|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""This is a data loader for the GenDocVQA Dataset.""" |
|
|
|
|
|
import csv |
|
import json |
|
import os |
|
import ast |
|
import pandas as pd |
|
|
|
import datasets |
|
|
|
_DESCRIPTION = """\ |
|
This dataset is dedicated to the non-extractive document visual question challenge GenDocVQA-2024. |
|
""" |
|
|
|
_URLS = { |
|
'img_tar': 'https://huggingface.co/datasets/lenagibee/GenDocVQA/resolve/main/archives/gendocvqa2024_imgs.tar.gz?download=true', |
|
'ocr_tar': 'https://huggingface.co/datasets/lenagibee/GenDocVQA/resolve/main/archives/gendocvqa2024_ocr.tar.gz?download=true', |
|
'annotations_tar': 'https://huggingface.co/datasets/lenagibee/GenDocVQA/resolve/main/archives/gendocvqa2024_annotations.tar.gz?download=true' |
|
} |
|
|
|
_LICENSE = "Other" |
|
|
|
class GenDocVQA(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="default", version=VERSION, description="Whole dataset config"), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "default" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"unique_id": datasets.Value("int64"), |
|
"image_path": datasets.Value("string"), |
|
"ocr": datasets.Sequence( |
|
feature={ |
|
'text': datasets.Value("string"), |
|
'bbox': datasets.Sequence(datasets.Value("int64")), |
|
'block_id': datasets.Value("int64"), |
|
'text_id': datasets.Value("int64"), |
|
'par_id': datasets.Value("int64"), |
|
'line_id': datasets.Value("int64"), |
|
'word_id': datasets.Value("int64") |
|
} |
|
), |
|
"question": datasets.Value("string"), |
|
"answer": datasets.Sequence(datasets.Value("string")), |
|
|
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
features=features, |
|
description=_DESCRIPTION, |
|
license=_LICENSE |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
imgs_dir = dl_manager.download_and_extract(_URLS["img_tar"]) |
|
ocr_dir = dl_manager.download_and_extract(_URLS["ocr_tar"]) |
|
annotations_dir = dl_manager.download_and_extract(_URLS["annotations_tar"]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"annot_path": annotations_dir, |
|
"imgs_dir": imgs_dir, |
|
"ocr_dir": ocr_dir, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"annot_path": annotations_dir, |
|
"imgs_dir": imgs_dir, |
|
"ocr_dir": ocr_dir, |
|
"split": "dev", |
|
}, |
|
) |
|
] |
|
|
|
|
|
def _generate_examples(self, annot_path, imgs_dir, ocr_dir, split): |
|
df = pd.read_csv(os.path.join(annot_path, 'gendocvqa2024_annotations', f'{split}_v1.csv')) |
|
for _, row in df.iterrows(): |
|
img_path = os.path.join(imgs_dir, 'gendocvqa2024_imgs', split, row['image_filename']) |
|
q_id = row['unique_id'] |
|
ocr_path = os.path.join(ocr_dir, 'gendocvqa2024_ocr', split, row['ocr_filename']) |
|
question = row['question'] |
|
answer = row['answer'] |
|
with open(ocr_path, 'r') as f: |
|
ocr = json.load(f) |
|
ocr_list = [] |
|
for item in ocr: |
|
ocr_dict = { |
|
'block_id': item[0], |
|
'text_id': item[1], |
|
'par_id': item[2], |
|
'line_id': item[3], |
|
'word_id': item[4], |
|
'bbox': item[5], |
|
'text': item[6] |
|
} |
|
ocr_list.append(ocr_dict) |
|
if split != "test": |
|
answer = ast.literal_eval(answer) |
|
else: |
|
answer = [] |
|
|
|
yield q_id, { |
|
"unique_id": q_id, |
|
"image_path": img_path, |
|
"ocr": ocr_list, |
|
"answer": answer, |
|
"question": question, |
|
|
|
} |
|
|
|
|
|
|
|
def read_image(img_path): |
|
with Image.open(img_path) as f: |
|
original_image = f.convert("RGB") |
|
return original_image |