GenDocVQA / GenDocVQA.py
lenagibee's picture
Rename GenDocVQA2024.py to GenDocVQA.py
7cce71e verified
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This is a data loader for the GenDocVQA Dataset."""
import csv
import json
import os
import ast
import pandas as pd
import datasets
_DESCRIPTION = """\
This dataset is dedicated to the non-extractive document visual question challenge GenDocVQA-2024.
"""
_URLS = {
'img_tar': 'https://huggingface.co/datasets/lenagibee/GenDocVQA/resolve/main/archives/gendocvqa2024_imgs.tar.gz?download=true',
'ocr_tar': 'https://huggingface.co/datasets/lenagibee/GenDocVQA/resolve/main/archives/gendocvqa2024_ocr.tar.gz?download=true',
'annotations_tar': 'https://huggingface.co/datasets/lenagibee/GenDocVQA/resolve/main/archives/gendocvqa2024_annotations.tar.gz?download=true'
}
_LICENSE = "Other"
class GenDocVQA(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="default", version=VERSION, description="Whole dataset config"),
]
DEFAULT_CONFIG_NAME = "default"
def _info(self):
features = datasets.Features(
{
"unique_id": datasets.Value("int64"),
"image_path": datasets.Value("string"),
"ocr": datasets.Sequence(
feature={
'text': datasets.Value("string"),
'bbox': datasets.Sequence(datasets.Value("int64")),
'block_id': datasets.Value("int64"),
'text_id': datasets.Value("int64"),
'par_id': datasets.Value("int64"),
'line_id': datasets.Value("int64"),
'word_id': datasets.Value("int64")
}
),
"question": datasets.Value("string"),
"answer": datasets.Sequence(datasets.Value("string")),
}
)
return datasets.DatasetInfo(
features=features,
description=_DESCRIPTION,
license=_LICENSE
)
def _split_generators(self, dl_manager):
imgs_dir = dl_manager.download_and_extract(_URLS["img_tar"])
ocr_dir = dl_manager.download_and_extract(_URLS["ocr_tar"])
annotations_dir = dl_manager.download_and_extract(_URLS["annotations_tar"])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"annot_path": annotations_dir,
"imgs_dir": imgs_dir,
"ocr_dir": ocr_dir,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"annot_path": annotations_dir,
"imgs_dir": imgs_dir,
"ocr_dir": ocr_dir,
"split": "dev",
},
)
]
def _generate_examples(self, annot_path, imgs_dir, ocr_dir, split):
df = pd.read_csv(os.path.join(annot_path, 'gendocvqa2024_annotations', f'{split}_v1.csv'))
for _, row in df.iterrows():
img_path = os.path.join(imgs_dir, 'gendocvqa2024_imgs', split, row['image_filename'])
q_id = row['unique_id']
ocr_path = os.path.join(ocr_dir, 'gendocvqa2024_ocr', split, row['ocr_filename'])
question = row['question']
answer = row['answer']
with open(ocr_path, 'r') as f:
ocr = json.load(f)
ocr_list = []
for item in ocr:
ocr_dict = {
'block_id': item[0],
'text_id': item[1],
'par_id': item[2],
'line_id': item[3],
'word_id': item[4],
'bbox': item[5],
'text': item[6]
}
ocr_list.append(ocr_dict)
if split != "test":
answer = ast.literal_eval(answer)
else:
answer = []
yield q_id, {
"unique_id": q_id,
"image_path": img_path,
"ocr": ocr_list,
"answer": answer,
"question": question,
}
def read_image(img_path):
with Image.open(img_path) as f:
original_image = f.convert("RGB")
return original_image