# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This is a data loader for the GenDocVQA Dataset.""" import csv import json import os import ast import pandas as pd import datasets _DESCRIPTION = """\ This dataset is dedicated to the non-extractive document visual question challenge GenDocVQA-2024. """ _URLS = { 'img_tar': 'https://huggingface.co/datasets/lenagibee/GenDocVQA/resolve/main/archives/gendocvqa2024_imgs.tar.gz?download=true', 'ocr_tar': 'https://huggingface.co/datasets/lenagibee/GenDocVQA/resolve/main/archives/gendocvqa2024_ocr.tar.gz?download=true', 'annotations_tar': 'https://huggingface.co/datasets/lenagibee/GenDocVQA/resolve/main/archives/gendocvqa2024_annotations.tar.gz?download=true' } _LICENSE = "Other" class GenDocVQA(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="default", version=VERSION, description="Whole dataset config"), ] DEFAULT_CONFIG_NAME = "default" def _info(self): features = datasets.Features( { "unique_id": datasets.Value("int64"), "image_path": datasets.Value("string"), "ocr": datasets.Sequence( feature={ 'text': datasets.Value("string"), 'bbox': datasets.Sequence(datasets.Value("int64")), 'block_id': datasets.Value("int64"), 'text_id': datasets.Value("int64"), 'par_id': datasets.Value("int64"), 'line_id': datasets.Value("int64"), 'word_id': datasets.Value("int64") } ), "question": datasets.Value("string"), "answer": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo( features=features, description=_DESCRIPTION, license=_LICENSE ) def _split_generators(self, dl_manager): imgs_dir = dl_manager.download_and_extract(_URLS["img_tar"]) ocr_dir = dl_manager.download_and_extract(_URLS["ocr_tar"]) annotations_dir = dl_manager.download_and_extract(_URLS["annotations_tar"]) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "annot_path": annotations_dir, "imgs_dir": imgs_dir, "ocr_dir": ocr_dir, "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "annot_path": annotations_dir, "imgs_dir": imgs_dir, "ocr_dir": ocr_dir, "split": "dev", }, ) ] def _generate_examples(self, annot_path, imgs_dir, ocr_dir, split): df = pd.read_csv(os.path.join(annot_path, 'gendocvqa2024_annotations', f'{split}_v1.csv')) for _, row in df.iterrows(): img_path = os.path.join(imgs_dir, 'gendocvqa2024_imgs', split, row['image_filename']) q_id = row['unique_id'] ocr_path = os.path.join(ocr_dir, 'gendocvqa2024_ocr', split, row['ocr_filename']) question = row['question'] answer = row['answer'] with open(ocr_path, 'r') as f: ocr = json.load(f) ocr_list = [] for item in ocr: ocr_dict = { 'block_id': item[0], 'text_id': item[1], 'par_id': item[2], 'line_id': item[3], 'word_id': item[4], 'bbox': item[5], 'text': item[6] } ocr_list.append(ocr_dict) if split != "test": answer = ast.literal_eval(answer) else: answer = [] yield q_id, { "unique_id": q_id, "image_path": img_path, "ocr": ocr_list, "answer": answer, "question": question, } def read_image(img_path): with Image.open(img_path) as f: original_image = f.convert("RGB") return original_image