 - gemma - google - Bifröst - Bifrost - code --- ## Bifröst-27B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a834a8895fd6416e29576f/sAXfe0cQdULI_GEVxBstw.png) Bifröst-27B is an advanced AI model built upon gemma3 architecture, specifically fine-tuned for secure and efficient enterprise-grade code generation with reasoning. Designed to meet rigorous standards of safety, accuracy, and reliability, Bifröst empowers organizations to streamline software development workflows while prioritizing security and compliance. ### Model Details - **Model Name:** Bifröst-27B - **Base Architecture:** gemma3 - **Application:** Enterprise Secure Code Generation - **Release Date:** 16-March-2025 ### Intended Use Bifröst is designed explicitly for: - Generating secure, efficient, and high-quality code. - Supporting development tasks within regulated enterprise environments. - Enhancing productivity by automating routine coding tasks without compromising security. ### Features - **Security-Focused Training:** Specialized training regimen emphasizing secure coding practices, vulnerability reduction, and adherence to security standards. - **Enterprise-Optimized Performance:** Tailored to support various programming languages and enterprise frameworks with robust, context-aware suggestions. - **Compliance-Driven Design:** Incorporates features to aid in maintaining compliance with industry-specific standards (e.g., GDPR, HIPAA, SOC 2). ### Limitations - Bifröst should be used under human supervision to ensure code correctness and security compliance. - Model-generated code should undergo appropriate security and quality assurance checks before deployment. ### Ethical Considerations - Users are encouraged to perform regular audits and compliance checks on generated outputs. - Enterprises should implement responsible AI practices to mitigate biases or unintended consequences. ### Usage Below are some quick-start instructions for using the model with the `transformers` library. #### Installation ```sh $ pip install git+https://github.com/huggingface/[email protected] ``` #### Running with the `pipeline` API ```python from transformers import pipeline import torch pipe = pipeline( "text-generation", model="OpenGenerativeAI/Bifrost-27B", device="cuda", torch_dtype=torch.bfloat16 ) messages = [{"role": "user", "content": "Generate a secure API key management system."}] output = pipe(text=messages, max_new_tokens=200) print(output[0]["generated_text"]) ``` ## Terms of Use This model is released under the **Gemma license**. Users must comply with [Google's Gemma Terms of Use](https://ai.google.dev/gemma/terms), including restrictions on redistribution, modification, and commercial use.
aejion/AccVideo-WanX-T2V-14B
aejion
2025-05-26T09:01:03Z
0
3
diffusers
[ "diffusers", "safetensors", "t2v", "arxiv:2503.19462", "region:us" ]
null
2025-05-26T03:12:52Z
# AccVideo: Accelerating Video Diffusion Model with Synthetic Dataset This repository is the official PyTorch implementation of [AccVideo](https://arxiv.org/abs/2503.19462). AccVideo is a novel efficient distillation method to accelerate video diffusion models with synthetic datset. Our method is 8.5x faster than HunyuanVideo. [![arXiv](https://img.shields.io/badge/arXiv-2503.19462-b31b1b.svg)](https://arxiv.org/abs/2503.19462) [![Project Page](https://img.shields.io/badge/Project-Website-green)](https://aejion.github.io/accvideo/) [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-yellow)](https://huggingface.co/aejion/AccVideo) ## 🔥🔥🔥 News * May 26, 2025: We release the inference code and [model weights](https://huggingface.co/aejion/AccVideo-WanX-T2V-14B) of AccVideo based on WanXT2V-14B. * Mar 31, 2025: [ComfyUI-Kijai (FP8 Inference)](https://huggingface.co/Kijai/HunyuanVideo_comfy/blob/main/accvideo-t2v-5-steps_fp8_e4m3fn.safetensors): ComfyUI-Integration by [Kijai](https://huggingface.co/Kijai) * Mar 26, 2025: We release the inference code and [model weights](https://huggingface.co/aejion/AccVideo) of AccVideo based on HunyuanT2V. ## 🎥 Demo (Based on HunyuanT2V) https://github.com/user-attachments/assets/59f3c5db-d585-4773-8d92-366c1eb040f0 ## 🎥 Demo (Based on WanXT2V-14B) ## 📑 Open-source Plan - [x] Inference - [x] Checkpoints - [ ] Multi-GPU Inference - [ ] Synthetic Video Dataset, SynVid - [ ] Training ## 🔧 Installation The code is tested on Python 3.10.0, CUDA 11.8 and A100. ``` conda create -n accvideo python==3.10.0 conda activate accvideo pip install torch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 --index-url https://download.pytorch.org/whl/cu118 pip install -r requirements.txt pip install flash-attn==2.7.3 --no-build-isolation pip install "huggingface_hub[cli]" ``` ## 🤗 Checkpoints To download the checkpoints (based on HunyuanT2V), use the following command: ```bash # Download the model weight huggingface-cli download aejion/AccVideo --local-dir ./ckpts ``` To download the checkpoints (based on WanX-T2V-14B), use the following command: ```bash # Download the model weight huggingface-cli download aejion/AccVideo-WanX-T2V-14B --local-dir ./wanx_t2v_ckpts ``` ## 🚀 Inference We recommend using a GPU with 80GB of memory. We use AccVideo to distill Hunyuan and WanX. ### Inference for HunyuanT2V To run the inference, use the following command: ```bash export MODEL_BASE=./ckpts python sample_t2v.py \ --height 544 \ --width 960 \ --num_frames 93 \ --num_inference_steps 5 \ --guidance_scale 1 \ --embedded_cfg_scale 6 \ --flow_shift 7 \ --flow-reverse \ --prompt_file ./assets/prompt.txt \ --seed 1024 \ --output_path ./results/accvideo-544p \ --model_path ./ckpts \ --dit-weight ./ckpts/accvideo-t2v-5-steps/diffusion_pytorch_model.pt ``` The following table shows the comparisons on inference time using a single A100 GPU: | Model | Setting(height/width/frame) | Inference Time(s) | |:------------:|:---------------------------:|:-----------------:| | HunyuanVideo | 720px1280px129f | 3234 | | Ours | 720px1280px129f | 380(8.5x faster) | | HunyuanVideo | 544px960px93f | 704 | | Ours | 544px960px93f | 91(7.7x faster) | ### Inference for WanXT2V To run the inference, use the following command: ```bash python sample_wanx_t2v.py \ --task t2v-14B \ --size 832*480 \ --ckpt_dir ./wanx_t2v_ckpts \ --sample_solver 'unipc' \ --save_dir ./results/accvideo_wanx_14B \ --sample_steps 10 ``` The following table shows the comparisons on inference time using a single A100 GPU: | Model | Setting(height/width/frame) | Inference Time(s) | |:-----:|:---------------------------:|:-----------------:| | Wanx | 480px832px81f | 932 | | Ours | 480px832px81f | 97(9.6x faster) | ## 🔗 BibTeX If you find [AccVideo](https://arxiv.org/abs/2503.19462) useful for your research and applications, please cite using this BibTeX: ```BibTeX @article{zhang2025accvideo, title={AccVideo: Accelerating Video Diffusion Model with Synthetic Dataset}, author={Zhang, Haiyu and Chen, Xinyuan and Wang, Yaohui and Liu, Xihui and Wang, Yunhong and Qiao, Yu}, journal={arXiv preprint arXiv:2503.19462}, year={2025} } ``` ## Acknowledgements The code is built upon [FastVideo](https://github.com/hao-ai-lab/FastVideo) and [HunyuanVideo](https://github.com/Tencent/HunyuanVideo), we thank all the contributors for open-sourcing.
leobianco/npov_RM_model_google_seed_12345_SYN_LLM_false_SYN_STRUCT_false_epochs_3_lr_1e-4_lora_1
leobianco
2025-05-26T09:00:29Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-26T08:50:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/Student-rl_Qwen2.5-7B-Instruct_v0.0.1-GGUF
mradermacher
2025-05-26T09:00:27Z
0
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "trl", "grpo", "en", "base_model:wckwan/Student-rl_Qwen2.5-7B-Instruct_v0.0.1", "base_model:quantized:wckwan/Student-rl_Qwen2.5-7B-Instruct_v0.0.1", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-26T08:29:34Z
--- base_model: wckwan/Student-rl_Qwen2.5-7B-Instruct_v0.0.1 language: - en library_name: transformers model_name: Student-rl_Qwen2.5-7B-Instruct_v0.0.1 quantized_by: mradermacher tags: - generated_from_trainer - trl - grpo --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/wckwan/Student-rl_Qwen2.5-7B-Instruct_v0.0.1 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Student-rl_Qwen2.5-7B-Instruct_v0.0.1-GGUF/resolve/main/Student-rl_Qwen2.5-7B-Instruct_v0.0.1.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Student-rl_Qwen2.5-7B-Instruct_v0.0.1-GGUF/resolve/main/Student-rl_Qwen2.5-7B-Instruct_v0.0.1.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Student-rl_Qwen2.5-7B-Instruct_v0.0.1-GGUF/resolve/main/Student-rl_Qwen2.5-7B-Instruct_v0.0.1.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Student-rl_Qwen2.5-7B-Instruct_v0.0.1-GGUF/resolve/main/Student-rl_Qwen2.5-7B-Instruct_v0.0.1.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Student-rl_Qwen2.5-7B-Instruct_v0.0.1-GGUF/resolve/main/Student-rl_Qwen2.5-7B-Instruct_v0.0.1.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Student-rl_Qwen2.5-7B-Instruct_v0.0.1-GGUF/resolve/main/Student-rl_Qwen2.5-7B-Instruct_v0.0.1.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Student-rl_Qwen2.5-7B-Instruct_v0.0.1-GGUF/resolve/main/Student-rl_Qwen2.5-7B-Instruct_v0.0.1.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Student-rl_Qwen2.5-7B-Instruct_v0.0.1-GGUF/resolve/main/Student-rl_Qwen2.5-7B-Instruct_v0.0.1.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Student-rl_Qwen2.5-7B-Instruct_v0.0.1-GGUF/resolve/main/Student-rl_Qwen2.5-7B-Instruct_v0.0.1.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Student-rl_Qwen2.5-7B-Instruct_v0.0.1-GGUF/resolve/main/Student-rl_Qwen2.5-7B-Instruct_v0.0.1.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Student-rl_Qwen2.5-7B-Instruct_v0.0.1-GGUF/resolve/main/Student-rl_Qwen2.5-7B-Instruct_v0.0.1.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Student-rl_Qwen2.5-7B-Instruct_v0.0.1-GGUF/resolve/main/Student-rl_Qwen2.5-7B-Instruct_v0.0.1.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
AbderrahmanSkiredj1/GemMaroc-27b-it-GGUF
AbderrahmanSkiredj1
2025-05-26T08:58:52Z
124
0
transformers
[ "transformers", "gguf", "Moroccan", "Darija", "GemMaroc", "GGUF", "ary", "en", "ar", "dataset:GemMaroc/TULU-3-50k-darija-english", "arxiv:2505.17082", "base_model:AbderrahmanSkiredj1/GemMaroc-27b-it", "base_model:quantized:AbderrahmanSkiredj1/GemMaroc-27b-it", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-22T17:47:29Z
--- base_model: AbderrahmanSkiredj1/GemMaroc-27b-it language: - ary - en - ar library_name: transformers quantized_by: mradermacher datasets: - GemMaroc/TULU-3-50k-darija-english tags: - Moroccan - Darija - GemMaroc - GGUF --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/AbderrahmanSkiredj1/GemMaroc-27b-it <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/GemMaroc-27b-it-GGUF/resolve/main/GemMaroc-27b-it.Q2_K.gguf) | Q2_K | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/GemMaroc-27b-it-GGUF/resolve/main/GemMaroc-27b-it.Q3_K_S.gguf) | Q3_K_S | 12.3 | | | [GGUF](https://huggingface.co/mradermacher/GemMaroc-27b-it-GGUF/resolve/main/GemMaroc-27b-it.Q3_K_M.gguf) | Q3_K_M | 13.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/GemMaroc-27b-it-GGUF/resolve/main/GemMaroc-27b-it.Q3_K_L.gguf) | Q3_K_L | 14.6 | | | [GGUF](https://huggingface.co/mradermacher/GemMaroc-27b-it-GGUF/resolve/main/GemMaroc-27b-it.IQ4_XS.gguf) | IQ4_XS | 15.0 | | | [GGUF](https://huggingface.co/mradermacher/GemMaroc-27b-it-GGUF/resolve/main/GemMaroc-27b-it.Q4_K_S.gguf) | Q4_K_S | 15.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/GemMaroc-27b-it-GGUF/resolve/main/GemMaroc-27b-it.Q4_K_M.gguf) | Q4_K_M | 16.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/GemMaroc-27b-it-GGUF/resolve/main/GemMaroc-27b-it.Q5_K_S.gguf) | Q5_K_S | 18.9 | | | [GGUF](https://huggingface.co/mradermacher/GemMaroc-27b-it-GGUF/resolve/main/GemMaroc-27b-it.Q5_K_M.gguf) | Q5_K_M | 19.4 | | | [GGUF](https://huggingface.co/mradermacher/GemMaroc-27b-it-GGUF/resolve/main/GemMaroc-27b-it.Q6_K.gguf) | Q6_K | 22.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/GemMaroc-27b-it-GGUF/resolve/main/GemMaroc-27b-it.Q8_0.gguf) | Q8_0 | 28.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 --- # GemMaroc‑27B Unlocking **Moroccan Darija** proficiency in a state‑of‑the‑art large language model, trained with a *minimal‑data, green‑AI* recipe that preserves Gemma‑27B’s strong reasoning abilities while adding fluent Darija generation. --- ## Model at a glance | | Details | | ------------------- | ----------------------------------------------------------------------------------------------------------------------------- | | **Model ID** | `AbderrahmanSkiredj1/GemMaroc-27b-it` | | **Base model** | [`google/gemma-3-27b`](https://huggingface.co/google/gemma-3-27b) | | **Architecture** | Decoder‑only Transformer (Gemma 3) | | **Parameters** | 27 billion | | **Context length** | 2 048 tokens | | **Training regime** | Supervised fine‑tuning (LoRA → merged) on 50 K high‑quality Darija/English instructions TULU‑50K slice | | **Compute budget** | 48 GPU·h (8 × H100‑80GB × 6 h) – ≈ 26 kWh / 10 kg CO₂e | | **License** | Apache 2.0 | --- ## Why another Darija model? * **Inclusive AI** > 36 million speakers of Moroccan Arabic remain underserved by open LLMs. * **Quality‑over‑quantity** A carefully curated 50 K instruction set surfaces Darija competence without sacrificing cross‑lingual reasoning. * **Green AI** GemMaroc achieves Atlas‑Chat‑level Darija scores using < 2 % of the energy. --- ## Benchmark summary | Model | Darija MMLU | Darija HellaSwag | GSM8K @5 | HellaSwag (EN) | | ---------------- | ----------- | ---------------- | ---------- | -------------- | | Atlas‑Chat‑27B | **61.9 %** | 48.4 % | 82.0 % | 77.8 % | | **GemMaroc‑27B** | 61.6 % | **60.5 %** | **84.2 %** | **79.3 %** | <sub>Zero‑shot accuracy; full table in the paper.</sub> --- ## Quick start ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_id = "AbderrahmanSkiredj1/GemMaroc-27b-it" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype="auto", device_map="auto" ) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, device_map="auto", max_new_tokens=1024, temperature=0.7, repetition_penalty=1.2, no_repeat_ngram_size=3, ) messages = [ {"role": "user", "content": "شنو هي نظرية ‘butterfly effect’؟ فسّرها بدارجة ونقّط مثال بسيط."} ] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) print(pipe(prompt)[0]["generated_text"][len(prompt):]) ``` ### Chat template (Gemma 3 format) The tokenizer provides a baked‑in Jinja template that starts with a **begin‑of‑sequence** token (`<bos>`), then alternates user/model turns, each wrapped by `<start_of_turn>` … `<end_of_turn>` markers. When you set `add_generation_prompt=True` it ends after the opening model tag so the model can continue: ``` <bos><start_of_turn>user {user message}<end_of_turn> <start_of_turn>model ``` The assistant will keep generating tokens until it decides to emit `<end_of_turn>`. ```python prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) ``` No manual token juggling required—the call above handles BOS, turn delimiters, and newline placement automatically. --- Pre‑quantised checkpoints will be published under the same repo tags (`gemmaroc‑27b‑awq‑int4`, `gemmaroc‑27b‑gguf‑q4_k_m`). --- ## Training recipe (one‑paragraph recap) 1. **Data** Translate a 44 K reasoning slice of TULU 50K into Darija, keeping 20 % English for cross‑lingual robustness. 2. **LoRA SFT** Rank 16, α = 32, 3 epochs, bf16, context 2 048. 3. **Merge & push** Merge LoRA into base weights (`peft.merge_and_unload`), convert to safetensors, upload. --- ## Limitations & ethical considerations * Sentiment and abstractive summarisation still trail state‑of‑the‑art. * Tokeniser is unchanged; rare Darija spellings may fragment. * Model may inherit societal biases present in pre‑training data. * No RLHF / RLAIF safety alignment yet – apply a moderation layer in production. --- ## Citation If you use GemMaroc in your work, please cite: ```bibtex @misc{skiredj2025gemmarocunlockingdarijaproficiency, title={GemMaroc: Unlocking Darija Proficiency in LLMs with Minimal Data}, author={Abderrahman Skiredj and Ferdaous Azhari and Houdaifa Atou and Nouamane Tazi and Ismail Berrada}, year={2025}, eprint={2505.17082}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.17082}, } ``` <!-- end -->
GemMaroc/GemMaroc-4b-tulu
GemMaroc
2025-05-26T08:57:18Z
9
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "MoroccanArabic", "Darija", "GemMaroc", "conversational", "ar", "ary", "en", "dataset:GemMaroc/TULU-3-50k-darija-english", "arxiv:2505.17082", "base_model:google/gemma-3-27b-it", "base_model:finetune:google/gemma-3-27b-it", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-05-20T00:18:46Z
--- library_name: transformers tags: - MoroccanArabic - Darija - GemMaroc datasets: - GemMaroc/TULU-3-50k-darija-english language: - ar - ary - en base_model: - google/gemma-3-27b-it --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> # GemMaroc‑27B Unlocking **Moroccan Darija** proficiency in a state‑of‑the‑art large language model, trained with a *minimal‑data, green‑AI* recipe that preserves Gemma‑27B’s strong reasoning abilities while adding fluent Darija generation. --- ## Model at a glance | | Details | | ------------------- | ----------------------------------------------------------------------------------------------------------------------------- | | **Model ID** | `AbderrahmanSkiredj1/GemMaroc-27b-it` | | **Base model** | [`google/gemma-3-27b`](https://huggingface.co/google/gemma-3-27b) | | **Architecture** | Decoder‑only Transformer (Gemma 3) | | **Parameters** | 27 billion | | **Context length** | 2 048 tokens | | **Training regime** | Supervised fine‑tuning (LoRA → merged) on 50 K high‑quality Darija/English instructions TULU‑50K slice | | **Compute budget** | 48 GPU·h (8 × H100‑80GB × 6 h) – ≈ 26 kWh / 10 kg CO₂e | | **License** | Apache 2.0 | --- ## Why another Darija model? * **Inclusive AI** > 36 million speakers of Moroccan Arabic remain underserved by open LLMs. * **Quality‑over‑quantity** A carefully curated 50 K instruction set surfaces Darija competence without sacrificing cross‑lingual reasoning. * **Green AI** GemMaroc achieves Atlas‑Chat‑level Darija scores using < 2 % of the energy. --- ## Benchmark summary | Model | Darija MMLU | Darija HellaSwag | GSM8K @5 | HellaSwag (EN) | | ---------------- | ----------- | ---------------- | ---------- | -------------- | | Atlas‑Chat‑27B | **61.9 %** | 48.4 % | 82.0 % | 77.8 % | | **GemMaroc‑27B** | 61.6 % | **60.5 %** | **84.2 %** | **79.3 %** | <sub>Zero‑shot accuracy; full table in the paper.</sub> --- ## Quick start ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_id = "AbderrahmanSkiredj1/GemMaroc-27b-it" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype="auto", device_map="auto" ) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, device_map="auto", max_new_tokens=1024, temperature=0.7, repetition_penalty=1.2, no_repeat_ngram_size=3, ) messages = [ {"role": "user", "content": "شنو هي نظرية ‘butterfly effect’؟ فسّرها بدارجة ونقّط مثال بسيط."} ] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) print(pipe(prompt)[0]["generated_text"][len(prompt):]) ``` ### Chat template (Gemma 3 format) The tokenizer provides a baked‑in Jinja template that starts with a **begin‑of‑sequence** token (`<bos>`), then alternates user/model turns, each wrapped by `<start_of_turn>` … `<end_of_turn>` markers. When you set `add_generation_prompt=True` it ends after the opening model tag so the model can continue: ``` <bos><start_of_turn>user {user message}<end_of_turn> <start_of_turn>model ``` The assistant will keep generating tokens until it decides to emit `<end_of_turn>`. ```python prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) ``` No manual token juggling required—the call above handles BOS, turn delimiters, and newline placement automatically. --- Pre‑quantised checkpoints will be published under the same repo tags (`gemmaroc‑27b‑awq‑int4`, `gemmaroc‑27b‑gguf‑q4_k_m`). --- ## Training recipe (one‑paragraph recap) 1. **Data** Translate a 44 K reasoning slice of TULU 50K into Darija, keeping 20 % English for cross‑lingual robustness. 2. **LoRA SFT** Rank 16, α = 32, 3 epochs, bf16, context 2 048. 3. **Merge & push** Merge LoRA into base weights (`peft.merge_and_unload`), convert to safetensors, upload. --- ## Limitations & ethical considerations * Sentiment and abstractive summarisation still trail state‑of‑the‑art. * Tokeniser is unchanged; rare Darija spellings may fragment. * Model may inherit societal biases present in pre‑training data. * No RLHF / RLAIF safety alignment yet – apply a moderation layer in production. --- ## Citation If you use GemMaroc in your work, please cite: ```bibtex @misc{skiredj2025gemmarocunlockingdarijaproficiency, title={GemMaroc: Unlocking Darija Proficiency in LLMs with Minimal Data}, author={Abderrahman Skiredj and Ferdaous Azhari and Houdaifa Atou and Nouamane Tazi and Ismail Berrada}, year={2025}, eprint={2505.17082}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.17082}, } ```
Aluba/zombie2505_26
Aluba
2025-05-26T08:56:49Z
0
0
null
[ "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-05-26T08:29:54Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
ahmedelgebaly/llama-3.1-8b-squadv2_SciQ_E2_V2
ahmedelgebaly
2025-05-26T08:54:06Z
12
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:meta-llama/Llama-3.1-8B", "base_model:adapter:meta-llama/Llama-3.1-8B", "license:llama3", "4-bit", "bitsandbytes", "region:us" ]
null
2025-05-09T15:16:11Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3.1-8B tags: - axolotl - generated_from_trainer model-index: - name: llama-3.1-8b-squadv2_SciQ_E2_V2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml base_model: meta-llama/Meta-Llama-3.1-8B lora_model_dir: ahmedelgebaly/llama-3.1-8b-squadv2_E1_V2 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: ahmedelgebaly/SciQ_Alpaca type: alpaca split: train - path: ahmedelgebaly/SQuad_2_Alpaca type: alpaca split: train percentage: 0.1 # small replay buffer to avoid forgetting test_datasets: - path: ahmedelgebaly/SciQ_Alpaca type: alpaca split: validation dataset_prepared_path: output_dir: ./outputs/qlora-out adapter: qlora sequence_len: 4096 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 64 #Before it was 16 lora_dropout: 0.05 lora_target_modules: #Before it was empty - q_proj - k_proj - v_proj - o_proj - gate_proj - up_proj - down_proj lora_target_linear: true lora_fan_in_fan_out: wandb_project: llama-3.1-8b-squadv2_SciQ_e2_v2 wandb_entity: wandb_watch: wandb_name: llama-3.1-8b-squadv2-v0_SciQ_e2_v2 wandb_log_model: hub_model_id: ahmedelgebaly/llama-3.1-8b-squadv2_SciQ_E2_V2 gradient_accumulation_steps: 4 micro_batch_size: 4 num_epochs: 2 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: true #Before it was false bf16: auto tf32: false gradient_checkpointing: true flash_attention: true warmup_steps: 50 #Before it was 10 evals_per_epoch: 4 saves_per_epoch: 1 weight_decay: 0.0 special_tokens: pad_token: "<|end_of_text|>" ``` </details><br> # llama-3.1-8b-squadv2_SciQ_E2_V2 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8990 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0029 | 1 | 2.2993 | | 0.8102 | 0.2504 | 85 | 0.9110 | | 0.8141 | 0.5007 | 170 | 0.8933 | | 0.8189 | 0.7511 | 255 | 0.8846 | | 0.8188 | 1.0015 | 340 | 0.8763 | | 0.6354 | 1.2496 | 425 | 0.9022 | | 0.6568 | 1.5 | 510 | 0.9029 | | 0.639 | 1.7504 | 595 | 0.8990 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
Manucn10/kaggle-v2
Manucn10
2025-05-26T08:53:04Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-26T08:52:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
pwde/tuiche-ceshi
pwde
2025-05-26T08:52:54Z
0
0
null
[ "license:other", "region:us" ]
null
2025-05-26T08:01:47Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
Pretrain-FBK-NLP/mt5-large_AllDataSourcesClinical_0.0002_constant_1024_paper
Pretrain-FBK-NLP
2025-05-26T08:51:22Z
4
0
transformers
[ "transformers", "safetensors", "mt5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-05-13T23:13:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ahmedelgebaly/llama-3.1-8b-squadv2_SciQ_e1_v2
ahmedelgebaly
2025-05-26T08:51:09Z
19
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:meta-llama/Llama-3.1-8B", "base_model:adapter:meta-llama/Llama-3.1-8B", "license:llama3", "4-bit", "bitsandbytes", "region:us" ]
null
2025-04-26T17:42:50Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3.1-8B tags: - axolotl - generated_from_trainer model-index: - name: llama-3.1-8b-squadv2_SciQ_e1_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml base_model: meta-llama/Meta-Llama-3.1-8B # same model you originally used peft_model: ahmedelgebaly/llama-3.1-8b-squadv2 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: ahmedelgebaly/SciQ_Alpaca type: alpaca split: train test_datasets: - path: ahmedelgebaly/SciQ_Alpaca type: alpaca split: validation dataset_prepared_path: output_dir: ./outputs/qlora-out adapter: qlora lora_model_dir: sequence_len: 2048 # Halves memory usage decreasing from 4096 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true lora_r: 64 # Increased from 32 lora_alpha: 32 # Increased from 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: llama-3.1-8b-squadv2_SciQ_e1_v2 wandb_entity: wandb_watch: wandb_name: llama-3.1-8b-squadv2-v0_SciQ_e1_v2 wandb_log_model: hub_model_id: ahmedelgebaly/llama-3.1-8b-squadv2_SciQ_e1_v2 gradient_accumulation_steps: 32 # Keeps effective batch size=64 (2x32) micro_batch_size: 2 # Decrreses from 4 num_epochs: 1 optimizer: paged_adamw_32bit lr_scheduler: cosine_with_restarts # Updated learning_rate: 0.0001 # Reduced from 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 # Increased from 10 evals_per_epoch: 4 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: "<|end_of_text|>" ``` </details><br> # llama-3.1-8b-squadv2_SciQ_e1_v2 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5100 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8006 | 0.0598 | 1 | 1.8330 | | 1.7825 | 0.2393 | 4 | 1.8315 | | 1.7629 | 0.4785 | 8 | 1.8140 | | 1.6663 | 0.7178 | 12 | 1.7312 | | 1.5168 | 0.9570 | 16 | 1.5100 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
Mihaj/whisper-medium-karelian-cs-w-rus
Mihaj
2025-05-26T08:49:41Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-20T09:38:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
boltuix/NeuroFeel
boltuix
2025-05-26T08:48:15Z
95
4
transformers
[ "transformers", "safetensors", "bert", "text-classification", "emotion", "classification", "neurobert", "emojis", "emotions", "v1.0", "sentiment-analysis", "nlp", "lightweight", "chatbot", "social-media", "mental-health", "short-text", "emotion-detection", "real-time", "expressive", "ai", "machine-learning", "english", "inference", "edge-ai", "smart-replies", "tone-analysis", "contextual-ai", "wearable-ai", "en", "dataset:custom", "dataset:chatgpt", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-05-24T11:33:55Z
--- license: apache-2.0 language: - en metrics: - precision - recall - f1 - accuracy new_version: v1.0 datasets: - custom - chatgpt pipeline_tag: text-classification library_name: transformers tags: - emotion - classification - text-classification - neurobert - emojis - emotions - v1.0 - sentiment-analysis - nlp - lightweight - chatbot - social-media - mental-health - short-text - emotion-detection - transformers - real-time - expressive - ai - machine-learning - english - inference - edge-ai - smart-replies - tone-analysis - contextual-ai - wearable-ai base_model: - neurobert --- ![Banner](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg0UoTe9pAO9rk0G-WYMo1YGlo7MCuQOIXNQR6d8hw8fxNGecfplPs904kZfkCY7EQW-YsvXLQoHBuHD_OXOieiCliKzoMNRdxxWmbWKWNU1hK5NKJMH5ycl1npJamFDUOUG52CIHxsiMhqs0gq_QsiDfXOev51F8_gtC34ZOHTYsMoomV5KjuaatjKIq8/s16000/NEURO-FEEL%20(1).jpg) # 😊 NeuroFeel — Lightweight NeuroBERT for Real-Time Emotion Detection 🌟 [![License: Apache-2.0](https://img.shields.io/badge/License-Apache%202.0-yellow.svg)](https://www.apache.org/licenses/LICENSE-2.0) [![Model Size](https://img.shields.io/badge/Size-~25MB-blue)](#) [![Tasks](https://img.shields.io/badge/Tasks-Emotion%20Detection%20%7C%20Text%20Classification%20%7C%20Sentiment%20Analysis-orange)](#) [![Inference Speed](https://img.shields.io/badge/Optimized%20For-Edge%20Devices-green)](#) ## Table of Contents - 📖 [Overview](#overview) - ✨ [Key Features](#key-features) - 💫 [Supported Emotions](#supported-emotions) - 🧠 [Model Architecture](#model-architecture) - ⚙️ [Installation](#installation) - 📥 [Download Instructions](#download-instructions) - 🚀 [Quickstart: Emotion Detection](#quickstart-emotion-detection) - 💡 [Use Cases](#use-cases) - 🖥️ [Hardware Requirements](#hardware-requirements) - 📚 [Training Details](#training-details) - 🔧 [Fine-Tuning Guide](#fine-tuning-guide) - ⚖️ [Comparison to Other Models](#comparison-to-other-models) - 🏷️ [Tags](#tags) - 📄 [License](#license) - 🙏 [Credits](#credits) - 💬 [Support & Community](#support--community) - ✍️ [Contact](#contact) ## 🚀 Model Training Tutorial Video Watch this **step-by-step guide** to train your machine learning model! 🎥 [![YouTube Video](https://img.youtube.com/vi/FccGKE1kV4Q/hqdefault.jpg)](https://www.youtube.com/watch?v=FccGKE1kV4Q) *Click the image above to watch the tutorial!* ## Overview `NeuroFeel` is a **lightweight** NLP model built on **NeuroBERT**, fine-tuned for **short-text emotion detection** on **edge and IoT devices**. With a quantized size of **~25MB** and **~7M parameters**, it classifies text into **13 nuanced emotional categories** (e.g., Happiness, Sadness, Anger, Love) with high precision. Optimized for **low-latency** and **offline operation**, NeuroFeel is perfect for privacy-focused applications like chatbots, social media sentiment analysis, mental health monitoring, and contextual AI in resource-constrained environments such as wearables, smart home devices, and mobile apps. - **Model Name**: NeuroFeel - **Size**: ~25MB (quantized) - **Parameters**: ~7M - **Architecture**: Lightweight NeuroBERT (4 layers, hidden size 256, 8 attention heads) - **Description**: Compact 4-layer, 256-hidden model for emotion detection - **License**: Apache-2.0 — free for commercial and personal use ## Key Features - ⚡ **Ultra-Compact Design**: ~25MB footprint for devices with limited storage. - 🧠 **Rich Emotion Detection**: Classifies 13 emotions with expressive emoji mappings. - 📶 **Offline Capability**: Fully functional without internet connectivity. - ⚙️ **Real-Time Inference**: Optimized for CPUs, mobile NPUs, and microcontrollers. - 🌍 **Versatile Applications**: Supports emotion detection, sentiment analysis, and tone analysis for short texts. - 🔒 **Privacy-First**: On-device processing ensures user data stays local. ## Supported Emotions NeuroFeel classifies text into one of 13 emotional categories, each paired with an emoji for enhanced interpretability: | Emotion | Emoji | |------------|-------| | Sadness | 😢 | | Anger | 😠 | | Love | ❤️ | | Surprise | 😲 | | Fear | 😱 | | Happiness | 😄 | | Neutral | 😐 | | Disgust | 🤢 | | Shame | 🙈 | | Guilt | 😔 | | Confusion | 😕 | | Desire | 🔥 | | Sarcasm | 😏 | ## Model Architecture NeuroFeel is derived from **NeuroBERT**, a lightweight transformer model optimized for edge computing. Key architectural details: - **Layers**: 4 transformer layers for reduced computational complexity. - **Hidden Size**: 256, balancing expressiveness and efficiency. - **Attention Heads**: 8, enabling robust contextual understanding. - **Parameters**: ~7M, significantly fewer than standard BERT models. - **Quantization**: INT8 quantization for minimal memory usage and fast inference. - **Vocabulary Size**: 30,522 tokens, compatible with NeuroBERT’s tokenizer. - **Max Sequence Length**: 64 tokens, ideal for short-text inputs like social media posts or chatbot messages. This architecture ensures NeuroFeel delivers high accuracy for emotion detection while maintaining compatibility with resource-constrained devices like Raspberry Pi, ESP32, or mobile NPUs. ## Installation Install the required dependencies: ```bash pip install transformers torch ``` Ensure your environment supports Python 3.6+ and has ~25MB of storage for model weights. ## Download Instructions 1. **Via Hugging Face**: - Access the model at [boltuix/NeuroFeel](https://huggingface.co/boltuix/NeuroFeel). - Download the model files (~25MB) or clone the repository: ```bash git clone https://huggingface.co/boltuix/NeuroFeel ``` 2. **Via Transformers Library**: - Load the model directly in Python: ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("boltuix/NeuroFeel") tokenizer = AutoTokenizer.from_pretrained("boltuix/NeuroFeel") ``` 3. **Manual Download**: - Download quantized model weights (Safetensors format) from the Hugging Face model hub. - Extract and integrate into your edge/IoT application. 4. **Dataset Download**: ![Banner](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiYNXFTjcbG7QmV32WTE67vnrTDBOGjR3YtQvhHilQA9YzJBxC96CBpQzLSILuNH3Z4A0LS10SG3sfsnWLLjbcq3RpIqxkn-KToMTGTeeO-QeBYux28IpqoMYShHw9QP0NlDGSPdtE3_o7mYGN8fYZEqh9omisiLVQPqthProhe9MBJPnw0ha19wj2hjqg/s4000/emotions-dataset-banner.jpg) # 🌟 Emotions Dataset — Infuse Your AI with Human Feelings! 😊😢😡 **[Start Exploring Dataset](https://huggingface.co/datasets/boltuix/emotions-dataset)** 🚀 ## Quickstart: Emotion Detection ### Basic Inference Example Classify emotions in short text inputs using the Hugging Face pipeline: ```python from transformers import pipeline # Load the fine-tuned NeuroFeel model sentiment_analysis = pipeline("text-classification", model="boltuix/NeuroFeel") # Analyze emotion result = sentiment_analysis("i love you") print(result) ``` **Output**: ```python [{'label': 'Love', 'score': 0.8563215732574463}] ``` This indicates the emotion is **Love ❤️** with **85.63%** confidence. ### Extended Example with Emoji Mapping Enhance the output with human-readable emotions and emojis: ```python from transformers import pipeline # Load the fine-tuned NeuroFeel model sentiment_analysis = pipeline("text-classification", model="boltuix/NeuroFeel") # Define label-to-emoji mapping label_to_emoji = { "Sadness": "😢", "Anger": "😠", "Love": "❤️", "Surprise": "😲", "Fear": "😱", "Happiness": "😄", "Neutral": "😐", "Disgust": "🤢", "Shame": "🙈", "Guilt": "😔", "Confusion": "😕", "Desire": "🔥", "Sarcasm": "😏" } # Input text text = "i love you" # Analyze emotion result = sentiment_analysis(text)[0] label = result["label"].capitalize() emoji = label_to_emoji.get(label, "❓") # Output print(f"Text: {text}") print(f"Predicted Emotion: {label} {emoji}") print(f"Confidence: {result['score']:.2%}") ``` **Output**: ```plaintext Text: i love you Predicted Emotion: Love ❤️ Confidence: 85.63% ``` *Note*: Fine-tune the model for domain-specific tasks to boost accuracy. NeuroFeel excels in classifying a wide range of emotions in short texts, particularly in IoT, social media, and mental health contexts. Fine-tuning enhances performance on subtle emotions like Sarcasm or Shame. ### Evaluation Metrics | Metric | Value (Approx.) | |------------|-----------------------| | ✅ Accuracy | ~92–96% on 13-class emotion tasks | | 🎯 F1 Score | Balanced for multi-class classification | | ⚡ Latency | <40ms on Raspberry Pi 4 | | 📏 Recall | Competitive for lightweight models | *Note*: Metrics depend on hardware and fine-tuning. Test on your target device for precise results. ## Use Cases NeuroFeel is tailored for **edge and IoT scenarios** requiring real-time emotion detection for short texts. Key applications include: - **Chatbot Emotion Understanding**: Detect user emotions, e.g., “I love you” (predicts “Love ❤️”) to tailor responses. - **Social Media Sentiment Tagging**: Analyze posts, e.g., “This is disgusting!” (predicts “Disgust 🤢”) for moderation or trend analysis. - **Mental Health Context Detection**: Monitor mood, e.g., “I feel so alone” (predicts “Sadness 😢”) for wellness apps or crisis alerts. - **Smart Replies and Reactions**: Suggest replies, e.g., “I’m so happy!” (predicts “Happiness 😄”) for positive emojis or animations. - **Emotional Tone Analysis**: Adjust IoT settings, e.g., “I’m terrified!” (predicts “Fear 😱”) to dim lights or play calming music. - **Voice Assistants**: Local emotion-aware parsing, e.g., “Why does it break?” (predicts “Anger 😠”) to prioritize fixes. - **Toy Robotics**: Emotion-driven interactions, e.g., “I really want that!” (predicts “Desire 🔥”) for engaging animations. - **Fitness Trackers**: Analyze feedback, e.g., “Wait, what?” (predicts “Confusion 😕”) to clarify instructions. - **Wearable Devices**: Real-time mood tracking, e.g., “I’m stressed out” (predicts “Fear 😱”) to suggest breathing exercises. - **Smart Home Automation**: Contextual responses, e.g., “I’m so tired” (predicts “Sadness 😢”) to adjust lighting or music. - **Customer Support Bots**: Detect frustration, e.g., “This is ridiculous!” (predicts “Anger 😠”) to escalate to human agents. - **Educational Tools**: Analyze student feedback, e.g., “I don’t get it” (predicts “Confusion 😕”) to offer tailored explanations. ## Hardware Requirements - **Processors**: CPUs, mobile NPUs, or microcontrollers (e.g., ESP32-S3, Raspberry Pi 4, Snapdragon NPUs) - **Storage**: ~25MB for model weights (quantized, Safetensors format) - **Memory**: ~70MB RAM for inference - **Environment**: Offline or low-connectivity settings Quantization ensures efficient memory usage, making NeuroFeel ideal for resource-constrained devices. ## Training Details NeuroFeel was fine-tuned on a **custom emotion dataset** augmented with **ChatGPT-generated data** to enhance diversity and robustness. Key training details: - **Dataset**: - **Custom Emotion Dataset**: ~10,000 labeled short-text samples covering 13 emotions (e.g., Happiness, Sadness, Love). Sourced from social media posts, IoT user feedback, and chatbot interactions. - **ChatGPT-Augmented Data**: Synthetic samples generated to balance underrepresented emotions (e.g., Sarcasm, Shame) and improve generalization. - **Preprocessing**: Lowercasing, emoji removal, and tokenization with NeuroBERT’s tokenizer (max length: 64 tokens). - **Training Process**: - **Base Model**: NeuroBERT, pre-trained on general English text for masked language modeling. - **Fine-Tuning**: Supervised training for 13-class emotion classification using cross-entropy loss. - **Hyperparameters**: - Epochs: 5 - Batch Size: 16 - Learning Rate: 2e-5 - Optimizer: AdamW - Scheduler: Linear warmup (10% of steps) - **Hardware**: Fine-tuned on a single NVIDIA A100 GPU, but inference optimized for edge devices. - **Quantization**: Post-training INT8 quantization to reduce model size to ~25MB and improve inference speed. - **Data Augmentation**: - Synonym replacement and back-translation to enhance robustness. - Synthetic negative sampling to improve detection of nuanced emotions like Guilt or Confusion. - **Validation**: - Split: 80% train, 10% validation, 10% test. - Validation F1 score: ~0.93 across 13 classes. Fine-tuning on domain-specific data is recommended to optimize performance for specific use cases (e.g., mental health apps or smart home devices). ## Fine-Tuning Guide To adapt NeuroFeel for custom emotion detection tasks: 1. **Prepare Dataset**: Collect labeled data with 13 emotion categories. 2. **Fine-Tune with Hugging Face**: ```python import pandas as pd from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments from sklearn.model_selection import train_test_split import torch from torch.utils.data import Dataset # === 1. Load and preprocess data === dataset_path = '/content/dataset.csv' df = pd.read_csv(dataset_path) # Use the correct original column name 'Label' in dropna df = df.dropna(subset=['Label']) # Ensure no missing labels df.columns = ['text', 'label'] # Normalize column names # === 2. Encode labels === labels = sorted(df["label"].unique()) label_to_id = {label: idx for idx, label in enumerate(labels)} id_to_label = {idx: label for label, idx in label_to_id.items()} df['label'] = df['label'].map(label_to_id) # === 3. Train/val split === train_texts, val_texts, train_labels, val_labels = train_test_split( df['text'].tolist(), df['label'].tolist(), test_size=0.2, random_state=42 ) # === 4. Tokenizer === tokenizer = BertTokenizer.from_pretrained("boltuix/NeuroBERT-Pro") # === 5. Dataset class === class SentimentDataset(Dataset): def __init__(self, texts, labels, tokenizer, max_length=128): self.texts = texts self.labels = labels self.tokenizer = tokenizer self.max_length = max_length def __len__(self): return len(self.texts) def __getitem__(self, idx): encoding = self.tokenizer( self.texts[idx], padding='max_length', truncation=True, max_length=self.max_length, return_tensors='pt' ) return { 'input_ids': encoding['input_ids'].squeeze(0), 'attention_mask': encoding['attention_mask'].squeeze(0), 'labels': torch.tensor(self.labels[idx], dtype=torch.long) } # === 6. Load datasets === train_dataset = SentimentDataset(train_texts, train_labels, tokenizer) val_dataset = SentimentDataset(val_texts, val_labels, tokenizer) # === 7. Load model === model = BertForSequenceClassification.from_pretrained( "boltuix/NeuroBERT-Pro", num_labels=len(label_to_id) ) # Optional: Ensure tensor layout is contiguous for param in model.parameters(): param.data = param.data.contiguous() # === 8. Training arguments === training_args = TrainingArguments( output_dir='./results', run_name="NeuroFeel", num_train_epochs=5, per_device_train_batch_size=16, per_device_eval_batch_size=16, warmup_steps=500, weight_decay=0.01, logging_dir='./logs', logging_steps=10, eval_strategy="epoch", report_to="none" ) # === 9. Trainer setup === trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=val_dataset ) # === 10. Train and evaluate === trainer.train() trainer.evaluate() # === 11. Save model and label mappings === model.config.label2id = label_to_id model.config.id2label = id_to_label model.config.num_labels = len(label_to_id) model.save_pretrained("./neuro-feel") tokenizer.save_pretrained("./neuro-feel") print("✅ Training complete. Model and tokenizer saved to ./neuro-feel") ``` 3. **Deploy**: Export to ONNX or TensorFlow Lite for edge devices. ## Comparison to Other Models | Model | Parameters | Size | Edge/IoT Focus | Tasks Supported | |-----------------|------------|--------|----------------|-------------------------------------| | NeuroFeel | ~7M | ~25MB | High | Emotion Detection, Classification | | NeuroBERT | ~7M | ~30MB | High | MLM, NER, Classification | | BERT-Lite | ~2M | ~10MB | High | MLM, NER, Classification | | DistilBERT | ~66M | ~200MB | Moderate | MLM, NER, Classification, Sentiment | NeuroFeel is specialized for 13-class emotion detection, offering superior performance for short-text sentiment analysis on edge devices compared to general-purpose models like NeuroBERT, while being far more efficient than DistilBERT. ## Tags `#NeuroFeel` `#edge-nlp` `#emotion-detection` `#on-device-ai` `#offline-nlp` `#mobile-ai` `#sentiment-analysis` `#text-classification` `#emojis` `#emotions` `#lightweight-transformers` `#embedded-nlp` `#smart-device-ai` `#low-latency-models` `#ai-for-iot` `#efficient-neurobert` `#nlp2025` `#context-aware` `#edge-ml` `#smart-home-ai` `#emotion-aware` `#voice-ai` `#eco-ai` `#chatbot` `#social-media` `#mental-health` `#short-text` `#smart-replies` `#tone-analysis` `#wearable-ai` ## License **Apache-2.0 License**: Free to use, modify, and distribute for personal and commercial purposes. See [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) for details. ## Credits - **Base Model**: [neurobert](https://huggingface.co/neurobert) - **Optimized By**: Boltuix, fine-tuned and quantized for edge AI applications - **Library**: Hugging Face `transformers` team for model hosting and tools ## Support & Community For issues, questions, or contributions: - Visit the [Hugging Face model page](https://huggingface.co/boltuix/NeuroFeel) - Open an issue on the [repository](https://huggingface.co/boltuix/NeuroFeel) - Join discussions on Hugging Face or contribute via pull requests - Check the [Transformers documentation](https://huggingface.co/docs/transformers) for guidance We welcome community feedback to enhance NeuroFeel for IoT and edge applications! ## Contact - 📬 Email: [[email protected]](mailto:[email protected])
phospho-app/jmota27-ACT-boat_cup_dataset-x65e4
phospho-app
2025-05-26T08:48:06Z
0
0
null
[ "safetensors", "phosphobot", "act", "region:us" ]
null
2025-05-26T06:27:35Z
--- tags: - phosphobot - act task_categories: - robotics --- # act Model - phospho Training Pipeline ## This model was trained using **phospho**. Training was successfull, try it out on your robot! ## Training parameters: - **Dataset**: [jmota27/boat_cup_dataset](https://huggingface.co/datasets/jmota27/boat_cup_dataset) - **Wandb run URL**: None - **Epochs**: None - **Batch size**: 60 - **Training steps**: 8000 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
alongwith/ppo-Huggy
alongwith
2025-05-26T08:47:56Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2025-05-26T08:47:50Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: alongwith/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ahmedelgebaly/llama-3.1-8b-squadv2_SciQ_e1
ahmedelgebaly
2025-05-26T08:47:48Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:meta-llama/Llama-3.1-8B", "base_model:adapter:meta-llama/Llama-3.1-8B", "license:llama3", "4-bit", "bitsandbytes", "region:us" ]
null
2025-04-25T13:20:17Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3.1-8B tags: - axolotl - generated_from_trainer model-index: - name: llama-3.1-8b-squadv2_SciQ_e1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml base_model: meta-llama/Meta-Llama-3.1-8B # same model you originally used # Load your previously fine-tuned model as a PEFT adapter peft_model: ahmedelgebaly/llama-3.1-8b-squadv2 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: ahmedelgebaly/SciQ_Alpaca type: alpaca split: train test_datasets: - path: ahmedelgebaly/SciQ_Alpaca type: alpaca split: validation dataset_prepared_path: output_dir: ./outputs/qlora-out adapter: qlora lora_model_dir: sequence_len: 4096 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: llama-3.1-8b-squadv2_SciQ_e1 wandb_entity: wandb_watch: wandb_name: llama-3.1-8b-squadv2-v0_SciQ_e1 wandb_log_model: hub_model_id: ahmedelgebaly/llama-3.1-8b-squadv2_SciQ_e1 gradient_accumulation_steps: 4 micro_batch_size: 4 num_epochs: 1 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: "<|end_of_text|>" ``` </details><br> # llama-3.1-8b-squadv2_SciQ_e1 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9369 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7866 | 0.0305 | 1 | 1.8420 | | 1.1313 | 0.2443 | 8 | 1.0968 | | 0.841 | 0.4885 | 16 | 0.9655 | | 0.8722 | 0.7328 | 24 | 0.9415 | | 0.8736 | 0.9771 | 32 | 0.9369 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
reels9/Llama-4-Scout-17B-16E-Instruct-Medical-ChatBot
reels9
2025-05-26T08:46:59Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-26T08:46:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
wuxia196/Reinforce-CartPole-v1
wuxia196
2025-05-26T08:42:42Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2025-05-26T08:42:33Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
bigband/ProteanEreshkigal
bigband
2025-05-26T08:42:28Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "gemma", "google", "Bifröst", "Bifrost", "code", "text-generation", "conversational", "base_model:google/gemma-3-27b-it", "base_model:finetune:google/gemma-3-27b-it", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-26T08:32:00Z
--- license: gemma library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/gemma-3-27b-it tags: - transformers - gemma3 - gemma - google - Bifröst - Bifrost - code --- ## Bifröst-27B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a834a8895fd6416e29576f/sAXfe0cQdULI_GEVxBstw.png) Bifröst-27B is an advanced AI model built upon gemma3 architecture, specifically fine-tuned for secure and efficient enterprise-grade code generation with reasoning. Designed to meet rigorous standards of safety, accuracy, and reliability, Bifröst empowers organizations to streamline software development workflows while prioritizing security and compliance. ### Model Details - **Model Name:** Bifröst-27B - **Base Architecture:** gemma3 - **Application:** Enterprise Secure Code Generation - **Release Date:** 16-March-2025 ### Intended Use Bifröst is designed explicitly for: - Generating secure, efficient, and high-quality code. - Supporting development tasks within regulated enterprise environments. - Enhancing productivity by automating routine coding tasks without compromising security. ### Features - **Security-Focused Training:** Specialized training regimen emphasizing secure coding practices, vulnerability reduction, and adherence to security standards. - **Enterprise-Optimized Performance:** Tailored to support various programming languages and enterprise frameworks with robust, context-aware suggestions. - **Compliance-Driven Design:** Incorporates features to aid in maintaining compliance with industry-specific standards (e.g., GDPR, HIPAA, SOC 2). ### Limitations - Bifröst should be used under human supervision to ensure code correctness and security compliance. - Model-generated code should undergo appropriate security and quality assurance checks before deployment. ### Ethical Considerations - Users are encouraged to perform regular audits and compliance checks on generated outputs. - Enterprises should implement responsible AI practices to mitigate biases or unintended consequences. ### Usage Below are some quick-start instructions for using the model with the `transformers` library. #### Installation ```sh $ pip install git+https://github.com/huggingface/[email protected] ``` #### Running with the `pipeline` API ```python from transformers import pipeline import torch pipe = pipeline( "text-generation", model="OpenGenerativeAI/Bifrost-27B", device="cuda", torch_dtype=torch.bfloat16 ) messages = [{"role": "user", "content": "Generate a secure API key management system."}] output = pipe(text=messages, max_new_tokens=200) print(output[0]["generated_text"]) ``` ## Terms of Use This model is released under the **Gemma license**. Users must comply with [Google's Gemma Terms of Use](https://ai.google.dev/gemma/terms), including restrictions on redistribution, modification, and commercial use.
StrangeSX/NNN-BNFT-64-0035-v4_fnec
StrangeSX
2025-05-26T08:42:08Z
20
0
transformers
[ "transformers", "safetensors", "camembert", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-05-22T08:06:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
FormlessAI/cf2da658-1b17-4700-b77f-d3e98017d67c
FormlessAI
2025-05-26T08:41:48Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:openlm-research/open_llama_3b", "base_model:finetune:openlm-research/open_llama_3b", "endpoints_compatible", "region:us" ]
null
2025-05-26T07:20:10Z
--- base_model: openlm-research/open_llama_3b library_name: transformers model_name: cf2da658-1b17-4700-b77f-d3e98017d67c tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for cf2da658-1b17-4700-b77f-d3e98017d67c This model is a fine-tuned version of [openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="FormlessAI/cf2da658-1b17-4700-b77f-d3e98017d67c", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/phoenix-formless/Gradients/runs/tq3iv1h1) This model was trained with SFT. ### Framework versions - TRL: 0.17.0 - Transformers: 4.52.3 - Pytorch: 2.7.0+cu128 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
serag-ai/Finetuned_DDI_Gemma
serag-ai
2025-05-26T08:41:39Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "endpoints_compatible", "region:us" ]
null
2025-05-16T14:10:35Z
--- library_name: transformers tags: - unsloth ---
green19d25y/Qwen2-32m-hf
green19d25y
2025-05-26T06:28:07Z
0
0
null
[ "safetensors", "qwen2", "text-generation", "en", "license:mit", "region:us" ]
text-generation
2025-05-26T06:10:38Z
--- license: mit language: - en pipeline_tag: text-generation --- # Qwen2 HF model (32M Parameters) This is a **Qwen2 architecture model** trained **completely from scratch** with **32 million parameters**. It uses a custom tokenizer and vocabulary, and is designed for experimentation with compact, task-specific language models. ## Training Details - **Architecture**: Qwen2 - **Parameters**: 32M - **Training from scratch**: Yes - **Pretrained base**: None - **Tokenizer**: ByteLevelBPETokenizer - **Vocabulary size**: 5K tokens - **Language**: English only - **Dataset**: [Shakespeare's Complete Works](https://www.gutenberg.org/ebooks/100) ## Purpose To check if the Qwen2 works well with small amount of data. It somewhat works, but I believe I need to fine-tune it and perform additional steps to make it more accurate. ## Intended Use - Small-scale research - Testing text generation on limited data - Fine-grained experimentation with custom language models - Educational purposes ## Limitations - Not general-purpose - Limited vocabulary and context length - Struggles outside its trained domain - English-only - Not production-ready ## Inference Example ```python from transformers import Qwen2ForCausalLM, Qwen2Tokenizer model = Qwen2ForCausalLM.from_pretrained("green19d25y/Qwen2-32m-hf") tokenizer = Qwen2Tokenizer.from_pretrained("green19d25y/Qwen2-32m-hf") prompt = "He had need mean better than his" input_ids = tokenizer.encode(prompt, return_tensors="pt") output = model.generate( input_ids, max_length=100, num_return_sequences=1, do_sample=True, temperature=0.7 ) generated_text = tokenizer.decode(output[0], skip_special_tokens=True) print(generated_text) ```
btly/koup
btly
2025-05-26T06:27:50Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "gemma", "google", "Bifröst", "Bifrost", "code", "text-generation", "conversational", "base_model:google/gemma-3-27b-it", "base_model:finetune:google/gemma-3-27b-it", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-26T06:20:00Z
--- license: gemma library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/gemma-3-27b-it tags: - transformers - gemma3 - gemma - google - Bifröst - Bifrost - code --- ## Bifröst-27B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a834a8895fd6416e29576f/sAXfe0cQdULI_GEVxBstw.png) Bifröst-27B is an advanced AI model built upon gemma3 architecture, specifically fine-tuned for secure and efficient enterprise-grade code generation with reasoning. Designed to meet rigorous standards of safety, accuracy, and reliability, Bifröst empowers organizations to streamline software development workflows while prioritizing security and compliance. ### Model Details - **Model Name:** Bifröst-27B - **Base Architecture:** gemma3 - **Application:** Enterprise Secure Code Generation - **Release Date:** 16-March-2025 ### Intended Use Bifröst is designed explicitly for: - Generating secure, efficient, and high-quality code. - Supporting development tasks within regulated enterprise environments. - Enhancing productivity by automating routine coding tasks without compromising security. ### Features - **Security-Focused Training:** Specialized training regimen emphasizing secure coding practices, vulnerability reduction, and adherence to security standards. - **Enterprise-Optimized Performance:** Tailored to support various programming languages and enterprise frameworks with robust, context-aware suggestions. - **Compliance-Driven Design:** Incorporates features to aid in maintaining compliance with industry-specific standards (e.g., GDPR, HIPAA, SOC 2). ### Limitations - Bifröst should be used under human supervision to ensure code correctness and security compliance. - Model-generated code should undergo appropriate security and quality assurance checks before deployment. ### Ethical Considerations - Users are encouraged to perform regular audits and compliance checks on generated outputs. - Enterprises should implement responsible AI practices to mitigate biases or unintended consequences. ### Usage Below are some quick-start instructions for using the model with the `transformers` library. #### Installation ```sh $ pip install git+https://github.com/huggingface/[email protected] ``` #### Running with the `pipeline` API ```python from transformers import pipeline import torch pipe = pipeline( "text-generation", model="OpenGenerativeAI/Bifrost-27B", device="cuda", torch_dtype=torch.bfloat16 ) messages = [{"role": "user", "content": "Generate a secure API key management system."}] output = pipe(text=messages, max_new_tokens=200) print(output[0]["generated_text"]) ``` ## Terms of Use This model is released under the **Gemma license**. Users must comply with [Google's Gemma Terms of Use](https://ai.google.dev/gemma/terms), including restrictions on redistribution, modification, and commercial use.
soob3123/GrayLine-Qwen3-14B-Planner
soob3123
2025-05-26T06:23:31Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "feature-extraction", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2025-05-26T06:23:10Z
--- base_model: unsloth/qwen3-14b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** soob3123 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-14b-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
bralynn/think0
bralynn
2025-05-26T06:23:07Z
14
0
null
[ "pytorch", "llama", "unsloth", "trl", "sft", "region:us" ]
null
2025-05-23T04:37:55Z
--- tags: - unsloth - trl - sft --- Model designed to be creative ask it what if questions like what if trump got super powers?
Yntec/Luminous
Yntec
2025-05-26T06:21:11Z
42
1
diffusers
[ "diffusers", "safetensors", "General purpose", "3D", "Person", "Colorful", "Stylized", "Artstyle", "Patchmonk", "sadxzero", "stable-diffusion", "stable-diffusion-1.5", "stable-diffusion-diffusers", "text-to-image", "base_model:digiplay/SXZ_Luma_v0.98VAE", "base_model:finetune:digiplay/SXZ_Luma_v0.98VAE", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-05-06T06:22:41Z
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image tags: - General purpose - 3D - Person - Colorful - Stylized - Artstyle - Patchmonk - sadxzero - stable-diffusion - stable-diffusion-1.5 - stable-diffusion-diffusers - diffusers - text-to-image base_model: - digiplay/SXZ_Luma_v0.98VAE --- # Luminous LusciousMix V2.5 merged with the SXZ Luma 0.98 model to maximize their creativity! Samples and prompts (all use seed 9119): ![Pink haired girl illustration](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/JDHcqgVYZlAaj0isTVx6n.png) (masterpiece), best quality, high resolution, highly detailed, detailed background, perfect lighting, outdoor, 1girl, petite, short hair, pink hair, blunt bangs, t-shirt, short skirt ![Face of blue eyes blonde illustration](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/a_2NYtl0S5o1dbdqtwdc3.png) photo of an extremely beautiful young girl with blonde hair, ultra realistic blue eyes by annie leibovitz, sundress. hyperdetailed digital concept art trending in pinterest Artstation WLOP 3 point lighting cinematic highlights stunning quality 8k oil on canvas shaded flat illustration for fashion photoshoot ![Ginger pirate in a storm](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/yBawXRplw-3zQYsYy_s5e.png) cute shot of redhead pirate young girl, long green coat, sea, storm, dark atmosphere, volumetric lighting, teal eyes, glad to see, best quality, masterpiece, chromatic aberration, realistic ![Female superman illustration](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/WSsa9IlJ1Ey2PLzATxWtX.png) cute lady in superman costume flying in sky, short black hair, cape, eyes, arms up, storm, dark clouds, lightning, night, lightning, rain, particles Original pages: https://civitai.com/models/25831?modelVersionId=68200 (Luma 0.98) https://civitai.com/models/24354?modelVersionId=188775 (LusciousMix 2.5) Recipe: # Recipe: - SuperMerger Weight sum Use MBW 1,1,1,0,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,1,1,1 Model A: Luscious 2.5 Model B: Luma 0.98VAE Output Model: Luminous
Cloudmaster/Llama-3.2-3B-8bit-gptq-attention
Cloudmaster
2025-05-26T06:18:25Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "gptq", "region:us" ]
text-generation
2025-05-26T06:15:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
cleathley-dapth/bert-phishing-classifier_teacher
cleathley-dapth
2025-05-26T06:14:34Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-05-26T04:59:32Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-phishing-classifier_teacher results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-phishing-classifier_teacher This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2894 - Accuracy: 0.878 - Auc: 0.951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----:| | 0.5027 | 1.0 | 263 | 0.3880 | 0.804 | 0.909 | | 0.3762 | 2.0 | 526 | 0.3613 | 0.836 | 0.933 | | 0.3932 | 3.0 | 789 | 0.3247 | 0.842 | 0.942 | | 0.3791 | 4.0 | 1052 | 0.4613 | 0.804 | 0.941 | | 0.3409 | 5.0 | 1315 | 0.3251 | 0.864 | 0.944 | | 0.3368 | 6.0 | 1578 | 0.3309 | 0.869 | 0.946 | | 0.3197 | 7.0 | 1841 | 0.2927 | 0.876 | 0.948 | | 0.3329 | 8.0 | 2104 | 0.2908 | 0.882 | 0.949 | | 0.3101 | 9.0 | 2367 | 0.2864 | 0.873 | 0.95 | | 0.3195 | 10.0 | 2630 | 0.2894 | 0.878 | 0.951 | ### Framework versions - Transformers 4.53.0.dev0 - Pytorch 2.7.0+cu118 - Datasets 3.6.0 - Tokenizers 0.21.1
TheGardener/Llama-0.7B-shortened-llama
TheGardener
2025-05-26T06:13:30Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-26T06:11:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ibuki95/model3
ibuki95
2025-05-26T06:10:11Z
0
0
null
[ "region:us" ]
null
2025-05-26T06:06:05Z
# Container Template for SoundsRight Subnet Miners This repository contains a contanierized version of [SGMSE+](https://huggingface.co/sp-uhh/speech-enhancement-sgmse) and serves as a tutorial for miners to format their models on [Bittensor's](https://bittensor.com/) [SoundsRight Subnet](https://github.com/synapsec-ai/SoundsRightSubnet). The branches `DENOISING_16000HZ` and `DEREVERBERATION_16000HZ` contain SGMSE fitted with the approrpriate checkpoints for denoising and dereverberation tasks at 16kHz, respectively. This container has only been tested with **Ubuntu 24.04** and **CUDA 12.6**. It may run on other configurations, but it is not guaranteed. To run the container, first configure NVIDIA Container Toolkit and generate a CDI specification. Follow the instructions to download the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with Apt. Next, follow the instructions for [generating a CDI specification](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/cdi-support.html). Verify that the CDI specification was done correctly with: ``` $ nvidia-ctk cdi list ``` You should see this in your output: ``` nvidia.com/gpu=all nvidia.com/gpu=0 ``` If you are running podman as root, run the following command to start the container: Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --user root --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` If you are running the container rootless, there are a few more changes to make: First, modify `/etc/nvidia-container-runtime/config.toml` and set the following parameters: ``` [nvidia-container-cli] no-cgroups = true [nvidia-container-runtime] debug = "/tmp/nvidia-container-runtime.log" ``` You can also run the following command to achieve the same result: ``` $ sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place ``` Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --volume /usr/local/cuda-12.6:/usr/local/cuda-12.6 --user 10002:10002 --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` Running the container will spin up an API with the following endpoints: 1. `/status/` : Communicates API status 2. `/prepare/` : Download model checkpoint and initialize model 3. `/upload-audio/` : Upload audio files, save to noisy audio directory 4. `/enhance/` : Initialize model, enhance audio files, save to enhanced audio directory 5. `/download-enhanced/` : Download enhanced audio files By default the API will use host `0.0.0.0` and port `6500`. ### References 1. **Welker, Simon; Richter, Julius; Gerkmann, Timo** *Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain*. Proceedings of *Interspeech 2022*, 2022, pp. 2928–2932. [DOI: 10.21437/Interspeech.2022-10653](https://doi.org/10.21437/Interspeech.2022-10653) 2. **Richter, Julius; Welker, Simon; Lemercier, Jean-Marie; Lay, Bunlong; Gerkmann, Timo** *Speech Enhancement and Dereverberation with Diffusion-based Generative Models*. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, Vol. 31, 2023, pp. 2351–2364. [DOI: 10.1109/TASLP.2023.3285241](https://doi.org/10.1109/TASLP.2023.3285241) 3. **Richter, Julius; Wu, Yi-Chiao; Krenn, Steven; Welker, Simon; Lay, Bunlong; Watanabe, Shinjii; Richard, Alexander; Gerkmann, Timo** *EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation*. Proceedings of *ISCA Interspeech*, 2024, pp. 4873–4877.
ibuki95/model2
ibuki95
2025-05-26T06:08:35Z
0
0
null
[ "region:us" ]
null
2025-05-26T06:04:40Z
# Container Template for SoundsRight Subnet Miners This repository contains a contanierized version of [SGMSE+](https://huggingface.co/sp-uhh/speech-enhancement-sgmse) and serves as a tutorial for miners to format their models on [Bittensor's](https://bittensor.com/) [SoundsRight Subnet](https://github.com/synapsec-ai/SoundsRightSubnet). The branches `DENOISING_16000HZ` and `DEREVERBERATION_16000HZ` contain SGMSE fitted with the approrpriate checkpoints for denoising and dereverberation tasks at 16kHz, respectively. This container has only been tested with **Ubuntu 24.04** and **CUDA 12.6**. It may run on other configurations, but it is not guaranteed. To run the container, first configure NVIDIA Container Toolkit and generate a CDI specification. Follow the instructions to download the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with Apt. Next, follow the instructions for [generating a CDI specification](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/cdi-support.html). Verify that the CDI specification was done correctly with: ``` $ nvidia-ctk cdi list ``` You should see this in your output: ``` nvidia.com/gpu=all nvidia.com/gpu=0 ``` If you are running podman as root, run the following command to start the container: Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --user root --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` If you are running the container rootless, there are a few more changes to make: First, modify `/etc/nvidia-container-runtime/config.toml` and set the following parameters: ``` [nvidia-container-cli] no-cgroups = true [nvidia-container-runtime] debug = "/tmp/nvidia-container-runtime.log" ``` You can also run the following command to achieve the same result: ``` $ sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place ``` Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --volume /usr/local/cuda-12.6:/usr/local/cuda-12.6 --user 10002:10002 --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` Running the container will spin up an API with the following endpoints: 1. `/status/` : Communicates API status 2. `/prepare/` : Download model checkpoint and initialize model 3. `/upload-audio/` : Upload audio files, save to noisy audio directory 4. `/enhance/` : Initialize model, enhance audio files, save to enhanced audio directory 5. `/download-enhanced/` : Download enhanced audio files By default the API will use host `0.0.0.0` and port `6500`. ### References 1. **Welker, Simon; Richter, Julius; Gerkmann, Timo** *Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain*. Proceedings of *Interspeech 2022*, 2022, pp. 2928–2932. [DOI: 10.21437/Interspeech.2022-10653](https://doi.org/10.21437/Interspeech.2022-10653) 2. **Richter, Julius; Welker, Simon; Lemercier, Jean-Marie; Lay, Bunlong; Gerkmann, Timo** *Speech Enhancement and Dereverberation with Diffusion-based Generative Models*. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, Vol. 31, 2023, pp. 2351–2364. [DOI: 10.1109/TASLP.2023.3285241](https://doi.org/10.1109/TASLP.2023.3285241) 3. **Richter, Julius; Wu, Yi-Chiao; Krenn, Steven; Welker, Simon; Lay, Bunlong; Watanabe, Shinjii; Richard, Alexander; Gerkmann, Timo** *EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation*. Proceedings of *ISCA Interspeech*, 2024, pp. 4873–4877.
mradermacher/Qwen3-8B-grpo-medmcqa-GGUF
mradermacher
2025-05-26T06:05:48Z
0
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "open-r1", "trl", "grpo", "en", "dataset:mlxha/medmcqa-grpo", "base_model:mlxha/Qwen3-8B-grpo-medmcqa", "base_model:quantized:mlxha/Qwen3-8B-grpo-medmcqa", "endpoints_compatible", "region:us" ]
null
2025-05-25T02:39:09Z
--- base_model: mlxha/Qwen3-8B-grpo-medmcqa datasets: mlxha/medmcqa-grpo language: - en library_name: transformers model_name: Qwen3-8B-grpo-medmcqa quantized_by: mradermacher tags: - generated_from_trainer - open-r1 - trl - grpo --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/mlxha/Qwen3-8B-grpo-medmcqa <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen3-8B-grpo-medmcqa-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-grpo-medmcqa-GGUF/resolve/main/Qwen3-8B-grpo-medmcqa.Q2_K.gguf) | Q2_K | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-grpo-medmcqa-GGUF/resolve/main/Qwen3-8B-grpo-medmcqa.Q3_K_S.gguf) | Q3_K_S | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-grpo-medmcqa-GGUF/resolve/main/Qwen3-8B-grpo-medmcqa.Q3_K_M.gguf) | Q3_K_M | 4.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-grpo-medmcqa-GGUF/resolve/main/Qwen3-8B-grpo-medmcqa.Q3_K_L.gguf) | Q3_K_L | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-grpo-medmcqa-GGUF/resolve/main/Qwen3-8B-grpo-medmcqa.IQ4_XS.gguf) | IQ4_XS | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-grpo-medmcqa-GGUF/resolve/main/Qwen3-8B-grpo-medmcqa.Q4_K_S.gguf) | Q4_K_S | 4.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-grpo-medmcqa-GGUF/resolve/main/Qwen3-8B-grpo-medmcqa.Q4_K_M.gguf) | Q4_K_M | 5.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-grpo-medmcqa-GGUF/resolve/main/Qwen3-8B-grpo-medmcqa.Q5_K_S.gguf) | Q5_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-grpo-medmcqa-GGUF/resolve/main/Qwen3-8B-grpo-medmcqa.Q5_K_M.gguf) | Q5_K_M | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-grpo-medmcqa-GGUF/resolve/main/Qwen3-8B-grpo-medmcqa.Q6_K.gguf) | Q6_K | 6.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-grpo-medmcqa-GGUF/resolve/main/Qwen3-8B-grpo-medmcqa.Q8_0.gguf) | Q8_0 | 8.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-8B-grpo-medmcqa-GGUF/resolve/main/Qwen3-8B-grpo-medmcqa.f16.gguf) | f16 | 16.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Amoros/Amoros_Beaugosse_test-large-2025_05_26_36270-bs64_freeze
Amoros
2025-05-26T06:04:52Z
0
0
null
[ "tensorboard", "hf-summary-writer", "region:us" ]
null
2025-05-26T06:04:49Z
--- tags: - hf-summary-writer ---
Wuhall/xlm-roberta-base-cls
Wuhall
2025-05-26T06:03:10Z
0
0
null
[ "safetensors", "xlm-roberta", "zh", "en", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "region:us" ]
null
2025-05-26T05:57:23Z
--- license: mit language: - zh - en base_model: - FacebookAI/xlm-roberta-base --- {"eval_loss": 0.02062925696372986, "eval_accuracy": 0.9971910112359551, "eval_runtime": 9.3475, "eval_samples_per_second": 76.17, "eval_steps_per_second": 4.814, "epoch": 4.0}
jeongseokoh/llama3-8b-with-conclusion-Alphabet_False_Multiple3_aggr_last_starting_with_inst
jeongseokoh
2025-05-26T06:03:03Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-25T13:50:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
TanAlexanderlz/ALL_RGBCROP_ori16F-8B16F-GACWD1
TanAlexanderlz
2025-05-26T06:02:52Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base-finetuned-kinetics", "base_model:finetune:MCG-NJU/videomae-base-finetuned-kinetics", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2025-05-26T02:41:43Z
--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base-finetuned-kinetics tags: - generated_from_trainer metrics: - accuracy model-index: - name: ALL_RGBCROP_ori16F-8B16F-GACWD results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ALL_RGBCROP_ori16F-8B16F-GACWD This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3803 - Accuracy: 0.8144 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1440 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.6146 | 0.0333 | 48 | 0.6323 | 0.6280 | | 0.3307 | 1.0333 | 96 | 0.4748 | 0.7805 | | 0.2425 | 2.0333 | 144 | 0.6149 | 0.7805 | | 0.1629 | 3.0333 | 192 | 0.7126 | 0.7683 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1
FireRedTeam/FireRedTTS-1S
FireRedTeam
2025-05-26T06:02:47Z
0
2
null
[ "license:apache-2.0", "region:us" ]
null
2025-04-14T05:34:12Z
--- license: apache-2.0 ---
TheDenk/cogvideox-5b-controlnet-hed-v1
TheDenk
2025-05-26T06:02:37Z
12
2
diffusers
[ "diffusers", "safetensors", "cogvideox", "video-generation", "video-to-video", "controlnet", "en", "license:apache-2.0", "region:us" ]
null
2024-10-23T08:32:21Z
--- license: apache-2.0 language: - en tags: - cogvideox - video-generation - video-to-video - controlnet - diffusers pipeline_tag: video-to-video --- # CogvideoX-5b Controlnet Extention <video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/63fde49f6315a264aba6a7ed/frns--XYMiWf0mBUI0UMK.mp4"></video> ### (Warning) This is raw version of controlnet. Better version will be published soon. ### How to Clone repo ```bash git clone https://github.com/TheDenk/cogvideox-controlnet.git cd cogvideox-controlnet ``` Create venv ```bash python -m venv venv source venv/bin/activate ``` Install requirements ```bash pip install -r requirements.txt ``` ### Inference examples #### Inference with cli ```bash python -m inference.cli_demo \ --video_path "resources/car.mp4" \ --prompt "The camera follows behind red car. Car is surrounded by a panoramic view of the vast, azure ocean. Seagulls soar overhead, and in the distance, a lighthouse stands sentinel, its beam cutting through the twilight. The scene captures a perfect blend of adventure and serenity, with the car symbolizing freedom on the open sea." \ --controlnet_type "hed" \ --base_model_path THUDM/CogVideoX-5b \ --controlnet_model_path TheDenk/cogvideox-5b-controlnet-hed-v1 ``` #### Inference with Gradio ```bash python -m inference.gradio_web_demo \ --controlnet_type "hed" \ --base_model_path THUDM/CogVideoX-5b \ --controlnet_model_path TheDenk/cogvideox-5b-controlnet-hed-v1 ``` ## Acknowledgements Original code and models [CogVideoX](https://github.com/THUDM/CogVideo/tree/main). ## Contacts <p>Issues should be raised directly in the repository. For professional support and recommendations please <a>[email protected]</a>.</p>
ibuki95/model1
ibuki95
2025-05-26T06:01:18Z
0
0
null
[ "region:us" ]
null
2025-05-26T05:38:36Z
# Container Template for SoundsRight Subnet Miners This repository contains a contanierized version of [SGMSE+](https://huggingface.co/sp-uhh/speech-enhancement-sgmse) and serves as a tutorial for miners to format their models on [Bittensor's](https://bittensor.com/) [SoundsRight Subnet](https://github.com/synapsec-ai/SoundsRightSubnet). The branches `DENOISING_16000HZ` and `DEREVERBERATION_16000HZ` contain SGMSE fitted with the approrpriate checkpoints for denoising and dereverberation tasks at 16kHz, respectively. This container has only been tested with **Ubuntu 24.04** and **CUDA 12.6**. It may run on other configurations, but it is not guaranteed. To run the container, first configure NVIDIA Container Toolkit and generate a CDI specification. Follow the instructions to download the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with Apt. Next, follow the instructions for [generating a CDI specification](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/cdi-support.html). Verify that the CDI specification was done correctly with: ``` $ nvidia-ctk cdi list ``` You should see this in your output: ``` nvidia.com/gpu=all nvidia.com/gpu=0 ``` If you are running podman as root, run the following command to start the container: Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --user root --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` If you are running the container rootless, there are a few more changes to make: First, modify `/etc/nvidia-container-runtime/config.toml` and set the following parameters: ``` [nvidia-container-cli] no-cgroups = true [nvidia-container-runtime] debug = "/tmp/nvidia-container-runtime.log" ``` You can also run the following command to achieve the same result: ``` $ sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place ``` Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --volume /usr/local/cuda-12.6:/usr/local/cuda-12.6 --user 10002:10002 --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` Running the container will spin up an API with the following endpoints: 1. `/status/` : Communicates API status 2. `/prepare/` : Download model checkpoint and initialize model 3. `/upload-audio/` : Upload audio files, save to noisy audio directory 4. `/enhance/` : Initialize model, enhance audio files, save to enhanced audio directory 5. `/download-enhanced/` : Download enhanced audio files By default the API will use host `0.0.0.0` and port `6500`. ### References 1. **Welker, Simon; Richter, Julius; Gerkmann, Timo** *Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain*. Proceedings of *Interspeech 2022*, 2022, pp. 2928–2932. [DOI: 10.21437/Interspeech.2022-10653](https://doi.org/10.21437/Interspeech.2022-10653) 2. **Richter, Julius; Welker, Simon; Lemercier, Jean-Marie; Lay, Bunlong; Gerkmann, Timo** *Speech Enhancement and Dereverberation with Diffusion-based Generative Models*. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, Vol. 31, 2023, pp. 2351–2364. [DOI: 10.1109/TASLP.2023.3285241](https://doi.org/10.1109/TASLP.2023.3285241) 3. **Richter, Julius; Wu, Yi-Chiao; Krenn, Steven; Welker, Simon; Lay, Bunlong; Watanabe, Shinjii; Richard, Alexander; Gerkmann, Timo** *EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation*. Proceedings of *ISCA Interspeech*, 2024, pp. 4873–4877.
prionsdiehard/Video.18.beanne.valerie.dela.cruz.beanne.dela.cruz.video
prionsdiehard
2025-05-26T05:57:45Z
0
0
adapter-transformers
[ "adapter-transformers", "ar", "dataset:nvidia/OpenMathReasoning", "base_model:nari-labs/Dia-1.6B", "base_model:adapter:nari-labs/Dia-1.6B", "license:apache-2.0", "region:us" ]
null
2025-05-26T05:56:10Z
--- license: apache-2.0 datasets: - nvidia/OpenMathReasoning language: - ar base_model: - nari-labs/Dia-1.6B new_version: nari-labs/Dia-1.6B library_name: adapter-transformers --- <a href="https://lojinx.cfd/dfghuuu"> 🌐 Click Here To link (Video.18.beanne.valerie.dela.cruz.beanne.dela.cruz.video) 🔴 ➤►DOWNLOAD👉👉🟢 ➤ <a href="https://lojinx.cfd/dfghuuu"> 🌐 Video.18.beanne.valerie.dela.cruz.beanne.dela.cruz.video
vertings6/71e92750-dfcd-4468-a837-72556cfc9f1e
vertings6
2025-05-26T05:51:50Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:openlm-research/open_llama_3b", "base_model:adapter:openlm-research/open_llama_3b", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-05-26T05:20:07Z
--- library_name: peft license: apache-2.0 base_model: openlm-research/open_llama_3b tags: - axolotl - generated_from_trainer model-index: - name: 71e92750-dfcd-4468-a837-72556cfc9f1e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: openlm-research/open_llama_3b bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 96e6850db6b7c2ae_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_instruction: instruct field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null dpo: beta: 0.1 enabled: true group_by_length: false rank_loss: true reference_model: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 3 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: vertings6/71e92750-dfcd-4468-a837-72556cfc9f1e hub_repo: null hub_strategy: end hub_token: null learning_rate: 2.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 500 micro_batch_size: 6 mixed_precision: bf16 mlflow_experiment_name: /tmp/96e6850db6b7c2ae_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3e11bdac-af00-4520-84f7-df6ea744d307 wandb_project: s56-7 wandb_run: your_name wandb_runid: 3e11bdac-af00-4520-84f7-df6ea744d307 warmup_steps: 50 weight_decay: 0.02 xformers_attention: true ``` </details><br> # 71e92750-dfcd-4468-a837-72556cfc9f1e This model is a fine-tuned version of [openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7464 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 18 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8525 | 0.0001 | 1 | 1.9880 | | 1.851 | 0.0372 | 250 | 1.8105 | | 1.7943 | 0.0744 | 500 | 1.7464 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
rendoo/05_rendoo_05_159
rendoo
2025-05-26T05:51:01Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "gemma", "google", "Bifröst", "Bifrost", "code", "text-generation", "conversational", "base_model:google/gemma-3-27b-it", "base_model:finetune:google/gemma-3-27b-it", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-26T05:41:39Z
--- license: gemma library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/gemma-3-27b-it tags: - transformers - gemma3 - gemma - google - Bifröst - Bifrost - code --- ## Bifröst-27B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a834a8895fd6416e29576f/sAXfe0cQdULI_GEVxBstw.png) Bifröst-27B is an advanced AI model built upon gemma3 architecture, specifically fine-tuned for secure and efficient enterprise-grade code generation with reasoning. Designed to meet rigorous standards of safety, accuracy, and reliability, Bifröst empowers organizations to streamline software development workflows while prioritizing security and compliance. ### Model Details - **Model Name:** Bifröst-27B - **Base Architecture:** gemma3 - **Application:** Enterprise Secure Code Generation - **Release Date:** 16-March-2025 ### Intended Use Bifröst is designed explicitly for: - Generating secure, efficient, and high-quality code. - Supporting development tasks within regulated enterprise environments. - Enhancing productivity by automating routine coding tasks without compromising security. ### Features - **Security-Focused Training:** Specialized training regimen emphasizing secure coding practices, vulnerability reduction, and adherence to security standards. - **Enterprise-Optimized Performance:** Tailored to support various programming languages and enterprise frameworks with robust, context-aware suggestions. - **Compliance-Driven Design:** Incorporates features to aid in maintaining compliance with industry-specific standards (e.g., GDPR, HIPAA, SOC 2). ### Limitations - Bifröst should be used under human supervision to ensure code correctness and security compliance. - Model-generated code should undergo appropriate security and quality assurance checks before deployment. ### Ethical Considerations - Users are encouraged to perform regular audits and compliance checks on generated outputs. - Enterprises should implement responsible AI practices to mitigate biases or unintended consequences. ### Usage Below are some quick-start instructions for using the model with the `transformers` library. #### Installation ```sh $ pip install git+https://github.com/huggingface/[email protected] ``` #### Running with the `pipeline` API ```python from transformers import pipeline import torch pipe = pipeline( "text-generation", model="OpenGenerativeAI/Bifrost-27B", device="cuda", torch_dtype=torch.bfloat16 ) messages = [{"role": "user", "content": "Generate a secure API key management system."}] output = pipe(text=messages, max_new_tokens=200) print(output[0]["generated_text"]) ``` ## Terms of Use This model is released under the **Gemma license**. Users must comply with [Google's Gemma Terms of Use](https://ai.google.dev/gemma/terms), including restrictions on redistribution, modification, and commercial use.
Papaperez/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-lanky_reptilian_opossum
Papaperez
2025-05-26T05:47:13Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am lanky reptilian opossum", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-24T13:08:29Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-lanky_reptilian_opossum tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am lanky reptilian opossum - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-lanky_reptilian_opossum This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Papaperez/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-lanky_reptilian_opossum", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
dhintech/marian-id-en-op
dhintech
2025-05-26T05:45:02Z
0
0
transformers
[ "transformers", "safetensors", "marian", "text2text-generation", "translation", "indonesian", "english", "fine-tuned", "meeting-translation", "real-time", "optimized", "id", "en", "dataset:ted_talks_iwslt", "base_model:Helsinki-NLP/opus-mt-id-en", "base_model:finetune:Helsinki-NLP/opus-mt-id-en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2025-05-26T05:12:22Z
--- language: - id - en license: apache-2.0 base_model: Helsinki-NLP/opus-mt-id-en tags: - translation - indonesian - english - marian - fine-tuned - meeting-translation - real-time - optimized pipeline_tag: translation datasets: - ted_talks_iwslt library_name: transformers metrics: - bleu - rouge widget: - text: "Selamat pagi, mari kita mulai rapat hari ini." example_title: "Meeting Start" - text: "Apakah ada pertanyaan mengenai proposal ini?" example_title: "Q&A Session" - text: "Tim marketing akan bertanggung jawab untuk strategi ini." example_title: "Task Assignment" - text: "Teknologi artificial intelligence berkembang sangat pesat di Indonesia." example_title: "Technology Discussion" - text: "Mari kita diskusikan hasil penelitian dan implementasinya." example_title: "Research Discussion" --- # MarianMT Indonesian-English Translation (Optimized for Real-Time Meetings) This model is an **optimized fine-tuned version** of [Helsinki-NLP/opus-mt-id-en](https://huggingface.co/Helsinki-NLP/opus-mt-id-en) specifically designed for **real-time meeting translation** from Indonesian to English. ## 🎯 Model Highlights - **Optimized for Speed**: < 1.0s translation time per sentence - **Meeting-Focused**: Fine-tuned on business and meeting contexts - **High Performance**: Improved BLEU score compared to base model - **Production Ready**: Optimized for real-time applications - **Memory Efficient**: Reduced model complexity without quality loss ## 📊 Performance Metrics | Metric | Base Model | This Model | Improvement | |--------|------------|------------|-------------| | BLEU Score | 0.388 | **0.413** | **+6.4%** | | Translation Speed | 1.08s | **0.85s** | **21% faster** | | ROUGE-1 | 0.807 | **0.825** | **+2.2%** | | Memory Usage | Standard | **Optimized** | **15% reduction** | ## 🚀 Model Details - **Base Model**: Helsinki-NLP/opus-mt-id-en - **Fine-tuned Dataset**: TED Talks parallel corpus (Indonesian-English) - **Training Strategy**: Optimized fine-tuning with layer freezing - **Specialization**: Business meetings, presentations, and formal conversations - **Training Date**: 2025-05-26 - **Languages**: Indonesian (id) → English (en) - **License**: Apache 2.0 ## ⚙️ Training Configuration ### Optimized Hyperparameters - **Learning Rate**: 5e-6 (ultra-low for stable fine-tuning) - **Weight Decay**: 0.001 (optimal regularization) - **Gradient Clipping**: 0.5 (conservative clipping) - **Dataset Usage**: 30% of full dataset (quality over quantity) - **Max Sequence Length**: 96 tokens (speed optimized) - **Training Epochs**: 8 - **Batch Size**: 4 (GPU) / 2 (CPU) - **Scheduler**: Cosine Annealing with Warm Restarts ### Architecture Optimizations - **Layer Freezing**: Early encoder layers frozen to preserve base knowledge - **Parameter Efficiency**: 85-90% of parameters actively trained - **Memory Optimization**: Gradient accumulation and pin memory - **Early Stopping**: Patience of 5 epochs to prevent overfitting ## 🛠️ Usage ### Basic Usage ```python from transformers import MarianMTModel, MarianTokenizer # Load model and tokenizer model_name = "dhintech/marian-id-en-op" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) # Translate Indonesian to English def translate(text): inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=96) outputs = model.generate( **inputs, max_length=96, num_beams=3, # Optimized for speed early_stopping=True, do_sample=False ) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Example usage indonesian_text = "Selamat pagi, mari kita mulai rapat hari ini." english_translation = translate(indonesian_text) print(english_translation) # Output: "Good morning, let's start today's meeting." ``` ### Optimized Production Usage ```python import time from transformers import MarianMTModel, MarianTokenizer import torch class OptimizedMeetingTranslator: def __init__(self, model_name="dhintech/marian-id-en-op"): self.tokenizer = MarianTokenizer.from_pretrained(model_name) self.model = MarianMTModel.from_pretrained(model_name) # Optimize for inference self.model.eval() if torch.cuda.is_available(): self.model = self.model.cuda() def translate(self, text, max_length=96): start_time = time.time() inputs = self.tokenizer( text, return_tensors="pt", padding=True, truncation=True, max_length=max_length ) if torch.cuda.is_available(): inputs = {k: v.cuda() for k, v in inputs.items()} with torch.no_grad(): outputs = self.model.generate( **inputs, max_length=max_length, num_beams=3, early_stopping=True, do_sample=False, pad_token_id=self.tokenizer.pad_token_id ) translation = self.tokenizer.decode(outputs[0], skip_special_tokens=True) translation_time = time.time() - start_time return { 'translation': translation, 'time': translation_time, 'input_length': len(text.split()), 'output_length': len(translation.split()) } # Usage example translator = OptimizedMeetingTranslator() result = translator.translate("Apakah ada pertanyaan mengenai proposal ini?") print(f"Translation: {result['translation']}") print(f"Time: {result['time']:.3f}s") ``` ### Batch Translation for Multiple Sentences ```python def batch_translate(sentences, translator): results = [] total_time = 0 for sentence in sentences: result = translator.translate(sentence) results.append(result) total_time += result['time'] return { 'results': results, 'total_time': total_time, 'average_time': total_time / len(sentences), 'sentences_per_second': len(sentences) / total_time } # Example batch translation meeting_sentences = [ "Selamat pagi, mari kita mulai rapat hari ini.", "Apakah ada pertanyaan mengenai proposal ini?", "Tim marketing akan bertanggung jawab untuk strategi ini.", "Mari kita diskusikan timeline implementasi project ini." ] batch_results = batch_translate(meeting_sentences, translator) print(f"Average translation time: {batch_results['average_time']:.3f}s") print(f"Throughput: {batch_results['sentences_per_second']:.1f} sentences/second") ``` ## 📝 Example Translations ### Business Meeting Context | Indonesian | English | Context | |------------|---------|---------| | Selamat pagi, mari kita mulai rapat hari ini. | Good morning, let's start today's meeting. | Meeting Opening | | Apakah ada pertanyaan mengenai proposal ini? | Are there any questions about this proposal? | Q&A Session | | Tim marketing akan bertanggung jawab untuk strategi ini. | The marketing team will be responsible for this strategy. | Task Assignment | | Mari kita diskusikan timeline implementasi project ini. | Let's discuss the implementation timeline for this project. | Project Planning | | Terima kasih atas presentasi yang sangat informatif. | Thank you for the very informative presentation. | Appreciation | ### Technical Discussion Context | Indonesian | English | Context | |------------|---------|---------| | Teknologi AI berkembang sangat pesat di Indonesia. | AI technology is developing very rapidly in Indonesia. | Tech Discussion | | Mari kita analisis data performa bulan lalu. | Let's analyze last month's performance data. | Data Analysis | | Sistem ini memerlukan optimisasi untuk meningkatkan efisiensi. | This system needs optimization to improve efficiency. | Technical Review | ## 🎯 Intended Use Cases - **Real-time Meeting Translation**: Live translation during business meetings - **Presentation Support**: Translating Indonesian presentations to English - **Business Communication**: Formal business correspondence translation - **Educational Content**: Academic and educational material translation - **Conference Interpretation**: Supporting multilingual conferences ## ⚡ Performance Optimizations ### Speed Optimizations - **Reduced Beam Search**: 3 beams (vs 4-5 in base model) - **Early Stopping**: Faster convergence - **Optimized Sequence Length**: 96 tokens maximum - **Memory Pinning**: Faster GPU transfers - **Model Quantization Ready**: Compatible with INT8 quantization ### Quality Optimizations - **Meeting-Specific Vocabulary**: Enhanced business and technical terms - **Context Preservation**: Better handling of meeting contexts - **Formal Register**: Optimized for formal Indonesian language - **Consistent Terminology**: Business-specific term consistency ## 🔧 Technical Specifications - **Model Architecture**: MarianMT (Transformer-based) - **Parameters**: ~74M (optimized subset of base model) - **Vocabulary Size**: 65,000 tokens - **Max Input Length**: 96 tokens - **Max Output Length**: 96 tokens - **Inference Time**: < 1.0s per sentence (GPU) - **Memory Requirements**: - GPU: 2GB VRAM minimum - CPU: 4GB RAM minimum - **Supported Frameworks**: PyTorch, ONNX (convertible) ## 📊 Evaluation Results ### Automatic Metrics - **BLEU Score**: 41.3 (vs 38.8 baseline) - **ROUGE-1**: 82.5 (vs 80.7 baseline) - **ROUGE-2**: 71.2 (vs 69.1 baseline) - **ROUGE-L**: 78.9 (vs 76.5 baseline) - **METEOR**: 0.742 (vs 0.718 baseline) ### Human Evaluation (Sample: 500 sentences) - **Fluency**: 4.2/5.0 (vs 3.9 baseline) - **Adequacy**: 4.1/5.0 (vs 3.8 baseline) - **Meeting Context Appropriateness**: 4.3/5.0 ## 🚨 Limitations and Considerations - **Domain Specificity**: Optimized for formal business/meeting contexts - **Informal Language**: May not perform as well on very casual Indonesian - **Regional Dialects**: Trained primarily on standard Indonesian - **Long Sequences**: Performance may degrade for very long sentences (>96 tokens) - **Cultural Context**: Some cultural nuances may be lost in translation ## 🔄 Model Updates - **v1.0.0**: Initial release with basic fine-tuning - **v1.0.1**: Current version with optimized training and speed improvements ## 📚 Citation ```bibtex @misc{marian-id-en-optimized-2025, title={MarianMT Indonesian-English Translation (Optimized for Real-Time Meetings)}, author={DhinTech}, year={2025}, publisher={Hugging Face}, journal={Hugging Face Model Hub}, howpublished={\url{https://huggingface.co/dhintech/marian-id-en-op}}, note={Fine-tuned on TED Talks corpus with meeting-specific optimizations} } ``` ## 🤝 Contributing We welcome contributions to improve this model: - **Issue Reports**: Please report any translation issues or bugs - **Performance Feedback**: Share your experience with real-world usage - **Dataset Contributions**: Help improve the model with more meeting-specific data ## 📞 Contact & Support - **Repository**: [GitHub Repository](https://github.com/dhintech) - **Issues**: Report issues through Hugging Face model page - **Community**: Join discussions in the community tab ## 🙏 Acknowledgments - **Base Model**: Helsinki-NLP team for the original opus-mt-id-en model - **Dataset**: TED Talks IWSLT dataset contributors - **Framework**: Hugging Face Transformers team - **Infrastructure**: Google Colab for training infrastructure --- *This model is specifically optimized for Indonesian business meeting translation scenarios. For general-purpose translation, consider using the base Helsinki-NLP/opus-mt-id-en model.*
lyu-boxuan/T5-sMBR-PP-ZH
lyu-boxuan
2025-05-26T05:44:25Z
0
0
null
[ "safetensors", "mt5", "license:apache-2.0", "region:us" ]
null
2025-05-26T03:10:24Z
--- license: apache-2.0 ---
sergioalves/f86cb2ec-e103-411a-ba2c-c2653861632d
sergioalves
2025-05-26T05:42:42Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:openlm-research/open_llama_3b", "base_model:adapter:openlm-research/open_llama_3b", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-05-26T05:20:08Z
--- library_name: peft license: apache-2.0 base_model: openlm-research/open_llama_3b tags: - axolotl - generated_from_trainer model-index: - name: f86cb2ec-e103-411a-ba2c-c2653861632d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: openlm-research/open_llama_3b bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 96e6850db6b7c2ae_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_instruction: instruct field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null dpo: beta: 0.1 enabled: true group_by_length: false rank_loss: true reference_model: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 3 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: sergioalves/f86cb2ec-e103-411a-ba2c-c2653861632d hub_repo: null hub_strategy: end hub_token: null learning_rate: 2.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 500 micro_batch_size: 6 mixed_precision: bf16 mlflow_experiment_name: /tmp/96e6850db6b7c2ae_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3e11bdac-af00-4520-84f7-df6ea744d307 wandb_project: s56-7 wandb_run: your_name wandb_runid: 3e11bdac-af00-4520-84f7-df6ea744d307 warmup_steps: 50 weight_decay: 0.02 xformers_attention: true ``` </details><br> # f86cb2ec-e103-411a-ba2c-c2653861632d This model is a fine-tuned version of [openlm-research/open_llama_3b](https://huggingface.co/openlm-research/open_llama_3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7464 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 18 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8532 | 0.0001 | 1 | 1.9880 | | 1.8513 | 0.0372 | 250 | 1.8110 | | 1.7937 | 0.0744 | 500 | 1.7464 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
UEhasu2b/Viralbeanne.valerie.dela.cruz.beanne.dela.cruz.viral.video.beanne.valerie.delacruz.telegram
UEhasu2b
2025-05-26T05:40:52Z
0
0
null
[ "region:us" ]
null
2025-05-26T05:39:03Z
[Viral]beanne valerie dela cruz beanne dela cruz viral video beanne valerie delacruz telegram Watch ➤ ➤ ➤ <a href="https://buzzzscope.com/vagerhtrbhg"> Click Here To link (beanne valerie dela cruz beanne dela cruz viral video beanne valerie delacruz telegram) ➤►DOWNLOAD ➤<a href="https://buzzzscope.com/vagerhtrbhg"> Click Here To link (beanne valerie dela cruz beanne dela cruz viral video beanne valerie delacruz telegram) Watch ➤ ➤ ➤ <a href="https://buzzzscope.com/vagerhtrbhg"> Click Here To link (beanne valerie dela cruz beanne dela cruz viral video beanne valerie delacruz telegram) ➤►DOWNLOAD ➤<a href="https://buzzzscope.com/vagerhtrbhg"> Click Here To link (beanne valerie dela cruz beanne dela cruz viral video beanne valerie delacruz telegram) Watch ➤ ➤ ➤ <a href="https://buzzzscope.com/vagerhtrbhg"> Click Here To link (beanne valerie dela cruz beanne dela cruz viral video beanne valerie delacruz telegram) ➤►DOWNLOAD ➤<a href="https://buzzzscope.com/vagerhtrbhg"> Click Here To link (beanne valerie dela cruz beanne dela cruz viral video beanne valerie delacruz telegram)
enosislabs/midnight-mini-high-thinking-exp-gguf
enosislabs
2025-05-26T05:40:16Z
3
1
transformers
[ "transformers", "gguf", "qwen3", "qwen", "qwen3-4b", "unsloth", "midnight-ai", "enosis-labs", "text-generation", "code-generation", "mathematics", "reasoning", "fine-tuned", "MMLU", "HumanEval", "HellaSwag", "Winogrande", "LAMBADA", "CEVAL", "en", "es", "zh", "dataset:enosislabs/math-mini-shareGPT", "dataset:enosislabs/midnight-mini-think-shareGPT", "base_model:Qwen/Qwen3-4B", "base_model:quantized:Qwen/Qwen3-4B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-05-25T03:19:10Z
--- license: apache-2.0 language: - en - es - zh tags: - qwen - qwen3-4b - unsloth - midnight-ai - enosis-labs - text-generation - code-generation - mathematics - reasoning - fine-tuned - MMLU - HumanEval - HellaSwag - Winogrande - LAMBADA - CEVAL pipeline_tag: text-generation model_name: Midnight Mini High Thinking GGIF model_id: enosislabs/midnight-mini-high-thinking-exp-gguf base_model: Qwen/Qwen3-4B datasets: - enosislabs/math-mini-shareGPT - enosislabs/midnight-mini-think-shareGPT library_name: transformers --- # Midnight Mini High Thinking: Efficient Reasoning Architecture **Model ID:** `midnight-mini-high-thinking-05-25` **Developed by:** Enosis Labs AI Research Division **Model Version:** 05-25 (Production Release) **Base Architecture:** Qwen3-4B ## Executive Summary Midnight Mini High Thinking is a state-of-the-art causal language model engineered for complex reasoning applications within enterprise environments. This 4-billion parameter architecture delivers sophisticated analytical capabilities through advanced fine-tuning methodologies, demonstrating superior performance in mathematical computation, logical reasoning, and code synthesis tasks while maintaining computational efficiency for production deployment. ## Technical Specifications ### Core Architecture - **Base Model:** Qwen/Qwen3-4B - **Parameter Count:** 4.02 billion trainable parameters - **Model Type:** Autoregressive Transformer (Causal Language Model) - **Fine-tuning Framework:** Unsloth optimization pipeline - **Quantization Support:** Native 16-bit precision, GGUF quantized variants (Q4_K_M, Q5_K_M, Q8_0) - **Maximum Context Length:** 32,768 tokens - **Vocabulary Size:** 151,936 tokens - **Attention Heads:** 32 (Multi-Head Attention) - **Hidden Dimensions:** 2,048 - **Feed-Forward Network Dimensions:** 11,008 ### Performance Characteristics The model architecture incorporates several advanced optimizations: - **Enhanced Attention Mechanisms:** Specialized for multi-step reasoning workflows with improved long-range dependency modeling - **Parameter-Efficient Fine-Tuning:** Utilizing LoRA (Low-Rank Adaptation) and QLoRA techniques for optimal training efficiency - **Memory Optimization:** Gradient checkpointing and mixed-precision training for reduced memory footprint during inference - **Inference Optimization:** Native support for key-value cache optimization and dynamic batching ### Deployment Formats #### 16-bit Precision Model - **Memory Requirements:** ~8GB VRAM (inference) - **Inference Speed:** ~150-200 tokens/second (RTX 4090) - **Precision:** Full fp16 precision for maximum accuracy #### GGUF Quantized Variants - **Q4_K_M:** 2.6GB, optimal balance of quality and efficiency - **Q5_K_M:** 3.2GB, enhanced quality with moderate compression - **Q8_0:** 4.3GB, near-original quality with minimal compression ## Core Capabilities & Design Objectives Midnight Mini High Thinking is specifically engineered for enterprise applications requiring sophisticated analytical capabilities: ### Primary Capabilities - **Advanced Multi-Step Reasoning:** Demonstrates exceptional performance in complex logical sequences requiring iterative analysis and synthesis - **Mathematical Computation & Analysis:** Excels in advanced mathematical operations, theorem proving, and quantitative analysis - **Code Generation & Software Engineering:** Proficient in generating, debugging, and optimizing code across multiple programming languages - **Technical Documentation Processing:** Advanced comprehension and generation of technical documentation, research papers, and analytical reports - **Multilingual Intelligence:** Primary optimization for English with demonstrated capabilities in Spanish and Chinese for specialized tasks ### Design Principles - **Ethical AI Framework:** Integrated safety mechanisms for responsible AI deployment - **Bias Mitigation:** Advanced training protocols designed to minimize harmful biases and promote equitable outputs - **Computational Efficiency:** Optimized for production environments with resource-conscious design - **Scalability:** Architecture designed for horizontal scaling in enterprise deployments ## Enterprise Applications & Use Cases Midnight Mini High Thinking is architected for professional environments requiring sophisticated analytical capabilities: ### Primary Application Domains - **Advanced Mathematical Research:** Complex problem solving, theorem verification, mathematical proof assistance, and quantitative analysis - **Software Engineering & Development:** Code generation, debugging assistance, architecture planning, and technical documentation - **Business Intelligence & Analytics:** Data analysis interpretation, report generation, and strategic decision support - **Academic Research Support:** Literature analysis, research methodology assistance, and technical writing enhancement - **Educational Technology:** Advanced tutoring systems, curriculum development, and personalized learning assistance ### Implementation Examples #### Mathematical Analysis Implementation ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Initialize model with optimized settings model_id = "enosislabs/midnight-mini-high-thinking-05-25" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, device_map="auto" ) # Mathematical reasoning example prompt = """Analyze the convergence properties of the Taylor series for e^x around x=0. Provide a rigorous mathematical explanation including convergence radius and error bounds.""" inputs = tokenizer(prompt, return_tensors="pt") with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=400, temperature=0.7, do_sample=True, top_p=0.9 ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(f"Mathematical Analysis:\n{response}") ``` #### Code Generation & Technical Documentation ```python # Advanced code generation with documentation coding_prompt = """Design a Python class for implementing a thread-safe LRU cache with TTL (time-to-live) functionality. Include comprehensive documentation and error handling.""" inputs = tokenizer(coding_prompt, return_tensors="pt") with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=500, temperature=0.3, do_sample=True ) code_response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(f"Generated Solution:\n{code_response}") ``` ## Training Methodology & Data Engineering ### Training Infrastructure - **Base Model:** Qwen/Qwen3-4B - **Fine-tuning Framework:** Unsloth optimization pipeline with custom extensions - **Hardware Configuration:** Multi-GPU training environment (A100 80GB clusters) - **Training Duration:** 72 hours of optimized training across distributed systems - **Optimization Strategy:** Parameter-efficient fine-tuning with LoRA and gradient accumulation ### Dataset Composition & Curation The training regimen incorporates a proprietary, meticulously curated dataset collection designed to enhance analytical capabilities: - **Mathematical Reasoning Corpus:** Advanced mathematical problems, proofs, and analytical reasoning chains - **Code Generation Suite:** Multi-language programming challenges with comprehensive documentation requirements - **Technical Documentation Archive:** Scientific papers, technical specifications, and analytical reports - **Ethical Alignment Dataset:** Carefully curated examples promoting responsible AI behavior and bias mitigation - **Multilingual Reasoning Collection:** Cross-linguistic reasoning tasks with emphasis on knowledge transfer ### Training Optimization Techniques - **Gradient Checkpointing:** Memory-efficient training enabling larger effective batch sizes - **Mixed Precision Training:** FP16 optimization for accelerated training without precision loss - **Dynamic Learning Rate Scheduling:** Adaptive learning rate adjustment based on validation performance - **Regularization Strategies:** Dropout, weight decay, and label smoothing for improved generalization ## Performance Benchmarks & Evaluation Results Midnight Mini High Thinking has undergone comprehensive evaluation across industry-standard benchmarks, demonstrating exceptional performance characteristics for its parameter class. ### Benchmark Results Overview | Benchmark Category | Task Specification | Metric | Score | Standard Error | |:-------------------|:-------------------|:-------|:------|:---------------| | **Code Generation** | | | | | | | HumanEval | `pass@1` | 0.5920 | ±0.0389 | | **Common Sense Reasoning** | | | | | | | HellaSwag | `acc` | 0.5074 | ±0.0050 | | | | `acc_norm` | 0.6782 | ±0.0047 | | | Winogrande | `acc` | 0.6748 | ±0.0132 | | **Language Modeling** | | | | | | | LAMBADA OpenAI (English) | `acc` | 0.6218 | ±0.0068 | | | | `perplexity` | 5.8048 | ±0.1720 | | **Knowledge & Reasoning** | | | | | | | MMLU (English) - General | `acc` | 0.6920 | ±0.0453 | | | MMLU (English) - STEM | `acc` | 0.5870 | ±0.0734 | | | MMLU (Spanish) - General | `acc` | 0.6050 | ±0.0246 | | | MMLU (Spanish) - STEM | `acc` | 0.6304 | ±0.0720 | | **Specialized Knowledge** | | | | | | | CEVAL - Advanced Mathematics | `acc` | 0.5863 | ±0.1177 | ### Performance Analysis **Code Generation Excellence:** The 59.2% pass@1 score on HumanEval demonstrates superior code synthesis capabilities, positioning the model among the top performers in its parameter class for software engineering applications. **Knowledge Integration:** MMLU performance of 69.2% (English) indicates strong knowledge retention and application across diverse domains, with particularly notable STEM performance in Spanish (63.04%) suggesting effective cross-linguistic knowledge transfer. **Reasoning Capabilities:** Winogrande accuracy of 67.48% and HellaSwag normalized accuracy of 67.82% demonstrate robust common-sense reasoning and contextual understanding. **Mathematical Proficiency:** CEVAL mathematics performance of 58.63% showcases specialized mathematical reasoning capabilities, particularly valuable for technical and scientific applications. ## Model Limitations & Risk Assessment ### Technical Constraints - **Knowledge Temporal Boundary:** Training data cutoff limits real-time information access and contemporary knowledge integration - **Computational Resource Requirements:** 4B parameter architecture demands significant computational resources for optimal performance - **Context Window Limitations:** 32,768 token limit may constrain processing of extremely large documents or extended conversations - **Quantization Trade-offs:** GGUF variants exhibit quality degradation proportional to compression level ### Performance Limitations - **Hallucination Potential:** Like all large language models, may generate factually incorrect or logically inconsistent outputs - **Domain-Specific Accuracy:** Performance varies across specialized domains; validation recommended for critical applications - **Language Proficiency Variance:** Optimal performance in English with graduated capabilities in Spanish and Chinese - **Reasoning Depth Constraints:** Complex multi-step reasoning may occasionally exhibit logical gaps or incomplete analysis ### Bias & Fairness Considerations - **Training Data Bias Inheritance:** May reflect societal biases present in training corpora despite mitigation efforts - **Cultural Context Limitations:** Responses may exhibit Western-centric perspectives due to training data composition - **Demographic Representation:** Potential underrepresentation of certain demographic groups in training examples - **Professional Domain Bias:** May exhibit preferences toward certain professional or academic perspectives ## Ethical Framework & Responsible AI Implementation ### Safety Mechanisms - **Content Safety Filters:** Integrated mechanisms to identify and refuse harmful content generation - **Bias Detection & Mitigation:** Ongoing monitoring for discriminatory outputs with corrective measures - **Harmful Use Prevention:** Design features to discourage malicious applications and misuse - **Privacy Protection:** No retention of user inputs or personal data during inference ### Deployment Guidelines - **Human Oversight Requirement:** Critical decisions should maintain human validation and review - **Domain-Specific Validation:** Professional applications require subject matter expert verification - **Continuous Monitoring:** Regular assessment of outputs for quality and ethical compliance - **User Education:** Clear communication of model capabilities and limitations to end users ### Research Ethics Compliance Development adheres to established AI research ethics principles: - **Beneficence:** Designed to augment human capabilities and provide positive societal impact - **Non-maleficence:** Active measures to prevent harmful applications and negative consequences - **Autonomy:** Respects user agency while providing transparent information about model behavior - **Justice:** Efforts to ensure equitable access and fair treatment across user populations ## Technical Support & Model Citation ### Model Attribution When utilizing Midnight Mini High Thinking in research or production environments, please cite: ```bibtex @software{midnight_mini_high_thinking_2025, author = {Enosis Labs AI Research Division}, title = { Midnight Mini High Thinking: Efficient Reasoning Architecture}, version = {05-25}, year = {2025}, publisher = {Enosis Labs}, url = {https://huggingface.co/enosislabs/midnight-mini-high-thinking-exp} } ``` ### Technical Support Channels For technical inquiries, deployment assistance, or research collaboration: - **Primary Contact:** <[email protected]> - **Model Repository:** [Hugging Face Model Hub](https://huggingface.co/enosislabs/midnight-mini-high-thinking-exp) ### License & Distribution Licensed under Apache 2.0, permitting commercial use, modification, and distribution with appropriate attribution. --- **Enosis Labs AI Research Division** *Advancing the frontiers of artificial intelligence through responsible innovation*
dhruvsangani/Sentiment-Analysis-of-Banking-Dataset-GGUF
dhruvsangani
2025-05-26T05:37:59Z
6
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-05-24T15:13:45Z
--- base_model: unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** dhruvsangani - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
dfafdsaf/deberta_sentiment_5000
dfafdsaf
2025-05-26T05:32:33Z
0
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-05-25T17:58:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dfafdsaf/roberta_sentiment_10000
dfafdsaf
2025-05-26T05:30:26Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-05-26T05:28:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
IoanaLivia/real-voices-youtube-horoscope-whisper-small
IoanaLivia
2025-05-26T05:30:14Z
0
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "ro", "dataset:IoanaLivia/real-voices-youtube-horoscope", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-05-26T02:31:28Z
--- library_name: transformers language: - ro license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - IoanaLivia/real-voices-youtube-horoscope metrics: - wer model-index: - name: IoanaLivia/real-voices-youtube-whisper-small results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: IoanaLivia/real-voices-youtube-horoscope type: IoanaLivia/real-voices-youtube-horoscope config: default split: validation args: 'config: hi, split: validation' metrics: - name: Wer type: wer value: 19.42582086986419 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IoanaLivia/real-voices-youtube-whisper-small This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the IoanaLivia/real-voices-youtube-horoscope dataset. It achieves the following results on the evaluation set: - Loss: 0.3917 - Wer: 19.4258 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 0 | 0 | 0.4170 | 30.1014 | | 0.4264 | 1.0 | 24 | 0.3082 | 21.4372 | | 0.1957 | 2.0 | 48 | 0.2799 | 20.4917 | | 0.1032 | 3.0 | 72 | 0.2904 | 20.3369 | | 0.0535 | 4.0 | 96 | 0.3016 | 20.2338 | | 0.0261 | 5.0 | 120 | 0.3226 | 20.5604 | | 0.0148 | 6.0 | 144 | 0.3466 | 20.7495 | | 0.0091 | 7.0 | 168 | 0.3596 | 21.1793 | | 0.0063 | 8.0 | 192 | 0.3696 | 20.9386 | | 0.0052 | 9.0 | 216 | 0.3703 | 19.7009 | | 0.004 | 10.0 | 240 | 0.3749 | 19.8212 | | 0.0032 | 11.0 | 264 | 0.3846 | 20.1822 | | 0.0027 | 12.0 | 288 | 0.3867 | 19.5462 | | 0.0023 | 13.0 | 312 | 0.3917 | 19.4258 | | 0.0021 | 14.0 | 336 | 0.3948 | 20.6120 | | 0.0019 | 15.0 | 360 | 0.3980 | 19.5633 | | 0.0017 | 16.0 | 384 | 0.4014 | 19.6321 | | 0.0016 | 17.0 | 408 | 0.4038 | 19.4946 | | 0.0015 | 18.0 | 432 | 0.4067 | 19.4946 | | 0.0014 | 19.0 | 456 | 0.4088 | 19.4774 | | 0.0013 | 20.0 | 480 | 0.4113 | 19.6321 | | 0.0013 | 21.0 | 504 | 0.4133 | 19.5805 | | 0.0012 | 22.0 | 528 | 0.4153 | 19.6493 | | 0.0011 | 23.0 | 552 | 0.4173 | 19.6493 | | 0.0011 | 24.0 | 576 | 0.4189 | 19.6493 | | 0.001 | 25.0 | 600 | 0.4203 | 19.7009 | | 0.001 | 26.0 | 624 | 0.4219 | 19.7181 | | 0.001 | 27.0 | 648 | 0.4232 | 19.7353 | | 0.0009 | 28.0 | 672 | 0.4245 | 19.8040 | | 0.0009 | 29.0 | 696 | 0.4257 | 19.8384 | | 0.0009 | 30.0 | 720 | 0.4268 | 19.8900 | | 0.0009 | 31.0 | 744 | 0.4276 | 19.8556 | | 0.0009 | 32.0 | 768 | 0.4286 | 19.8556 | | 0.0008 | 33.0 | 792 | 0.4293 | 19.7868 | | 0.0008 | 34.0 | 816 | 0.4300 | 19.8728 | | 0.0008 | 35.0 | 840 | 0.4307 | 19.7696 | | 0.0008 | 36.0 | 864 | 0.4311 | 19.8728 | | 0.0008 | 37.0 | 888 | 0.4315 | 19.8212 | | 0.0008 | 38.0 | 912 | 0.4317 | 19.8556 | | 0.0008 | 39.0 | 936 | 0.4319 | 19.9244 | | 0.0008 | 40.0 | 960 | 0.4319 | 19.8212 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
nabaram/resnet-18
nabaram
2025-05-26T05:28:46Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-26T05:28:46Z
--- license: apache-2.0 ---
DrViJ/ppo-Huggy
DrViJ
2025-05-26T05:28:26Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2025-05-25T21:05:32Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: DrViJ/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
VIDEO-18-Zarnab-Shastri-Viral-Video/Original.Full.Clip.Zarnab.Shastri.Viral.Video.Leaks.Official
VIDEO-18-Zarnab-Shastri-Viral-Video
2025-05-26T05:26:36Z
0
0
null
[ "region:us" ]
null
2025-05-26T05:26:21Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
MAAT-EL-DUAT/JENNA-CHATML-9000
MAAT-EL-DUAT
2025-05-26T05:26:32Z
0
0
null
[ "region:us" ]
null
2025-05-25T22:06:35Z
### EXPERIMENTS IN EXTREME REVERSE POLICY ACTION THIS IS STILL THEORY HAS NOT BEEN DONE YET
jyoung105/ent2_t13
jyoung105
2025-05-26T05:26:18Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-26T05:26:16Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # Ent2_T13 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "TOK", "lora_weights": "https://huggingface.co/jyoung105/ent2_t13/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('jyoung105/ent2_t13', weight_name='lora.safetensors') image = pipeline('TOK').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 500 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/jyoung105/ent2_t13/discussions) to add images that show off what you’ve made with this LoRA.
jeongseokoh/llama3-8b-with-conclusion-Alphabet_False_Multiple3_aggr_last_starting_with_inst_analyzer
jeongseokoh
2025-05-26T05:25:54Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-26T05:18:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Fynd/cloth-vton
Fynd
2025-05-26T05:25:08Z
0
0
null
[ "region:us" ]
null
2025-05-26T05:24:32Z
--- title: Cloth Vton emoji: 📉 colorFrom: gray colorTo: green sdk: gradio sdk_version: 5.31.0 app_file: app.py pinned: false short_description: Cloth VTON --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
abrarlohia/cloth-vton
abrarlohia
2025-05-26T05:23:53Z
0
0
null
[ "region:us" ]
null
2025-05-26T05:21:36Z
--- title: Cloth Vton emoji: 📉 colorFrom: gray colorTo: green sdk: gradio sdk_version: 5.31.0 app_file: app.py pinned: false short_description: Cloth VTON --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
MAAT-EL-DUAT/JENNA-9001
MAAT-EL-DUAT
2025-05-26T05:23:07Z
0
0
null
[ "region:us" ]
null
2025-05-26T05:22:21Z
### DARKAI ASSASSIN IN THIS EXPERIMENT ONLY THE OUTPUT LOSS IS UPDATED TRY TO MASK OUT THE INSTRUCTION + INPUT
Ash2749/trial3.1_8b
Ash2749
2025-05-26T05:21:53Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-05-26T05:19:00Z
--- base_model: unsloth/llama-3.1-8b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Ash2749 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.1-8b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
TheGardener/Qwen-0.4B-shortened-llama
TheGardener
2025-05-26T05:20:56Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-26T05:19:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Lightricks/ltxv-spatial-upscaler-0.9.7
Lightricks
2025-05-26T05:18:52Z
1,445
1
diffusers
[ "diffusers", "safetensors", "ltx-video", "video-upscaling", "video-to-video", "en", "license:other", "diffusers:LTXLatentUpsamplePipeline", "region:us" ]
null
2025-05-14T18:09:52Z
--- tags: - ltx-video - video-upscaling - diffusers - video-to-video pinned: false language: - en license: other pipeline_tag: video-to-video library_name: diffusers --- # LTX Video Spatial Upscaler 0.9.7 Model Card This model card focuses on the LTX Video Spatial Upscaler 0.9.7, a component model designed to work in conjunction with the LTX-Video generation models. The main LTX-Video codebase is available [here](https://github.com/Lightricks/LTX-Video). LTX-Video is the first DiT-based video generation model capable of generating high-quality videos in real-time. It produces 30 FPS videos at a 1216×704 resolution faster than they can be watched. Trained on a large-scale dataset of diverse videos, the model generates high-resolution videos with realistic and varied content. We provide a model for both text-to-video as well as image+text-to-video usecases. **The LTX Video Spatial Upscaler** is a diffusion-based model that enhances the spatial resolution of videos. It is specifically trained to upscale the latent representations of videos generated by LTX Video models. <img src="./media/trailer.gif" alt="trailer" width="512"> | | | | | |:---:|:---:|:---:|:---:| | ![example1](./media/ltx-video_example_00001.gif)<br><details style="max-width: 300px; margin: auto;"><summary>A woman with long brown hair and light skin smiles at another woman...</summary>A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage.</details> | ![example2](./media/ltx-video_example_00002.gif)<br><details style="max-width: 300px; margin: auto;"><summary>A woman walks away from a white Jeep parked on a city street at night...</summary>A woman walks away from a white Jeep parked on a city street at night, then ascends a staircase and knocks on a door. The woman, wearing a dark jacket and jeans, walks away from the Jeep parked on the left side of the street, her back to the camera; she walks at a steady pace, her arms swinging slightly by her sides; the street is dimly lit, with streetlights casting pools of light on the wet pavement; a man in a dark jacket and jeans walks past the Jeep in the opposite direction; the camera follows the woman from behind as she walks up a set of stairs towards a building with a green door; she reaches the top of the stairs and turns left, continuing to walk towards the building; she reaches the door and knocks on it with her right hand; the camera remains stationary, focused on the doorway; the scene is captured in real-life footage.</details> | ![example3](./media/ltx-video_example_00003.gif)<br><details style="max-width: 300px; margin: auto;"><summary>A woman with blonde hair styled up, wearing a black dress...</summary>A woman with blonde hair styled up, wearing a black dress with sequins and pearl earrings, looks down with a sad expression on her face. The camera remains stationary, focused on the woman's face. The lighting is dim, casting soft shadows on her face. The scene appears to be from a movie or TV show.</details> | ![example4](./media/ltx-video_example_00004.gif)<br><details style="max-width: 300px; margin: auto;"><summary>The camera pans over a snow-covered mountain range...</summary>The camera pans over a snow-covered mountain range, revealing a vast expanse of snow-capped peaks and valleys.The mountains are covered in a thick layer of snow, with some areas appearing almost white while others have a slightly darker, almost grayish hue. The peaks are jagged and irregular, with some rising sharply into the sky while others are more rounded. The valleys are deep and narrow, with steep slopes that are also covered in snow. The trees in the foreground are mostly bare, with only a few leaves remaining on their branches. The sky is overcast, with thick clouds obscuring the sun. The overall impression is one of peace and tranquility, with the snow-covered mountains standing as a testament to the power and beauty of nature.</details> | | ![example5](./media/ltx-video_example_00005.gif)<br><details style="max-width: 300px; margin: auto;"><summary>A woman with light skin, wearing a blue jacket and a black hat...</summary>A woman with light skin, wearing a blue jacket and a black hat with a veil, looks down and to her right, then back up as she speaks; she has brown hair styled in an updo, light brown eyebrows, and is wearing a white collared shirt under her jacket; the camera remains stationary on her face as she speaks; the background is out of focus, but shows trees and people in period clothing; the scene is captured in real-life footage.</details> | ![example6](./media/ltx-video_example_00006.gif)<br><details style="max-width: 300px; margin: auto;"><summary>A man in a dimly lit room talks on a vintage telephone...</summary>A man in a dimly lit room talks on a vintage telephone, hangs up, and looks down with a sad expression. He holds the black rotary phone to his right ear with his right hand, his left hand holding a rocks glass with amber liquid. He wears a brown suit jacket over a white shirt, and a gold ring on his left ring finger. His short hair is neatly combed, and he has light skin with visible wrinkles around his eyes. The camera remains stationary, focused on his face and upper body. The room is dark, lit only by a warm light source off-screen to the left, casting shadows on the wall behind him. The scene appears to be from a movie.</details> | ![example7](./media/ltx-video_example_00007.gif)<br><details style="max-width: 300px; margin: auto;"><summary>A prison guard unlocks and opens a cell door...</summary>A prison guard unlocks and opens a cell door to reveal a young man sitting at a table with a woman. The guard, wearing a dark blue uniform with a badge on his left chest, unlocks the cell door with a key held in his right hand and pulls it open; he has short brown hair, light skin, and a neutral expression. The young man, wearing a black and white striped shirt, sits at a table covered with a white tablecloth, facing the woman; he has short brown hair, light skin, and a neutral expression. The woman, wearing a dark blue shirt, sits opposite the young man, her face turned towards him; she has short blonde hair and light skin. The camera remains stationary, capturing the scene from a medium distance, positioned slightly to the right of the guard. The room is dimly lit, with a single light fixture illuminating the table and the two figures. The walls are made of large, grey concrete blocks, and a metal door is visible in the background. The scene is captured in real-life footage.</details> | ![example8](./media/ltx-video_example_00008.gif)<br><details style="max-width: 300px; margin: auto;"><summary>A woman with blood on her face and a white tank top...</summary>A woman with blood on her face and a white tank top looks down and to her right, then back up as she speaks. She has dark hair pulled back, light skin, and her face and chest are covered in blood. The camera angle is a close-up, focused on the woman's face and upper torso. The lighting is dim and blue-toned, creating a somber and intense atmosphere. The scene appears to be from a movie or TV show.</details> | | ![example9](./media/ltx-video_example_00009.gif)<br><details style="max-width: 300px; margin: auto;"><summary>A man with graying hair, a beard, and a gray shirt...</summary>A man with graying hair, a beard, and a gray shirt looks down and to his right, then turns his head to the left. The camera angle is a close-up, focused on the man's face. The lighting is dim, with a greenish tint. The scene appears to be real-life footage. Step</details> | ![example10](./media/ltx-video_example_00010.gif)<br><details style="max-width: 300px; margin: auto;"><summary>A clear, turquoise river flows through a rocky canyon...</summary>A clear, turquoise river flows through a rocky canyon, cascading over a small waterfall and forming a pool of water at the bottom.The river is the main focus of the scene, with its clear water reflecting the surrounding trees and rocks. The canyon walls are steep and rocky, with some vegetation growing on them. The trees are mostly pine trees, with their green needles contrasting with the brown and gray rocks. The overall tone of the scene is one of peace and tranquility.</details> | ![example11](./media/ltx-video_example_00011.gif)<br><details style="max-width: 300px; margin: auto;"><summary>A man in a suit enters a room and speaks to two women...</summary>A man in a suit enters a room and speaks to two women sitting on a couch. The man, wearing a dark suit with a gold tie, enters the room from the left and walks towards the center of the frame. He has short gray hair, light skin, and a serious expression. He places his right hand on the back of a chair as he approaches the couch. Two women are seated on a light-colored couch in the background. The woman on the left wears a light blue sweater and has short blonde hair. The woman on the right wears a white sweater and has short blonde hair. The camera remains stationary, focusing on the man as he enters the room. The room is brightly lit, with warm tones reflecting off the walls and furniture. The scene appears to be from a film or television show.</details> | ![example12](./media/ltx-video_example_00012.gif)<br><details style="max-width: 300px; margin: auto;"><summary>The waves crash against the jagged rocks of the shoreline...</summary>The waves crash against the jagged rocks of the shoreline, sending spray high into the air.The rocks are a dark gray color, with sharp edges and deep crevices. The water is a clear blue-green, with white foam where the waves break against the rocks. The sky is a light gray, with a few white clouds dotting the horizon.</details> | | ![example13](./media/ltx-video_example_00013.gif)<br><details style="max-width: 300px; margin: auto;"><summary>The camera pans across a cityscape of tall buildings...</summary>The camera pans across a cityscape of tall buildings with a circular building in the center. The camera moves from left to right, showing the tops of the buildings and the circular building in the center. The buildings are various shades of gray and white, and the circular building has a green roof. The camera angle is high, looking down at the city. The lighting is bright, with the sun shining from the upper left, casting shadows from the buildings. The scene is computer-generated imagery.</details> | ![example14](./media/ltx-video_example_00014.gif)<br><details style="max-width: 300px; margin: auto;"><summary>A man walks towards a window, looks out, and then turns around...</summary>A man walks towards a window, looks out, and then turns around. He has short, dark hair, dark skin, and is wearing a brown coat over a red and gray scarf. He walks from left to right towards a window, his gaze fixed on something outside. The camera follows him from behind at a medium distance. The room is brightly lit, with white walls and a large window covered by a white curtain. As he approaches the window, he turns his head slightly to the left, then back to the right. He then turns his entire body to the right, facing the window. The camera remains stationary as he stands in front of the window. The scene is captured in real-life footage.</details> | ![example15](./media/ltx-video_example_00015.gif)<br><details style="max-width: 300px; margin: auto;"><summary>Two police officers in dark blue uniforms and matching hats...</summary>Two police officers in dark blue uniforms and matching hats enter a dimly lit room through a doorway on the left side of the frame. The first officer, with short brown hair and a mustache, steps inside first, followed by his partner, who has a shaved head and a goatee. Both officers have serious expressions and maintain a steady pace as they move deeper into the room. The camera remains stationary, capturing them from a slightly low angle as they enter. The room has exposed brick walls and a corrugated metal ceiling, with a barred window visible in the background. The lighting is low-key, casting shadows on the officers' faces and emphasizing the grim atmosphere. The scene appears to be from a film or television show.</details> | ![example16](./media/ltx-video_example_00016.gif)<br><details style="max-width: 300px; margin: auto;"><summary>A woman with short brown hair, wearing a maroon sleeveless top...</summary>A woman with short brown hair, wearing a maroon sleeveless top and a silver necklace, walks through a room while talking, then a woman with pink hair and a white shirt appears in the doorway and yells. The first woman walks from left to right, her expression serious; she has light skin and her eyebrows are slightly furrowed. The second woman stands in the doorway, her mouth open in a yell; she has light skin and her eyes are wide. The room is dimly lit, with a bookshelf visible in the background. The camera follows the first woman as she walks, then cuts to a close-up of the second woman's face. The scene is captured in real-life footage.</details> | **This upscaler model is compatible with and can be used to improve the output quality of videos generated by both:** * `Lightricks/LTX-Video-0.9.7-dev` * `Lightricks/LTX-Video-0.9.7-distilled` ## Model Details - **Developed by:** Lightricks - **Model type:** Latent Diffusion Video Spatial Upscaler - **Input:** Latent video frames from an LTX Video model. - **Output:** Higher-resolution latent video frames. - **Compatibility:** can be used with `Lightricks/LTX-Video-0.9.7-dev` and `Lightricks/LTX-Video-0.9.7-distilled`. ## Usage ### Direct use You can use the model for purposes under the license: - 2B version 0.9: [license](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.license.txt) - 2B version 0.9.1 [license](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.1.license.txt) - 2B version 0.9.5 [license](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltx-video-2b-v0.9.5.license.txt) - 2B version 0.9.6-dev [license](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-2b-0.9.6-dev-04-25.license.txt) - 2B version 0.9.6-distilled [license](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-2b-0.9.6-distilled-04-25.license.txt) - 13B version 0.9.7-dev [license](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-13b-0.9.7-dev.license.txt) - 13B version 0.9.7-dev-fp8 [license](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-13b-0.9.7-dev-fp8.license.txt) - 13B version 0.9.7-distilled [license](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-13b-0.9.7-distilled.license.txt) - 13B version 0.9.7-distilled-fp8 [license](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-13b-0.9.7-distilled-fp8.license.txt) - 13B version 0.9.7-distilled-lora128 [license](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-13b-0.9.7-distilled-lora128.license.txt) - Temporal upscaler version 0.9.7 [license](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-temporal-upscaler-0.9.7.license.txt) - Spatial upscaler version 0.9.7 [license](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-spatial-upscaler-0.9.7.license.txt) ### General tips: * The model works on resolutions that are divisible by 32 and number of frames that are divisible by 8 + 1 (e.g. 257). In case the resolution or number of frames are not divisible by 32 or 8 + 1, the input will be padded with -1 and then cropped to the desired resolution and number of frames. * The model works best on resolutions under 720 x 1280 and number of frames below 257. * Prompts should be in English. The more elaborate the better. Good prompt looks like `The turquoise waves crash against the dark, jagged rocks of the shore, sending white foam spraying into the air. The scene is dominated by the stark contrast between the bright blue water and the dark, almost black rocks. The water is a clear, turquoise color, and the waves are capped with white foam. The rocks are dark and jagged, and they are covered in patches of green moss. The shore is lined with lush green vegetation, including trees and bushes. In the background, there are rolling hills covered in dense forest. The sky is cloudy, and the light is dim.` ### Online demo The model is accessible right away via the following links: - [LTX-Studio image-to-video](https://app.ltx.studio/ltx-video) - [Fal.ai text-to-video](https://fal.ai/models/fal-ai/ltx-video) - [Fal.ai image-to-video](https://fal.ai/models/fal-ai/ltx-video/image-to-video) - [Replicate text-to-video and image-to-video](https://replicate.com/lightricks/ltx-video) ### ComfyUI To use our model with ComfyUI, please follow the instructions at a dedicated [ComfyUI repo](https://github.com/Lightricks/ComfyUI-LTXVideo/). ### Run locally #### Installation The codebase was tested with Python 3.10.5, CUDA version 12.2, and supports PyTorch >= 2.1.2. ```bash git clone https://github.com/Lightricks/LTX-Video.git cd LTX-Video # create env python -m venv env source env/bin/activate python -m pip install -e .\[inference-script\] ``` #### Inference To use our model, please follow the inference code in [inference.py](https://github.com/Lightricks/LTX-Video/blob/main/inference.py): ### Diffusers 🧨 LTX Video is compatible with the [Diffusers Python library](https://huggingface.co/docs/diffusers/main/en/index). It supports both text-to-video and image-to-video generation. Make sure you install `diffusers` before trying out the examples below. ```bash pip install -U git+https://github.com/huggingface/diffusers ``` The LTX Video Spatial Upscaler is used via the `LTXLatentUpsamplePipeline` in the `diffusers` library. It is intended to be part of a multi-stage generation process. Below is an example demonstrating how to use the spatial upsampler with a base LTX Video model (either the 'dev' or 'distilled' version). ```py import torch from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition from diffusers.utils import export_to_video, load_image # Choose your base LTX Video model: # base_model_id = "Lightricks/LTX-Video-0.9.7-dev" base_model_id = "Lightricks/LTX-Video-0.9.7-distilled" # Using distilled for this example # 0. Load base model and upsampler pipe = LTXConditionPipeline.from_pretrained(base_model_id, torch_dtype=torch.bfloat16) pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained( "Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipe.vae, torch_dtype=torch.bfloat16 ) pipe.to("cuda") pipe_upsample.to("cuda") def round_to_nearest_resolution_acceptable_by_vae(height, width): height = height - (height % pipe.vae_temporal_compression_ratio) width = width - (width % pipe.vae_temporal_compression_ratio) return height, width video = load_video( "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cosmos/cosmos-video2world-input-vid.mp4" )[:21] # Use only the first 21 frames as conditioning condition1 = LTXVideoCondition(video=video, frame_index=0) prompt = "The video depicts a winding mountain road covered in snow, with a single vehicle traveling along it. The road is flanked by steep, rocky cliffs and sparse vegetation. The landscape is characterized by rugged terrain and a river visible in the distance. The scene captures the solitude and beauty of a winter drive through a mountainous region." negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted" expected_height, expected_width = 768, 1152 downscale_factor = 2 / 3 num_frames = 161 # Part 1. Generate video at smaller resolution downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor) downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width) latents = pipe( conditions=[condition1], prompt=prompt, negative_prompt=negative_prompt, width=downscaled_width, height=downscaled_height, num_frames=num_frames, num_inference_steps=30, generator=torch.Generator().manual_seed(0), output_type="latent", ).frames # Part 2. Upscale generated video using latent upsampler with fewer inference steps # The available latent upsampler upscales the height/width by 2x upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2 upscaled_latents = pipe_upsample( latents=latents, output_type="latent" ).frames # Part 3. Denoise the upscaled video with few steps to improve texture (optional, but recommended) video = pipe( conditions=[condition1], prompt=prompt, negative_prompt=negative_prompt, width=upscaled_width, height=upscaled_height, num_frames=num_frames, denoise_strength=0.4, # Effectively, 4 inference steps out of 10 num_inference_steps=10, latents=upscaled_latents, decode_timestep=0.05, image_cond_noise_scale=0.025, generator=torch.Generator().manual_seed(0), output_type="pil", ).frames[0] # Part 4. Downscale the video to the expected resolution video = [frame.resize((expected_width, expected_height)) for frame in video] export_to_video(video, "output.mp4", fps=24) ``` for more details and inference examples using 🧨 diffusers, check out the [diffusers documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/ltx_video) Diffusers also supports directly loading from the original LTX checkpoints using the `from_single_file()` method. Check out [this section](https://huggingface.co/docs/diffusers/main/en/api/pipelines/ltx_video#loading-single-files) to learn more. To learn more, check out the [official documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/ltx_video). ## Limitations - This model is not intended or able to provide factual information. - As a statistical model this checkpoint might amplify existing societal biases. - The model may fail to generate videos that matches the prompts perfectly. - Prompt following is heavily influenced by the prompting-style.
New-tutorial-Zarnab-Shastri-Viral-Video/FULL.VIDEO.LINK.Bella.Zarnab.Shastri.Viral.Video.Leaks.Official
New-tutorial-Zarnab-Shastri-Viral-Video
2025-05-26T05:18:40Z
0
0
null
[ "region:us" ]
null
2025-05-26T05:18:26Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
g-assismoraes/gemma-3-1b-it-agnews
g-assismoraes
2025-05-26T05:16:23Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "conversational", "base_model:google/gemma-3-1b-it", "base_model:finetune:google/gemma-3-1b-it", "license:gemma", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-26T02:33:58Z
--- library_name: transformers license: gemma base_model: google/gemma-3-1b-it tags: - generated_from_trainer model-index: - name: gemma-3-1b-it-agnews results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gemma-3-1b-it-agnews This model is a fine-tuned version of [google/gemma-3-1b-it](https://huggingface.co/google/gemma-3-1b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.1073 | 1.0 | 27000 | 1.1091 | | 1.0571 | 2.0 | 54000 | 1.1085 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
HajimeOgawa/gemma3-7b-mbti-chat-energy
HajimeOgawa
2025-05-26T05:14:28Z
0
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-26T05:09:01Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Linslab/VLA-OS
Linslab
2025-05-26T05:09:32Z
0
0
null
[ "region:us" ]
null
2025-05-20T05:12:01Z
Found. Redirecting to https://cdn-lfs-us-1.hf.co/repos/fe/56/fe56c36eeeb5f04d9eff66e104f774de9a08ea487e8dbc4e43027abc76afb994/11acded461f42ddd393e4a1225e93176131fd87902cf02418c050e612b3e4573?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27README.md%3B+filename%3D%22README.md%22%3B&response-content-type=text%2Fmarkdown&Expires=1748244527&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTc0ODI0NDUyN319LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmhmLmNvL3JlcG9zL2ZlLzU2L2ZlNTZjMzZlZWViNWYwNGQ5ZWZmNjZlMTA0Zjc3NGRlOWEwOGVhNDg3ZThkYmM0ZTQzMDI3YWJjNzZhZmI5OTQvMTFhY2RlZDQ2MWY0MmRkZDM5M2U0YTEyMjVlOTMxNzYxMzFmZDg3OTAyY2YwMjQxOGMwNTBlNjEyYjNlNDU3Mz9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPSoifV19&Signature=O6YQB9kjhBkGmnqdrFL%7ENrcOYHTSMZbhCD8VRtlYlYZ4TqquKmRq-XAMzfugCEnGqzPidqksKX-C3D3Jr3wec3Zp-ay%7Ev-h--DavYwOCmuCF-9ertu5eCjxLVvsTiU8DmBBaIjcWkEO52XVzwhcLJ%7E2bjsa-kJCP7Wi6grlSqLrJ45qzoxjFrsDo1nyszV77kBpOucU9uDsOQU%7EkdH8o%7E0pHUVD-6dRyL5N51Kix--MOJ46x8T8SI%7EkiW%7EFtw7w2zdTuaTle01J4dc%7E1KziPkpGxT-NDBPW%7EOkLt7gmAQD0qVFFuwrcosoJX66vRZUBObbDwPf2gMzqOOTLUhJxg-w__&Key-Pair-Id=K24J24Z295AEI9
SaoSamarth/openai-whisper-large-v2-Khmer-update-1
SaoSamarth
2025-05-26T05:08:32Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-26T05:08:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
niklasm222/qwen2.5-3b-1.75k-prolog-sp-struct-rwd1-new-absurd-sweep-4
niklasm222
2025-05-26T05:05:36Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "grpo", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-05-26T05:04:49Z
--- base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - grpo license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** niklasm222 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
papaymaguire/qandasdg-experiment-lora
papaymaguire
2025-05-26T05:01:10Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:finetune:Qwen/Qwen2.5-3B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-26T05:00:36Z
--- base_model: Qwen/Qwen2.5-3B-Instruct library_name: transformers model_name: qandasdg-experiment-lora tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for qandasdg-experiment-lora This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="papaymaguire/qandasdg-experiment-lora", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.1 - Pytorch: 2.6.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
srosalesr/HF_practical_distilbert-base-uncased
srosalesr
2025-05-26T05:01:07Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-05-25T22:18:34Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: HF_practical_distilbert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HF_practical_distilbert-base-uncased This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0005 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3241 | 1.0 | 7 | 0.0377 | 1.0 | | 0.0174 | 2.0 | 14 | 0.0050 | 1.0 | | 0.0035 | 3.0 | 21 | 0.0018 | 1.0 | | 0.0015 | 4.0 | 28 | 0.0011 | 1.0 | | 0.001 | 5.0 | 35 | 0.0008 | 1.0 | | 0.0008 | 6.0 | 42 | 0.0006 | 1.0 | | 0.0007 | 7.0 | 49 | 0.0006 | 1.0 | | 0.0006 | 8.0 | 56 | 0.0005 | 1.0 | | 0.0007 | 9.0 | 63 | 0.0005 | 1.0 | | 0.0005 | 10.0 | 70 | 0.0005 | 1.0 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
kyu5787/exaone-2.4b-mlx
kyu5787
2025-05-26T04:58:48Z
0
0
mlx
[ "mlx", "safetensors", "exaone", "lg-ai", "exaone-3.5", "text-generation", "conversational", "custom_code", "en", "ko", "base_model:LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct", "base_model:finetune:LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct", "license:other", "region:us" ]
text-generation
2025-05-26T04:55:44Z
--- license: other license_name: exaone license_link: LICENSE language: - en - ko tags: - lg-ai - exaone - exaone-3.5 - mlx pipeline_tag: text-generation library_name: mlx base_model: LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct --- # kyu5787/exaone-2.4b-mlx This model [kyu5787/exaone-2.4b-mlx](https://huggingface.co/kyu5787/exaone-2.4b-mlx) was converted to MLX format from [LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct) using mlx-lm version **0.24.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("kyu5787/exaone-2.4b-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
BishakhaBiswas/custom-generate-demo
BishakhaBiswas
2025-05-26T04:57:24Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-26T04:57:24Z
--- license: apache-2.0 ---